Hello Guest User, You are visiting this website from a computer with an IP address of 162.158.78.205 with the name of '?' since Tue Jan 19, 2021 at 10:15:33 PM PT for approx. 0 minutes now.
SDLRC - Scientific Articles all years by Author - Li+
The Sheahan Diamond Literature Reference Compilation
The Sheahan Diamond Literature Reference Compilation is compiled by Patricia Sheahan who publishes on a monthly basis a list of new scientific articles related to diamonds as well as media coverage and corporate announcementscalled the Sheahan Diamond Literature Service that is distributed as a free pdf to a list of followers. Pat has kindly agreed to allow her work to be made available as an online digital resource at Kaiser Research Online so that a broader community interested in diamonds and related geology can benefit. The references are for personal use information purposes only; when available a link is provided to an online location where the full article can be accessed or purchased directly. Reproduction of this compilation in part or in whole without permission from the Sheahan Diamond Literature Service is strictly prohibited. Return to Diamond Resource Center
Sheahan Diamond Literature Reference Compilation - Scientific Articles by Author for all years
The SDLRC provides 3 types of references identified in the reference code. DS for scientific article, DM for a media article, and DC for a corporate announcement. Consider DS0512-0001. The DS stands for "diamond scientific". 05 stands for 2005, the year the reference was posted. 12 represents the month the reference was posted. For all years prior to 2015 the default month is 12. -0001 is the reference's identifier and it does not mean anything. The number below the refence code, ie 2015, is the year the article was published. Note that the posted year may sometimes be later than the published year.
Sort Order
References are sorted by the "author" name and when the reference was posted to the compilation.
Most Recent
If the reference code is highlighted yellow, the reference was made available through the most recent monthly compilation of new literature. Use this to check out new references. When new references are posted, we make it our priority to track down an online link and obtain an abstract. With regard to older references, tracking down an abstract and an online link is a work in progress.
Link to external location of article:
If the title has a link, it means we have found a location online where you can either retrieve the full article free, or purchase access to it. The Sheahan Diamond Literature Service is not a technical article procurement service; if you want a restricted article, you must deal directly with the vendor who controls the copyright to the article.
Searching this page for a specific term or author
In your Firefox browser click Edit in the menu bar and then Find. In the Find box that shows up at the bottom of the web page enter your search term. Firefox will highlight all occurrences. This is particularly helpful when the author you are seeking was not the lead author by whom the compilation is sorted.
Sending or sharing a reference
The left column (Posted/Published) has an embedded hyperlink for each reference. In Firefox, if you right click on it, you can obtain the link url for that reference's location within the page, which you can copy and paste into an email or any other document. You can also use the "share this link" option to tweet, facebook etc the link.
Geochronology and geochemistry of felsic xenoliths in lamprophyre dikes from the southeastern margin of the North Chin a Craton: implications for the interleaving of the Dabie Sulu orogenic crust.
International Geology Review, Vol. 57, 9-10, pp. 1305-1325.
Earth and Planetary Science Letters, Vol. 494, 1, pp. 92-98.
Mantle
water
Abstract: In this study, we present new experimental constraints on the phase stability and thermal equation of state of an important hydrous phase, d-AlOOH, using synchrotron X-ray diffraction up to 142 GPa and 2500 K. Our experimental results have shown that d-AlOOH remains stable at the whole mantle pressure-temperature conditions above the D? layer yet will decompose at the core-mantle boundary because of a dramatic increase in temperature from the silicate mantle to the metallic outer core. At the bottom transition zone and top lower mantle, the formation of d-AlOOH by the decomposition of phase Egg is associated with a ~2.1-2.5% increase in density (?) and a ~19.7-20.4% increase in bulk sound velocity (VF). The increase in ? across the phase Egg to d-AlOOH phase transition can facilitate the subduction of d-AlOOH to the lower mantle. Compared to major lower-mantle phases, d-AlOOH has the lowest ? but greatest VF, leading to an anomalous low ? /VF ratio which can help to identify the potential presence of d-AlOOH in the region. More importantly, water released from the breakdown of d-AlOOH at the core-mantle boundary could lower the solidus of the pyrolitic mantle to cause partial melting and/or react with Fe in the region to form the low-velocity FeO2Hx phase. The presence of partial melting and/or the accumulation of FeO2Hx phase at the CMB could be the cause for the ultra-low velocity zone. d-AlOOH is thus an important phase to transport water to the lowermost mantle and helps to understand the origin of the ultra-low velocity zone.
Earth and Planetary Science Letters, Vol. 490, 1, pp. 161-169.
Mantle
geothermometry
Abstract: In this study, we have determined the phase boundary between Mg0.735Fe0.21Al0.07Si0.965O3-Bm and PPv and the thermal equations of state of both phases up to 202 GPa and 2600 K using synchrotron X-ray diffraction in laser heated diamond anvil cells. Our experimental results have shown that the combined effect of Fe and Al produces a wide two-phase coexistence region with a thickness of 26 GPa (410 km) at 2200 K, and addition of Fe lowers the onset transition pressure to 98 GPa at 2000 K, consistent with previous experimental results. Furthermore, addition of Fe was noted to reduce the density (?) and bulk sound velocity () contrasts across the Bm-PPv phase transition, which is in contrast to the effect of Al. Using the obtained phase diagram and thermal equations of state of Bm and PPv, we have also examined the effect of composition variations on the ? and
profiles of the lowermost mantle. Our modeling results have shown that the pyrolitic lowermost mantle should be highly heterogeneous in composition and temperature laterally to match the observed variations in the depth and seismic signatures of the D? discontinuity. Normal mantle in a pyrolitic composition with ~10% Fe and Al in Bm and PPv will lack clear seismic signature of the D? discontinuity because the broad phase boundary could smooth the velocity contrast between Bm and PPv. On the other hand, Fe-enriched regions close to the cold slabs may show a seismic signature with a change in the velocity slope of the D? discontinuity, consistent with recent seismic observations beneath the eastern Alaska. Only regions depleted in Fe and Al near the cold slabs would show a sharp change in velocity. Fe in such regions could be removed to the outer core by strong core-mantle interactions or partitions together with Al to the high-pressure phases in the subduction mid ocean ridge basalts. Our results thus have profound implication for the composition of the lowermost mantle.
Abstract: The redox state of Earth’s upper mantle in several tectonic settings, such as cratonic mantle, oceanic mantle, and mantle wedges beneath magmatic arcs, has been well documented. In contrast, oxygen fugacity (graphic) data of upper mantle under orogens worldwide are rare, and the mechanism responsible for the mantle graphic condition under orogens is not well constrained. In this study, we investigated the graphic of mantle xenoliths derived from the southern Tibetan lithospheric mantle beneath the Himalayan orogen, and that of postcollisional ultrapotassic volcanic rocks hosting the xenoliths. The graphic of mantle xenoliths ranges from ?FMQ = +0.5 to +1.2 (where ?FMQ is the deviation of log graphic from the fayalite-magnetite-quartz buffer), indicating that the southern Tibetan lithospheric mantle is more oxidized than cratonic and oceanic mantle, and it falls within the typical range of mantle wedge graphic values. Mineralogical evidence suggests that water-rich fluids and sediment melts liberated from both the subducting Neo-Tethyan oceanic slab and perhaps the Indian continental plate could have oxidized the southern Tibetan lithospheric mantle. The graphic conditions of ultrapotassic magmas show a shift toward more oxidized conditions during ascent (from ?FMQ = +0.8 to +3.0). Crustal evolution processes (e.g., fractionation) could influence magmatic graphic, and thus the redox state of mantle-derived magma may not simply represent its mantle source.
Abstract: Cratons are old and strong continental cores where the lithosphere is thick and remains largely undeformed for 2-3 b.y. Unlike typical cratons, the Wyoming craton underwent pervasive deformation ca. 80-55 Ma during the Laramide orogeny in the west-central United States, and has been subsequently encroached upon by the Yellowstone hotspot since 2.0 Ma. However, the mechanism for the deformation and the craton-hotspot interaction are not well understood. We present here a three-dimensional shear wave velocity model beneath the Wyoming craton constrained from Rayleigh wave data, which reveal new details about the cratonic lithosphere. The average lithosphere thickness beneath the craton is ~150 km, significantly thinner than a normal cratonic root (>200 km). Continuous low velocities are observed beneath the Yellowstone hotspot and the Cheyenne belt. A low-velocity column is also present in the central-eastern craton at depths of 115-250 km. These low velocities can be explained by hot temperature and partial melting, implying mantle upwelling. A high-velocity anomaly with a dripping shape in central Wyoming extends to 200-250 km depth, indicating mantle downwelling and lithosphere erosion. Our model provides the first seismic evidence for complex small-scale mantle convection beneath the Wyoming craton. The convection probably developed during the subduction of the Farallon plate and has been reinforced by the Yellowstone hotspot. We propose that the combination of flat-slab subduction, small-scale convection, and hotspot activity can lead to massive destruction of a cratonic lithosphere.
Earth and Planetary Science Letters, Vol. 412, pp. 42-51.
Mantle
Coesite
Abstract: Compressional and shear wave velocities of coesite have been measured using ultrasonic interferometry in a multi-anvil apparatus up to 12.6 GPa at room temperature for the first time. While the P wave velocity increases continuously with pressure, the S wave exhibits an anomalous softening and the velocity decreases continuously with pressure. Finite strain analysis of the data yielded KS0=103.6(4) GPaKS0=103.6(4) GPa, G0=61.6(2) GPaG0=61.6(2) GPa and View the MathML sourceK0'=2.9(1), View the MathML sourceG0'=0.3(1) for the bulk and shear moduli and their pressure derivatives, respectively. The anomalous elastic behavior of coesite results in large velocity and impedance contrasts across the coesite–stishovite transition, reaching ~39% and ~48% for P and S wave velocity contrasts, and ~70% and 78% for P and S wave impedance contrasts, respectively, at pressure ~8 GPa, with P and S wave velocity perturbations showing no apparent dependence on depths (i.e., View the MathML sourcedln?V(PorS)/dh~0) within 8–12 GPa. These unusually large contrasts and depth independent characteristics render the transition between the two silica polymorphs one of the most plausible candidates for the cause of the seismically observed X-discontinuity. The current P and S wave velocity perturbation dependences on the SiO2 content, d(ln?VP)/d(SiO2)~0.43 (wt%)-1d(ln?VP)/d(SiO2)~0.43 (wt%)-1 and d(ln?VS)/d(SiO2)~0.60 (wt%)-1d(ln?VS)/d(SiO2)~0.60 (wt%)-1, can serve as a geophysical probe to track ancient subducted eclogite materials to gain insights on the geodynamics of the mantle.
Geochemistry of late Mesozoic adakites from the Sulu belt, China: magma genesis and implications for crustal recycling beneath continental collisional orogens.
Wang, Q., Wyman, D.A., Xu, J., Jian, P., Zhao, Z., Li, C., Xu, W., Ma, J., He, B.
Early Cretaceous adakitic granites in the northern Dabie Complex, central China: implications for partial melting and delamination of thickened lower crust.
Geochimica et Cosmochimica Acta, Vol. 71, 10, May 15, pp. 2609-2636.
Lower crustal melting via magma underplating: elemental Sr Nd Pb isotopic constraints from late Mesozoic intermediate felsic volcanic rocks in NE Chin a block.
Abstract: A fundamental goal of mineralogy and petrology is the deep understanding of mineral phase relationships and the consequent spatial and temporal patterns of mineral coexistence in rocks, ore bodies, sediments, meteorites, and other natural polycrystalline materials. The multi-dimensional chemical complexity of such mineral assemblages has traditionally led to experimental and theoretical consideration of 2-, 3-, or n-component systems that represent simplified approximations of natural systems. Network analysis provides a dynamic, quantitative, and predictive visualization framework for employing “big data” to explore complex and otherwise hidden higher-dimensional patterns of diversity and distribution in such mineral systems. We introduce and explore applications of mineral network analysis, in which mineral species are represented by nodes, while coexistence of minerals is indicated by lines between nodes. This approach provides a dynamic visualization platform for higher-dimensional analysis of phase relationships, because topologies of equilibrium phase assemblages and pathways of mineral reaction series are embedded within the networks. Mineral networks also facilitate quantitative comparison of lithologies from different planets and moons, the analysis of coexistence patterns simultaneously among hundreds of mineral species and their localities, the exploration of varied paragenetic modes of mineral groups, and investigation of changing patterns of mineral occurrence through deep time. Mineral network analysis, furthermore, represents an effective visual approach to teaching and learning in mineralogy and petrology.
Abstract: An important issue in Earth’s earliest history is the timing and mixing history of the late accreted material that supplied highly siderophile elements to Earth’s mantle after core segregation. Previously, constraints on ancient mantle processes could only be obtained indirectly from mantle-derived magmas such as basalts or komatiites. Relics of Eoarchean (older than 3.8 Ga) mantle were proposed to occur within the Eoarchean terrains of western Greenland. Here we provide geochemical evidence, including combined platinum group element (PGE) and Re-Os isotope data, showing that modern mantle-like peridotites occur at two localities in southwest Greenland. Rhenium-depletion model ages of these peridotites are mostly of Eoarchean age, in accord with U-Pb zircon ages of crosscutting granitoid intrusives. PGE abundances and patterns are similar to those of modern depleted mantle peridotites. For the first time, such patterns provide conclusive evidence for preservation of Eoarchean depleted mantle rocks that are clearly distinguishable from magmatic cumulates or komatiites. Abundances of Os, Ir, and Ru combined with Os isotope compositions in the Greenland peridotites reveal that primitive late accreted material appears to have been efficiently mixed into the sampled mantle domains by Eoarchean time.
Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province: implications for geodynamics and Cu-Au mineralization.
Abstract: Porphyritic olivine kimberlitic breccia, discovered in the Dörbed Banner of Inner Mongolia, Western China, is referred to as Longtou Shan Kimberlite in our study. This kimberlite occurs as a pipe in the Halahuogete Formation of Bayan Obo Group. Zircon U-Pb ages of Longtou Shan Kimberlite reveals a Mesoproterozoic age of ~1,552 Ma, constraining the deposition age of Halahuogete Formation to the Mesoproterozoic. Compared with Mesoproterozoic kimberlite of the ancient landmass, it can be inferred that the North China Craton is a member of the Ur ancient continent of the Columbia supercontinent. Furthermore, according to the tectonic background of the Bayan Obo Group, we raise this possibility that “Bayan Obo Aulacogen” should be renamed the “Bayan Obo Continental Rift.”
Abstract: Porphyritic olivine kimberlitic breccia, discovered in the Dörbed Banner of Inner Mongolia, Western China, is referred to as Longtou Shan Kimberlite in our study. This kimberlite occurs as a pipe in the Halahuogete Formation of Bayan Obo Group. Zircon U–Pb ages of Longtou Shan Kimberlite reveals a Mesoproterozoic age of ~1,552 Ma, constraining the deposition age of Halahuogete Formation to the Mesoproterozoic. Compared with Mesoproterozoic kimberlite of the ancient landmass, it can be inferred that the North China Craton is a member of the Ur ancient continent of the Columbia supercontinent. Furthermore, according to the tectonic background of the Bayan Obo Group, we raise this possibility that “Bayan Obo Aulacogen” should be renamed the “Bayan Obo Continental Rift.”
Abstract: Mineral water contents, together with the major and trace element compositions of minerals and whole-rock, were determined for garnet pyroxenites enclosed by ultrahigh-pressure (UHP) metamorphic gneiss at Hujialin in the Sulu orogen. The garnet pyroxenites have low SiO2 contents of 40.25 to 46.68 wt% and MgO contents of 10.99 to 14.79 wt%. They are characterized by enrichment in LREE and LILE (Ba, Sr, Pb) but depletion in HFSE (Nb, Zr) and HREE. They were generated in the Triassic by metasomatic reaction of the mantle wedge peridotite with hydrous felsic melts derived from partial melting of the deeply subducted continental crust. Measured water contents vary from 523 to 1213 ppm for clinopyroxene, and 55 to 1476 ppm for garnet. These mineral water contents are not only correlated with mineral major and trace element abundances but also relatively homogenous within single mineral grains. Such features preclude significant disturbance of the mineral water contents during pyroxenite exhumation from the mantle depth to the surface and thus indicate preservation of the primary water contents for the UHP metasomatites. The garnet pyroxenites are estimated to have bulk water contents of 424-660 ppm, which are higher than those for the MORB source, similar to or higher than those for the OIB sources and close to the lower limit for the arc magma source. The relationships between contents of mineral water and some elements suggest that the high water contents of garnet pyroxenites are primarily determined by the abundance of water-rich clinopyroxene. Garnet also has the high water contents, suggesting its importance in hosting water at mantle depths. Calculated whole-rock H2O/Ce ratios are 63-145, higher than those for Hawaiian garnet pyroxenites and SWIR abyssal pyroxenites. These observations suggest that metasomatic pyroxene-rich lithologies have the capacity to contribute high H2O concentrations and variable H2O/Ce ratios to the mantle. This lends support to the interpretation that the source of some intraplate basalts may be a heterogeneous mixture of peridotite and pyroxenite. On the other hand, the high water contents of garnet pyroxenites suggest that the presence of ultramafic metasomatites in the mantle wedge would enhance its water storage and thus reduce the water transport into deeper mantle by subduction.
Polat, A., Herxberg, C., Munker, C., Rodgers, R., Kusky, T., Li, J., Fryer, B.
Geochemical and petrological evidence for a supra subduction zone origin of Neoarchean (ca 2.5 Ga) peridotites, central orogenic belt, North Chin a craton.
Geological Society of America Bulletin, Vol. 118, 7, July pp. 771-784.
Science China Earth Sciences, Vol. 59, 3, pp. 573-582.
China
Craton, North China
Abstract: Present-day hot spots and Phanerozoic large igneous provinces (LIPs) and kimberlites mainly occur at the edges of the projections of Large Low Shear Wave Velocity Provinces (LLSVPs) on the earth’s surface. If a plate contains accurately dated LIPs or kimberlites, it is possible to obtain the absolute paleoposition of the plate from the LIP/kimberlite and paleomagnetic data. The presence of Middle Ordovician kimberlites in the North China Block provides an opportunity to determine the absolute paleoposition of the block during the Middle Ordovician. In addition to paleobiogeographical information and the results of previous work on global plate reconstruction for the Ordovician Period, we selected published paleomagnetic data for the North China Block during the Middle Ordovician and determined the most reasonable absolute paleoposition of the North China Block during the Middle Ordovician: paleolatitude of approximately 16.6°S to 19.1°S and paleolongitude of approximately 10°W. The block was located between the Siberian Plate and Gondwana, close to the Siberian Plate. During the Cambrian and Ordovician periods, the North China Block may have moved toward the Siberian Plate and away from the Australian Plate.
Abstract: Carbonates are common rock-forming minerals in the Earth’s crust and act as sinks of atmospheric carbon dioxide. Subduction of hydrothermally altered oceanic lithosphere returns carbon to the interior, where more than three quarters of Earth’s carbon is stored. The contribution of subducted carbonates to the Earth's long-term deep carbon cycle is uncertain and has recently emerged as a topic of intense debate [1]. Moreover, mantle-slab interaction has been proposed as a mechanism to produce super-deep diamonds, thus questioning the use of certain mineral inclusions to infer lower-mantle origin [2]. Here we report new data on the chemical stability and reaction kinetics of carbonates in the mantle from multianvil and diamond-anvil-cell experiments. Our results suggest that carbon can be sequestered into deep Earth through reaction freezing and that the index minerals for super-deep diamonds are not reliable indicators for their formation depths.
Geophysical Research Letters, Vol. 46, 4, pp. 1984-1992.
Mantle
diamond genesis
Abstract: Superdeep diamonds originate from great depths inside Earth, carrying samples from inaccessible mantle to the surface. The reaction between carbonate and iron may be an important mechanism to form diamond through interactions between subducting slabs and surrounding mantle. Interestingly, most superdeep diamonds formed in two narrow zones, at 250-450 and 600-800 km depths within the ~2,700-km-deep mantle. No satisfactory hypothesis explains these preferred depths of diamond formation. We measured the rate of a diamond forming reaction between magnesite and iron. Our data show that high temperature promotes the reaction, while high pressure does the opposite. Particularly, the reaction slows down drastically at about 475(±55) km depth, which may explain the rarity of diamond formation below 450 km depth. The only exception is the second zone at 600-800 km, where carbonate accumulates and warms up due to the stagnation of subducting slabs at the top of lower mantle, providing more reactants and higher temperature for diamond formation. Our study demonstrates that the depth distribution of superdeep diamonds may be controlled by reaction rates.
Geochemical Perspectives Letters, Vol. 11, pp. 18-22.
Mantle
nitrogen
Abstract: Nitrogen and carbon are essential elements for life, and their relative abundances in planetary bodies are important for understanding planetary evolution and habitability. The high C/N ratio in the bulk silicate Earth (BSE) relative to chondrites has been difficult to explain through partitioning during core formation and outgassing from molten silicate. Here we propose a new model that may have released nitrogen from the metallic cores of accreting bodies during impacts with the early Earth. Experimental observations of melting in the Fe-N-C system via synchrotron X-ray radiography of samples in a Paris-Edinburgh press reveal that above the liquidus, iron-rich melt and nitrogen-rich liquid coexist at pressures up to at least 6 GPa. The combined effects of N-rich supercritical fluid lost to Earth’s atmosphere and/or space as well as N-depleted alloy equilibrating with the magma ocean on its way to the core would increase the BSE C/N ratio to match current estimates.
Abstract: Reactions involving carbon in the deep Earth have limited manifestations on Earth's surface, yet they have played a critical role in the evolution of our planet. The metal-silicate partitioning reaction promoted carbon capture during Earth's accretion and may have sequestered substantial carbon in Earth's core. The freezing reaction involving iron-carbon liquid could have contributed to the growth of Earth's inner core and the geodynamo. The redox melting/freezing reaction largely controls the movement of carbon in the modern mantle, and reactions between carbonates and silicates in the deep mantle also promote carbon mobility. The 10-year activity of the Deep Carbon Observatory has made important contributions to our knowledge of how these reactions are involved in the cycling of carbon throughout our planet, both past and present, and has helped to identify gaps in our understanding that motivate and give direction to future studies.
Geochimica et Cosmochimica Acta, Vol. 281, pp. 67-90. pdf
Russia, Siberia
deposit - Udachnaya
Abstract: Cratonic lithospheric mantle is believed to have been formed in the Archean, but kimberlite-hosted coarse peridotites from Udachnaya in the central Siberian craton typically yield Paleoproterozoic Re-depletion Os isotope ages (TRD). By comparison, olivine megacrysts from Udachnaya, sometimes called “megacrystalline peridotites”, often yield Archean TRD ages, but the nature of these rare materials remains enigmatic. We provide whole-rock (WR) Re-Os isotope and PGE analyses for 24 olivine-rich xenoliths from Udachnaya as well as modal and petrographic data, WR and mineral major and trace element compositions. The samples were selected based on (a) high olivine abundances in hand specimens and (b) sufficient freshness and size to yield representative WR powders. They comprise medium- to coarse-grained (olivine??1?cm) dunite, olivine megacrysts and low-orthopyroxene (11-21% opx) harzburgites equilibrated at 783-1154?°C and 3.9-6.5 GPa; coarse dunites have not been previously reported from Udachnaya; two xenoliths contain ilmenite. The harzburgites and dunites have similar WR variation ranges of Ca, Al, Fe, Cr and Mg# (0.917-0.934) typical of refractory cratonic peridotites, but the dunites tend to have higher MgO, NiO and Mg/Si. Mineral abundances and those of Ca and Al are not correlated with Mg#WR; they are not due to differences in melting degrees but are linked to metasomatism. Several samples with high 187Re/188Os show a positive linear correlation with 187Os/188Os with an apparent age of 0.37?Ga, same as eruption age of host kimberlite. Robust TRD ages were obtained for 16 xenoliths with low 187Re/188Os (0.02-0.13). TRD ages for low-opx harzburgites (1.9-2.1?Ga; average 2.0?±?0.1?Ga, 1 s) are manifestly lower than for dunites and megacrysts (2.4-3.1?Ga); the latter define two subsets with average TRD of 2.6?±?0.1?Ga and 3.0?±?0.1?Ga, and TMA of 3.0?±?0.2?Ga and 3.3?±?0.1?Ga, respectively. Differences in olivine grain size (coarse vs. megacrystalline) are not related to age. The age relations suggest that the dunites and megacrysts could not be produced by re-melting of harzburgites, e.g. in arc settings, nor be melt channel materials in harzburgites. Instead, they are relict fragments of lithospheric mantle formed in the Archean (likely in two events at or after 2.6?Ga and 3.0?Ga) that were incorporated into cratonic lithosphere during the final assembly of the Siberian craton in the Paleoproterozoic. A multi-stage formation of the Siberian lithospheric mantle is consistent with crustal basement ages from U-Pb dating of zircons from crustal xenoliths at Udachnaya and detrital zircons from the northern Siberian craton (1.8-2.0, 2.4-2.8 and 3.0-3.4?Ga). The new data from the Siberian and other cratons suggest that the formation of strongly melt-depleted cratonic lithosphere (e.g. Mg# =0.92) did not stop at the Archean-Proterozoic boundary as is commonly thought, but continued in the Paleoproterozoic. The same may be valid for the transition from the ‘Archean’ (4-2.5?Ga) to modern tectonic regimes.
Journal of Metamorphic Geology, Vol. 38, pp. 593-627.
Australia
geochronology
Abstract: The final assembly of the Mesoproterozoic supercontinent Nuna was marked by the collision of Laurentia and Australia at 1.60 Ga, which is recorded in the Georgetown Inlier of NE Australia. Here, we decipher the metamorphic evolution of this final Nuna collisional event using petrostructural analysis, major and trace element compositions of key minerals, thermodynamic modelling, and multi-method geochronology. The Georgetown Inlier is characterised by deformed and metamorphosed 1.70-1.62 Ga sedimentary and mafic rocks, which were intruded by c. 1.56 Ga old S-type granites. Garnet Lu-Hf and monazite U-Pb isotopic analyses distinguish two major metamorphic events (M1 at c. 1.60 Ga and M2 at c. 1.55 Ga), which allows at least two composite fabrics to be identified at the regional scale—c. 1.60 Ga S1 (consisting in fabrics S1a and S1b) and c. 1.55 Ga S2 (including fabrics S2a and S2b). Also, three tectono-metamorphic domains are distinguished: (a) the western domain, with S1 defined by low-P (LP) greenschist facies assemblages; (b) the central domain, where S1 fabric is preserved as medium-P (MP) amphibolite facies relicts, and locally as inclusion trails in garnet wrapped by the regionally dominant low-P amphibolite facies S2 fabric; and (c) the eastern domain dominated by upper amphibolite to granulite facies S2 foliation. In the central domain, 1.60 Ga MP-medium-T (MT) metamorphism (M1) developed within the staurolite-garnet stability field, with conditions ranging from 530-550°C at 6-7 kbar (garnet cores) to 620-650°C at 8-9 kbar (garnet rims), and it is associated with S1 fabric. The onset of 1.55 Ga LP-high-T (HT) metamorphism (M2) is marked by replacement of staurolite by andalusite (M2a/D2a), which was subsequently pseudomorphed by sillimanite (M2b/D2b) where granite and migmatite are abundant. P-T conditions ranged from 600 to 680°C and 4-6 kbar for the M2b sillimanite stage. 1.60 Ga garnet relicts within the S2 foliation highlight the progressive obliteration of the S1 fabric by regional S2 in the central zone during peak M2 metamorphism. In the eastern migmatitic complex, partial melting of paragneiss and amphibolite occurred syn- to post- S2, at 730-770°C and 6-8 kbar, and at 750-790°C and 6 kbar, respectively. The pressure-temperature-deformation-time paths reconstructed for the Georgetown Inlier suggest a c. 1.60 Ga M1/D1 event recorded under greenschist facies conditions in the western domain and under medium-P and medium-T conditions in the central domain. This event was followed by the regional 1.56-1.54 Ga low-P and high-T phase (M2/D2), extensively recorded in the central and eastern domains. Decompression between these two metamorphic events is ascribed to an episode of exhumation. The two-stage evolution supports the previous hypothesis that the Georgetown Inlier preserves continental collisional and subsequent thermal perturbation associated with granite emplacement.
U-Pb zircon geochronology of coesite bearing eclogites from the southern Dulan areas of the North Qaidam UHP terrane, northwestern China: spatially and temporally
Journal of Metamorphic Geology, Vol. 28, 9, pp. 955-978.
Contributions to Mineralogy and Petrology, in press available 19p.
Asia, Tibet
Melting
Abstract: Felsic granulite xenoliths entrained in Miocene (~13 Ma) isotopically evolved, mantle-derived ultrapotassic volcanic (UPV) dykes in southern Tibet are refractory meta-granitoids with garnet and rutile in a near-anhydrous quartzo-feldspathic assemblage. High F-Ti (~4 wt.% TiO2 and ~3 wt.% F) phlogopite occurs as small inclusions in garnet, except for one sample where it occurs as flakes in a quartz-plagioclase-rich rock. High Si (~3.45) phengite is found as flakes in another xenolith sample. The refractory mineralogy suggests that the xenoliths underwent high-T and high-P metamorphism (800-850 °C, >15 kbar). Zircons show four main age groupings: 1.0-0.5 Ga, 50-45, 35-20, and 16-13 Ma. The oldest group is similar to common inherited zircons in the Gangdese belt, whereas the 50-45 Ma zircons match the crystallization age and juvenile character (eHfi +0.5 to +6.5) of Eocene Gangdese arc magmas. Together these two age groups indicate that a component of the xenolith was sourced from Gangdese arc rocks. The 35-20 Ma Miocene ages are derived from zircons with similar Hf-O isotopic composition as the Eocene Gangdese magmatic zircons. They also have similar steep REE curves, suggesting they grew in the absence of garnet. These zircons mark a period of early Miocene remelting of the Eocene Gangdese arc. By contrast, the youngest zircons (13.0 ± 4.9 Ma, MSWD = 1.3) are not zoned, have much lower HREE contents than the previous group, and flat HREE patterns. They also have distinctive high Th/U ratios, high zircon d18O (+8.73-8.97 ‰) values, and extremely low eHfi (-12.7 to -9.4) values. Such evolved Hf-O isotopic compositions are similar to values of zircons from the UPV lavas that host the xenolith, and the flat REE pattern suggests that the 13 Ma zircons formed in equilibrium with garnet. Garnets from a strongly peraluminous meta-tonalite xenolith are weakly zoned or unzoned and fall into four groups, three of which are almandine-pyrope solid solutions and have low d18O (+6 to 7.5 ‰), intermediate (d18O +8.5 to 9.0 ‰), and high d18O (+11.0 to 12.0 ‰). The fourth is almost pure andradite with d18O 10-12 ‰. Both the low and intermediate d18O groups show significant variation in Fe content, whereas the two high d18O groups are compositionally homogeneous. We interpret these features to indicate that the low and intermediate d18O group garnets grew in separate fractionating magmas that were brought together through magma mixing, whereas the high d18O groups formed under high-grade metamorphic conditions accompanied by metasomatic exchange. The garnets record complex, open-system magmatic and metamorphic processes in a single rock. Based on these features, we consider that ultrapotassic magmas interacted with juvenile 35-20 Ma crust after they intruded in the deep crust (>50 km) at ~13 Ma to form hybridized Miocene granitoid magmas, leaving a refractory residue. The ~13 Ma zircons retain the original, evolved isotopic character of the ultrapotassic magmas, and the garnets record successive stages of the melting and mixing process, along with subsequent high-grade metamorphism followed by low-temperature alteration and brecciation during entrainment and ascent in a late UPV dyke. This is an excellent example of in situ crust-mantle hybridization in the deep Tibetan crust.
Geophysical Research Letters, Vol. 46, 2, pp. 678-688.
Global
craton
Abstract: Low-d18O magma has received great attention and it has profound implications on geological and climate evolution. Neoproterozoic era is a unique period to breed low-d18O magmas and snowball Earth. This manuscript first report Neoproterozoic moderately 18O-depleted zircons from the central part of the Cathaysia Block in South China, and it builds a four end-member Hf-O isotopic mixing model to explain the global low-d18O magmas at Neoproterozoic era. Our compilation of low-d18O zircon data and our new data confirms that globally Neoproterozoic 18O-depleted magmatic activities generally began after 800 Ma and reached a peak at 780-760 Ma. This provides new information on the rifting of Rodinia supercontinent and suggests close connections between northwest India, Madagascar, and South China in the Rodinia supercontinent. This manuscript deals with the hot-debated topics on oxygen isotopes and supercontinent cycle. We believe that this manuscript will attract international readers from a wide scope of geosciences.
Earth and Planetary Science Letters, Vol. 516, pp. 190-201.
Mantle
carbon
Abstract: A long-standing unresolved problem in understanding Earth's deep carbon cycle is whether crustal carbon is recycled beyond arc depths. While isotopic signatures of eclogitic diamonds and their inclusions suggest deep recycling of crustal material, the crustal carbon source remains controversial; seafloor sediment - the widely favored crustal carbon source - cannot explain the combined carbon and nitrogen isotopic characteristics of eclogitic diamonds. Here we examined the carbon and oxygen isotopic signatures of bulk-rock carbonate for 80 geographically diverse samples from altered mafic-ultramafic oceanic crust (AOC), which comprises 95 vol% of the crustal material in subducting slabs. The results show: (i) AOC contains carbonate with C values as low as -24‰, indicating the presence of biogenic carbonate; (ii) carbonate in AOC was mainly formed during low-temperature (<100 °C) alteration processes. Modeling accounting for this newly recognized carbon source in the oceanic crust with formation temperatures <100 °C yields a global carbon influx of 1.5±0.3 × 1012 mol C/yr carried by subducting AOC into the trench, which is 50-90% of previous estimates, but still of the same order of the carbon influx carried by subducting sediments into the trench. The AOC can retain carbon better than sediment during subduction into the asthenosphere, transition zone and lower mantle. Mixing of asthenospheric and AOC fluids provides the first consistent explanation of the diverse record of carbon and nitrogen isotopes in diamonds, suggesting that AOC, instead of sediment, is the key carrier of crustal carbon into the deep mantle.
www.minsocam.org/ MSA/Centennial/ MSA_Centennial _Symposium.html The next 100 years of mineral science, June 20-21, p. 22. Abstract
Mantle
diamond inclusions
Abstract: Much of the temporal record of Earth’s evolution, including its trace of plate tectonics, is blurred due to the dynamic nature of the crust-mantle system. While zircon provides the highest fidelity crustal record, diamond takes over in the mantle as the go-to mineral, capable of retaining critical information for a variety of geochemical proxies, over billion year timescales. Here we use diamond and its inclusions to tell the story of the recycling of C, N, O, H and B from the crust to various depths in Earth’s mantle. In this story, altered oceanic crust (AOC) and lithospheric mantle will play a prominent role. The carbon isotope record of diamond has long been thought to reflect the mixing of primitive mantle carbon with carbon recycled from isotopically light organic material originating from the crust. A major difficulty has been reconciling this view with the highly varied nitrogen and carbon isotope signatures in diamonds of eclogitic paragenesis, which cannot be interpreted by the same mechanism. Recent work on AOC of igneous origin (Li et al., EPSL in press) shows how isotopically varied carbon and nitrogen can be subducted to great depth and retained in spatial juxtaposition with the mafic silicate component of AOC to form the complex C-N isotope systematics observed in diamonds and the varied O isotope compositions of their inclusions. In this model a large portion of the 13C depleted carbon originated from biogenic carbonate within the AOC rather than from overlying sediments. Metamorphosed and partially devolatilized AOC will have very variable C/N ratios and highly variable nitrogen isotopes, explaining why simple two component mixing between organic matter and convecting upper mantle cannot explain the complexity of C-N isotope systematics in diamonds. Igneous AOC and its underlying altered mantle are considerably more efficient than subducted sediment at retaining their volatile inventory when recycled to transition zone and even lower mantle depths. Hence, this combination of mixing between AOC-derived volatiles and those from the convecting mantle produces the isotopic fingerprints of superdeep diamonds and their inclusions. These amazing diamonds, some worth millions of dollars, can contain pristine ultra-high pressure mineral phases never before seen in terrestrial samples. The first hydrous ringwoodite found in Earth provides evidence in support of a locally water-saturated transition zone that may result from altered oceanic lithospheric mantle foundering at that depth in the mantle. The O isotope composition of deep asthenosphere and transition zone phases document clearly crustal precursors that have interacted with the hydrosphere before residing hundreds of km deep within the Earth. Finally, spectacular blue diamonds contain boron, an element of strong crustal affinities, transported into the deep Earth along with crustal carbon, by the plate tectonic conveyor system. Diamond - such a simple mineral - and its inclusions, will continue to provide a unique, brightly illuminating light into the darkest recesses of Earth’s mantle for many years to come.
Diamond & Related Materials, Vol. 81, pp. 161-167.
Technology
microdiamonds
Abstract: Polylactic acid (PLA)-based composites filled with 20 or 50 µm-diameter microdiamond are synthesized by hot pressing. Through improving the interface compatibility between the filler and the matrix enabled by octadecylamine (ODA) coating on the microdiamond particles, the maximum thermal conductivity of the composites is 2.22 Wm- 1 K- 1, which is a ~ 10-fold increase in comparison with that of pure PLA. According to the analysis on the glass transmission of the composites and the surface chemistry of the fillers using DSC, FI-IR, and Raman microscopy, it is found out that ODA is connected with the -OH group on the microdiamond surface through hydrogen bonding and an interfacial structure of PLA/ODA/microdiamond is formed. Thus, the interfacial thermal transport between PLA and microdiamond is significantly improved, leading to the enhancement of the thermal conductivity of the composites. Our work presents a simple method to modify the surface chemistry of microdiamond and to improve the interface compatibility between microdiamond and PLA. The microdiamond/PLA composites with large thermal conductivity are promising thermal management materials used for modern electronic products.
Bulk organic geochemistry and U-Pb zircon geochronology of the Wombat sedimentary fill.
2018 Yellowknife Geoscience Forum , p. 98-99. abstract
Canada, Northwest Territories
deposit - Wombat
Abstract: The Wombat locality (64.73°N, 110.59°W) is a diamondiferous kimberlite in the Lac de Gras kimberlite field of Northwest Territories. Two drill cores, CH 93-29 and DDH 0-005, intersect the Wombat crater facies and include 195 m of well preserved, undisturbed lake sediment fill. Bulk sediment elemental analysis, C isotope composition, and Rock-Eval pyrolysis, together with inferences from microfossils, are used to characterize conditions of sedimentation and paleoenvironment in the maar lake. Bulk sediment C/N, hydrogen index (HI), and d13C indicate material derived from C3 land plants dominates the sedimentary organic matter, with a minor algal contribution. The d13C values range from -25.3 ‰ to -30.2 ‰ (average -26.6 ‰) and are typical for C3 land plants, with fluctuations in d13C likely related to shifts in the proportions of land-derived material and algal organic matter. An overall trend of higher d13C towards the top of the core suggests increasing autochthonous organic matter production. 18 samples analyzed by Rock-Eval pyrolysis all plot in the Type III kerogen field for HI vs. Tmax,with average Tmax values ~425 °C indicative of the low thermal maturity of organic matter. Total organic carbon (TOC) averages 3.6 wt.% and average total carbonate content is 14.1 wt.%, indicating bottom water anoxia and substantial carbonate input from weathering of overlying carbonate cover rocks, respectively. Together with well-preserved freshwater microfossils (e.g. diatoms, chrysophytes, synurophytes), the results indicate deposition in a non-marine setting. The age of the Wombat maar lake sediments is determined using MC-LA-ICP-MS U-Pb zircon geochronology from two distal rhyolitic tephra beds found in the core DDH 0-005, yielding a date of 82.97±0.60 Ma (MSWD = 1.7, n=18 of 33 grains analyzed). This minimum age suggests that Wombat kimberlite pipe emplacement occurred during the Late Cretaceous, with sedimentation in the maar beginning shortly thereafter. Though our geochronology is preliminary at this point, our findings from the Wombat pipe post-eruptive lake sediment fill provide direct evidence for a non-marine environment in the Lac De Gras area during the Late Cretaceous. Furthermore, microfossils in the Wombat pipe sediment fill likely include the oldest-known occurrence of freshwater diatoms.
Earth and Planetary Science Letters, Vol. 516, pp. 190-201.
Mantle
carbon
Abstract: A long-standing unresolved problem in understanding Earth's deep carbon cycle is whether crustal carbon is recycled beyond arc depths. While isotopic signatures of eclogitic diamonds and their inclusions suggest deep recycling of crustal material, the crustal carbon source remains controversial; seafloor sediment - the widely favored crustal carbon source - cannot explain the combined carbon and nitrogen isotopic characteristics of eclogitic diamonds. Here we examined the carbon and oxygen isotopic signatures of bulk-rock carbonate for 80 geographically diverse samples from altered mafic-ultramafic oceanic crust (AOC), which comprises 95 vol% of the crustal material in subducting slabs. The results show: (i) AOC contains carbonate with C values as low as -24‰, indicating the presence of biogenic carbonate; (ii) carbonate in AOC was mainly formed during low-temperature (<100 °C) alteration processes. Modeling accounting for this newly recognized carbon source in the oceanic crust with formation temperatures <100 °C yields a global carbon influx of 1.5±0.3 × 1012 mol C/yr carried by subducting AOC into the trench, which is 50-90% of previous estimates, but still of the same order of the carbon influx carried by subducting sediments into the trench. The AOC can retain carbon better than sediment during subduction into the asthenosphere, transition zone and lower mantle. Mixing of asthenospheric and AOC fluids provides the first consistent explanation of the diverse record of carbon and nitrogen isotopes in diamonds, suggesting that AOC, instead of sediment, is the key carrier of crustal carbon into the deep mantle.
www.minsocam.org/ MSA/Centennial/ MSA_Centennial _Symposium.html The next 100 years of mineral science, June 20-21, p. 22. Abstract
Mantle
diamond inclusions
Abstract: Much of the temporal record of Earth’s evolution, including its trace of plate tectonics, is blurred due to the dynamic nature of the crust-mantle system. While zircon provides the highest fidelity crustal record, diamond takes over in the mantle as the go-to mineral, capable of retaining critical information for a variety of geochemical proxies, over billion year timescales. Here we use diamond and its inclusions to tell the story of the recycling of C, N, O, H and B from the crust to various depths in Earth’s mantle. In this story, altered oceanic crust (AOC) and lithospheric mantle will play a prominent role. The carbon isotope record of diamond has long been thought to reflect the mixing of primitive mantle carbon with carbon recycled from isotopically light organic material originating from the crust. A major difficulty has been reconciling this view with the highly varied nitrogen and carbon isotope signatures in diamonds of eclogitic paragenesis, which cannot be interpreted by the same mechanism. Recent work on AOC of igneous origin (Li et al., EPSL in press) shows how isotopically varied carbon and nitrogen can be subducted to great depth and retained in spatial juxtaposition with the mafic silicate component of AOC to form the complex C-N isotope systematics observed in diamonds and the varied O isotope compositions of their inclusions. In this model a large portion of the 13C depleted carbon originated from biogenic carbonate within the AOC rather than from overlying sediments. Metamorphosed and partially devolatilized AOC will have very variable C/N ratios and highly variable nitrogen isotopes, explaining why simple two component mixing between organic matter and convecting upper mantle cannot explain the complexity of C-N isotope systematics in diamonds. Igneous AOC and its underlying altered mantle are considerably more efficient than subducted sediment at retaining their volatile inventory when recycled to transition zone and even lower mantle depths. Hence, this combination of mixing between AOC-derived volatiles and those from the convecting mantle produces the isotopic fingerprints of superdeep diamonds and their inclusions. These amazing diamonds, some worth millions of dollars, can contain pristine ultra-high pressure mineral phases never before seen in terrestrial samples. The first hydrous ringwoodite found in Earth provides evidence in support of a locally water-saturated transition zone that may result from altered oceanic lithospheric mantle foundering at that depth in the mantle. The O isotope composition of deep asthenosphere and transition zone phases document clearly crustal precursors that have interacted with the hydrosphere before residing hundreds of km deep within the Earth. Finally, spectacular blue diamonds contain boron, an element of strong crustal affinities, transported into the deep Earth along with crustal carbon, by the plate tectonic conveyor system. Diamond - such a simple mineral - and its inclusions, will continue to provide a unique, brightly illuminating light into the darkest recesses of Earth’s mantle for many years to come.
Journal of Geophysical Research , Vol. 124, 5, pp. 4617-4638.
Mantle
melting
Abstract: The oxidation state of the Earth`s mantle, often expressed as oxygen fugacity (fO2), could control the behavior of multivalent elements and thus exert a significant influence on the formation of magmatic ore deposits and the secular evolution of Earth`s atmosphere. Whether arc mantle is more oxidized than oceanic mantle remains a controversial topic. As a multivalent element, partitioning behavior of vanadium is fO2 sensitive and is capable of tracking mantle redox state. However, except fO2, other factors (temperature, pressure, and phase composition) that may affect vanadium partitioning behavior have not been clearly evaluated. Here we conducted high temperature and pressure experiments to determine partition coefficients of vanadium during mantle melting under various fO2 conditions. Combining our and published data, we evaluated the effects of fO2, T, P, and compositions of mineral and melt on the vanadium partitioning using multiple linear regressions. The results indicate that, in addition to fO2, temperature exerts a significant control on the vanadium partitioning. Additionally, we estimated fO2 of the arc mantle via numerical modelling using appropriate partition coefficients for vanadium. Our results clarify and reconcile the discrepancies between previous studies and reveal that arc mantle is generally ~10 times more oxidized than oceanic mantle.
Li, L-M., Sun, M., Wang, Y., Xing, G., Zhao, G., Cai, K., Zhang, Y.
Geochronological and geochemical study of Paleproterozoic gneissic granites and clinopyroxenite xenolths from NW Fujian: implications for crustal evol.
Journal of Asian Earth Sciences, Vol. 41, 2, pp. 204-212.
Geophysical Research Letters, Vol. 43, 8, pp. 3693-3697.
Mantle
Melting
Abstract: Seismic tomography models reveal two large low shear velocity provinces (LLSVPs) that identify large-scale variations in temperature and composition in the deep mantle. Other characteristics include elevated density, elevated bulk sound speed, and sharp boundaries. We show that properties of LLSVPs can be explained by the presence of small quantities (0.3-3%) of suspended, dense Fe-Ni-S liquid. Trapping of metallic liquid is demonstrated to be likely during the crystallization of a dense basal magma ocean, and retention of such melts is consistent with currently available experimental constraints. Calculated seismic velocities and densities of lower mantle material containing low-abundance metallic liquids match the observed LLSVP properties. Small quantities of metallic liquids trapped at depth provide a natural explanation for primitive noble gas signatures in plume-related magmas. Our model hence provides a mechanism for generating large-scale chemical heterogeneities in Earth's early history and makes clear predictions for future tests of our hypothesis.
Geophysical Research Letters, Vol. 43, 8, pp. 3693-3699.
Mantle
Melting
Abstract: Seismic tomography models reveal two large low shear velocity provinces (LLSVPs) that identify large-scale variations in temperature and composition in the deep mantle. Other characteristics include elevated density, elevated bulk sound speed, and sharp boundaries. We show that properties of LLSVPs can be explained by the presence of small quantities (0.3 -3%) of suspended, dense Fe-Ni-S liquid. Trapping of metallic liquid is demonstrated to be likely during the crystallization of a dense basal magma ocean, and retention of such melts is consistent with currently available experimental constraints. Calculated seismic velocities and densities of lower mantle material containing low-abundance metallic liquids match the observed LLSVP properties. Small quantities of metallic liquids trapped at depth provide a natural explanation for primitive noble gas signatures in plume-related magmas. Our model hence provides a mechanism for generating large-scale chemical heterogeneities in Earth's early history and makes clear predictions for future tests of our hypothesis.
Earth and Planetary Science Letters, Vol. 470, pp. 54-63.
Mantle
geophysics - seismic
Abstract: Seismic tomography resolves anomalies interpreted as oceanic lithosphere subducted deep into Earth's lower mantle. However, the fate of the compositionally distinct oceanic crust that is part of the lithosphere is poorly constrained but provides important constraints on mixing processes and the recycling process in the deep Earth. We present high-resolution seismic array analyses of anomalous P-waves sampling the deep mantle, and deterministically locate heterogeneities in the lowermost 300 km of the mantle. Spectral analysis indicates that the dominant scale length of the heterogeneity is 4 to 7 km. The heterogeneity distribution varies laterally and radially and heterogeneities are more abundant near the margins of the lowermost mantle Large Low Velocity Provinces (LLVPs), consistent with mantle convection simulations that show elevated accumulations of deeply advected crustal material near the boundaries of thermo-chemical piles. The size and distribution of the observed heterogeneities is consistent with that expected for subducted oceanic crust. These results thus suggest the deep mantle contains an imprint of continued subduction of oceanic crust, stirred by mantle convection and modulated by long lasting thermo-chemical structures. The preferred location of the heterogeneity in the lowermost mantle is consistent with a thermo-chemical origin of the LLVPs. Our observations relate to the mixing behaviour of small length-scale heterogeneity in the deep Earth and indicate that compositional heterogeneities from the subduction process can survive for extended times in the lowermost mantle.
Earth and Planetary Science Letters, Vol. 478, pp. 47-58.
Mantle
plumes
Abstract: Mantle plumes are thought to originate from thermal boundary layers such as Earth's core-mantle boundary (CMB), and may cause intraplate volcanism such as large igneous provinces (LIPs) on the Earth's surface. Previous studies showed that the original eruption sites of deep-sourced LIPs for the last 200 Myrs occur mostly above the margins of the seismically-observed large low shear velocity provinces (LLSVPs) in the lowermost mantle. However, the mechanism that leads to the distribution of the LIPs is not clear. The location of the LIPs is largely determined by the source location of mantle plumes, but the question is under what conditions mantle plumes form outside, at the edges, or above the middle of LLSVPs. Here, we perform 3D geodynamic calculations and theoretical analyses to study the plume source location in the lowermost mantle. We find that a factor of five decrease of thermal expansivity and a factor of two increase of thermal diffusivity from the surface to the CMB, which are consistent with mineral physics studies, significantly reduce the number of mantle plumes forming far outside of thermochemical piles (i.e., LLSVPs). An increase of mantle viscosity in the lowermost mantle also reduces number of plumes far outside of piles. In addition, we find that strong plumes preferentially form at/near the edges of piles and are generally hotter than that forming on top of piles, which may explain the observations that most LIPs occur above LLSVP margins. However, some plumes originated at pile edges can later appear above the middle of piles due to lateral movement of the plumes and piles and morphologic changes of the piles. ~65-70% strong plumes are found within 10 degrees from pile edges in our models. Although plate motion exerts significant controls over the large-scale mantle convection in the lower mantle, mantle plume formation at the CMB remains largely controlled by thermal boundary layer instability which makes it difficult to predict geographic locations of most mantle plumes. However, all our models show consistently strong plumes originating from the lowermost mantle beneath Iceland, supporting a deep mantle plume origin of the Iceland volcanism.
Physics of the Earth and Planetary Interiors, Vol. 277, 1, pp. 10-29.
Mantle
Geothermometry
Abstract: The dynamics of Earth’s lowermost mantle exert significant control on the formation of mantle plumes and the core-mantle boundary (CMB) heat flux. However, it is not clear if and how the variation of CMB heat flux and mantle plume activity are related. Here, we perform geodynamic model experiments that show how temporal variations in CMB heat flux and pulses of mantle plumes are related to morphologic changes of the thermochemical piles of large-scale compositional heterogeneities in Earth’s lowermost mantle, represented by the large low shear velocity provinces (LLSVPs). We find good correlation between the morphologic changes of the thermochemical piles and the time variation of CMB heat flux. The morphology of the thermochemical piles is significantly altered during the initiation and ascent of strong mantle plumes, and the changes in pile morphology cause variations in the local and the total CMB heat flux. Our modeling results indicate that plume-induced episodic variations of CMB heat flux link geomagnetic superchrons to pulses of surface volcanism, although the relative timing of these two phenomena remains problematic. We also find that the density distribution in thermochemical piles is heterogeneous, and that the piles are denser on average than the surrounding mantle when both thermal and chemical effects are included.
Earth and Planetary Science Letters, Vol. 500, pp. 86-96.
Mantle
geothermometry
Abstract: The seismically-observed large low shear velocity provinces in the Earth's lowermost mantle have been hypothesized to be caused by thermochemical piles of compositionally distinct, more-primitive material which may be remnants of Earth's early differentiation. However, one critical question is how the Earth's thermal evolution is affected by the long-term presence of the large-scale compositional heterogeneity in the lowermost mantle. Here, we perform geodynamical calculations to investigate the time evolution of the morphology of large-scale compositional heterogeneity and its influence on the Earth's long-term thermal evolution. Our results show that a global layer of intrinsically dense material in the lowermost mantle significantly suppresses the CMB heat flux, which leads to faster cooling of the background mantle relative to an isochemical mantle. As the background mantle cools, the intrinsically dense material is gradually pushed into isolated thermochemical piles by cold downwellings. The size of the piles also decreases with time due to entraining of pile material into the background mantle. The morphologic change of the accumulations of intrinsic dense material eventually causes a gradual increase of CMB heat flux, which significantly reduces the cooling rate of Earth's mantle.
Abstract: Carbonatitic magmatism in subduction zones provides extremely valuable information on the cycling, behavior and storage of deep carbon within the Earth. It may also shed light on insights into crust-mantle interaction and mantle metasomatism within subduction zones. Origin of carbonatite has long been debated: all hypotheses need to reflect the different mineral assemblages and geochemical compositions of carbonatites and their diverse tectonic settings. Here we present a petrological, geochronological, geochemical and isotopic study of carbonatite bodies associated with orogenic peridotites, which occur as stocks or dykes with widths of tens to hundreds of meters in the Luliangshan region, North Qaidam, northern Tibet, China. On the basis of modal olivine (Ol) content, the studied samples were subdivided into two groups: Ol-poor carbonatite and Ol-rich carbonatite. Zircon grains from the Ol-poor carbonatite show detrital features, and yield a wide age spectrum between 400?Ma and 1000?Ma with a pronounced peak at ca. 410-430?Ma. By contrast, oscillatory zoned zircons and inherited cores show two relatively small Neoproterozoic age peaks at ca. 920 and 830?Ma. Zircon grains from the Ol-rich carbonatite sample are also distributed in a wide spectrum between 400 and 1000?Ma, with a pronounced peak at ca. 440?Ma and a slightly inferior peak at ca. 410?Ma. The oscillatory zoned zircons and inherited cores exhibit a smaller Neoproterozoic age peak at ca. 740?Ma. The pronounced peaks ranging from 430 to 410?Ma are consistent with the deep subduction and mantle metasomatic events recorded in associated ultramafic rocks. Both groups of carbonatites are characterized by enrichment of light rare earth elements (LREEs) with high (La/Yb)N values and pronounced negative Eu anomalies. They show high 87Sr/86Sr values (0.708156-0.709004), low 143Nd/144Nd values (0.511932-0.512013) and high d18OV-SMOW values (+17.9 to +21.3‰). This geochemical and isotopic evidence suggests that these carbonatites were derived from remobilized sedimentary carbonate rocks. We propose that the primary carbonatite magma was formed by partial melting of sedimentary carbonates with mantle contributions. Sedimentary carbonates were subducted into the shallow upper mantle where they melted and formed diapirs that moved upwards through the hot mantle wedge. The case presented provides a rare example of carbonatite originating from sedimentary carbonates with mantle contributions and relevant information on the mantle metasomatism within a subduction zone.
Chen, Y.X., Zheng, Y-F., Chen, R-X., Zhang, S-B., Li, Q., Dai, M., Chen, L.
Metamorphic growth and recrystallization of zircons in extremely 18 O depleted rocks during eclogite facies metamorphism: evidence from U-Pb ages, trace elements and O-Hf isotopes.
Geochimica et Cosmochimica Acta, Vol. 75, 17, pp. 4877-4898.
Precisely dating Paleozoic kimberlites in the North Chin a craton and Hf isotopic constraints on the evolution of the subcontinental lithospheric mantle.
Abstract: Kimberlite field is an example of widespread Mesoproterozoic intracontinental magmatism. Recent studies have identified deep subcontinental lithospheric mantle as a source region of the kimberlite magmatism while timing, origin, and processes responsible for the generation of coeval lamprophyres remain poorly constrained. Here, we present and discuss new petrological and geochemical data for two lamprophyre dykes from the Wajrakarur kimberlite field and assess their petrogenetic relation to the kimberlite occurrences. Based on mineral compositional and whole-rock geochemical characters, it is suggested that lamprophyres are formed through low degrees of partial melting of “enriched” lithospheric mantle that was modified and metasomatized by melts derived from recycled crust. This differs from geochemical imprints found in coeval kimberlites, where a crustal source component appears to be absent and is more consistent with rock derivation from “depleted” lithosphere which has experienced interaction with asthenosphere-derived melts. An apparent lack of garnet in the mantle sources of lamprophyres is suggestive of melting at comparatively shallow depth (~100 km) relative to the kimberlites. Hence, these geochemically contrasting rocks, although have formed at the same time, are derived from vertically heterogeneous lithospheric mantle sources and can be explained through and linked with a thermal anomaly in the underlying convective asthenosphere. We suggest that the deeper mantle source region of the kimberlites was more pristine and devoid of subduction-related signatures, whereas the shallower mantle source region of the lamprophyres seems to have preserved imprints of plate convergence and subduction associated with the evolution of the Dharwar Craton.
Precise age determin ation of the Paleozoic kimberlites in North Chin a craton and Hf isotopic constraint on the evolution of its subcontinental lithospheric mantle.
Destructive of the North Chin a craton: delamin ation or thermal/chemical erosion? Mineral chemistry and oxygen isotope insights from websterite xenoliths.
Mesoproterozoic U-Pb ages, trace element and Sr-Nd isotopic composition of perovskite from kimberlites of the Eastern Dharwar craton, southern India: distinct mantle sources and a Wide spread 1.1 Ga Tectonomagmatic event.
Abstract: Alkaline rock and carbonatite complexes, including the Prairie Lake complex (NW Ontario), are widely distributed in the Canadian region of the Midcontinent Rift in North America. It has been suggested that these complexes were emplaced during the main stage of rifting magmatism and are related to a mantle plume. The Prairie Lake complex is composed of carbonatite, ijolite and potassic nepheline syenite. Two samples of baddeleyite from the carbonatite yield U-Pb ages of 1157.2±2.3 and 1158.2±3.8 Ma, identical to the age of 1163.6±3.6 Ma obtained for baddeleyite from the ijolite. Apatite from the carbonatite yields the same U-Pb age of ~1160 Ma using TIMS, SIMS and laser ablation techniques. These ages indicate that the various rocks within the complex were synchronously emplaced at about 1160 Ma. The carbonatite, ijolite and syenite have identical Sr, Nd and Hf isotopic compositions with a 87Sr/86Sr ratio of ~0.70254, and positive eNd(t)1160 and eHf(t)1160 values of ~+3.5 and ~+4.6, respectively, indicating that the silicate and carbonatitic rocks are co-genetic and related by simple fractional crystallization from a magma derived from a weakly depleted mantle. These age determinations extend the period of magmatism in the Midcontinent Rift in the Lake Superior area to 1160 Ma, but do not indicate whether the magmatism is associated with passive continental rifting or the initial stages of plume-induced rifting.
Abstract: Baddeleyite has been recognized as a key mineral to determine the crystallization age of silica-undersaturated igneous rocks. Here we report a new occurrence of baddeleyite identified from REE-Nb-Th-rich carbonatite in the world's largest REE deposit, Bayan Obo, in the North China Craton (China). U-Th-Pb dating of three baddeleyite samples yields crystallization ages of 310–270 Ma with the best estimated crystallization age of ca. 280 Ma. These ages are significantly younger than the ca. 1300 Ma Bayan Obo carbonatites, but broadly coeval to nearby Permian granitoids intruding into the carbonatites. Hence, the Bayan Obo baddeleyite did not crystallize from the carbonatitic magma that led to the formation of the Bayan Obo carbonatites and related REE-Nb-Th deposit. Instead, it crystallized from hydrothermal fluids and/or a reaction involving zircon and dolomite during contact metamorphism related to the Permian granitoid emplacement. This is in agreement with the results of electron microprobe analysis that show humite inclusions in baddeleyite, since humite is a typical magnesian skarn mineral and occurs in close proximity to the intrusive contacts between carbonatites and granitoids. Our results show that baddeleyite can be used for dating hydrothermal and contact metamorphic processes.
Contributions to Mineralogy and Petrology, in press available 19p.
Asia, Tibet
Melting
Abstract: Felsic granulite xenoliths entrained in Miocene (~13 Ma) isotopically evolved, mantle-derived ultrapotassic volcanic (UPV) dykes in southern Tibet are refractory meta-granitoids with garnet and rutile in a near-anhydrous quartzo-feldspathic assemblage. High F-Ti (~4 wt.% TiO2 and ~3 wt.% F) phlogopite occurs as small inclusions in garnet, except for one sample where it occurs as flakes in a quartz-plagioclase-rich rock. High Si (~3.45) phengite is found as flakes in another xenolith sample. The refractory mineralogy suggests that the xenoliths underwent high-T and high-P metamorphism (800-850 °C, >15 kbar). Zircons show four main age groupings: 1.0-0.5 Ga, 50-45, 35-20, and 16-13 Ma. The oldest group is similar to common inherited zircons in the Gangdese belt, whereas the 50-45 Ma zircons match the crystallization age and juvenile character (eHfi +0.5 to +6.5) of Eocene Gangdese arc magmas. Together these two age groups indicate that a component of the xenolith was sourced from Gangdese arc rocks. The 35-20 Ma Miocene ages are derived from zircons with similar Hf-O isotopic composition as the Eocene Gangdese magmatic zircons. They also have similar steep REE curves, suggesting they grew in the absence of garnet. These zircons mark a period of early Miocene remelting of the Eocene Gangdese arc. By contrast, the youngest zircons (13.0 ± 4.9 Ma, MSWD = 1.3) are not zoned, have much lower HREE contents than the previous group, and flat HREE patterns. They also have distinctive high Th/U ratios, high zircon d18O (+8.73-8.97 ‰) values, and extremely low eHfi (-12.7 to -9.4) values. Such evolved Hf-O isotopic compositions are similar to values of zircons from the UPV lavas that host the xenolith, and the flat REE pattern suggests that the 13 Ma zircons formed in equilibrium with garnet. Garnets from a strongly peraluminous meta-tonalite xenolith are weakly zoned or unzoned and fall into four groups, three of which are almandine-pyrope solid solutions and have low d18O (+6 to 7.5 ‰), intermediate (d18O +8.5 to 9.0 ‰), and high d18O (+11.0 to 12.0 ‰). The fourth is almost pure andradite with d18O 10-12 ‰. Both the low and intermediate d18O groups show significant variation in Fe content, whereas the two high d18O groups are compositionally homogeneous. We interpret these features to indicate that the low and intermediate d18O group garnets grew in separate fractionating magmas that were brought together through magma mixing, whereas the high d18O groups formed under high-grade metamorphic conditions accompanied by metasomatic exchange. The garnets record complex, open-system magmatic and metamorphic processes in a single rock. Based on these features, we consider that ultrapotassic magmas interacted with juvenile 35-20 Ma crust after they intruded in the deep crust (>50 km) at ~13 Ma to form hybridized Miocene granitoid magmas, leaving a refractory residue. The ~13 Ma zircons retain the original, evolved isotopic character of the ultrapotassic magmas, and the garnets record successive stages of the melting and mixing process, along with subsequent high-grade metamorphism followed by low-temperature alteration and brecciation during entrainment and ascent in a late UPV dyke. This is an excellent example of in situ crust-mantle hybridization in the deep Tibetan crust.
Abstract: The dynamical evolution and exhumation mechanisms of oceanic-derived eclogites are controversial conundrums of oceanic subduction zones. The previous studies indicated that density is the primary factor controlling the exhumation of oceanic rocks. To explore their density evolution, we systematically investigate the phase relations and densities of different rock types in oceanic crust, including mid ocean ridge basalt (MORB), serpentinite, and global subducting sediments (GLOSS). According to the density of eclogites, these currently exposed natural eclogites can be classified into two categories: the self-exhumation of eclogites (?MORB < ?Mantle) and the carried exhumation of eclogites (?MORB > ?Mantle). The depth limit for an exhumation of oceanic-derived eclogites solely driven by their own buoyancies is 100-110 km, and it increases with the lithospheric thickness of the overriding plate. The parameters of carried-exhumation, that is, KGLOSS and KSerp, are defined in order to quantitatively evaluate the assistance ability of GLOSS and serpentinites for carrying the denser eclogites. KGLOSS is mainly controlled by pressure, whereas KSerp is dominantly affected by temperature. Using 2-D thermomechanical models, we demonstrate that the presences of low-density, low-viscosity GLOSS and seafloor serpentinites are the prerequisites for the exhumation of oceanic-derived eclogites. Our results show that oceanic-derived eclogites should be stalled and exhumed slowly at the Moho and Conrad discontinuities (named Moho/Conrad stagnation). We propose that oceanic-derived eclogites should undergo a two-stage exhumation generally, that is, early fast exhumation driven by buoyancy at mantle levels, and final exposure to surface actuated by tectonic exhumation facilitated by divergence between upper plate and accretionary wedge or by rollback of lower plate.
Abstract: The finite element method is used to simulate the steady-state temperature field in diamond synthesis cell. The 2D and 3D models of the China-type cubic press with large deformation of the synthesis cell was established successfully, which has been verified by situ measurements of synthesis cell. The assembly design, component design and process design for the HPHT synthesis of diamond based on the finite element simulation were presented one by one. The temperature field in a high-pressure synthetic cavity for diamond production is optimized by adjusting the cavity assembly. A series of analysis about the influence of the pressure media parameters on the temperature field are examined through adjusting the model parameters. Furthermore, the formation mechanism of wasteland was studied in detail. It indicates that the wasteland is inevitably exists in the synthesis sample, the distribution of growth region of the diamond with hex-octahedral is move to the center of the synthesis sample from near the heater as the power increasing, and the growth conditions of high quality diamond is locating at the center of the synthesis sample. These works can offer suggestion and advice to the development and optimization of a diamond production process.
Contributions to Mineralogy and Petrology, Vol. 175, 22p. Pdf.
Russia
deposit - Obnazhennaya
Abstract: The petrology, mineral major and trace-element concentrations, and garnet oxygen isotopic composition of low-MgO (11-16 wt%) eclogites from the Obnazhennaya kimberlite, Siberian craton, are used to infer their petrogenesis. These eclogites contain two types of compositionally distinct garnet: granular coarse garnet, and garnet exsolution (lamellae and fine-grained garnet) in clinopyroxene. The former record higher temperatures at lower pressures than the latter, which record the last stage of equilibrium at moderate pressure-temperature conditions 2.3-3.7 GPa and 855-1095 °C in the upper mantle at the time of entrainment. Although derived from the garnet stability field, these rocks have low-pressure cumulate protoliths containing plagioclase, olivine, and clinopyroxene as reflected by pronounced positive Eu and Sr anomalies in all eclogites, and low heavy rare earth element (HREE) contents in both minerals and reconstructed bulk rocks for a number of samples. Major elements, transition metals, and the HREE compositions of the reconstructed whole rocks are analogous to modern oceanic gabbro cumulates. Despite geochemical signatures supporting an oceanic crust origin, mantle-like d18O of the garnets (5.07-5.62‰) for most samples indicates that the protoliths either did not interact with seawater or have coincidently approximately normal igneous values. Some of the eclogite xenoliths have lower SiO2 contents and depleted light REE ((Nd/Yb)N?
Minerals MDPI, Vol. 10, 1117, doi:10.3390/ min10121117 20p. Pdf
China
deposit - Bayan Obo
Abstract: The Bayan Obo rare earth element (REE) deposit in Inner Mongolia, northern China, is the largest REE deposit in the world, whose mineralization process remains controversial. There are dozens of carbonatite dykes that are tightly related to the deposit. Here we report the petrological and mineralogical characteristics of a typical dolomite carbonatite dyke near the deposit. The dolomite within the dyke experienced intense post-emplacement fluids metasomatism as evidenced by the widespread hydrothermal REE-bearing minerals occurring along the carbonate mineral grains. REE contents of bulk rocks and constituent dolomite minerals (>90 vol.%) are 1407-4184 ppm and 63-152 ppm, respectively, indicating that dolomite is not the dominant mineral controlling the REE budgets of the dyke. There are three types of apatite in the dyke: Type 1 apatite is the primary apatite and contains REE2O3 at 2.35-4.20 wt.% and SrO at 1.75-2.19 wt.%; Type 2 and Type 3 apatites are the products of replacement of primary apatite. The REE2O3 (6.10-8.21 wt.%) and SrO (2.83-3.63 wt.%) contents of Type 2 apatite are significantly elevated for overprinting of REE and Sr-rich fluids derived from the carbonatite. Conversely, Type 3 apatite has decreased REE2O3 (1.17-2.35 wt.%) and SrO (1.51-1.99 wt.%) contents, resulting from infiltration of fluids with low REE and Na concentrations. Our results on the dyke suggest that post-magmatic fluids expelled from the carbonatitic melts dominated the REE mineralization of the Bayan Obo deposit, and a significant fluid disturbance occurred but probably provided no extra REEs to the deposit.
Abstract: The petrology, mineral major and trace element concentrations, and garnet oxygen isotopic composition of low-MgO (11-16 wt.%) eclogites from the Obnazhennaya kimberlite, Siberian craton, are used to infer their petrogenesis. These eclogites equilibrated at moderate pressure-temperature conditions 2.3-3.7 GPa and 855- 1095?C at the time of entrainment. Although derived from the garnet stability field, these rocks have low-pressure cumulate protoliths containing plagioclase, olivine, and clinopyroxene as reflected by pronounced positive Eu and Sr anomalies in all eclogites, and low heavy rare earth element (HREE) contents in both minerals and reconstructed bulk rocks for a number of samples. Major elements, transition metals, and the HREE compositions of the reconstructed whole rocks are analogous to modern oceanic gabbro cumulates. Despite geochemical signatures supporting an oceanic crust origin, mantle-like d18O of the garnets (5.07-5.62 ‰ ) for most samples indicates that the protoliths either did not interact with seawater or have coincidently approximately normal igneous values. Some of the eclogite xenoliths have lower SiO2 contents and depleted light REE ((Nd/Yb)N < 1) compared to modern oceanic gabbros, suggesting that they experienced partial melting. Positively inclined middle to heavy-REE patterns ((Dy/Yb)N <1) of the reconstructed bulk rocks mostly result from repeated partial melting in the eclogite stability field, based on melting model calculations. We therefore suggest that the Obnazhennaya low-MgO eclogites may represent the gabbroic section of subducted or foundered basaltic crust that underwent continued partial melting processes at high pressures where garnet was the main residual phase.
Carboniferous and Triassic eclogites in the Western Dabie Mountains east central Chin a: evidence for protracted convergence of the North and South Chin a Blocks.
Journal of Metamorphic Geology, Vol. 20, 9, pp. 873-886.
Evolution from oceanic subduction to continental collision: a case study from the northern Tibetan Plateau based on geochemical and geochronological data.
Two stage collision related extrusion of the western Dabie HP-UHP metamorphic terranes, centra China: evidence from quartz c-axis fabrics and structures.
Abstract: The dynamics of formation and exhumation of high-pressure (HP) and ultra-high pressure (UHP) metamorphic orogens in double subduction-collision zones remain enigmatic. Here we employ two-dimensional thermo-mechanical numerical models to gain insights on the exhumation of HP-UHP metamorphic rocks, as well as their deformation during the collision of a micro-continent with pro- and retro-continental margins along two subduction zones. A three-stage collisional process with different convergence velocities is tested. In the initial collisional stage, a fold-and-thrust belt and locally rootless superimposed folds are developed in the micro-continent and subduction channel, respectively. In the second (exhumation) stage of HP-UHP rocks, a faster convergence model results in upwelling of the asthenosphere, which further leads to a detachment between the crust and lithospheric mantle of the micro-continent. A slower convergence model results in rapid exhumation of HP-UHP rocks along the north subduction channel and a typical piggy-back thrusting structure in the micro-continent. A non-convergence model produces a slab tear-off, leading to the rebound of residual lithosphere of the micro-continent. In the third and final stage, a series of back and ramp thrusts are formed in the micro-continent with the pro-continent re-subducted. Based on an analogy of our numerical results with the Western Dabie Orogen (WDO), we suggest that: (1) slab tear-off results in a rebound of residual lithosphere, which controls the two-stage syn-collisional exhumation process of HP-UHP rocks in the WDO; and (2) in contrast to the single subduction-collision system, the exhumation range of the partially molten rocks with lower viscosity and density is restricted to a specific region of the micro-continent by the Mianlue and Shangdan subduction zones, which generated the complex deformation features in the WDO.
Abstract: This paper presents the first major and trace element compositions of mantle-derived garnet xenocrysts from the diamondiferous No. 30 kimberlite pipe in the Wafangdian region, and these are used to constrain the nature and evolution of mantle metasomatism beneath the North China Craton (NCC). The major element data were acquired using an electron probe micro-analyzer and the trace element data were obtained using laser ablation inductively coupled plasma-mass spectrometry. Based on Ni-in-garnet thermometry, equilibrium temperatures of 1107-1365 °C were estimated for peridotitic garnets xenocrysts from the No. 30 kimberlite, with an average temperature of 1258 °C, and pressures calculated to be between 5.0 and 7.4 GPa. In a CaO versus Cr2O3 diagram, 52% of the garnets fall in the lherzolite field and 28% in the harzburgite field; a few of the garnets are eclogitic. Based on rare earth element patterns, the lherzolitic garnets are further divided into three groups. The compositional variations in garnet xenocrysts reflect two stages of metasomatism: early carbonatite melt/fluid metasomatism and late kimberlite metasomatism. The carbonatite melt/fluids are effective at introducing Sr and the light rare earth elements, but ineffective at transporting much Zr, Ti, Y, or heavy rare earth elements. The kimberlite metasomatic agent is highly effective at element transport, introducing, e.g., Ti, Zr, Y, and the rare earth elements. Combined with compositional data for garnet inclusions in diamonds and megacrysts from the Mengyin and Wafangdian kimberlites, we suggest that these signatures reflect a two-stage evolution of the sub-continental lithospheric mantle (SCLM) beneath the NCC: (1) early-stage carbonatite melt/fluid metasomatism resulting in metasomatic modification of the SCLM and likely associated with diamond crystallization; (2) late-stage kimberlite metasomatism related to the eruption of the 465 Ma kimberlite.
Common Pb isotope mapping of UHP metamorphic zones in Dabie orogen, central China: implication for Pb isotopic structure of subducted continental crust.
Geochimica et Cosmochimica Acta, Vol. 143, pp. 115-131.
Abstract: The Mg isotopic compositions of garnet and clinopyroxene mineral separates and whole rocks from 21 xenolithic eclogites (11 low-MgO eclogites and 10 high-MgO eclogites) from the Koidu kimberlite complex, erupted within the Archean Man Shield, Sierra Leone, West Africa, provide new evidence bearing on the origin of cratonic eclogites. Garnet and clinopyroxene in both low-MgO and high-MgO eclogites generally record equilibrium inter-mineral Mg isotope partitioning, with d26Mg varying from -2.15‰ to -0.46‰ in garnets and from -0.49‰ to +0.35‰ in clinopyroxenes. Bulk d26Mg values (-1.38‰ to +0.05‰), constructed from garnet and clinopyroxene data, are similar to results from rock powders (-1.60‰ to +0.17‰), suggesting that kimberlite infiltration has had negligible influence on the Mg isotopic compositions of the xenoliths. The d26Mg values of low-MgO eclogites (-0.80‰ to +0.05‰) exceed the range of mantle peridotite xenoliths (-0.25‰ ± 0.04‰), consistent with the eclogite’s derivation from recycled altered oceanic crust. Similarly variable d26Mg values in high-MgO eclogites (-0.95‰ to -0.13‰), together with their high MgO and low FeO contents, suggest that high-MgO eclogites were produced by Mg-Fe exchange between partially molten low-MgO eclogites and surrounding peridotites. Our study shows that cratonic xenolithic eclogites preserve a record of Mg isotopic compositions produced by low-pressure, surficial isotope fractionations. The recycling of oceanic crust therefore increases the Mg isotope heterogeneity of the mantle.
Abstract: China covers approximately 10?million?km2 and its crust has a complicated evolution of amalgamation, igneous activity, and sedimentation. Many studies address various aspects of China's crust, but few provide a simple geological and geophysical overview that is accessible to students and non-specialists; Filling this void is the objective of this review. China is characterized by thick (40-75?km) crust in the west due to Cenozoic collision with India and thin (30-40?km thick) crust in the east due to E-W Mesozoic-Cenozoic backarc extension. In contrast, overall crustal fabric trends E-W, defined by ophiolite belts and ultra-high pressure metamorphic rocks. This crustal fabric indicates that China has grown like a sandwich, with crust progressively added through Phanerozoic time by closing various E-W oriented Tethys oceans and seaways. In map view, China consists of five E-W trending tiers. Tier 1 is defined by the Central Asian Orogenic Belt (CAOB) along the northern margin of China, which consists of the Xing'an-Mongolia orogenic belt in the NE and the Tianshan Orogen in the NW. The CAOB formed during ~1000?Ma to ~250?Ma and is an accretionary orogen of mostly Paleozoic age that formed through closure of the Paleo-Asian Ocean and collision between the Siberian Craton and Archean-Paleoproterozoic crust to the south, which constitutes Tier 2. The CAOB has a strong aeromagnetic signature. Sediments from the Amur River show detrital U-Pb zircon age peaks at 2.8-2.3?Ga, 1.8?Ga, 450-250?Ma, and 200-100?Ma, which is expected for erosion of the Xing'an-Mongolia belt. Tier 1 igneous rocks are mainly Paleozoic except in the NE (Xing'an-Mongolia orogenic belt) and reflect subduction of the Paleo-Asian Ocean and associated accretion events, whereas Paleozoic CAOB crust in the east is overprinted by Jurassic and Cretaceous igneous rocks related to subduction of ancient Pacific basin oceanic lithosphere. Tier 2 includes the North China Craton (NCC) to the east and Tarim Craton to the west. The NCC contains the oldest rocks in China and is dominated by Archean and Paleoproterozoic ages. The extent of Archean rocks in the NCC may have been overestimated, as suggested by detrital zircons from the Yellow River, which flows across the craton, showing age peaks at 2.5-2.2?Ga, ~1.9?Ga, 500-400?Ma, and 300-200?Ma. The Tarim Craton is dominated by Palaeoproterozoic- Mesoproterozoic metamorphic strata along with a significant proportion of Neoproterozoic (~0.8?Ga) rocks. U-Pb ages for detrital zircons from Tarim River sediments reflect this basement geology, with strong peaks of Early and Late Paleozoic age, less abundant Neoproterozoic ages, and scattered ages back to the Archean. The NCC also was affected by abundant Mesozoic igneous activity with voluminous Early Cretaceous rocks that are associated with lithospheric thinning and decratonization. Tier 3 - also known as the Central China Orogen - is composed of the Sulu-Dabie-Qinling-Kunlun Orogen and records closing of an arm of Prototethys during the Ordovician to Silurian and Paleotethys during the Triassic. Tier 3 contains one of Earth's three giant ultra-high pressure (UHP) terranes with well-documented peak metamorphism of 650-850?°C and 4?GPa, indicating that some of these rocks were deeply subducted and then exhumed from depths of over 120?km in Triassic time. Tier 3 magmatism occurred in two episodes, early-middle Paleozoic and Triassic. Tier 4 contains blocks rifted from Gondwana, which include the Songpan-Ganzi, Qiangtang, and Lhasa terranes of Tibet in the west and the South China Block in the east. These terranes are marked by broad magnetic anomalies with a NE-SW trend along the Pacific margin, and a broad N-S trending anomaly between Tibet and South China. The South China Block is made up of Proterozoic and minor Archean crust of the Yangtze and Cathaysia blocks, which collided at 1.0-0.8?Ga to form the Jiangnan Orogen and the South China Block. Age spectra for detrital zircons from the Yangtze and Pearl Rivers shows major peaks at ~1.8?Ga, 900-800?Ma, ~400?Ma, and 300-150?Ma, which is consistent with the age of South China Block crust. Early-Middle Paleozoic igneous rocks are also found in South China. Mesozoic igneous rocks are widespread in both South China and Tibet and are related to subduction of the Paleo-Pacific and Tethyan oceanic plates, respectively. The accretion of Tibetan terranes to southern Eurasia occurred in the Mesozoic before collision with India at ~55?Ma. Tier 5 is represented by the island of Taiwan on the SE margin of China and marks where China crust continues to grow. Taiwan lies on a complex convergent boundary between the South China Block to the NW, the Philippine Sea Plate to the SE, and the Sunda Plate to the SW.
Abstract: Petrological, geochemical, and zircon U-Pb geochronological features of Archean ultramafic-mafic complexes formed in subduction-related settings provide significant insights into mantle source and geodynamic processes associated with subduction-accretion-collision events in the early Earth. Here, we investigate a suite of serpentinized dunite, dunite, pyroxenite, and clinopyroxenite from an ultramafic complex along the collisional suture between the Western Dharwar Craton (WDC) and the Central Dharwar Craton (CDC) in southern India. We present petrology, mineral chemistry, zircon U-Pb geochronology, rare earth element (REE), Lu-Hf isotopes, and whole-rock geochemistry including major, trace element, and platinum-group element (PGE) data with a view to investigate the magmatic and metasomatic processes in the subduction zone. Mineral chemistry data from chromite associated with the serpentinised ultramafic rocks show distinct characteristics of arc-related melt. Zircon U-Pb data from the ultramafic suite define different age populations, with the oldest ages at 2.9 Ga, and the dominant age population showing a range of 2.8-2.6 Ga. The early Paleoproterozoic (ca. 2.4 Ga) metamorphic age is considered to mark the timing of collision of the two WDC and CDC. Zircon REE patterns suggest the involvement continental crust components in the magma source. Zircon Lu-Hf analysis yields both positive and negative eHf(t) values from -3.9 to 1.5 with Hf-depleted model ages (TDM) of 3,041-3,366 Ma for serpentinised dunite and -0.2-2.0 and 2,833-2,995 Ma for pyroxenite, suggesting that the magma was sourced from depleted mantle and was contaminated with the ancient continental crust. Geochemical data show low MgO/SiO2 values and elevated Al2O3/TiO2 ratios, implying subduction-related setting. The serpentinized dunites and dunites show mild LREE enrichment over HREE, with relatively higher abundance of LILE (Ba, Sr) and depletion in HFSE (Nb, Zr), suggesting fluid-rock interaction, melt impregnation, and refertilization processes. The PGE data suggest olivine, chromite, and sulphide fractionations associated with subduction processes. Our study on the Mesoarchean to Neoarchean ultramafic complex provides important insights to reconstruct the history of the crust-mantle interaction in an Archean suprasubduction zone mantle wedge.
Earth Science Reviews, in press available 41p. Pdf
Mantle
plate tectonics
Abstract: The Earth as a planetary system has experienced significant change since its formation c. 4.54 Gyr ago. Some of these changes have been gradual, such as secular cooling of the mantle, and some have been abrupt, such as the rapid increase in free oxygen in the atmosphere at the Archean-Proterozoic transition. Many of these changes have directly affected tectonic processes on Earth and are manifest by temporal trends within the sedimentary, igneous, and metamorphic rock record. Indeed, the timing of global onset of mobile-lid (subduction-driven) plate tectonics on our planet remains one of the fundamental points of debate within the geosciences today, and constraining the age and cause of this transition has profound implications for understanding our own planet's long-term evolution, and that for other rocky bodies in our solar system. Interpretations based on various sources of evidence have led different authors to propose a very wide range of ages for the onset of subduction-driven tectonics, which span almost all of Earth history from the Hadean to the Neoproterozoic, with this uncertainty stemming from the varying reliability of different proxies. Here, we review evidence for paleo-subduction preserved within the geological record, with a focus on metamorphic rocks and the geodynamic information that can be derived from them. First, we describe the different types of tectonic/geodynamic regimes that may occur on Earth or any other silicate body, and then review different models for the thermal evolution of the Earth and the geodynamic conditions necessary for plate tectonics to stabilize on a rocky planet. The community's current understanding of the petrology and structure of Archean and Proterozoic oceanic and continental crust is then discussed in comparison with modern-day equivalents, including how and why they differ. We then summarize evidence for the operation of subduction through time, including petrological (metamorphic), tectonic, and geochemical/isotopic data, and the results of petrological and geodynamical modeling. The styles of metamorphism in the Archean are then examined and we discuss how the secular distribution of metamorphic rock types can inform the type of geodynamic regime that operated at any point in time. In conclusion, we argue that most independent observations from the geological record and results of lithospheric-scale geodynamic modeling support a global-scale initiation of plate tectonics no later than c. 3 Ga, just preceding the Archean-Proterozoic transition. Evidence for subduction in Early Archean terranes is likely accounted for by localized occurrences of plume-induced subduction initiation, although these did not develop into a stable, globally connected network of plate boundaries until later in Earth history. Finally, we provide a discussion of major unresolved questions related to this review's theme and provide suggested directions for future research.
SHRIMP U Pb zircon dating of the Rongcheng eclogite and associated peridotite: new constraints for UHP metamorphism of mantle derived mafic ultramafic bodies
Geological Society of America Special Paper, No. 403, pp. 115-126.
Chemical composition and ultrahigh P metamorphism of garnet peridotites from the Sulu UHP terrane, China: investigation of major, trace elements and Hf isotopes
Chemical composition and ultrahigh P metamorphism of garnet peridotites from the Sulu UHP terrane, China: investigation of major trace elements and Hf isotopes.
Chemical Geology, Vol. 255, 1-2, Sept. 30, pp. 250-264.
Science China Earth Sciences, Vol. 59, 3, pp. 573-582.
China
Craton, North China
Abstract: Present-day hot spots and Phanerozoic large igneous provinces (LIPs) and kimberlites mainly occur at the edges of the projections of Large Low Shear Wave Velocity Provinces (LLSVPs) on the earth’s surface. If a plate contains accurately dated LIPs or kimberlites, it is possible to obtain the absolute paleoposition of the plate from the LIP/kimberlite and paleomagnetic data. The presence of Middle Ordovician kimberlites in the North China Block provides an opportunity to determine the absolute paleoposition of the block during the Middle Ordovician. In addition to paleobiogeographical information and the results of previous work on global plate reconstruction for the Ordovician Period, we selected published paleomagnetic data for the North China Block during the Middle Ordovician and determined the most reasonable absolute paleoposition of the North China Block during the Middle Ordovician: paleolatitude of approximately 16.6°S to 19.1°S and paleolongitude of approximately 10°W. The block was located between the Siberian Plate and Gondwana, close to the Siberian Plate. During the Cambrian and Ordovician periods, the North China Block may have moved toward the Siberian Plate and away from the Australian Plate.
ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 146, pp. 91-107.
Mantle
remote sensing
Abstract: Since Google Earth was first released in 2005, it has attracted hundreds of millions of users worldwide and made a profound impact on both academia and industry. It can be said that Google Earth epitomized the first-generation of Digital Earth prototypes. The functionalities and merits that have sustained Google Earth’s lasting influence are worth a retrospective review. In this paper, we take the liberty to conduct a bibliometric study of the applications of Google Earth during 2006-2016. We aim first to quantify the multifaceted impacts, and then to develop a structured understanding of the influence and contribution associated with Google Earth. To accomplish these objectives, we analyzed a total of 2115 Scopus publication records using scientometric methods and then proceed to discussion with a selected set of applications. The findings and conclusions can be summarized as follows: (1) the impact of Google Earth has been profound and persistent over the past decade. Google Earth was mentioned in an average of 229 publications per year since 2009. (2) Broadly, the impact of Google Earth has touched upon most scientific disciplines. Specifically, during 2006-2016, Google Earth has been mentioned in 2115 publications covering all of Scopus’s 26 subject areas; (3) the influence of Google Earth has largely concentrated in GIScience, remote sensing and geosciences. The extended influence of Google Earth has reached a wider range of audiences with a concentration in fields such as human geography, geoscience education and archaeology.
Journal of Geophysical Research: Solid Earth, Vol. 124, 7, pp. 6490-6503.
Mantle
peridotite
Abstract: Subducted sediments play an important role in the transport of incompatible elements back into the Earth's mantle. In recent years, studies of volcanic rocks from Samoan (Jackson et al., 2007, https://doi.org/10.1038/nature06048), NE China (Wang, Chen, et al., 2017, https://doi.org/10.1016/j.epsl.2017.02.028), and Gaussberg, Antarctica (Murphy et al., 2002, https://doi.org/10.1093/petrology/43.6.981), have shown geochemical records of a sediment-influenced mantle source from the deep Earth. However, experimental studies on the partial melting behavior of mixed sediment-peridotite mantle beyond subarc depths are very rare. In this study, we conducted experiments to investigate the partial melting behavior of mixed sediment-peridotite mantle at 4-15 GPa and 1200-1800 °C. The experimental solidi of mixed sediment-peridotite and K-feldspar-peridotite systems (Mixes A and B) cross the hot mantle geotherm at depths of around the X discontinuity (seismic discontinuity, ~300-km depth). The trace element compositions of the corresponding partial melts in Mix A showed similar characteristics to those of the Samoan basaltic lavas, potassic basalts from NE China, and Gaussberg lamproites. Therefore, the experimental results provide a possible explanation for the origin of some unusual mantle-derived volcanic rocks that contain recycled sediment signatures and have very deep origins. At depths of ~300 km (X discontinuity), a mixed sediment-peridotite source was heated by a hot-upwelling mantle and produced enriched melt. The enriched melt may interact with the surrounding mantle before incorporated into the upwelling mantle plume and becoming involved in the origin of some volcanic rocks. The experiments also provide a possible link between the enriched-mantle source in the deep mantle and the X discontinuity.
Contributions to Mineralogy and Petrology, Vol. 171, 7, 14p.
China
Geothermometry
Abstract: The large equilibrium Mg isotope fractionation between clinopyroxene and garnet observed in eclogites makes it a potential high-precision geothermometer, but calibration of this thermometer by natural samples is still limited. Here, we report Mg isotopic compositions of eclogite whole rocks as well as Mg and O isotopic compositions of clinopyroxene and garnet separates from 16 eclogites that formed at different temperatures from the Dabie orogen, China. The whole-rock d26Mg values vary from -1.20 to +0.10 ‰. Among them, 11 samples display limited d26Mg variations from -0.36 to -0.17 ‰, similar to those of their protoliths. The mineral separates exhibit very different d26Mg values, from -0.39 to +0.39 ‰ for clinopyroxenes and from -1.94 to -0.81 ‰ for garnets. The clinopyroxene -garnet Mg isotope fractionation (?26Mgclinopyroxene -garnet = d26Mgclinopyroxene -d26Mggarnet) varies from 1.05 to 2.15 ‰. The clinopyroxene -garnet O isotope fractionation (?18Oclinopyroxene -garnet = d18Oclinopyroxene -d18Ogarnet) varies from -1.01 to +0.98 ‰. Equilibrium Mg isotope fractionation between clinopyroxene and garnet in the investigated samples is selected based on both the d26Mgclinopyroxene versus d26Mggarnet plot and the state of O isotope equilibrium between clinopyroxene and garnet. The equilibrium ?26Mgclinopyroxene -garnet and corresponding temperature data obtained in this study, together with those available so far in literatures for natural eclogites, are used to calibrate the clinopyroxene -garnet Mg isotope thermometer. This yields a function of ?26Mgclinopyroxene -garnet = (0.99 ± 0.06) × 106/T 2, where T is temperature in Kelvin. The refined function not only provides the best empirically calibrated clinopyroxene -garnet Mg isotope thermometer for precise constraints of temperatures of clinopyroxene- and garnet-bearing rocks, but also has potential applications in high-temperature Mg isotope geochemistry.
Barium isotopic composition of the mantle constrained by carbonatites.
Goldschmidt Conference, 1p. Abstract
Africa, Tanzania, east Africa, Canada, Europe, Germany, Greenland
carbonatite
Abstract: Deep mantle origin and ultra-reducing conditions in podiform chromitite: diamonds, moissanite, and other unusual minerals in podiform chromitites from the Pozanti-Karsanti ophiolite, southern Turkey
Geochimica et Cosmochimica Acta, in press available doi.org/10.1016 / j.gca.2019.06.041 36p.
Africa, Tanzania, Canada, East Africa, Europe, Germany, Greenland
deposit - Oldoinyo Lengai
Abstract: To investigate the behaviour of Ba isotopes during carbonatite petrogenesis and to explore the possibility of using carbonatites to constrain the Ba isotopic composition of the mantle, we report high-precision Ba isotopic analyses of: (1) carbonatites and associated silicate rocks from the only active carbonatite volcano, Oldoinyo Lengai, Tanzania, and (2) Archean to Cenozoic carbonatites from Canada, East Africa, Germany and Greenland. Carbonatites and associated phonolites and nephelinites from Oldoinyo Lengai have similar d137/134Ba values that range from +0.01 to +0.03‰, indicating that Ba isotope fractionation during carbonatite petrogenesis is negligible. The limited variation in d137/134Ba values from -0.03 to +0.09‰ for most carbonatite samples suggests that their mantle sources have a relatively homogeneous Ba isotopic composition. Based on the carbonatites investigated in this work, the average d137/134Ba value of their mantle sources is estimated to be +0.04?±?0.06‰ (2SD, n?=?16), which is similar to the average value of +0.05?±?0.06‰ for mid-ocean ridge basalts. The lower d137/134Ba value of -0.08‰ in a Canadian sample and higher d137/134Ba values of +0.14‰ and?+?0.23‰ in two Greenland samples suggest local mantle isotopic heterogeneity that may reflect the incorporation of recycled crustal materials in their sources.
Geochimica et Cosmochimica Acta, Vol. 278, pp. 235-243.
Mantle
carbonatite
Abstract: To investigate the behaviour of Ba isotopes during carbonatite petrogenesis and to explore the possibility of using carbonatites to constrain the Ba isotopic composition of the mantle, we report high-precision Ba isotopic analyses of: (1) carbonatites and associated silicate rocks from the only active carbonatite volcano, Oldoinyo Lengai, Tanzania, and (2) Archean to Cenozoic carbonatites from Canada, East Africa, Germany and Greenland. Carbonatites and associated phonolites and nephelinites from Oldoinyo Lengai have similar d137/134Ba values that range from +0.01 to +0.03‰, indicating that Ba isotope fractionation during carbonatite petrogenesis is negligible. The limited variation in d137/134Ba values from -0.03 to +0.09‰ for most carbonatite samples suggests that their mantle sources have a relatively homogeneous Ba isotopic composition. Based on the carbonatites investigated in this work, the average d137/134Ba value of their mantle sources is estimated to be +0.04?±?0.06‰ (2SD, n?=?16), which is similar to the average value of +0.05?±?0.06‰ for mid-ocean ridge basalts. The lower d137/134Ba value of -0.08‰ in a Canadian sample and higher d137/134Ba values of +0.14‰ and?+?0.23‰ in two Greenland samples suggest local mantle isotopic heterogeneity that may reflect the incorporation of recycled crustal materials in their sources.
Abstract: To investigate the behaviour of Ba isotopes during carbonatite petrogenesis and to explore the possibility of using carbonatites to constrain the Ba isotopic composition of the mantle, we report high-precision Ba isotopic analyses of: (1) carbonatites and associated silicate rocks from the only active carbonatite volcano, Oldoinyo Lengai, Tanzania, and (2) Archean to Cenozoic carbonatites from Canada, East Africa, Germany and Greenland. Carbonatites and associated phonolites and nephelinites from Oldoinyo Lengai have similar d137/134Ba values that range from +0.01 to +0.03‰, indicating that Ba isotope fractionation during carbonatite petrogenesis is negligible. The limited variation in d137/134Ba values from -0.03 to +0.09‰ for most carbonatite samples suggests that their mantle sources have a relatively homogeneous Ba isotopic composition. Based on the carbonatites investigated in this work, the average d137/134Ba value of their mantle sources is estimated to be +0.04?±?0.06‰ (2SD, n?=?16), which is similar to the average value of +0.05?±?0.06‰ for mid-ocean ridge basalts. The lower d137/134Ba value of -0.08‰ in a Canadian sample and higher d137/134Ba values of +0.14‰ and?+?0.23‰ in two Greenland samples suggest local mantle isotopic heterogeneity that may reflect the incorporation of recycled crustal materials in their sources.
Sun, N., Wei, W., Han, S., Song, J., Li, X., Duan, Y., Prakapenka, V.B., Mao, Z.
Phase transition and thermal equations of state of (Fe, Al) -bridgmanite and post perovskite: implication for the chemical heterogeneity at the lowermost mantle.
Earth Planetary Science Letters, Vol. 490, pp. 161-169.
Geostandards and Geoanalytical Research, Vol. 43, 2, pp. 291-300.
Global
carbonatites
Abstract: This study presents a high-precision method to measure barium (Ba) isotope compositions of international carbonate reference materials and natural carbonates. Barium was purified using chromatographic columns filled with cation exchange resin (AG50W-X12, 200-400 mesh). Barium isotopes were measured by MC-ICP-MS, using a 135Ba-136Ba double-spike to correct mass-dependent fractionation during purification and instrumental measurement. The precision and accuracy were monitored by measuring Ba isotope compositions of the reference material JCp-1 (coral) and a synthetic solution obtained by mixing NIST SRM 3104a with other matrix elements. The mean d137/134Ba values of JCp-1 and the synthetic solution relative to NIST SRM 3104a were 0.21 ± 0.03‰ (2s, n = 16) and 0.02 ± 0.03‰ (2s, n = 6), respectively. Replicate measurements of NIST SRM 915b, COQ-1, natural coral and stalagmite samples gave average d137/134Ba values of 0.10 ± 0.04‰ (2s, n = 18), 0.08 ± 0.04‰ (2s, n = 20), 0.27 ± 0.04‰ (2s, n = 16) and 0.04 ± 0.03‰ (2s, n = 20), respectively. Barium mass fractions and Ba isotopes of subsamples drilled from one stalagmite profile were also measured. Although Ba mass fractions varied significantly along the profile, Ba isotope signatures were homogeneous, indicating that Ba isotope compositions of stalagmites could be a potential tool (in addition to Ba mass fractions) to constrain the source of Ba in carbonate rocks and minerals.
Precisely dating Paleozoic kimberlites in the North Chin a craton and Hf isotopic constraints on the evolution of the subcontinental lithospheric mantle.
Precise age determin ation of the Paleozoic kimberlites in North Chin a craton and Hf isotopic constraint on the evolution of its subcontinental lithospheric mantle.
In situ U Pb dating and Sr Nd isotopic analysis of perovskite: constraints on the age and petrogenesis of the Kuruman kimberlite province, Kaapvaal Craton, South Africa.
Geochemical and Sr-Nd-Hf-O-C isotopic constraints on the origin of the Neoproterozoic Qieganbulake ultramafic carbonatite complex from the Tarim block, northwest China.
Nature Geoscience, doi.org/10.1038/s41561-019-0410-y 10p pdf
Mantle
Plumes, hotspots
Abstract: The thermal and chemical state of the early Archaean deep mantle is poorly resolved due to the rare occurrences of early Archaean magnesium-rich volcanic rocks. In particular, it is not clear whether compositional heterogeneity existed in the early Archaean deep mantle and, if it did, how deep mantle heterogeneity formed. Here we present a geochronological and geochemical study on a Palaeoarchaean ultramafic-mafic suite (3.45-Gyr-old) with mantle plume signatures in Longwan, Eastern Hebei, the North China Craton. This suite consists of metamorphosed cumulates and basalts. The meta-basalts are iron rich and show the geochemical characteristics of present-day oceanic island basalt and unusually high mantle potential temperatures (1,675?°C), which suggests a deep mantle source enriched in iron and incompatible elements. The Longwan ultramafic-mafic suite is best interpreted as the remnants of a 3.45-Gyr-old enriched mantle plume. The first emergence of mantle-plume-related rocks on the Earth 3.5-3.45?billion years ago indicates that a global mantle plume event occurred with the onset of large-scale deep mantle convection in the Palaeoarchaean. Various deep mantle sources of these Palaeoarchaean mantle-plume-related rocks imply that significant compositional heterogeneity was present in the Palaeoarchaean deep mantle, most probably introduced by recycled crustal material.
Mo, X., Zhao, Z., Deng, J., Flower, M., Yu, X., Luo, Z., Li, Y., Zhou, S., Deng, G., Zhu, D.
Petrology and geochemistry of post collisional volcanic rocks from the Tibetan plateau: implications for lithosphere heterogeneity and collision induced mantle
Geological Society of America, Special Paper, No. 409, pp. 507-530.
Abstract: Various combinations of diamond, moissanite, zircon, quartz, corundum, rutile, titanite, almandine garnet, kyanite, and andalusite have been recovered from the Dangqiong peridotites. More than 80 grains of diamond have been recovered, most of which are pale yellow to reddish-orange to colorless. The grains are all 100-200 µm in size and mostly anhedral, but with a range of morphologies including elongated, octahedral and subhedral varieties. Their identification was confirmed by a characteristic shift in the Raman spectra between 1325 cm-1 and 1333 cm-1, mostly at 1331.51 cm-1 or 1326.96 cm-1. Integration of the mineralogical, petrological and geochemical data for the Dongqiong peridotites suggests a multi-stage formation for this body and similar ophiolites in the Yarlung-Zangbo suture zone. Chromian spinel grains and perhaps small bodies of chromitite crystallized at various depths in the upper mantle, and encapsulated the UHP, highly reduced and crustal minerals. Some oceanic crustal slabs containing the chromian spinel and their inclusion were later trapped in suprasubduction zones (SSZ), where they were modified by island arc tholeiitic and boninitic magmas, thus changing the chromian spinel compositions and depositing chromitite ores in melt channels.
Abstract: The abundances of volatile elements in the Earth’s mantle have been attributed to the delivery of volatile-rich material after the main phase of accretion1, 2, 3. However, no known meteorites could deliver the volatile elements, such as carbon, nitrogen, hydrogen and sulfur, at the relative abundances observed for the silicate Earth4. Alternatively, Earth could have acquired its volatile inventory during accretion and differentiation, but the fate of volatile elements during core formation is known only for a limited set of conditions4, 5, 6, 7, 8. Here we present constraints from laboratory experiments on the partitioning of carbon and sulfur between metallic cores and silicate mantles under conditions relevant for rocky planetary bodies. We find that carbon remains more siderophile than sulfur over a range of oxygen fugacities; however, our experiments suggest that in reduced or sulfur-rich bodies, carbon is expelled from the segregating core. Combined with previous constraints9, we propose that the ratio of carbon to sulfur in the silicate Earth could have been established by differentiation of a planetary embryo that was then accreted to the proto-Earth. We suggest that the accretion of a Mercury-like (reduced) or a sulfur-rich (oxidized) differentiated body—in which carbon has been preferentially partitioned into the mantle—may explain the Earth’s carbon and sulfur budgets.
Abstract: Carbonatitic magmatism in subduction zones provides extremely valuable information on the cycling, behavior and storage of deep carbon within the Earth. It may also shed light on insights into crust-mantle interaction and mantle metasomatism within subduction zones. Origin of carbonatite has long been debated: all hypotheses need to reflect the different mineral assemblages and geochemical compositions of carbonatites and their diverse tectonic settings. Here we present a petrological, geochronological, geochemical and isotopic study of carbonatite bodies associated with orogenic peridotites, which occur as stocks or dykes with widths of tens to hundreds of meters in the Luliangshan region, North Qaidam, northern Tibet, China. On the basis of modal olivine (Ol) content, the studied samples were subdivided into two groups: Ol-poor carbonatite and Ol-rich carbonatite. Zircon grains from the Ol-poor carbonatite show detrital features, and yield a wide age spectrum between 400?Ma and 1000?Ma with a pronounced peak at ca. 410-430?Ma. By contrast, oscillatory zoned zircons and inherited cores show two relatively small Neoproterozoic age peaks at ca. 920 and 830?Ma. Zircon grains from the Ol-rich carbonatite sample are also distributed in a wide spectrum between 400 and 1000?Ma, with a pronounced peak at ca. 440?Ma and a slightly inferior peak at ca. 410?Ma. The oscillatory zoned zircons and inherited cores exhibit a smaller Neoproterozoic age peak at ca. 740?Ma. The pronounced peaks ranging from 430 to 410?Ma are consistent with the deep subduction and mantle metasomatic events recorded in associated ultramafic rocks. Both groups of carbonatites are characterized by enrichment of light rare earth elements (LREEs) with high (La/Yb)N values and pronounced negative Eu anomalies. They show high 87Sr/86Sr values (0.708156-0.709004), low 143Nd/144Nd values (0.511932-0.512013) and high d18OV-SMOW values (+17.9 to +21.3‰). This geochemical and isotopic evidence suggests that these carbonatites were derived from remobilized sedimentary carbonate rocks. We propose that the primary carbonatite magma was formed by partial melting of sedimentary carbonates with mantle contributions. Sedimentary carbonates were subducted into the shallow upper mantle where they melted and formed diapirs that moved upwards through the hot mantle wedge. The case presented provides a rare example of carbonatite originating from sedimentary carbonates with mantle contributions and relevant information on the mantle metasomatism within a subduction zone.
Geochimica et Cosmochimica Acta, Vol. 251. pp. 87-115.
Mantle
nitrogen
Abstract: Nitrogen, the most dominant constituent of Earth’s atmosphere, is critical for the habitability and existence of life on our planet. However, its distribution between Earth’s major reservoirs, which must be largely influenced by the accretion and differentiation processes during its formative years, is poorly known. Sequestration into the metallic core, along with volatility related loss pre- and post-accretion, could be a critical process that can explain the depletion of nitrogen in the Bulk Silicate Earth (BSE) relative to the primitive chondrites. However, the relative effect of different thermodynamic parameters on the alloy-silicate partitioning behavior of nitrogen is not well understood. Here we present equilibrium partitioning data of N between alloy and silicate melt () from 67 new high pressure (P?=?1-6?GPa)-temperature (T?=?1500-2200?°C) experiments under graphite saturated conditions at a wide range of oxygen fugacity (logfO2?~??IW -4.2 to -0.8), mafic to ultramafic silicate melt compositions (NBO/T?=?0.4 to 2.2), and varying chemical composition of the alloy melts (S and Si contents of 0-32.1?wt.% and 0-3.1?wt.%, respectively). Under relatively oxidizing conditions (~?IW -2.2 to -0.8) nitrogen acts as a siderophile element ( between 1.1 and 52), where decreases with decrease in fO2 and increase in T, and increases with increase in P and NBO/T. Under these conditions remains largely unaffected between S-free conditions and up to ~17?wt.% S content in the alloy melt, and then drops off at >~20?wt.% S content in the alloy melt. Under increasingly reduced conditions (<~?IW -2.2), N becomes increasingly lithophile ( between 0.003 and 0.5) with decreasing with decrease in fO2 and increase in T. At these conditions, fO2 along with Si content of the alloy under the most reduced conditions (<~?IW -3.0), is the controlling parameter with T playing a secondary role, while, P, NBO/T, and S content of the alloy have minimal effects. A multiple linear least-squares regression parametrization for based on the results of this study and previous studies suggests, in agreement with the experimental data, that fO2 (represented by Si content of the alloy melt and FeO content of the silicate melt), followed by T, has the strongest control on . Based on our modeling, to match the present-day BSE N content, impactors that brought N must have been moderately to highly oxidized. If N bearing impactors were reduced, and/or there was significant disequilibrium core formation, then the BSE would be too N-rich and another mechanism for N loss, such as atmospheric loss, would be required.
Geochimica et Cosmochimica Acta, Vol. 251, pp. 87-115.
Mantle
nitrogen
Abstract: Nitrogen, the most dominant constituent of Earth’s atmosphere, is critical for the habitability and existence of life on our planet. However, its distribution between Earth’s major reservoirs, which must be largely influenced by the accretion and differentiation processes during its formative years, is poorly known. Sequestration into the metallic core, along with volatility related loss pre- and post-accretion, could be a critical process that can explain the depletion of nitrogen in the Bulk Silicate Earth (BSE) relative to the primitive chondrites. However, the relative effect of different thermodynamic parameters on the alloy-silicate partitioning behavior of nitrogen is not well understood. Here we present equilibrium partitioning data of N between alloy and silicate melt () from 67 new high pressure (P?=?1-6?GPa)-temperature (T?=?1500-2200?°C) experiments under graphite saturated conditions at a wide range of oxygen fugacity (logfO2?~??IW -4.2 to -0.8), mafic to ultramafic silicate melt compositions (NBO/T?=?0.4 to 2.2), and varying chemical composition of the alloy melts (S and Si contents of 0-32.1?wt.% and 0-3.1?wt.%, respectively). Under relatively oxidizing conditions (~?IW -2.2 to -0.8) nitrogen acts as a siderophile element ( between 1.1 and 52), where decreases with decrease in fO2 and increase in T, and increases with increase in P and NBO/T. Under these conditions remains largely unaffected between S-free conditions and up to ~17?wt.% S content in the alloy melt, and then drops off at >~20?wt.% S content in the alloy melt. Under increasingly reduced conditions (<~?IW -2.2), N becomes increasingly lithophile ( between 0.003 and 0.5) with decreasing with decrease in fO2 and increase in T. At these conditions, fO2 along with Si content of the alloy under the most reduced conditions (<~?IW -3.0), is the controlling parameter with T playing a secondary role, while, P, NBO/T, and S content of the alloy have minimal effects. A multiple linear least-squares regression parametrization for based on the results of this study and previous studies suggests, in agreement with the experimental data, that fO2 (represented by Si content of the alloy melt and FeO content of the silicate melt), followed by T, has the strongest control on . Based on our modeling, to match the present-day BSE N content, impactors that brought N must have been moderately to highly oxidized. If N bearing impactors were reduced, and/or there was significant disequilibrium core formation, then the BSE would be too N-rich and another mechanism for N loss, such as atmospheric loss, would be required.
Earth and Planetary Science Letters, Vol. 482, pp. 556-566.
Mantle
nitrogen
Abstract: Understanding the evolution of nitrogen (N) across Earth's history requires a comprehensive understanding of N's behaviour in the Earth's mantle - a massive reservoir of this volatile element. Investigation of terrestrial N systematics also requires assessment of its evolution in the Earth's atmosphere, especially to constrain the N content of the Archaean atmosphere, which potentially impacted water retention on the post-accretion Earth, potentially causing enough warming of surface temperatures for liquid water to exist. We estimated the proportion of recycled N in the Earth's mantle today, the isotopic composition of the primitive mantle, and the N content of the Archaean atmosphere based on the recycling rates of N in modern-day subduction zones. We have constrained recycling rates in modern-day subduction zones by focusing on the mechanism and efficiency of N transfer from the subducting slab to the sub-arc mantle by both aqueous fluids and slab partial melts. We also address the transfer of N by aqueous fluids as per the model of Li and Keppler (2014). For slab partial melts, we constrained the transfer of N in two ways - firstly, by an experimental study of the solubility limit of N in melt (which provides an upper estimate of N uptake by slab partial melts) and, secondly, by the partitioning of N between the slab and its partial melt. Globally, 45-74% of N introduced into the mantle by subduction enters the deep mantle past the arc magmatism filter, after taking into account the loss of N from the mantle by degassing at mid-ocean ridges, ocean islands and back-arcs. Although the majority of the N in the present-day mantle remains of primordial origin, our results point to a significant, albeit minor proportion of mantle N that is of recycled origin (% or % of N in the present-day mantle has undergone recycling assuming that modern-style subduction was initiated 4 or 3 billion years ago, respectively). This proportion of recycled N is enough to cause a departure of N isotopic composition of the primitive mantle from today's N of -5‰ to ‰ or ‰. Future studies of Earth's parent bodies based on the bulk Earth N isotopic signature should take into account these revised values for the N composition of the primitive mantle. Also, the Archaean atmosphere had a N partial pressure of 1.4-1.6 times higher than today, which may have warmed the Earth's surface above freezing despite a faint young Sun.
Abstract: Natural emeralds from 11 mining areas were studied using an infrared spectrometer. The results showed different spectroscopic characteristics for emerald from different mine regions. Infrared absorption is mainly attributed to the vibration of Si-O lattice, channel water, alkaline cations, and molecules such as CO2, [Fe2(OH)4]2+, etc. Both near-infrared and mid-infrared spectra showed that the differences in band positions, intensities, and shapes are related to the mixed ratio of the two types of channel water. Accordingly, emerald and its mining regions can be divided into 3 types: H2O I, H2O II, and transition I-II. Furthermore, the study indicates that the relative amounts of the two different orientations of channel water molecules are mainly affected by the presence of (Mg + Fe)2+ in the host rock or in the mineralizing fluid. Therefore, the mineralization environment type (alkali-poor, alkali-rich, and transitional types) of emerald can be preliminarily identified from IR spectroscopy. This can be useful for determining the origin of emeralds.
Journal of Geophysical Research: Solid Earth, Vol. 124, 7, pp. 6504-6522.
Mantle
subduction
Abstract: Mantle wedge hybridization by crust-derived melt is a crucial mechanism responsible for arc lavas. However, how the melt-rock reactions proceed in the mantle wedge and affect melt compositions is poorly understood. Garnet peridotites from Jiangzhuang in the Sulu orogen (eastern China) host garnetite and pyroxenite veins formed by slab-mantle interactions at different melt/rock ratios. The Jiangzhuang peridotites consist mainly of garnet lherzolites and minor harzburgites and represent a fragment of the mantle wedge influenced by ultrahigh-pressure metamorphism (5.2-6.1 GPa) in the subduction channel. Petrography, major and trace element geochemistry, and in situ clinopyroxene Sr isotope values of the garnetite and pyroxenite veins reveal their derivation from interactions between mantle wedge peridotites and deeply subducted crust-derived melts. The two veins share a common metamorphic and metasomatic history and have similar mineral assemblages and compositions, enriched isotope signatures, and formation P-T conditions, indicating the same source for their reacting melts. The different mineral proportions and microtextures between the garnetite and pyroxenite veins are ascribed to different melt/rock ratios. The garnetite vein formed at relatively high melt/rock ratios (>1:1), which would likely produce hybrid slab melts with Mg-rich, high-silica adakitic signatures. In contrast, the pyroxenite vein formed at low melt/rock ratios (<1:1), and the expected hybrid slab melts would evolve into high-Mg andesites. Moreover, recycled heterogeneous garnetite and pyroxenite could contribute to the mantle sources of intraplate magmas. Therefore, slab-mantle interactions at different melt/rock ratios could be an important crustal input to lithological and geochemical heterogeneities in the mantle.
Minerals MDPI, Vol. 10, 1117, doi:10.3390/ min10121117 20p. Pdf
China
deposit - Bayan Obo
Abstract: The Bayan Obo rare earth element (REE) deposit in Inner Mongolia, northern China, is the largest REE deposit in the world, whose mineralization process remains controversial. There are dozens of carbonatite dykes that are tightly related to the deposit. Here we report the petrological and mineralogical characteristics of a typical dolomite carbonatite dyke near the deposit. The dolomite within the dyke experienced intense post-emplacement fluids metasomatism as evidenced by the widespread hydrothermal REE-bearing minerals occurring along the carbonate mineral grains. REE contents of bulk rocks and constituent dolomite minerals (>90 vol.%) are 1407-4184 ppm and 63-152 ppm, respectively, indicating that dolomite is not the dominant mineral controlling the REE budgets of the dyke. There are three types of apatite in the dyke: Type 1 apatite is the primary apatite and contains REE2O3 at 2.35-4.20 wt.% and SrO at 1.75-2.19 wt.%; Type 2 and Type 3 apatites are the products of replacement of primary apatite. The REE2O3 (6.10-8.21 wt.%) and SrO (2.83-3.63 wt.%) contents of Type 2 apatite are significantly elevated for overprinting of REE and Sr-rich fluids derived from the carbonatite. Conversely, Type 3 apatite has decreased REE2O3 (1.17-2.35 wt.%) and SrO (1.51-1.99 wt.%) contents, resulting from infiltration of fluids with low REE and Na concentrations. Our results on the dyke suggest that post-magmatic fluids expelled from the carbonatitic melts dominated the REE mineralization of the Bayan Obo deposit, and a significant fluid disturbance occurred but probably provided no extra REEs to the deposit.
Journal of Asian Earth Sciences, Vol. 172, pp. 56-65.
China, Mongolia
deposit - Bayan Obo
Abstract: In the Bayan Obo REE deposit in Inner Mongolia, Northern China, three major orebodies are hosted in dolomite marble of the Bayan Obo Group. There are carbonatite dikes in the ore district. Apatite is a common accessary mineral in the ore-hosting dolomite marble (DM apatite) and in carbonatite dikes (IC apatite). These two types of apatite are both fluorapatite, and have low SiO2, uniform P2O5, and variable CaO contents. Total REY (REEs?+?Y) contents are correlated with Na2O contents, indicating that REY of both types of apatite enter lattice via the substitution reaction: Na+ + (REY)3+ = 2Ca2+. These features, combined with high REY (6230-18,906?ppm) and Sr (9653-17,200?ppm) contents of DM apatite, indicate that DM apatite likely had a carbonatite origin. Some DM apatite grains are partially replaced by albite and quartz. Fluid inclusions crosscutting both apatite and albite or quartz indicate that they formed later than quartz and albite replacement. The back-scattered electron images show that DM apatite grains contain many micro-pores (fluid inclusions), and monazite inclusions formed from the fluid inclusions. However, no monazite inclusions are observed within quartz and albite, excluding the possibility that the monazite inclusions were precipitated directly from the fluids. The monazite inclusions were therefore formed during fluid-induced dissolution-reprecipitation processes, where DM apatite served as the source of LREEs. This also explains the depletion of some LREEs in DM apatite. The formation of monazite inclusions in apatite requires fluids with relatively low Na and Si concentrations, different from the fluids responsible for quartz and albite replacement. DM apatite was affected by two stages of fluid activities: the first stage of metasomatism by alkaline fluids that were likely derived from carbonatite magmas when the deposit first formed (represented by quartz and albite replacement), followed by a second stage of modification that caused LREEs depletion and the formation of new REE minerals. Thus, the Bayan Obo REE ore deposit was modified by a significant thermal event after the formation, which provided negligible or only small amounts of REEs.
Polyphase formation and exhumation of high to ultrahigh pressure rocks in continental subduction zones: numerical modeling and application to the Sulu ultrahigh pressure terrane in eastern China.
Journal of Geophysical Research, Vol. 114. B9, B09406
Abstract: The role of fluid(s) in the formation of different lithological facies of kimberlites is still poorly understood. The uncertainty in the composition of kimberlite melts hampers understanding the composition of volatiles, the depth of exsolution, and the effect on magma ascent and fragmentation. Recent estimates of H2O and CO2 solubility in kimberlite-like magmas suggest very shallow exsolution of fluid, while many features of kimberlites indicate the presence of significant fluid fraction at depth. Deep magmatic fluid produces negative trigonal etch pits on natural diamonds, the characteristics of which depend on the temperature and composition of the fluid. Positively oriented trigonal etch pits are very rare on natural diamonds and are likely a feature of resorption events unique to only some kimberlite magmas. Here we present the first systematic study of positively oriented trigonal etch pits on natural diamonds from Snap Lake kimberlite dike, Northwest Territories, Canada. The study used 91 micro-diamonds selected from a population of 251 diamonds representative of all six kimberlite litho-facies identified in the Snap Lake dike. We established that unlike the majority of diamonds from kimberlite pipes in the Northwest Territories, every studied Snap Lake diamond shows positively oriented trigons. These trigons cover the whole diamond surface starting from the {111} faces and continuing over the resorbed edges. They overprint negatively oriented trigons and modify them into hexagons. Atomic force microscopy obtained detailed geometry of 154 positive trigons on 14 diamonds. Three distinct trigon morphologies dependent on the type of the crystal lattice defect were recognized. The point-bottomed shape and positive correlation between the depth and diameter of the individual pits suggest a high CO2 content in the fluid. Comparison with the existing experimental data on positive trigons implies resorption at low-pressure conditions in the 800-1000 °C temperature range by trapped magmatic fluid after the dike emplacement. The intensity of this late resorption event (and the size of the positive trigons) increases from the dike contact with the country rock into the interior of the dike. Such a late resorption event is absent in the majority of kimberlites, which form pipes, and might be a specific feature of hypabyssal kimberlite bodies (dikes). The absence of positive trigons on diamonds from the majority of kimberlites suggests very quick magma cooling below ~800 °C after the pipe emplacement, precluding the development of any late resorption features. Our study shows that for kimberlitic magmas, for which mineral chemistry is unable to provide a robust record of magmatic fluid, morphological details of dissolution features on the surface of diamond and other mantle-derived minerals can serve as a fluid proxy. Better constraints of the pressure, temperature, and oxygen fugacity of the reversal in the trigon orientation on diamond may help to reconstruct the emplacement path of geologically diverse kimberlite bodies.
Abstract: Synthetic diamonds have inspired much interest for their unique photophysical properties and versatile potential applications, but their phosphorescent phenomenon and mechanism have been paid much less attention. Here, phosphorescent diamonds with a lifetime of 5.4?s were synthesized by high-pressure and high-temperature method, and the diamonds exhibit an emission band at around 468?nm under the excitation wavelength of 230?nm. The quantum yield of the phosphorescent diamonds is about 4.7% at ambient temperature and atmosphere, which is the first report on the quantum yield of diamonds. The unique phosphorescence emission can be attributed to the radiative recombination from iron related donors and boron related acceptors.
Geological Society of London Special Publication Supercontinent Cycles through Earth History., Vol. 424, pp. 1-14.
Mantle
Supercontinents
Abstract: The supercontinent-cycle hypothesis attributes planetary-scale episodic tectonic events to an intrinsic self-organizing mode of mantle convection, governed by the buoyancy of continental lithosphere that resists subduction during closure of old ocean basins, and consequent reorganization of mantle convection cells leading to opening of new ocean basins. Characteristic timescales of the cycle are typically 500-700 myr. Proposed spatial patterns of cyclicity range from hemispheric (introversion) to antipodal (extroversion), to precisely between those end-members (orthoversion). Advances in our understanding can arise from theoretical or numerical modelling, primary data acquisition relevant to continental reconstructions, and spatiotemporal correlations between plate kinematics, geodynamic events and palaeoenvironmental history. The palaeogeographic record of supercontinental tectonics on Earth is still under development. The contributions in this special publication provide snap-shots in time of these investigations and indicate that Earth's palaeogeographic record incorporates elements of all three endmember spatial patterns.
Abstract: The supercontinent cycle of episodic assembly and breakup of almost all continents on Earth is commonly considered the longest period variation to affect mantle convection. However, global zircon Hf isotopic signatures and seawater Sr isotope ratios suggest the existence of a longer-term variation trend that is twice the duration of the supercontinent cycle. Here we propose that since ~2 billion years ago the superocean surrounding a supercontinent, as well as the circum-supercontinent subduction girdle, survive every second supercontinent cycle. This interpretation is in agreement with global palaeogeography and is supported by variations in passive margin, orogen, and mineral deposit records that each exhibits both ~500-700 million years periodic signal and a 1000-1500 million years variation trend. We suggest that the supercontinent cycle is modulated by an assembly that alternates between dominantly extroversion after a more complete breakup, and dominantly introversion after an incomplete breakup of the previous supercontinent.
Geochemistry, Geophysics, Geosystems, in press available pdf 20p.
Global
geodynamics
Abstract: The relative significance of various geodynamic mechanisms that drive supercontinent breakup is unclear. A previous analysis of extensional stress during supercontinent breakup demonstrated the importance of the plume-push force relative to the dragging force of subduction retreat. Here, we extend the analysis to basal traction (shear stress) and cross-lithosphere integrations of both extensional and shear stresses, aiming to understand more clearly the relevant importance of these mechanisms in supercontinent breakup. More importantly, we evaluate the effect of preexisting orogens (mobile belts) in the lithosphere on supercontinent breakup process. Our analysis suggests that a homogeneous supercontinent has extensional stress of 20-50 MPa in its interior (<40° from the central point). When orogens are introduced, the extensional stress in the continents focuses on the top 80-km of the lithosphere with an average magnitude of ~160 MPa, whereas at the margin of the supercontinent the extensional stress is 5-50 MPa. In both homogeneous and orogeny-embedded cases, the subsupercontinent mantle upwellings act as the controlling factor on the normal stress field in the supercontinent interior. Compared with the extensional stress, shear stress at the bottom of the supercontinent is 1-2 order of magnitude smaller (0-5 MPa). In our two end-member models, the breakup of a supercontinent with orogens can be achieved after the first extensional stress surge, whereas for a hypothetical supercontinent without orogens it starts with more diffused local thinning of the continental lithospheric before the breakup, suggesting that weak orogens play a critical role in the dispersal of supercontinents.
Abstract: Numerical experiments are used to investigate the thermo-mechanical controls for inducing flat subduction and why flat subduction is rare relative to normal/steep subduction. Our modeling results demonstrate that flat subduction is an end-member of a steady state subduction geometry and is characterized by a curved slab with a nearly-horizontal slab section. Intermediate cases between normal/steep and flat subduction appear to be transient in origin and evolve toward one of the stable end-members. Physical parameters inducing flat subduction can be classified into four categories: buoyancy of the subducting oceanic lithosphere (e.g., slab age, oceanic crustal thickness), viscous coupling between the overriding and downgoing plates (e.g., initial subduction angle), external kinematic conditions, and rheological properties of the subduction zone. On the basis of parameter sensitivity tests and the main characteristics of present-day flat subduction zones, positive buoyancy from either the young slab or the thickened oceanic crust is considered as the primary controlling parameter. Our results show that the possibility of flat subduction is directly proportional to oceanic crustal thickness and inversely proportional to the slab age. Furthermore, oceanic crust must be thicker than 8 km to induce flat subduction, when the slab is older than 30 Ma with an initial subduction angle of = 20° and without absolute trenchward motion of the overriding plate. The lower the initial subduction angle or the thicker the overriding continental lithosphere, the more likelihood for flat subduction. The initial subduction angle is more influential for the development of flat subduction than the overriding lithospheric thickness, and a thick overriding lithosphere induces flat subduction only under the condition of an initial subduction angle of = 25°, with a slab age of = 30 Ma and without absolute trenchward motion of the overriding plate. However, when the initial subduction angle is increased to > 25°, no flat subduction is predicted. All the parameters are evaluated within the constraints of a mechanical framework in which the slab geometry is regarded as a result of a balance between the gravitational and hydrodynamic torques. Any factor that can sufficiently reduce gravitational torque or increase hydrodynamic torque will exert a strong effect on flat subduction development. Our results are consistent with the observations of modern flat subduction zones on Earth.
Abstract: The dynamics of formation and exhumation of high-pressure (HP) and ultra-high pressure (UHP) metamorphic orogens in double subduction-collision zones remain enigmatic. Here we employ two-dimensional thermo-mechanical numerical models to gain insights on the exhumation of HP-UHP metamorphic rocks, as well as their deformation during the collision of a micro-continent with pro- and retro-continental margins along two subduction zones. A three-stage collisional process with different convergence velocities is tested. In the initial collisional stage, a fold-and-thrust belt and locally rootless superimposed folds are developed in the micro-continent and subduction channel, respectively. In the second (exhumation) stage of HP-UHP rocks, a faster convergence model results in upwelling of the asthenosphere, which further leads to a detachment between the crust and lithospheric mantle of the micro-continent. A slower convergence model results in rapid exhumation of HP-UHP rocks along the north subduction channel and a typical piggy-back thrusting structure in the micro-continent. A non-convergence model produces a slab tear-off, leading to the rebound of residual lithosphere of the micro-continent. In the third and final stage, a series of back and ramp thrusts are formed in the micro-continent with the pro-continent re-subducted. Based on an analogy of our numerical results with the Western Dabie Orogen (WDO), we suggest that: (1) slab tear-off results in a rebound of residual lithosphere, which controls the two-stage syn-collisional exhumation process of HP-UHP rocks in the WDO; and (2) in contrast to the single subduction-collision system, the exhumation range of the partially molten rocks with lower viscosity and density is restricted to a specific region of the micro-continent by the Mianlue and Shangdan subduction zones, which generated the complex deformation features in the WDO.
Abstract: The dynamical evolution and exhumation mechanisms of oceanic-derived eclogites are controversial conundrums of oceanic subduction zones. The previous studies indicated that density is the primary factor controlling the exhumation of oceanic rocks. To explore their density evolution, we systematically investigate the phase relations and densities of different rock types in oceanic crust, including mid ocean ridge basalt (MORB), serpentinite, and global subducting sediments (GLOSS). According to the density of eclogites, these currently exposed natural eclogites can be classified into two categories: the self-exhumation of eclogites (?MORB < ?Mantle) and the carried exhumation of eclogites (?MORB > ?Mantle). The depth limit for an exhumation of oceanic-derived eclogites solely driven by their own buoyancies is 100-110 km, and it increases with the lithospheric thickness of the overriding plate. The parameters of carried-exhumation, that is, KGLOSS and KSerp, are defined in order to quantitatively evaluate the assistance ability of GLOSS and serpentinites for carrying the denser eclogites. KGLOSS is mainly controlled by pressure, whereas KSerp is dominantly affected by temperature. Using 2-D thermomechanical models, we demonstrate that the presences of low-density, low-viscosity GLOSS and seafloor serpentinites are the prerequisites for the exhumation of oceanic-derived eclogites. Our results show that oceanic-derived eclogites should be stalled and exhumed slowly at the Moho and Conrad discontinuities (named Moho/Conrad stagnation). We propose that oceanic-derived eclogites should undergo a two-stage exhumation generally, that is, early fast exhumation driven by buoyancy at mantle levels, and final exposure to surface actuated by tectonic exhumation facilitated by divergence between upper plate and accretionary wedge or by rollback of lower plate.
Li, ZX., Lee, C-T.A, Peslier, A.H., Lenardic, A., Mackwell, S.J.
Water contents in mantle xeonoliths from the Colorado Plateau and vicinity: implications for the mantle rheology and hydration induced thinking of lithosphere
Journal of Geophysical Research, Vol. 113, B9, B09210.
Abstract: The Archean Yilgarn Craton in Western Australia is intruded by numerous mafic dykes of varying orientations, which are poorly exposed but discernible in aeromagnetic maps. Previous studies have identified two craton-wide dyke swarms, the 2408?Ma Widgiemooltha and the 1210?Ma Marnda Moorn Large Igneous Provinces (LIP), as well as limited occurrences of the 1075?Ma Warakurna LIP in the northern part of the craton. We report here a newly identified NW-trending mafic dyke swarm in southwestern Yilgarn Craton dated at 1888?±?9?Ma with ID-TIMS U-Pb method on baddeleyite from a single dyke and at 1858?±?54?Ma, 1881?±?37 and 1911?±?42?Ma with in situ SHRIMP U-Pb on baddeleyite from three dykes. Preliminary interpretation of aeromagnetic data indicates that the dykes form a linear swarm several hundred kilometers long, truncated by the Darling Fault in the west. This newly named Boonadgin dyke swarm is synchronous with post-orogenic extension and deposition of granular iron formations in the Earaheedy basin in the Capricorn Orogen and its emplacement may be associated with far field stresses. Emplacement of the dykes may also be related to initial stages of rifting and formation of the intracratonic Barren Basin in the Albany-Fraser Orogen, where the regional extensional setting prevailed for the following 300?million years. Recent studies and new paleomagnetic evidence raise the possibility that the dykes could be part of the coeval 1890?Ma Bastar-Cuddapah LIP in India. Globally, the Boonadgin dyke swarm is synchronous with a major orogenic episode and records of intracratonic mafic magmatism on many other Precambrian cratons.
Abstract: The Archean Yilgarn Craton in Western Australia hosts at least five generations of Proterozoic mafic dykes, the oldest previously identified dykes belonging to the ca. 2408-2401?Ma Widgiemooltha Supersuite. We report here the first known Archean mafic dyke dated at 2615?±?6?Ma by the ID-TIMS U-Pb method on baddeleyite and at 2610?±?25?Ma using in situ SHRIMP U-Pb dating of baddeleyite. Aeromagnetic data suggest that the dyke is part of a series of NE-trending intrusions that potentially extend hundreds of kilometres in the southwestern part of the craton, here named the Yandinilling dyke swarm. Mafic magmatism at 2615?Ma was possibly related to delamination of the lower crust during the final stages of assembly and cratonisation, and was coeval with the formation of late-stage gold deposit at Boddington. Paleogeographic reconstructions suggest that the Yilgarn and Zimbabwe cratons may have been neighbours from ca. 2690?Ma to 2401?Ma and if the Zimbabwe and Kaapvaal cratons amalgamated at 2660-2610?Ma, the 2615?Ma mafic magmatism in the southwestern Yilgarn Craton may be associated with the same tectonic event that produced the ca. 2607-2604?Ma Stockford dykes in the Central Zone of the Limpopo Belt. Paleomagnetic evidence and a similar tectonothermal evolution, including coeval low-pressure high-temperature metamorphism, voluminous magmatism, and emplacement of mafic dykes, support a configuration where the northern part of the Zimbabwe Craton was adjacent to the western margin of the Yilgarn Craton during the Neoarchean. Worldwide, reliably dated mafic dykes of this age have so far been reported from the Yilgarn Craton, the Limpopo Belt and the Săo Francisco Craton.
Abstract: Accurately mapping plate boundary types and locations through time is essential for understanding the evolution of the plate-mantle system and the exchange of material between the solid Earth and surface environments. However, the complexity of the Earth system and the cryptic nature of the geological record make it difficult to discriminate tectonic environments through deep time. Here we present a new method for identifying tectonic paleo-environments on Earth through a data mining approach using global geochemical data. We first fingerprint a variety of present-day tectonic environments utilising up to 136 geochemical data attributes in any available combination. A total of 38301 geochemical analyses from basalts aged from 5-0 Ma together with a well-established plate reconstruction model are used to construct a suite of discriminatory models for the first order tectonic environments of subduction and mid-ocean ridge as distinct from intraplate hotspot oceanic environments, identifying 41, 35, and 39 key discriminatory geochemical attributes, respectively. After training and validation, our model is applied to a global geochemical database of 1547 basalt samples of unknown tectonic origin aged between 1000-410 Ma, a relatively ill-constrained period of Earth's evolution following the breakup of the Rodinia supercontinent, producing 56 unique global tectonic environment predictions throughout the Neoproterozoic and Early Paleozoic. Predictions are used to discriminate between three alternative published Rodinia configuration models, identifying the model demonstrating the closest spatio-temporal consistency with the basalt record, and emphasizing the importance of integrating geochemical data into plate reconstructions. Our approach offers an extensible framework for constructing full-plate, deep-time reconstructions capable of assimilating a broad range of geochemical and geological observations, enabling next generation Earth system models.
Nature Communications, Vol 10, 1, doi.org/10.1038 /s41467-019-13300 8p. Pdf
Mantle
plumes, hotspots
Abstract: Plate tectonics and mantle plumes are two of the most fundamental solid-Earth processes that have operated through much of Earth history. For the past 300 million years, mantle plumes are known to derive mostly from two large low shear velocity provinces (LLSVPs) above the core-mantle boundary, referred to as the African and Pacific superplumes, but their possible connection with plate tectonics is debated. Here, we demonstrate that transition elements (Ni, Cr, and Fe/Mn) in basaltic rocks can be used to trace plume-related magmatism through Earth history. Our analysis indicates the presence of a direct relationship between the intensity of plume magmatism and the supercontinent cycle, suggesting a possible dynamic coupling between supercontinent and superplume events. In addition, our analysis shows a consistent sudden drop in MgO, Ni and Cr at ~3.2-3.0 billion years ago, possibly indicating an abrupt change in mantle temperature at the start of global plate tectonics.
Abstract: Understanding the dominant force responsible for supercontinent breakup is crucial for establishing Earth's geodynamic evolution that includes supercontinent cycles and plate tectonics. Conventionally, two forces have been considered: the push by mantle plumes from the sub-continental mantle which is called the active force for breakup, and the dragging force from oceanic subduction retreat which is called the passive force for breakup. However, the relative importance of these two forces is unclear. Here we model the supercontinent breakup coupled with global mantle convection in order to address this question. Our global model features a spherical harmonic degree-2 structure, which includes a major subduction girdle and two large upwelling (superplume) systems. Based on this global mantle structure, we examine the distribution of extensional stress applied to the supercontinent by both sub-supercontinent mantle upwellings and subduction retreat at the supercontinent peripheral. Our results show that: (1) at the center half of the supercontinent, plume push stress is ~3 times larger than the stress induced by subduction retreat; (2) an average hot anomaly of no higher than 50 K beneath the supercontinent can produce a push force strong enough to cause the initialization of supercontinent breakup; (3) the extensional stress induced by subduction retreat concentrates on a ~600 km wide zone on the boundary of the supercontinent, but has far less impact to the interior of the supercontinent. We therefore conclude that although circum-supercontinent subduction retreat assists supercontinent breakup, sub-supercontinent mantle upwelling is the essential force.
Abstract: The most dominant features in the present-day lower mantle are the two antipodal African and Pacific large low-shear-velocity provinces (LLSVPs). How and when these two structures formed, and whether they are fixed and long lived through Earth history or dynamic and linked to the supercontinent cycles, remain first-order geodynamic questions. Hotspots and large igneous provinces (LIPs) are mostly generated above LLSVPs, and it is widely accepted that the African LLSVP existed by at least ca. 200 Ma beneath the supercontinent Pangea. Whereas the continental LIP record has been used to decipher the spatial and temporal variations of plume activity under the continents, plume records of the oceanic realm before ca. 170 Ma are mostly missing due to oceanic subduction. Here, we present the first compilation of an Oceanic Large Igneous Provinces database (O-LIPdb), which represents the preserved oceanic LIP and oceanic island basalt occurrences preserved in ophiolites. Using this database, we are able to reconstruct and compare the record of mantle plume activity in both the continental and oceanic realms for the past 2 b.y., spanning three supercontinent cycles. Time-series analysis reveals hints of similar cyclicity of the plume activity in the continent and oceanic realms, both exhibiting a periodicity of ~500 m.y. that is comparable to the supercontinent cycle, albeit with a slight phase delay. Our results argue for dynamic LLSVPs where the supercontinent cycle and global subduction geometry control the formation and locations of the plumes.
Abstract: Accurately mapping plate boundary types and locations through time is essential for understanding the evolution of the plate-mantle system and the exchange of material between the solid Earth and surface environments. However, the complexity of the Earth system and the cryptic nature of the geological record make it difficult to discriminate tectonic environments through deep time. Here we present a new method for identifying tectonic paleo-environments on Earth through a data mining approach using global geochemical data. We first fingerprint a variety of present-day tectonic environments utilising up to 136 geochemical data attributes in any available combination. A total of 38301 geochemical analyses from basalts aged from 5-0 Ma together with a well-established plate reconstruction model are used to construct a suite of discriminatory models for the first order tectonic environments of subduction and mid-ocean ridge as distinct from intraplate hotspot oceanic environments, identifying 41, 35, and 39 key discriminatory geochemical attributes, respectively. After training and validation, our model is applied to a global geochemical database of 1547 basalt samples of unknown tectonic origin aged between 1000-410 Ma, a relatively ill-constrained period of Earth's evolution following the breakup of the Rodinia supercontinent, producing 56 unique global tectonic environment predictions throughout the Neoproterozoic and Early Paleozoic. Predictions are used to discriminate between three alternative published Rodinia configuration models, identifying the model demonstrating the closest spatio-temporal consistency with the basalt record, and emphasizing the importance of integrating geochemical data into plate reconstructions. Our approach offers an extensible framework for constructing full-plate, deep-time reconstructions capable of assimilating a broad range of geochemical and geological observations, enabling next generation Earth system models.
Abstract: Progressive mantle melting during the Earth’s earliest evolution led to the formation of a depleted mantle and a continental crust enriched in highly incompatible elements. Re-enrichment of Earth’s mantle can occur when continental crustal materials begin to founder into the mantle by either subduction or, to a lesser degree, by delamination processes, profoundly affecting the mantle’s trace element and volatile compositions. Deciphering when mantle re-enrichment/refertilization became a global-scale process would reveal the onset of efficient mass transfer of crust to the mantle and potentially when plate tectonic processes became operative on a global-scale. Here we document the onset of mantle re-enrichment/refertilization by comparing the abundances of petrogenetically significant isotopic values and key ratios of highly incompatible elements compared to lithophile elements in Archean to Early-Proterozoic mantle-derived melts (i.e., basalts and komatiites). Basalts and komatiites both record a rapid-change in mantle chemistry around 3.2 billion years ago (Ga) signifying a fundamental change in Earth geodynamics. This rapid-change is recorded in Nd isotopes and in key trace element ratios that reflect a fundamental shift in the balance between fluid-mobile and incompatible elements (i.e., Ba/La, Ba/Nb, U/Nb, Pb/Nd and Pb/Ce) in basaltic and komatiitic rocks. These geochemical proxies display a significant increase in magnitude and variability after ~3.2 Ga. We hypothesize that rapid increases in mantle heterogeneity indicate the recycling of supracrustal materials back into Earth’s mantle via subduction. Our new observations thus point to a?=?3.2 Ga onset of global subduction processes via plate tectonics.
Abstract: The Earth’s mantle is currently divided into the African and Pacific domains, separated by the circum-Pacific subduction girdle, and each domain features a large low shear-wave velocity province (LLSVP) in the lower mantle. However, it remains controversial as to whether the LLSVPs have been stationary through time or dynamic, changing in response to changes in global subduction geometry. Here we compile radiogenic isotope data on plume-induced basalts from ocean islands and oceanic plateaus above the two LLSVPs that show distinct lead, neodymium and strontium isotopic compositions for the two mantle domains. The African domain shows enrichment by subducted continental material during the assembly and breakup of the supercontinent Pangaea, whereas no such feature is found in the Pacific domain. This deep-mantle geochemical dichotomy reflects the different evolutionary histories of the two domains during the Rodinia and Pangaea supercontinent cycles and thus supports a dynamic relationship between plate tectonics and deep-mantle structures.
Abstract: The Earth’s mantle is currently divided into the African and Pacific domains, separated by the circum-Pacific subduction girdle, and each domain features a large low shear-wave velocity province (LLSVP) in the lower mantle. However, it remains controversial as to whether the LLSVPs have been stationary through time or dynamic, changing in response to changes in global subduction geometry. Here we compile radiogenic isotope data on plume-induced basalts from ocean islands and oceanic plateaus above the two LLSVPs that show distinct lead, neodymium and strontium isotopic compositions for the two mantle domains. The African domain shows enrichment by subducted continental material during the assembly and breakup of the supercontinent Pangaea, whereas no such feature is found in the Pacific domain. This deep-mantle geochemical dichotomy reflects the different evolutionary histories of the two domains during the Rodinia and Pangaea supercontinent cycles and thus supports a dynamic relationship between plate tectonics and deep-mantle structures.
Journal of Metamorphic Geology, Vol. 38, pp. 593-627.
Australia
geochronology
Abstract: The final assembly of the Mesoproterozoic supercontinent Nuna was marked by the collision of Laurentia and Australia at 1.60 Ga, which is recorded in the Georgetown Inlier of NE Australia. Here, we decipher the metamorphic evolution of this final Nuna collisional event using petrostructural analysis, major and trace element compositions of key minerals, thermodynamic modelling, and multi-method geochronology. The Georgetown Inlier is characterised by deformed and metamorphosed 1.70-1.62 Ga sedimentary and mafic rocks, which were intruded by c. 1.56 Ga old S-type granites. Garnet Lu-Hf and monazite U-Pb isotopic analyses distinguish two major metamorphic events (M1 at c. 1.60 Ga and M2 at c. 1.55 Ga), which allows at least two composite fabrics to be identified at the regional scale—c. 1.60 Ga S1 (consisting in fabrics S1a and S1b) and c. 1.55 Ga S2 (including fabrics S2a and S2b). Also, three tectono-metamorphic domains are distinguished: (a) the western domain, with S1 defined by low-P (LP) greenschist facies assemblages; (b) the central domain, where S1 fabric is preserved as medium-P (MP) amphibolite facies relicts, and locally as inclusion trails in garnet wrapped by the regionally dominant low-P amphibolite facies S2 fabric; and (c) the eastern domain dominated by upper amphibolite to granulite facies S2 foliation. In the central domain, 1.60 Ga MP-medium-T (MT) metamorphism (M1) developed within the staurolite-garnet stability field, with conditions ranging from 530-550°C at 6-7 kbar (garnet cores) to 620-650°C at 8-9 kbar (garnet rims), and it is associated with S1 fabric. The onset of 1.55 Ga LP-high-T (HT) metamorphism (M2) is marked by replacement of staurolite by andalusite (M2a/D2a), which was subsequently pseudomorphed by sillimanite (M2b/D2b) where granite and migmatite are abundant. P-T conditions ranged from 600 to 680°C and 4-6 kbar for the M2b sillimanite stage. 1.60 Ga garnet relicts within the S2 foliation highlight the progressive obliteration of the S1 fabric by regional S2 in the central zone during peak M2 metamorphism. In the eastern migmatitic complex, partial melting of paragneiss and amphibolite occurred syn- to post- S2, at 730-770°C and 6-8 kbar, and at 750-790°C and 6 kbar, respectively. The pressure-temperature-deformation-time paths reconstructed for the Georgetown Inlier suggest a c. 1.60 Ga M1/D1 event recorded under greenschist facies conditions in the western domain and under medium-P and medium-T conditions in the central domain. This event was followed by the regional 1.56-1.54 Ga low-P and high-T phase (M2/D2), extensively recorded in the central and eastern domains. Decompression between these two metamorphic events is ascribed to an episode of exhumation. The two-stage evolution supports the previous hypothesis that the Georgetown Inlier preserves continental collisional and subsequent thermal perturbation associated with granite emplacement.
In situ U Pb dating and Sr Nd isotopic analysis of perovskite: constraints on the age and petrogenesis of the Kuruman kimberlite province, Kaapvaal Craton, South Africa.
Geochemical evidence for Proterozoic continental arc and continental margin rift magmatism along the northern margin of the Yangtze craton, South China
Geological Society of America Annual Meeting, Vol. 47, 7, p. 163. abstract
Europe, Turkey
Moissanite
Abstract: The Aladag ophiolite in the eastern Tauride belt, southern Turkey, is a well-preserved remnant of oceanic lithosphere. It consists of, in ascending order, harzburgitic to dunitic tectonites, ultramafic and mafic cumulates, isotropic gabbros, sheeted dikes and basaltic pillow lavas. Podiform chromitites are common in the mantle peridotites. Thus far, more than 200 grains of microdiamond and more than 100 grains of moissanite (SiC) have been separated from one sample of podiform chromitite. The microdiamonds occur mostly as subhedral to euhedral, colorless to pale yellow grains, about 50-300 µm in size. Moissanite grains are generally subhedral, light blue to deep blue in color and variable in size. These grains of diamond and moissanite are very similar to in-situ grains in podiform chromitites of Tibet and the Polar Urals of Russia (Yang et al., 2014; 2015), indicating that they are natural minerals, not the result of natural or anthropogenic contamination. As reported elsewhere, the diamonds and moissanite are accompanied by a range of other minerals, including rutile, zircon, quartz and sulfides. The discovery of diamond, moissanite and other unusual minerals in the podiform chromitites of the Aladag massif provide additional evidence for the widespread occurrence of these minerals in ophiolites, indicating that they are related to global mantle processes.
Abstract: The Pozanti-Karsanti ophiolite situated in the eastern Tauride belt, southern Turkey, is a well-preserved oceanic lithosphere remnant comprising, in ascending order, mantle peridotite, ultramafic and mafic cumulates, isotropic gabbros, sheeted dikes, and basaltic pillow lavas. Two types of chromitites are observed in the Pozanti-Karsanti ophiolite. One type of chromitites occurs in the cumulate dunites around the Moho, and the other type of chromitites is hosted by the mantle harzburgites below the Moho. The second type of chromitites has massive, nodular, and disseminated textures. We have conducted the mineral separation work on the podiform chromitites hosted by harzburgites. So far, more than 100 grains of microdiamond and moissanite (SiC) have been recovered from the podiform chromitite. The diamonds and moissanite are accompanied by large amounts of rutile. Besides zircon, monazite and sulfide are also very common phases within the separated minerals. The discovery of diamond, moissanite, and the other unusual minerals from podiform chromitite of the Pozanti-Karsanti ophiolite provides new evidences for the common occurrences of these unusual minerals in ophiolitic peridotites and chromitites. This discovery also suggests that deep mantle processes and materials have been involved in the formation of podiform chromitite.
Abstract: The Cameca 1280-HR large geometry SIMS instrument is a highly versatile analytical tool which can support a broad range of geochemical applications. Research using the Potsdam 1280 instrument focuses primarily on isotope ratio determinations in geomaterials. Optimized measurement protocols have already been established for d18O determinations in zircon, and we are also working towards routine oxygen isotope determinations for quartz, calcite, mica, apatite and titanite. The primary challenge in developing such measurement systems are the identification and characterization of suitable reference materials (RMs), and this is made particularly challenging due to the matrix dependent ion yields of the SIMS ion source. Here we wish to report our progress towards establishing new analytical protocols for the determination of d13C in both diamond and moissanite. In the case of diamond, our facility possesses three natural RMs with which we are able to produce data with a typical analytical repeatability of ~0.15 ‰ (1sd). An inter-comparison of our three diamond RMs demonstrates an overall data quality of better than 0.5‰ in terms of systematic offset between the various materials characterized using gas source mass spectrometry (Palot et al., 2012). A single such d13C determination in diamond requires 80 s of data acquisition and involves a test portion mass of ~400 pg of material. In-house diamond reference materials for d15N calibration allow us to measure this isotopic system to a total analytical uncertainty of ± 1.6 ‰ (1sd) at nitrogen concentrations reaching down to 250 µg/g. Due to the relatively low abundance of nitrogen in diamonds, such isotope ratio determinations require around 9 minutes of data collection. With respect to d13C determinations in moissanite, we use a kimberlitic SiC as calibrant (Mathez et al., 1995), on which we achieve a repeatability of ~0.2 ‰ (1sd) on a ~350 pg test portion mass. Total data acquisition time for such measurements is 80 s. We are currently in the process of developing a second moissanite RM based on a synthetic, coarse-grained powder. We will also investigate this new material for its d30Si characteristics.
Abstract: In recent years diamonds and other unusual minerals (carbides, nitrides, metal alloys and native elements) have been recovered from mantle peridotites and chromitites (both high-Cr chromitites and high-Al chromitites) from a number of ophiolites of different ages and tectonic settings. Here we report a similar assemblage of minerals from the Skenderbeu massif of the Mirdita zone ophiolite, west Albania. So far, more than 20 grains of microdiamonds and 30 grains of moissanites (SiC) have been separated from the podiform chromitite. The diamonds are mostly light yellow, transparent, euhedral crystals, 200-300 µm across, with a range of morphologies; some are octahedral and cuboctahedron and others are elongate and irregular. Secondary electron images show that some grains have well-developed striations. All the diamond grains have been analyzed and yielded typical Raman spectra with a shift at ~1325 cm-1. The moissanite grains recovered from the Skenderbeu chromitites are mainly light blue to dark blue, but some are yellow to light yellow. All the analyzed grains have typical Raman spectra with shifts at 766 cm-1, 787 cm-1, and 967 cm-1. The energy spectrums of the moissanites confirm that the grains are composed entirely of silicon and carbon. This investigation expands the occurrence of diamonds and moissanites to Mesozoic ophiolites in the Neo-Tethys. Our new findings suggest that diamonds and moissanites are present, and probably ubiquitous in the oceanic mantle and can provide new perspectives and avenues for research on the origin of ophiolites and podiform chromitites.
Contributions to Mineralogy and Petrology, doi.org:10.1007/ s00410-018-1499-5 19p.
Europe, Turkey
diamond inclusions
Abstract: The Pozanti-Karsanti ophiolite (PKO) is one of the largest oceanic remnants in the Tauride belt, Turkey. Micro-diamonds were recovered from the podiform chromitites, and these diamonds were investigated based on morphology, color, cathodoluminescence, nitrogen content, carbon and nitrogen isotopes, internal structure and inclusions. The diamonds recovered from the PKO are mainly mixed-habit diamonds with sectors of different brightness under the cathodoluminescence images. The total d13C range of the PKO diamonds varies between - 18.8 and - 28.4‰, with a principle d13C mode at - 25‰. Nitrogen contents of the diamonds range from 7 to 541 ppm with a mean value of 171 ppm, and the d15N values range from - 19.1 to 16.6‰, with a d15N mode of - 9‰. Stacking faults and partial dislocations are commonly observed in the Transmission Electron Microscopy foils whereas inclusions are rather rare. Combinations of ( Ca0.81Mn0.19)SiO3, NiMnCo-alloy and nanosized, quenched fluid phases were observed as inclusions in the PKO diamonds. We believe that the 13C-depleted carbon signature of the PKO diamonds derived from previously subducted crustal matter. These diamonds may have crystallized from C-saturated fluids in the asthenospheric mantle at depth below 250 km which were subsequently carried rapidly upward by asthenospheric melts.
Abstract: Geophysical investigations and laboratory experiments provide strong evidence for subduction of ancient oceanic crust, and geological and mineralogical observations suggest that subducted oceanic crust is recycled into the upper mantle. This model is supported by some direct petrologic and miner-alogical evidence, principally the recovery of super-deep diamonds from kimberlites and the presence of crustal materials in ophiolitic chromitites and peridotites, but many details are still unclear. Here we report the discovery of ophiolite-hosted diamonds in the podiform chromitites of the Skenderbeu massif of the Mirdita ophiolite in the western part of Neo-Tethys. The diamonds are characterized by exceedingly light C isotopes (d13CPDB ~ -25‰), which we interpret as evidence for subduction of organic carbon from Earth's surface. They are also characterized by an exceptionally large range in d 15Nair (-12.9‰ to +25.5‰), accompanied by a low N aggregation state. Materials sparsely included in diamonds include amorphous material, Ni-Mn-Co alloy, nanocrystals (20 × 20 nm) of calcium silicate with an orthorhombic perovskite structure (Ca-Pv), and fluids. The fluids coexisting with the alloy and Ca-Pv provide clear evidence that the diamonds are natural rather than synthetic. We suggest that the Skenderbeu diamonds nucleated and grew from a C-saturated, NiMnCo-rich melt derived from a subducted slab of ocean crust and lithosphere in the deep mantle, at least in the diamond stability field, perhaps near the top of the mantle transition zone. The subsequent rapid upward transport in channeled networks related to slab rollback during subduction initiation may explain the formation and preservation of Skenderbeu diamonds. The discovery of diamonds from the Mirdita ophiolite not only provides new evidence of diamonds in these settings but also provides a valuable opportunity to understand deep cycling of subducted oceanic crust and mantle composition.
Abstract: Diamonds have been discovered in mantle peridotites and chromitites of six ophiolitic massifs along the 1300 km-long Yarlung-Zangbo suture (Bai et al., 1993; Yang et al., 2014; Xu et al., 2015), and in the Dongqiao and Dingqing mantle peridotites of the Bangong-Nujiang suture in the eastern Tethyan zone (Robinson et al., 2004; Xiong et al., 2018). Recently, in-situ diamond, coesite and other UHP mineral have also been reported in the Nidar ophiolite of the western Yarlung-Zangbo suture (Das et al., 2015, 2017). The above-mentioned diamond-bearing ophiolites represent remnants of the eastern Mesozoic Tethyan oceanic lithosphere. New publications show that diamonds also occur in chromitites in the Pozanti-Karsanti ophiolite of Turkey, and in the Mirdita ophiolite of Albania in the western Tethyan zone (Lian et al., 2017; Xiong et al., 2017; Wu et al., 2018). Similar diamonds and associated minerals have also reported from Paleozoic ophiolitic chromitites of Central Asian Orogenic Belt of China and the Ray-Iz ophiolite in the Polar Urals, Russia (Yang et al., 2015a, b; Tian et al., 2015; Huang et al, 2015). Importantly, in-situ diamonds have been recovered in chromitites of both the Luobusa ophiolite in Tbet and the Ray-Iz ophiolite in Russia (Yang et al., 2014, 2015a). The extensive occurrences of such ultra-high pressure (UHP) minerals in many ophiolites suggest formation by similar geological events in different oceans and orogenic belts of different ages. Compared to diamonds from kimberlites and UHP metamorphic belts, micro-diamonds from ophiolites present a new occurrence of diamond that requires significantly different physical and chemical conditions of formation in Earth's mantle. The forms of chromite and qingsongites (BN) indicate that ophiolitic chromitite may form at depths of >150-380 km or even deeper in the mantle (Yang et al., 2007; Dobrthinetskaya et al., 2009). The very light C isotope composition (d13C -18 to -28‰) of these ophiolitic diamonds and their Mn-bearing mineral inclusions, as well as coesite and clinopyroxene lamallae in chromite grains all indicate recycling of ancient continental or oceanic crustal materials into the deep mantle (>300 km) or down to the mantle transition zone via subduction (Yang et al., 2014, 2015a; Robinson et al., 2015; Moe et al., 2018). These new observations and new data strongly suggest that micro-diamonds and their host podiform chromitite may have formed near the transition zone in the deep mantle, and that they were then transported upward into shallow mantle depths by convection processes. The in-situ occurrence of micro-diamonds has been well-demonstrated by different groups of international researchers, along with other UHP minerals in podiform chromitites and ophiolitic peridotites clearly indicate their deep mantle origin and effectively address questions of possible contamination during sample processing and analytical work. The widespread occurrence of ophiolite-hosted diamonds and associated UHP mineral groups suggests that they may be a common feature of in-situ oceanic mantle. The fundamental scientific question to address here is how and where these micro-diamonds and UHP minerals first crystallized, how they were incorporated into ophiolitic chromitites and peridotites and how they were preserved during transport to the surface. Thus, diamonds and UHP minerals in ophiolites have raised new scientific problems and opened a new window for geologists to study recycling from crust to deep mantle and back to the surface.
International Symposium on Deep Earth Exploration and Practices, Beijing Oct. 24-26. 1 p. abstract
China
diamond genesis
Abstract: Diamonds have been discovered in mantle peridotites and chromitites of six ophiolitic massifs along the 1300 km-long Yarlung-Zangbo suture (Bai et al., 1993; Yang et al., 2014; Xu et al., 2015), and in the Dongqiao and Dingqing mantle peridotites of the Bangong-Nujiang suture in the eastern Tethyan zone (Robinson et al., 2004; Xiong et al., 2018). Recently, in-situ diamond, coesite and other UHP mineral have also been reported in the Nidar ophiolite of the western Yarlung-Zangbo suture (Das et al., 2015, 2017). The above-mentioned diamond-bearing ophiolites represent remnants of the eastern Mesozoic Tethyan oceanic lithosphere. New publications show that diamonds also occur in chromitites in the Pozanti-Karsanti ophiolite of Turkey, and in the Mirdita ophiolite of Albania in the western Tethyan zone (Lian et al., 2017; Xiong et al., 2017; Wu et al., 2018). Similar diamonds and associated minerals have also reported from Paleozoic ophiolitic chromitites of Central Asian Orogenic Belt of China and the Ray-Iz ophiolite in the Polar Urals, Russia (Yang et al., 2015a, b; Tian et al., 2015; Huang et al, 2015). Importantly, in-situ diamonds have been recovered in chromitites of both the Luobusa ophiolite in Tbet and the Ray-Iz ophiolite in Russia (Yang et al., 2014, 2015a). The extensive occurrences of such ultra-high pressure (UHP) minerals in many ophiolites suggest formation by similar geological events in different oceans and orogenic belts of different ages. Compared to diamonds from kimberlites and UHP metamorphic belts, micro-diamonds from ophiolites present a new occurrence of diamond that requires significantly different physical and chemical conditions of formation in Earth's mantle. The forms of chromite and qingsongites (BN) indicate that ophiolitic chromitite may form at depths of >150-380 km or even deeper in the mantle (Yang et al., 2007; Dobrthinetskaya et al., 2009). The very light C isotope composition (d13C -18 to -28‰) of these ophiolitic diamonds and their Mn-bearing mineral inclusions, as well as coesite and clinopyroxene lamallae in chromite grains all indicate recycling of ancient continental or oceanic crustal materials into the deep mantle (>300 km) or down to the mantle transition zone via subduction (Yang et al., 2014, 2015a; Robinson et al., 2015; Moe et al., 2018). These new observations and new data strongly suggest that micro-diamonds and their host podiform chromitite may have formed near the transition zone in the deep mantle, and that they were then transported upward into shallow mantle depths by convection processes. The in-situ occurrence of micro-diamonds has been well-demonstrated by different groups of international researchers, along with other UHP minerals in podiform chromitites and ophiolitic peridotites clearly indicate their deep mantle origin and effectively address questions of possible contamination during sample processing and analytical work. The widespread occurrence of ophiolite-hosted diamonds and associated UHP mineral groups suggests that they may be a common feature of in-situ oceanic mantle. The fundamental scientific question to address here is how and where these micro-diamonds and UHP minerals first crystallized, how they were incorporated into ophiolitic chromitites and peridotites and how they were preserved during transport to the surface. Thus, diamonds and UHP minerals in ophiolites have raised new scientific problems and opened a new window for geologists to study recycling from crust to deep mantle and back to the surface.
Abstract: As reported in our prior work, we have recovered microdiamonds and other unusual minerals, including pseudomorph stishovite, moissanite, qingsongite, native elements, metallic alloys, and some crustal minerals (i.e., zircon, quartz, amphibole, and rutile) from ophiolitic peridotites and chromitites. These ophiolite-hosted microdiamonds display different features than kimberlitic, metamorphic, and meteoritic diamonds in terms of isotopic values and mineral inclusions. The characteristic of their light carbon isotopic composition implies that the material source of ophiolite-hosted diamonds is surface-derived organic matter. Coesite inclusions coexisting with kyanite rimming an FeTi alloy from the Luobusa ophiolite show a polycrystalline nature and a prismatic habit, indicating their origin as a replacement of stishovite. The occurrence in kyanite and coesite with inclusions of qingsongite, a cubic boron nitride mineral, and a high-pressure polymorph of rutile (TiO2 II) point to formation pressures of 10-15?GPa at temperatures ~1300?°C, consistent with depths greater than 380?km, near the mantle transition zone (MTZ). Minerals such as moissanite, native elements, and metallic alloys in chromite grains indicate a highly reduced environment for ophiolitic peridotites and chromitites. Widespread occurrence of diamonds in ophiolitic peridotites and chromitites suggests that the oceanic mantle may be a more significant carbon reservoir than previously thought. These ophiolite-hosted diamonds have proved that surface carbon can be subducted into the deep mantle, and have provided us with a new window for probing deep carbon cycling.
Abstract: Limited field studies and sparse chronological constraints in the southwestern Great Slave Lake area creates uncertainties about the Laurentide Ice Sheet (LIS) flow history and deglacial chronology. Improved understanding of the western LIS ice-margin morphology and retreat history is required to refine larger ice-sheet interpretations and timing for northwest drainage of glacial Lake McConnell. Using new field observations and geochronology we establish ice-flow history and better constrain regional deglaciation. Paleo-ice flow indicators (n = 66) show an oldest southwestern flow (230°), an intermediate northwesterly flow (305°), and a youngest westerly flow (250°). Till samples bulk sediment and matrix properties (n = 160) allowed identification of two till units. A lower grey till sourced mainly from local Paleozoic sediments produced clast fabrics indicating a southwesterly flow direction, overlain by a brown till that contained an increased Canadian Shield content with lodged elongate boulders a-axes and boulder-top striation orientations indicating a west to northwest ice-flow direction. Ice-flow results show a clockwise shift in direction interpreted as evidence for ice-divide migration followed by topographically controlled deglacial westward flow influenced by the Mackenzie River valley. Minimum deglacial timing estimates were constrained through optical dating of fine-sand deposits in a well-developed strandline (n = 2) and seven aeolian dunes; ages range from 9.9 ± 0.6 to 10.8 ± 0.7 ka BP. These ages are from dunes located below glacial Lake McConnell maximum water level and may thus provide new local lake level age constraints. Ice retreat is informed by a newly-mapped segment of the Snake River moraine, which is an understudied feature in the region. New ice-flow history and ice-margin retreat interpretations will be integrated into the larger body of work on the western LIS providing more confident conclusions on ice-sheet evolution and meltwater drainage pathways, specifically in the southwestern Great Slave Lake area.
Liu, F.L., Gerdes, A., Liou, J.G., Xue, H.M., Liang, F.H.
SHRIMP U Pb zircon dating from Sulu Dabie dolomitic marble, eastern China: constraints on prograde, ultrahigh pressure and retrograde metamorphic ages.
Journal of Metamorphic Geology, Vol. 24, 7, Sept. pp. 569-589.
ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 146, pp. 91-107.
Mantle
remote sensing
Abstract: Since Google Earth was first released in 2005, it has attracted hundreds of millions of users worldwide and made a profound impact on both academia and industry. It can be said that Google Earth epitomized the first-generation of Digital Earth prototypes. The functionalities and merits that have sustained Google Earth’s lasting influence are worth a retrospective review. In this paper, we take the liberty to conduct a bibliometric study of the applications of Google Earth during 2006-2016. We aim first to quantify the multifaceted impacts, and then to develop a structured understanding of the influence and contribution associated with Google Earth. To accomplish these objectives, we analyzed a total of 2115 Scopus publication records using scientometric methods and then proceed to discussion with a selected set of applications. The findings and conclusions can be summarized as follows: (1) the impact of Google Earth has been profound and persistent over the past decade. Google Earth was mentioned in an average of 229 publications per year since 2009. (2) Broadly, the impact of Google Earth has touched upon most scientific disciplines. Specifically, during 2006-2016, Google Earth has been mentioned in 2115 publications covering all of Scopus’s 26 subject areas; (3) the influence of Google Earth has largely concentrated in GIScience, remote sensing and geosciences. The extended influence of Google Earth has reached a wider range of audiences with a concentration in fields such as human geography, geoscience education and archaeology.
The American Mineralogist, in press available 59p. Pdf
South America, Guyana
diamond crystallography
Abstract: Diamonds have long been mined from alluvial terrace deposits within the rainforest of Guyana, South America. No primary kimberlite deposits have been discovered in Guyana, nor has there been previous studies on the mineralogy and origin of the diamonds. Paleoproterozoic terranes in Guyana are prospective to diamond occurrences because the most productive deposits are associated spatially with the eastern escarpment of the Paleoproterozoic Roraima Supergroup. Geographic proximity suggests that the diamonds are detrital grains eroding from the <1.98 Ga conglomerates, metamorphosed to zeolite and greenschist facies. The provenance and paragenesis of the alluvial diamonds are described using a suite of placer diamonds from different locations across the Guiana Shield. Guyanese diamonds are typically small, and those in our collection range from 0.3 to 2.7 mm in diameter; octahedral and dodecahedral, with lesser cubic and minor macle forms. The diamonds are further subdivided into those with abraded and non-abraded surfaces. Abraded diamonds show various colors in cathodoluminescence whereas most non-abraded diamonds appear blue. In all populations, diamonds are predominantly colorless, with lesser brown to yellow and very rare white. Diamonds are predominantly Type IaAB and preserve moderate nitrogen aggregation and total nitrogen concentrations ranging from trace to ~1971 ppm. The kinetics of nitrogen aggregation indicate mantle-derived residence temperatures of 1124 ± 100 şC, assuming residence times of 1.3 Ga and 2.6 Ga for abraded and non-abraded diamonds respectively. The diamonds are largely sourced from the peridotitic to eclogitic lithospheric upper mantle based on both d13C values of -5.82 ± 2.45‰ (VPDB-LSVEC) and inclusion suites predominantly comprised of forsterite, enstatite, Cr-pyrope, chromite, rutile, clinopyroxene, coesite, and almandine garnet. Detrital, accessory minerals are non-kimberlitic. Detrital zircon geochronology indicates diamondiferous deposits are predominantly sourced from Paleoproterozoic rocks of 2079 ± 88 Ma.
Geochemical Perspectives Letters, Vol. 10, pp. 51-55.
Mantle
redox
Abstract: Among redox sensitive elements, carbon is particularly important because it may have been a driver rather than a passive recorder of Earth’s redox evolution. The extent to which the isotopic composition of carbon records the redox processes that shaped the Earth is still debated. In particular, the highly reduced deep mantle may be metal-saturated, however, it is still unclear how the presence of metallic phases in?uences the carbon isotopic compositions of super-deep diamonds. Here we report ab initio results for the vibrational properties of carbon in carbonates, diamond, and Fe3C under pressure and temperature conditions relevant to super-deep diamond formation. Previous work on this question neglected the effect of pressure on the equilibrium carbon isotopic fractionation between diamond and Fe3C but our calculations show that this assumption overestimates the fractionation by a factor of ~1.3. Our calculated probability density functions for the carbon isotopic compositions of super-deep diamonds derived from metallic melt can readily explain the very light carbon isotopic compo- sitions observed in some super-deep diamonds. Our results therefore support the view that metallic phases are present during the formation of super-deep diamonds in the mantle below ~250 km.
The importance of crystal chemistry on REE partitioning between mantle minerals ( garnet, clinopyroxene, orthopyroxene, and olivine) and basaltic melts.
Composition of phengites in eclogites and their retrogressive derivatives of Dabie shan region: implication for the applicability of phengite geobarometre....
Chinese Journal of Geochemistry, Vol. 21, 1, pp.52-56.
Abstract: The NNW trending tholeiitic Sonakhan mafic dyke swarm of the Northern Bastar Craton is comprised of basalt to basaltic andesite (SiO2?=?46.3?wt% to 55.3?wt%; Mg#?=?37 to 70) dykes. A single basaltic dyke yielded a weighted-mean 207Pb/206Pb baddeleyite age of 1851.1?±?2.6?Ma. The Sr and Nd isotopes (87Sr/86Sri?=?0.70396 to 0.70855; eNd(t)?=?-5.7 to +2.0) are variable which is a consequence of crustal contamination. Trace element modeling suggests the dykes were likely derived by partial melting of a spinel-bearing mantle source. The Sonakhan dykes are 30 million years younger than the 1.88?Ga Bastar-Cuddapah dykes (Bastanar-Hampi swarm) of the southern and central Bastar Craton indicating they represent a distinct period of magmatism. However, much like the 1.88?Ga dykes, the Sonakhan dykes appear to be correlative with dykes from the Yilgarn Craton (Yalgoo dyke?=?1854?±?5?Ma) of Western Australia. The temporal and compositional similarity of the Sonakhan dykes with the Yalgoo dyke is evidence that they are petrologically related and may represent different branches of the same dyke swarm. The existence of two distinct Paleoproterozoic dyke swarms in the Bastar Craton that each have a correlative unit in the Yilgarn Craton is supportive of a link between India and Australia before 1.9?Ga. Moreover, it suggests that the break-up of India and Western Australia was protracted and lasted for at least 30 million years.
Abstract: The Indian Shield is cross-cut by a number of distinct Paleoproterozoic mafic dyke swarms. The density of dykes in the Dharwar and Bastar Cratons is amongst the highest on Earth. Globally, boninitic dyke swarms are rare compared to tholeiitic dyke swarms and yet they are common within the Southern Indian Shield. Geochronology and geochemistry are used to constrain the petrogenesis and relationship of the boninitic dykes (SiO2?=?51.5 to 55.7?wt%, MgO?=?5.8 to 18.7?wt%, and TiO2?=?0.30?wt% to 0.77?wt%) from the central Bastar Craton (Bhanupratappur) and the NE Dharwar Craton (Karimnagar). A single U-Pb baddeleyite age from a boninitic dyke near Bhanupratappur yielded a weighted-mean 207Pb/206Pb age of 2365.6?±?0.9?Ma that is within error of boninitic dykes from the Dharwar Craton near Karimnagar (2368.5?±?2.6?Ma) and farther south near Bangalore (2365.4?±?1.0?Ma to 2368.6?±?1.3?Ma). Rhyolite-MELTS modeling indicates that fractional crystallization is the likely cause of major element variability of the boninitic dykes from Bhanupratappur whereas trace element modeling indicates that the primary melt may be derived from a pyroxenite mantle source near the spinel-garnet transition zone. The Nd isotopes (eNd(t)?=?-6.4 to +4.5) of the Bhanupratappur dykes are more variable than the Karimnagar dykes (eNd(t)?=?-0.7 to +0.6) but they overlap. The variability of Sr-Nd isotopes may be related to crustal contamination during emplacement or is indicative of an isotopically heterogeneous mantle source. The chemical and temporal similarities of the Bhanupratappur dykes with the dykes of the Dharwar Craton (Karimnagar, Penukonda, Chennekottapalle) indicate they are members of the same giant radiating dyke swarm. Moreover, our results suggest that the Bastar and Dharwar Cratons were adjacent but likely had a different configuration at 2.37?Ga than the present day. It is possible that the 2.37Ga dyke swarm was related to a mantle plume that assisted in the break-up of an unknown or poorly constrained supercontinent.
Abstract: At the Davdar mine in Xinjiang, north-western China, emeralds are hosted mainly by carbonate, quartz-carbonate and quartz veins cutting metasedimentary rocks, and are associated with minerals such as hematite, dolomite, quartz, orthoclase and albite. Sixteen rough emeralds obtained during the authors’ visit to the mining area in 2019 were studied by standard gemmolog-ical techniques and various spectroscopic methods (FTIR, Raman, UV-Vis-NIR and EPR), as well as LA-ICP-MS chemical analysis. The analysed samples were mostly coloured by Cr, and showed a wide range of Fe, V, Mg and alkali contents, along with relatively low Cs, Rb and Sc. UV-Vis-NIR spectra showed features at 370 nm (Fe3+), 430 nm (Cr3+ with contributions from V3+ and possibly Fe3+), 580-630 nm (Cr3+ and V3+), 638 and 683 nm (Cr3+), and 850 nm (Fe2+ and possibly Fe2+-Fe3+interactions). In addition, the more V-rich emeralds displayed a distinct V3+ absorption band at about 385-395 nm. Notably, the chemical composition of Davdar emeralds shows significant overlap with those from Panjshir, Afghanistan.
The timing of mantle and crustal events in South Namibia, as defined by SHRIMP dating of zircon domains from a garnet peridotite xenolith of the Gideon Kimberlite province.
Journal of African Earth Sciences, Vol. 39, 3-5, pp. 147-157.
The timing of mantle and crustal events in South Namibia as defined by SHRIMP dating of zircon domains from a garnet peridotite xenolith of the Gibeon kimberlite province.
Journal of African Earth Sciences, Vol. 39, 3-5, June pp. 147-157.
Earth and Planetary Science Letters, Vol. 479, pp. 170-178.
Canada, Nunavut, Baffin Island
geophysics - seismics
Abstract: The northern Hudson Bay region in Canada comprises several Archean cratonic nuclei, assembled by a number of Paleoproterozoic orogenies including the Trans-Hudson Orogen (THO) and the Rinkian-Nagssugtoqidian Orogen. Recent debate has focused on the extent to which these orogens have modern analogues such as the Himalayan-Karakoram-Tibet Orogen. Further, the structure of the lithospheric mantle beneath the Hudson Strait and southern Baffin Island is potentially indicative of Paleoproterozoic underthrusting of the Superior plate beneath the Churchill collage. Also in question is whether the Laurentian cratonic root is stratified, with a fast, depleted, Archean core underlain by a slower, younger, thermally-accreted layer. Plate-scale process that create structures such as these are expected to manifest as measurable fossil seismic anisotropic fabrics. We investigate these problems via shear wave splitting, and present the most comprehensive study to date of mantle seismic anisotropy in northern Laurentia. Strong evidence is presented for multiple layers of anisotropy beneath Archean zones, consistent with the episodic development model of stratified cratonic keels. We also show that southern Baffin Island is underlain by dipping anisotropic fabric, where underthrusting of the Superior plate beneath the Churchill has previously been interpreted. This provides direct evidence of subduction-related deformation at 1.8 Ga, implying that the THO developed with modern plate-tectonic style interactions.
Journal of Geophysical Research, Vol. 123, 7, pp. 5690-5709.
Canada, Nunavut
Geophysics - seismic
Abstract: The geology of northern Hudson Bay, Canada, documents more than 2 billion years of history including the assembly of Precambrian and Archean terranes during several Paleoproterozoic orogenies, culminating in the Trans-Hudson Orogen (THO) ~1.8 Ga. The THO has been hypothesized to be similar in scale and nature to the ongoing Himalaya-Karakoram-Tibetan orogen, but the nature of lithospheric terrane boundaries, including potential plate-scale underthrusting, is poorly understood. To address this problem, we present new P and S wave tomographic models of the mantle seismic structure using data from recent seismograph networks stretching from northern Ontario to Nunavut (60-100°W and 50-80°N). The large size of our network requires careful mitigation of the influence of source side structure that contaminates our relative arrival time residuals. Our tomographic models reveal a complicated internal structure in the Archean Churchill plate. However, no seismic wave speed distinction is observed across the Snowbird Tectonic Zone, which bisects the Churchill. The mantle lithosphere in the central region of Hudson Bay is distinct from the THO, indicating potential boundaries of microcontinents and lithospheric blocks between the principal colliders. Slow wave speeds underlie southern Baffin Island, the leading edge of the generally high wave speed Churchill plate. This is interpreted to be Paleoproterozoic material underthrust beneath Baffin Island in a modern-style subduction zone setting.
Abstract: The Canadian High Arctic preserves a long and complex tectonic history, including craton formation, multiple periods of orogenesis, extension and basin formation, and the development of a passive continental margin. We investigate the possible preservation of deformational structures throughout the High Arctic subcontinental lithosphere using measurements of seismic anisotropy from shear wave splitting at 11 seismograph stations across the region, including a N-S transect along Ellesmere Island. The majority of measurements indicate a fast-polarisation orientation that parallels tectonic trends and boundaries, suggesting that lithospheric deformation is the dominant source of seismic anisotropy in the High Arctic; however, a sub-lithospheric contribution cannot be ruled out. Beneath Resolute in the central Canadian Arctic, distinct back-azimuthal variations in splitting parameters can be explained by two anisotropic layers. The upper layer is oriented E-W and correlates with tectonic trends and the inferred lithospheric deformation history of the region. The lower layer has a ~NNE-SSW orientation and may arise from present-day convective mantle flow beneath locally-thinned continental lithosphere. In addition to inferences of anisotropic structure beneath the Canadian High Arctic, measurements from the far north of our study region suggest the presence of an anisotropic zone in the lowermost mantle beneath northwest Alaska.
Abstract: Neoproterozoic kimberlite, ultramafic lamprophyre, and carbonatite magmatic activity was widespread across the Canadian-Greenland Shield. Models to explain the preponderance of this deeply-derived CO2-rich magmatism between 680-540 Ma range from impingement of multiple mantle plumes to rifting activity linked to the breakout of the Laurentian plate from the Rodinia supercontinent configuration. We add to the debate about the origin of kimberlite magmas and evaluate possible mantle sources of the 655 Ma ‘diamond-rich’ Renard (new SIMS U/Pb perovskite ages) and 629 Ma ‘barren’ Wemindji kimberlites on the eastern Superior craton in Quebec, Canada. Our Sr-Nd-Hf and carbon isotope data (87Sr/86Sri = 0.70241-0.70442; eNdi = + 0.2 to + 4.8; eHfi = + 0.3 to + 6.5; d13C = - 5.6 to - 3.9‰) suggest a common and moderately depleted convecting upper mantle source region for both the Renard and Wemindji kimberlites, which occur 400 km apart in the interior of the Superior craton. In contrast, the low Os isotope ratios (187Os/188Osi = 0.11078-0.12620; ?Osi = - 13.7 to - 1.6) and unfractionated chondritic relative HSE abundances (Os, Ir, Ru, Pt, Pd, Re) indicate significant involvement of ancient refractory cratonic mantle material in kimberlite magma formation. Our model calculations suggest that for both the diamond-rich Renard and the barren Wemindji kimberlite magmas up to 30% of the Os was derived from refractory cratonic peridotites. This material might have been assimilated by originally more CO2-rich carbonated silicate melts derived from the asthenosphere. We also show that the geochemical and Sr-Nd-Hf-Os isotopic compositions of the Renard and Wemindji kimberlites do not require significant input from melts derived from olivine-poor cratonic mantle lithologies such as MARID-type veins and pyroxenites/eclogites. This contrasts with the petrogenesis of deeply-derived volatile-rich potassic magmas found along the peripheries of cratons (e.g., ultramafic lamprophyres, kamafugites, and olivine lamproites), a setting where abundant non-peridotitic components have been added to the lithospheric mantle over the course of continent evolution. Provided that CO2-rich melts, such as proto-kimberlites, occur near the solidus of volatile-fluxed peridotites, no excess mantle heat is required in their formation. This important but often overlooked constraint, together with the observation that there exist no spatial or temporal relationships between the Superior craton kimberlites and Large Igneous Provinces during the Late Neoproterozoic, suggests that kimberlite magmatic activity was tectonically controlled. In our preferred model, ubiquitous CO2-rich proto-kimberlite melts form during volatile-controlled redox melting processes at ambient mantle temperatures in a thermal boundary layer directly beneath thick cratonic lithosphere. The success rate of ‘evolving’ hybrid kimberlite magmas reaching Earth’s surface increases when tensile stresses propagate into the > 200 km thick keels of continental lithosphere. These conditions are frequently met during fast and changing plate motions associated with the assembly and breakup of supercontinents.
The new exhibit at the Harry Oppenheimer Diamond Museum: a meeting of past, present and future. Ancient jewelry from archeological excavations in Israel.
Earth and Planetary Science Letters, Vol. 412, pp. 42-51.
Mantle
Coesite
Abstract: Compressional and shear wave velocities of coesite have been measured using ultrasonic interferometry in a multi-anvil apparatus up to 12.6 GPa at room temperature for the first time. While the P wave velocity increases continuously with pressure, the S wave exhibits an anomalous softening and the velocity decreases continuously with pressure. Finite strain analysis of the data yielded KS0=103.6(4) GPaKS0=103.6(4) GPa, G0=61.6(2) GPaG0=61.6(2) GPa and View the MathML sourceK0'=2.9(1), View the MathML sourceG0'=0.3(1) for the bulk and shear moduli and their pressure derivatives, respectively. The anomalous elastic behavior of coesite results in large velocity and impedance contrasts across the coesite–stishovite transition, reaching ~39% and ~48% for P and S wave velocity contrasts, and ~70% and 78% for P and S wave impedance contrasts, respectively, at pressure ~8 GPa, with P and S wave velocity perturbations showing no apparent dependence on depths (i.e., View the MathML sourcedln?V(PorS)/dh~0) within 8–12 GPa. These unusually large contrasts and depth independent characteristics render the transition between the two silica polymorphs one of the most plausible candidates for the cause of the seismically observed X-discontinuity. The current P and S wave velocity perturbation dependences on the SiO2 content, d(ln?VP)/d(SiO2)~0.43 (wt%)-1d(ln?VP)/d(SiO2)~0.43 (wt%)-1 and d(ln?VS)/d(SiO2)~0.60 (wt%)-1d(ln?VS)/d(SiO2)~0.60 (wt%)-1, can serve as a geophysical probe to track ancient subducted eclogite materials to gain insights on the geodynamics of the mantle.
Abstract: Roots of continental cratons keep a long record of multiple metasomatic events, but their trace is complicated due to the mixed signals left by these events in the composition of mantle silicate minerals. Simple composition helps diamonds to provide a more robust record of the latest metasomatic events which they witnessed. Growth and dissolution features on the diamond surface are sensitive to the composition of the reacting media. In this study we use mantle-derived resorption features on natural diamonds to examine the nature of metasomatic events in diamondiferous mantle lithologies. We use experiments at mantle conditions to examine how the composition of fluids and melts affect diamond resorption. We then compare these results to the features of natural diamonds to determine which of the tested compositions could have acted as metasomatic agents in Earth’s cratonic roots. Diamond dissolution experiments conducted at 6 GPa, 1200 - 1500oC using synthetic MgO-CaO-SiO2-CO2-H2O system examined the effect of CHO fluid, silica-saturated CHO fluid, aqueous and “dry” silica-carbonate and carbonate melts. Results show that the main control of diamond resorption morphology is the state of the reacting media: fluid vs. melt. We compared the experimental results to diamonds with mantle-derived resorption features from two kimberlites from the Orapa kimberlite cluster (Botswana). We identified twelve mantle-derived resorption types, none of which resembled the products of resorption in fluids. Most of the observed resorption types could be produced by dissolution in mantle melts with variable proportions of carbonate and silicate components and in the range of temperatures. The most abundant resorption type resembles the product of diamond dissolution in carbonate melts at temperatures above 1450oC. Our results suggest that fluid-metasomatism is not destructive for diamonds while melt-metasomatism is. The lower hydrous carbonated solidus of lherzolite compared to harzburgite can result in the shift the process from diamond growth in fluids to diamond dissolution in melts due to metasomatic transformation of harzburgite into lherzolite.
Geophysical Research Letters, Vol. 45, 15, pp. 7434-7443. doi.org/10.1029/ 2018GLO79130
Mantle
nitrogen
Abstract: On the early Earth nitrogen was redistributed between three prevailing reservoirs: the core forming metal, the silicate magma ocean, and the atmosphere. To shed light on the behavior of N during core segregation, we have experimentally determined N solubilities in Fe-dominated metal melts at high temperatures and pressures (1200-1800 °C, 0.4-9.0 GPa) using high-pressure devices. Based on our experimental results a model has been developed to describe N solubility into metal melts as a function of pressure and temperature. The model suggests that core-forming metal melts can dissolve N quantities that are as high as the Earth's core density deficit. However, the N concentrations in the core-forming metal are dependent on the accretionary scenario and its partitioning with silicate magma ocean; our solubilities provide an upper limit for possible N concentrations within the Earth's core. Nevertheless, this study shows that N in the modern mantle will largely dissolve in its small metal fraction and not in the dominating silicates.
Earth and Planetary Science Letters, Vol. 506, pp. 493-506.
Mantle
metasomatism
Abstract: Most diamonds found in kimberlites show complex patterns of growth and dissolution (resorption) surface features. Populations of diamonds from within single kimberlite bodies commonly contain a large diversity of diamond surface forms, some of which are a result of dissolution in kimberlite magma and others are inherited from the mantle. Morphological studies of natural diamonds differentiated features produced during dissolution in kimberlite magma and during mantle metasomatism. The former features were experimentally reproduced at 1 3 GPa and used to infer the presence and composition of magmatic fluid in different kimberlites. However, the mantle-derived resorption features have not been reproduced experimentally and the composition and origins of their formative solvents are unknown. Here we report the results of diamond dissolution experiments conducted in a multi-anvil apparatus at 6 GPa and 1200 to 1500 °C in synthetic CaO MgO SiO2 CO2 H2O system. The experiments produced very different diamond resorption morphologies in COH fluid, in silicate-saturated fluid, and in silicate and carbonate melts. Dissolution in SiO2-free COH fluid developed rounded crystal forms with shallow negative trigons, striations and hillocks, which are commonly observed on natural diamonds and are similar in 6 GPa and in 1 3 GPa experiments. However, silicate-saturated fluid produced very different resorption features that are rarely observed on natural diamonds. This result confirms that natural, SiO2-poor fluid-induced resorption develops under the comparatively low-pressures of kimberlite ascent, because at mantle pressures the high content of SiO2 in fluids would produce features like those from the silicate-saturated experiments. Comparison of the experimental products from this study to natural diamond resorption features from the literature suggests that natural diamonds show no record of dissolution by fluids during mantle metasomatism. Diamond resorption morphologies developed in experiments with silicate carbonate melts closely resemble many of the mantle-derived resorption features of natural diamonds, whose diversity can result from variable SiO2 concentration in carbonatitic melts and temperature variation. The experimental results imply that metasomatism by fluids does not dissolve diamond, whereas metasomatism by melts is diamond-destructive. The repetitive growth-dissolution patterns of natural diamonds could be due to diamond growth from fluids in harzburgitic lithologies followed by its dissolution in partial melts.
Abstract: The terrestrial planets are believed to have been formed from primitive material sampling a broad region of the inner solar system. Several meteoritic mixing models attempting to reconcile isotopic characteristics of Mars and Earth have been proposed, but, because of the inherent non-uniqueness of these solutions, additional independent observations are required to resolve the question of the primary building blocks of the terrestrial planets. Here, we consider existing isotopic measurements of O, ?48Ca, ?50Ti, ?54Cr, ?62Ni, and ?84Sr for primitive chondrites and differentiated achondrites and mix these stochastically to reproduce the isotopic signatures of Mars and Earth. For both planets we observe ~ 105 unique mixing solutions out of 108 random meteoritic mixtures, which are categorised into distinct clusters of mixtures using principal component analysis. The large number of solutions implies that isotopic data alone are insufficient to resolve the building blocks of the terrestrial planets. To further discriminate between isotopically valid mixtures, each mixture is converted into a core and mantle component via mass balance for which geophysical properties are computed and compared to observations. For Mars, the geophysical parameters include mean density, mean moment of inertia, and tidal response, whereas for Earth upper mantle Mg/(Mg+Fe) ratio and core size are employed. The results show that Mars requires an oxidised, FeO-rich differentiated object next to chondritic material as main building blocks. In contrast, Earth's origin remains enigmatic. From a redox perspective, it appears inescapable that enstatite chondrite-like matter constitutes a dominant proportion of the building blocks from which Earth is made. The apparent need for compositionally distinct building blocks for Mars and Earth suggests that dissimilar planetesimal reservoirs were maintained in the inner Solar System during accretion.
Earth and Planetary Science Letters, Vol. 510, pp. 186-197.
Mantle
nitrogen
Abstract: Nitrogen is a key constituent of our atmosphere and forms the basis of life, but its early distribution between Earth reservoirs is not well constrained. We investigate nitrogen partitioning between metal and silicate melts over a wide range of conditions relevant for core segregation during Earth accretion, i.e. 1250-2000 °C, 1.5-5.5 GPa and oxygen fugacities of ?IW-5.9 to ?IW-1.4 (in log units relative to the iron-wüstite buffer). At 1250 °C, 1.5 GPa, ranges from 14 ± 0.1 at ?IW-1.4 to 2.0 ± 0.2 at ?IW-5, N partitioning into the core forming metal. Increasing pressure has no effect on , while increasing temperature dramatically lowers to 0.5 ± 0.15 at ?IW-4. During early core formation N was hence mildly incompatible in the metal. The partitioning data are then parameterised as a function of temperature and oxygen fugacity and used to model the evolution of N within the two early prevailing reservoirs: the silicate magma ocean and the core. Depending on the oxidation state during accretion, N either behaves lithophile or siderophile. For the most widely favoured initially reduced Earth accretion scenario, N behaves lithophile with a bulk partition coefficient of 0.17 to 1.4, leading to 500-700 ppm N in closed-system core formation models. However, core formation from a magma ocean is very likely accompanied by magma ocean degassing, the core would thus contain =100 ppm of N, and hence, does not constitute the missing N reservoir. Bulk Earth N would thus be 34-180 ppm in the absence of other suitable reservoirs, >98% N of the chondritic N have hence been lost during accretion.
Journal of African Earth Sciences, Vol. 145, pp. 274-283.
Africa, Chad
lineaments
Abstract: This work reports an analysis of the relationships existing between the structural lineaments and the Cenozoic volcanism of the Tibesti area (northern Chad). Shield volcanoes, cinder cones, structural lineaments, intersection points of lineaments and faults are mapped using the combination of Shuttle Radar Topography Mission (SRTM), Digital Elevation Models (DEMs) and Landsat satellite images of the Tibesti Volcanic Province. The interpretation of the distribution of these structural and morphological features allows constraining the structural/tectonic setting of the Tibesti. We show that the relationships between the lineaments and the volcanic centres of the Tibesti province can locally be explained as the result of the combination of two Riedel dextral tectonic systems, respectively oriented at N120°E and N30-35°E. Taking into account the geological features of the area, a geodynamical model is proposed: the emplacement of the Tibesti Volcanic Province results from the reactivation of inherited structures of the Saharan metacraton, characterized by relict rigid cratonic nuclei and metacratonic areas reworked during the Pan-African orogeny, among which is located the Tibesti. The contrasted behaviour of these rheologically different zones can explain the location and the evolution of the Tibesti swell and volcanism. The new data presented in this paper and their interpretation in terms of the emplacement of the Tibesti volcanic province in the Saharan metacraton bring a new and major information about the behaviour of the African plate within its collisional context with Europe.
Noble gas isotopes in minerals from phoscorites and carbonatites in Kovdor and Seblyavr ultramafic alkaline complexes ( Kola alkaline province NW Russia).
Periodico di Mineralogia, (in english), Vol. LXX11, 1. April, pp. 135-146.
Shang, C.K., Satir, M., Siebel, W., Nsifa, E.N., Taubald, H., Ligeois, J.P., Tchoua, F.M.
TTG Magmatism in the Congo Craton: a view from major and trace element geochemistry, Rb Sr Sm Nd systematics: case of the Sangmelima region, Ntem Complex
Journal of African Earth Sciences, Vol. 39, 3-5, pp. 61-79.
Abstract: Kimberlite is the host rock of diamonds and varies widely in geological and mineralogical features as well as color, processing capability, and dewatering characteristics. This study investigated the dewatering behavior of problematic Angolan kimberlites. The presence of clay minerals in kimberlite causes difficulties in dewatering due to high flocculant demand, poor supernatant clarity, and low settling rates. Identifying critical parameters governing the settling behavior will assist in managing the settling behavior of different kimberlite slurries. The influence of particle size, pH of the kimberlite slurry, cation exchange capacity, exchangeable sodium percentage, and smectite content of the kimberlite on the settling rate were investigated for 18 different African kimberlite samples. The settling rate and slurry bed compaction during natural settling were also measured for the kimberlite slurries. Seventeen different Angolan clay-rich kimberlites and one South African clay-rich kimberlite were tested, and, except for two kimberlites, colloidal stability was experienced during natural settling. The pH values of the kimberlite slurries ranged between 9 and 11, which is similar to the pH band where colloidal stability was found during earlier research. The results indicate that colloidal stable slurries were experienced with kimberlites that had exchangeable sodium percentages as low as 0.7%. The cation exchange capacity of the various kimberlites differentiated more distinctly between colloidal stability and instability. A new model is proposed whereby clay-rich kimberlites with a cation exchange capacity of more than 10cmol/kg will experience colloidal stability if the pH of the solvent solution is within the prescribed pH range of 9-11.The Trans-Saharan Belt is one of the most important orogenic systems constitutive of the Pan-African cycle, which, at the end of the Neoproterozoic, led to the formation of the Gondwana Supercontinent. It is marked by the opening and closing of oceanic domains, collision of continental blocks and the deformation of thick synorogenic sedimentary basins. It extends from north to south over a distance of 3000?km in Africa, including the Nigerian Shield and the Tuareg Shield as well as their counterparts beneath the Phanerozoic oil-rich North- and South-Saharan sedimentary basins. In this study, we take advantage of potential field methods (magnetism and gravity) to analyze the crustal-scale structures of the Tuareg Shield terranes and to track these Pan-African structures below the sedimentary basins, offering a new, >1000?km extent. The map interpretations are based on the classical potential field transforms and two-dimensional forward modeling. We have identified geophysical units and first-order bounding lineaments essentially defined owing to magnetic and gravimetric anomaly signatures. In particular, we are able to highlight curved terminations, which in the Trans-Saharan context have been still poorly documented. We provide for the first time a rheological map showing a categorization of contrasted basement units from the south of the Tuareg Shield up to the Atlas Belt. These units highlight the contrasted rheological behavior of the Tuareg tectonostratigraphic terranes during (i) the northerly Pan-African tectonic escape characteristic of the Trans-Saharan Belt and (ii) the North Sahara basin development, especially during intraplate reworking tied to the Variscan event. The discovery of a relatively rigid E-W oriented unit to the south of the Atlas system, and on which the escaping Pan-African terranes were blocked, offers a new perspective on the structural framework of the north-Gondwana margin. It will help to understand how occurred the rendezvous of the N-S oriented Pan-African terranes and the E-W oriented Cadomian peri-Gondwanan terranes.
Maia, M., Sichel, S., Briais, A., Brunelli, D., Ligi, M., Ferreira, N., Campos, T., Mougel, B., Brehme, I., Hemond, C., Motoki, A., Moura, D., Scalabrin, C., Pessanha, I., Alves, E., Ayres, A., Oliveira, P.
Abstract: Mantle exhumation at slow-spreading ridges is favoured by extensional tectonics through low-angle detachment faults1, 2, 3, 4, and, along transforms, by transtension due to changes in ridge/transform geometry5, 6. Less common, exhumation by compressive stresses has been proposed for the large-offset transforms of the equatorial Atlantic7, 8. Here we show, using high-resolution bathymetry, seismic and gravity data, that the northern transform fault of the St Paul system has been controlled by compressive deformation since ~10?million years ago. The long-lived transpression resulted from ridge overlap due to the propagation of the northern Mid-Atlantic Ridge segment into the transform domain, which induced the migration and segmentation of the transform fault creating restraining stepovers. An anticlockwise change in plate motion at ~11?million years ago5 initially favoured extension in the left-stepping transform, triggering the formation of a transverse ridge, later uplifted through transpression, forming the St Peter and St Paul islets. Enhanced melt supply at the ridge axis due to the nearby Sierra Leone thermo chemical anomaly9 is responsible for the robust response of the northern Mid-Atlantic Ridge segment to the kinematic change. The long-lived process at the origin of the compressive stresses is directly linked to the nature of the underlying mantle and not to a change in the far-field stress regime.
Journal of Volcanology and Geothermal Research, in press available 34p. Pdf
Global
mantle plumes, hotspots
Abstract: The magmatic components of continental Large Igneous Provinces (LIPs) include flood basalts and their plumbing system of giant mafic dyke swarms (radiating, linear, and the recently discovered circumferential type), mafic sill provinces, a lower crustal magmatic underplate, mafic-ultramafic (M-UM) intrusions, associated silicic magmatism, and associated carbonatites and kimberlites. This paper proposes a new plumbing system framework for mantle plume-related continental LIPs that incorporates all of these components, and provides a context for addressing key thematic aspects such as tracking magma batches "upstream" and "downstream" and their geochemical evolution, assessing the setting of M-UM intrusions and their economic potential, interpreting deep magmatic component identified by geophysical signatures, and estimating magnitudes of extrusive and intrusive components with climate change implications. This plumbing system model, and its associated implications, needs to be tested against the rapidly improving LIP record.
Diamond & Related Materials, Vol. 91, pp. 207-212.
Russia, Siberia
Popigai
Abstract: We report the results of a study of the polycrystalline powder of the diamond-lonsdaleite from the Popigai crater (Siberia) using UV micro-Raman spectroscopy and high-resolution synchrotron X-ray diffraction. By subtracting two experimental Raman spectra of diamond-lonsdaleite samples with close amounts of diamond and lonsdaleite, we were able to identify the polytypic composition of impact diamonds in contrast to the method of X-ray diffraction. We have managed to get for the first time the spectrum of “pure” lonsdaleite. Its deconvolution has allowed us to identify all the three Raman - active vibrational modes E2g, A1g, and E1g whose positions agree well with the results of ab initio calculations.
Geochimica et Cosmochimica Acta, in press available 38p.
Mantle
carbonatite
Abstract: Carbon isotope exchange between carbon-bearing high temperature phases records carbon (re-) processing in the Earth's interior, where the vast majority of global carbon is stored. Redox reactions between carbonate phases and elemental carbon govern the mobility of carbon, which then can be traced by its isotopes. We determined the carbon isotope fractionation factor between graphite and a Na2CO3-CaCO3 melt at 900-1500 °C, 1 GPa using a piston-cylinder device. The failure to isotopically equilibrate preexisting graphite led us to synthesize graphite anew from organic material during the melting of the carbonate mixture. Graphite growth proceeds by (1) decomposition of organic material into globular amorphous carbon, (2) restructuring into nano-crystalline graphite, and (3) recrystallization into hexagonal graphite flakes. Each transition is accompanied by carbon isotope exchange with the carbonate melt. High-temperature (1200 - 1500 °C) equilibrium isotope fractionation with type (3) graphite can be described by (temperature T in K). As the experiments do not yield equilibrated graphite at lower temperatures, we combined the =1200 °C experimental data with those derived from upper amphibolite and lower granulite facies carbonate-graphite pairs (Kitchen and Valley, 1995, Valley and O'Neil, 1981). This yields the general fractionation function usable as a geothermometer for solid or liquid carbonate at = 600 °C. Similar to previous observations, lower-temperature experiments (=1100 °C) deviate from equilibrium. By comparing our results to diffusion and growth rates in graphite, we show that at =1100 °C carbon diffusion is slower than graphite growth, hence equilibrium surface isotope effects govern isotope fractionation between graphite and carbonate melt and determine the isotopic composition of newly formed graphite. The competition between diffusive isotope exchange and growth rates requires a more careful interpretation of isotope zoning in graphite and diamond. Based on graphite crystallization rates and bulk isotope equilibration, a minimum diffusivity of Dgraphite = 2x10-17 m2s-1 for T >1150 °C is required. This value is significantly higher than calculated from experimental carbon self-diffusion constants (~1.6x10-29 m2s-1) but in good agreement with the value calculated for mono-vacancy migration (~2.8x10-16 m2s-1).
Geochimica et Cosmochimica Acta, Vol. 253, pp. 290-306.
Mantle
geothermometry
Abstract: Carbon isotope exchange between carbon-bearing high temperature phases records the carbon (re-) processing in the Earth's interior, where the vast majority of global carbon is stored. Redox reactions between carbonate phases and elemental carbon govern the mobility of carbon, which then can be traced by its isotopes. We determined the carbon isotope fractionation factor between graphite and a Na2CO3-CaCO3 melt at 900-1500?°C and 1?GPa; The failure to isotopically equilibrate preexisting graphite led us to synthesize graphite anew from organic material during the melting of the carbonate mixture. Graphite growth proceeds by (1) decomposition of organic material into globular amorphous carbon, (2) restructuring into nano-crystalline graphite, and (3) recrystallization into hexagonal graphite flakes. Each transition is accompanied by carbon isotope exchange with the carbonate melt. High-temperature (1200-1500?°C) equilibrium isotope fractionation with type (3) graphite can be described by (temperature T in K). As the experiments do not yield equilibrated bulk graphite at lower temperatures, we combined the =1200?°C experimental data with those derived from upper amphibolite and lower granulite facies carbonate-graphite pairs (Kitchen and Valley, 1995; Valley and O'Neil, 1981). This yields the general fractionation function usable as a geothermometer for solid or liquid carbonate at =600?°C. Similar to previous observations, lower-temperature experiments (=1100?°C) deviate from equilibrium. By comparing our results to diffusion and growth rates in graphite, we show that at =1100?°C carbon diffusion is slower than graphite growth, hence equilibrium surface isotope effects govern isotope fractionation between graphite and carbonate melt and determine the isotopic composition of newly formed graphite. The competition between diffusive isotope exchange and growth rates requires a more careful interpretation of isotope zoning in graphite and diamond. Based on graphite crystallization rates and bulk isotope equilibration, a minimum diffusivity of Dgraphite?=?2?×?10-17 m2s-1 for T?>?1150?°C is required. This value is significantly higher than calculated from experimental carbon self-diffusion constants (~1.6?×?10-29?m2?s-1) but in good agreement with the value calculated for mono-vacancy migration (~2.8?×?10-16?m2?s-1).
Earth and Planetary Science Letters, Vol. 529, 115848 12p. Pdf
Global
carbon
Abstract: At high temperatures, isotope partitioning is often assumed to proceed under equilibrium and trends in the carbon isotope composition within graphite and diamond are used to deduce the redox state of their fluid source. However, kinetic isotope fractionation modifies fluid- or melt-precipitated mineral compositions when growth rates exceed rates of diffusive mixing. As carbon self-diffusion in graphite and diamond is exceptionally slow, this fractionation should be preserved. We have hence performed time series experiments that precipitate graphitic carbon through progressive oxidization of an initially CH4-dominated fluid. Stearic acid was thermally decomposed at 800 °C and 2 kbar, yielding a reduced COH-fluid together with elemental carbon. Progressive hydrogen loss from the capsule caused CH4 to dissociate with time and elemental carbon to continuously precipitate. The newly formed C0, aggregating in globules, is constantly depleted by ‰ in 13C relative to the methane, which defines a temperature dependent kinetic graphite-methane 13C/12C fractionation factor. Equilibrium fractionation would instead yield graphite heavier than the methane. In dynamic environments, kinetic isotope fractionation may control the carbon isotope composition of graphite or diamond, and, extended to nitrogen, could explain the positive correlation of and sometimes observed in coherent diamond growth zones. 13C enrichment trends in diamonds are then consistent with reduced deep fluids oxidizing upon their rise into the subcontinental lithosphere, methane constituting the main source of carbon.
Abstract: The high amount of Fe-rich ferropericlase inclusions found in diamonds of a potential super-deep origin questions the bulk chemical model of the Earth [e.g., 1]. Although this might be due to a biased sampling of the lower mantle, it is worth to further address this discrepancy. A limiting factor of the Fe-content of the Earth´s deep mantle (TZ and lower mantle) is a correlation of the depths of the observed main mantle discontinuities with the (Fe,Mg)SiO4 phase diagram. In particular, the 520 kmdiscontinuity is related to the phase transformation of wadsleyite (assuming Fa10) to ringwoodite. The existing phase diagrams suggest a stability limit of wadsleyite =Fa40 [e.g., 2,3], which limits the Fe-content of the Earth´s transition zone. Here we report on a discovery of Fe-rich wadsleyite grains (up to Fa56) in the high-pressure silicate melt droplets within Fe,Ni-metal in shock veins of the CB (Bencubbin-like) metal-rich carbonaceous chondrite QC 001 [4], which were identified using HR-EDX, nano-EBSD and TEM. Although the existence of such Fe-rich wadsleyite in shock veins may be due to the kinetic reasons, new theoretical and experimental studies of the stability of (Fe,Mg)SiO4 at high temperature (> 1800 K) are clearly needed. This may have significant impact on the temperature and chemical estimates of the Earth´s transition zone.
Mineralogy and Petrology, doi.org/10.1007/s00710-018-0607-6 16p.
Canada, Northwest Territories, South America, Brazil
deposit - Ekati, Grizzly, Kaola, Limpeza-18, Tres Ranchos-04, Kaalvallei, Samada, New Robinson
Abstract: Olivine in kimberlites can provide unique insights into magma petrogenesis, because it is the most abundant xenocrystic phase and a stable magmatic product over most of the liquid line of descent. In this study we examined the petrography and chemistry of olivine in kimberlites from different tectonic settings, including the Slave craton, Canada (Ekati: Grizzly, Koala), the Brasilia mobile belt (Limpeza-18, Tres Ranchos-04), and the Kaapvaal craton, South Africa (Kaalvallei: Samada, New Robinson). Olivine cores display a wide range of compositions (e.g., Mg#?=?78-95). The similarity in olivine composition, resorption of core zones and inclusions of mantle-derived phases, indicates that most olivine cores originated from the disaggregation of mantle peridotites, including kimberlite-metasomatised lithologies (i.e. sheared lherzolites and megacrysts). Olivine rims typically show a restricted range of Mg#, with decreasing Ni and increasing Mn and Ca contents, a characteristic of kimberlitic olivine worldwide. The rims host inclusions of groundmass minerals, which implies crystallisation just before and/or during emplacement. There is a direct correlation between olivine rim composition and groundmass mineralogy, whereby high Mg/Fe rims are associated with carbonate-rich kimberlites, and lower Mg/Fe rims are correlated with increased phlogopite and Fe-bearing oxide mineral abundances. There are no differences in olivine composition between explosive (Grizzly) and hypabyssal (Koala) kimberlites. Olivine in kimberlites also displays transitional zones and less common internal zones, between cores and rims. The diffuse transitional zones exhibit intermediate compositions between cores and rims, attributed to partial re-equilibration of xenocrystic cores with the ascending kimberlite melt. In contrast, internal zones form discrete layers with resorbed margins and restricted Mg# values, but variable Ni, Mn and Ca concentrations, which indicates a discrete crystallization event from precursor kimberlite melts at mantle depths. Overall, olivine exhibits broadly analogous zoning in kimberlites worldwide. Variable compositions for individual zones relate to different parental melt compositions rather than variations in tectonic setting or emplacement mechanism.
Abstract: Quantifying the compositional evolution of mantle-derived melts from source to surface is fundamental for constraining the nature of primary melts and deep Earth composition. Despite abundant evidence for interaction between carbonate-rich melts, including diamondiferous kimberlites, and mantle wall rocks en route to surface, the effects of this interaction on melt compositions are poorly constrained. Here, we demonstrate a robust linear correlation between the Mg/Si ratios of kimberlites and their entrained mantle components and between Mg/Fe ratios of mantle-derived olivine cores and magmatic olivine rims in kimberlites worldwide. Combined with numerical modeling, these findings indicate that kimberlite melts with highly variable composition were broadly similar before lithosphere assimilation. This implies that kimberlites worldwide originated by partial melting of compositionally similar convective mantle sources under comparable physical conditions. We conclude that mantle assimilation markedly alters the major element composition of carbonate-rich melts and is a major process in the evolution of mantle-derived magmas.
Geochemistry, Geophysics, Geosystems: G3, in press available
Technology
geophsyics - magnetics
Abstract: Remanent magnetization in geological samples may record the past intensity and direction of planetary magnetic fields. Traditionally, this magnetization is analyzed through measurements of the net magnetic moment of bulk millimeter to centimeter sized samples. However, geological samples are often mineralogically and texturally heterogeneous at submillimeter scales, with only a fraction of the ferromagnetic grains carrying the remanent magnetization of interest. Therefore, characterizing this magnetization in such cases requires a technique capable of imaging magnetic fields at fine spatial scales and with high sensitivity. To address this challenge, we developed a new instrument, based on nitrogenvacancy centers in diamond, which enables direct imaging of magnetic fields due to both remanent and induced magnetization, as well as optical imaging, of room-temperature geological samples with spatial resolution approaching the optical diffraction limit. We describe the operating principles of this device, which we call the quantum diamond microscope (QDM), and report its optimized image-area-normalized magnetic field sensitivity (20 µT?µm/Hz˝), spatial resolution (5 µm), and field of view (4 mm), as well as trade-offs between these parameters. We also perform an absolute magnetic field calibration for the device in different modes of operation, including three-axis (vector) and single-axis (projective) magnetic field imaging. Finally, we use the QDM to obtain magnetic images of several terrestrial and meteoritic rock samples, demonstrating its ability to resolve spatially distinct populations of ferromagnetic carriers.
Proceedings National Academy of Science, Vol. 116, pp. 407-412.
Australia
paleomagnetism
Abstract: Zircon crystals from the Jack Hills, Western Australia, are one of the few surviving mineralogical records of Earth’s first 500 million years and have been proposed to contain a paleomagnetic record of the Hadean geodynamo. A prerequisite for the preservation of Hadean magnetization is the presence of primary magnetic inclusions within pristine igneous zircon. To date no images of the magnetic recorders within ancient zircon have been presented. Here we use high-resolution transmission electron microscopy to demonstrate that all observed inclusions are secondary features formed via two distinct mechanisms. Magnetite is produced via a pipe-diffusion mechanism whereby iron diffuses into radiation-damaged zircon along the cores of dislocations and is precipitated inside nanopores and also during low-temperature recrystallization of radiation-damaged zircon in the presence of an aqueous fluid. Although these magnetites can be recognized as secondary using transmission electron microscopy, they otherwise occur in regions that are indistinguishable from pristine igneous zircon and carry remanent magnetization that postdates the crystallization age by at least several hundred million years. Without microscopic evidence ruling out secondary magnetite, the paleomagnetic case for a Hadean-Eoarchean geodynamo cannot yet been made.
Abstract: Phlogopite is widely accepted as a major mineral indicator of the modal metasomatism in the upper mantle within a very wide P-T range. The paper reviews data on various phlogopite-forming reactions in upper-mantle peridotites. The review includes both descriptions of naturally occurring reactions and results of experiments that model some of these reactions. Relations of phlogopite with other potassic phases, such as K-richterite, sanidine and K-titanates, are discussed. These data are taken as a basis for thermodynamic modeling of the phlogopite-forming reactions for specific mantle rocks in terms of log(aH2O) - log(aK2O) diagrams (pseudosections) using the Gibbs free energy minimization. These diagrams allow estimation of potassium-water activity relations during metasomatic transformations of mantle rocks, prediction sequences of mineral assemblages with respect to these parameters and comparison of metasomatic processes in the rocks of different composition. This approach is illustrated by examples from peridotite xenoliths from kimberlites.
Abstract: The salt components of aqueous and aqueous-carbonic fluids are very important agents of metasomatism and partial melting of crustal and mantle rocks. The paper presents examples and synthesized data on mineral associations in granulite- and amphibolite-facies rocks of various composition in the middle and lower crust and in upper-mantle eclogites and peridotites that provide evidence of reactions involving salt components of fluids. These data are analyzed together with results of model experiments that reproduce some of these associations and make it possible to more accurately determine their crystallization parameters.
Abstract: The results of experimental studies are presented for reactions in the orthopyroxene-garnet-phlogopite system in the presence of H2O-KCl fluid at 3-5 GPa and 900-1000°C, which model the processes of phlogopite formation in garnet peridotites and pyroxenites during alkaline metasomatism of the upper mantle. The experiments demonstrated regular variations in the composition of garnet, pyroxenes, and phlogopite depending on the KCl content of the fluid. With increasing KCl content of the fluid, enstatite and garnet become unstable, the Al2O3 content of enstatite decreases, and the amount of grossular and knorringite components in garnet are maximum at a KCl content of ~10 mol %. Our results illustrate well the regular variations in the compositions of the coexisting minerals and their zoning in phlogopite-bearing peridotites of the lithospheric mantle.
Abstract: This study focuses on the causes, modalities and obstacles of sediment transfer in the longest cell of littoral sand drift documented on Earth so far. Sand derived from the Orange River is dragged by swell waves and persistent southerly winds to accumulate in four successive dunefields in coastal Namibia to Angola. All four dunefields are terminated by river valleys, where aeolian sand is flushed back to the ocean; and yet sediment transport continues at sea, tracing an 1800 km long submarine sand highway. Sand drift would extend northward to beyond the Congo if the shelf did not become progressively narrower in southern Angola, where drifting sand is funnelled towards oceanic depths via canyon heads connected to river mouths. Garnet-magnetite placers are widespread along this coastal stretch, indicating systematic loss of the low-density feldspatho-quartzose fraction to the deep ocean. More than half of Moçamedes Desert sand is derived from the Orange River, and the rest in similar proportions from the Cunene River and from the Swakop and other rivers draining the Damara Orogen in Namibia. The Orange fingerprint, characterized by basaltic rock fragments, clinopyroxene grains and bimodal zircon-age spectra with peaks at ca 0•5 Ga and ca 1•0 Ga, is lost abruptly at Namibe, and beach sands further north have abundant feldspar, amphibole-epidote suites and unimodal zircon-age spectra with a peak at ca 2•0 Ga, documenting local provenance from Palaeoproterozoic basement. Along with this oblique-rifted continental margin, beach placers are dominated by Fe-Ti-Cr oxides with more monazite than garnet and thus have a geochemical signature sharply different from beach placers found all the way along the Orange littoral cell. High-resolution mineralogical studies allow us to trace sediment dispersal over distances of thousands of kilometres, providing essential information for the correct reconstruction of ‘source to sink’ relationships in hydrocarbon exploration and to predict the long-term impact of man-made infrastructures on coastal sediment budgets.
Earth and Planetary Science Letters, Vol. 479, pp. 43-49.
Mantle
perovskite
Abstract: Thermal conductivity of the lowermost mantle governs the heat flow out of the core energizing planetary-scale geological processes. Yet, there are no direct experimental measurements of thermal conductivity at relevant pressure-temperature conditions of Earth's core-mantle boundary. Here we determine the radiative conductivity of post-perovskite at near core-mantle boundary conditions by optical absorption measurements in a laser-heated diamond anvil cell. Our results show that the radiative conductivity of Mg0.9Fe0.1SiO3 post-perovskite (~1.1 W/m/K) is almost two times smaller than that of bridgmanite (~2.0 W/m/K) at the base of the mantle. By combining this result with the present-day core-mantle heat flow and available estimations on the lattice thermal conductivity we conclude that post-perovskite is at least as abundant as bridgmanite in the lowermost mantle which has profound implications for the dynamics of the deep Earth.
Physics of the Earth and Planetary Interiors, Vol. 247, pp. 11-16.
Mantle
Experimental Petrology
Abstract: Lattice thermal conductivity of ferropericlase and radiative thermal conductivity of iron bearing magnesium silicate perovskite (bridgmanite) - the major mineral of Earth’s lower mantle- have been measured at room temperature up to 30 and 46 GPa, respectively, using time-domain thermoreflectance and optical spectroscopy techniques in diamond anvil cells. The results provide new constraints for the pressure dependencies of the thermal conductivities of Fe bearing minerals. The lattice thermal conductivity of ferropericlase Mg0.9Fe0.1O is 5.7(6) W/(m * K) at ambient conditions, which is almost 10 times smaller than that of pure MgO; however, it increases with pressure much faster (6.1(7)%/GPa vs 3.6(1)%/GPa). The radiative conductivity of a Mg0.94Fe0.06SiO3 bridgmanite single crystal agrees with previously determined values for powder samples at ambient pressure; it is almost pressure-independent in the investigated pressure range. Our results confirm the reduced radiative conductivity scenario for the Earth’s lower mantle, while the assessment of the heat flow through the core-mantle boundary still requires in situ measurements at the relevant pressure-temperature conditions.
Geophysical Research Letters, Vol. 45, 10, pp. 4725-4732.
Mantle
bridgmanite
Abstract: Seismic heterogeneities in the Earth's lower mantle have been attributed to thermal and/or chemical variations of constituent minerals. Bridgmanite is the most abundant lower-mantle mineral and contains Fe and Al in its structure. Knowing the effect of Fe on compressional and shear wave velocities (VP, VS) and density of bridgmanite at relevant pressure-temperature conditions can help to understand seismic heterogeneities in the region. However, experimental studies on both VP and VS of Fe-bearing bridgmanite have been limited to pressures below 40 GPa. In this study, VP and VS of Fe-bearing bridgmanite were measured up to 70 GPa in the diamond anvil cell. We observed drastic softening of VP by ~6(±1)% at 42.6-58 GPa and increased VS at pressures above 40 GPa. We interpret these observations as due to a spin transition of Fe3+. These observations are different to previous views on the effect of Fe on seismic velocities of bridgmanite. We propose that the abnormal sound velocities of Fe-bearing bridgmanite could help to explain the seismically observed low correlation between VP and VS in the mid-lower mantle. Our results challenge existing models of Fe enrichment to explain the origin of Large Low Shear Velocity provinces in the lowermost mantle.
Geochemical Perspectives Letters, Vol. 10, pp. 51-55.
Mantle
redox
Abstract: Among redox sensitive elements, carbon is particularly important because it may have been a driver rather than a passive recorder of Earth’s redox evolution. The extent to which the isotopic composition of carbon records the redox processes that shaped the Earth is still debated. In particular, the highly reduced deep mantle may be metal-saturated, however, it is still unclear how the presence of metallic phases in?uences the carbon isotopic compositions of super-deep diamonds. Here we report ab initio results for the vibrational properties of carbon in carbonates, diamond, and Fe3C under pressure and temperature conditions relevant to super-deep diamond formation. Previous work on this question neglected the effect of pressure on the equilibrium carbon isotopic fractionation between diamond and Fe3C but our calculations show that this assumption overestimates the fractionation by a factor of ~1.3. Our calculated probability density functions for the carbon isotopic compositions of super-deep diamonds derived from metallic melt can readily explain the very light carbon isotopic compo- sitions observed in some super-deep diamonds. Our results therefore support the view that metallic phases are present during the formation of super-deep diamonds in the mantle below ~250 km.
Abstract: Diamonds are key messenger from the deep Earth because someare sourced from the longest isolated and deepest accessible regions of the Earth’s mantle. They are prime recorders of the carbon isotopic compositionof the Earth. The C isotope composition (d13C) of natural diamonds showsa widevariationfrom -41‰ to +3‰ with the primary mode at -5 ± 3‰ [1]. In comparison, the d13C values of chondrites and other planetary bodies range between -26‰ and -15‰ [2]. It is possible that some of the low d13C values were inherited from the Earth’s building blocks,but this is unlikely to be the sole explanation for all low d13C values that can reach as low as -41‰. Organic matter at the Earth’s surface that has low d13C values[3] has been regarded as a possible origin for low d13C values. However, organic carbon is usually accompanied by carbonate with higher d13C values (~0 ‰),and it is not clear why this d13C value does not appear frequently in diamonds. Low d13C diamonds were also formed by deposition from C-O-H fluids,but the equilibrium fractionationinvolved between diamonds and fluids issmall at mantle temperatures [1] and the low d13C values of diamonds can only be achieved after extensive Rayleigh distillation. One unique feature of the Earth isactive plate tectonics driven by mantle convection. Relatively oxidized iron and carbon species at the surface, such as carbonate, Fe2+-and Fe3+-bearing silicatesand oxides, are transported to the deep mantle by subducted slabs and strongly involved inthe redox reactions that generatediamonds [4]. The extent to which the isotopic compositionof C duringdiamond formation recordsredox processes that shaped the Earth is still controversial. Here we report onvibration properties of C andFe at high pressure in carbonates, diamond and Fe3C,based on nuclear resonant inelastic X-ray scattering measurements and density functional theory calculationsand further calculate equilibrium C isotope fractionations among these C-bearing species. Our results demonstrate that redox reactions in subducted slabs could generate eclogitic diamonds with d13C values as low as -41‰ if C in diamonds was sourced from the oxidation of a Fe-C liquid. The large C isotopic fractionation and potentially fast separation between diamonds and a Fe-C melt could enable diamond formation as high as 2%with d13C lower than -40‰.
Abstract: The heat flux across the core-mantle boundary (QCMB) is the key parameter to understand the Earth/s thermal history and evolution. Mineralogical constraints