Hello Guest User, You are visiting this website from a computer with an IP address of 108.162.219.198 with the name of '?' since Fri Jan 15, 2021 at 1:05:06 PM PT for approx. 0 minutes now.
SDLRC - Scientific Articles all years by Author - St+
The Sheahan Diamond Literature Reference Compilation
The Sheahan Diamond Literature Reference Compilation is compiled by Patricia Sheahan who publishes on a monthly basis a list of new scientific articles related to diamonds as well as media coverage and corporate announcementscalled the Sheahan Diamond Literature Service that is distributed as a free pdf to a list of followers. Pat has kindly agreed to allow her work to be made available as an online digital resource at Kaiser Research Online so that a broader community interested in diamonds and related geology can benefit. The references are for personal use information purposes only; when available a link is provided to an online location where the full article can be accessed or purchased directly. Reproduction of this compilation in part or in whole without permission from the Sheahan Diamond Literature Service is strictly prohibited. Return to Diamond Resource Center
Sheahan Diamond Literature Reference Compilation - Scientific Articles by Author for all years
The SDLRC provides 3 types of references identified in the reference code. DS for scientific article, DM for a media article, and DC for a corporate announcement. Consider DS0512-0001. The DS stands for "diamond scientific". 05 stands for 2005, the year the reference was posted. 12 represents the month the reference was posted. For all years prior to 2015 the default month is 12. -0001 is the reference's identifier and it does not mean anything. The number below the refence code, ie 2015, is the year the article was published. Note that the posted year may sometimes be later than the published year.
Sort Order
References are sorted by the "author" name and when the reference was posted to the compilation.
Most Recent
If the reference code is highlighted yellow, the reference was made available through the most recent monthly compilation of new literature. Use this to check out new references. When new references are posted, we make it our priority to track down an online link and obtain an abstract. With regard to older references, tracking down an abstract and an online link is a work in progress.
Link to external location of article:
If the title has a link, it means we have found a location online where you can either retrieve the full article free, or purchase access to it. The Sheahan Diamond Literature Service is not a technical article procurement service; if you want a restricted article, you must deal directly with the vendor who controls the copyright to the article.
Searching this page for a specific term or author
In your Firefox browser click Edit in the menu bar and then Find. In the Find box that shows up at the bottom of the web page enter your search term. Firefox will highlight all occurrences. This is particularly helpful when the author you are seeking was not the lead author by whom the compilation is sorted.
Sending or sharing a reference
The left column (Posted/Published) has an embedded hyperlink for each reference. In Firefox, if you right click on it, you can obtain the link url for that reference's location within the page, which you can copy and paste into an email or any other document. You can also use the "share this link" option to tweet, facebook etc the link.
The Trans Hudson Orogen of North America and the Himalayan Karakoram Tibetan Orogen of Asia: structural and thermal evolution of the lower and upper plates.
GAC Annual Meeting Halifax May 15-19, Abstract 1p.
Trans Hudson Orogen of North America and Himalaya Karakoram Tibetan Orogen of Asia: structural and thermal characteristics of the lower and upper plates.
St.Onge, M.R., Van Gool, A.M., Garde, A.A., Scott, D.J.
Correlation of Archean and paleoproterozoic units between northeastern Canada and western Greenland: constraining the pre-collisional upper plate accretionary history
Geological Society of London, Special Publication Earth Accretionary systems in Space and Time, No. 318, pp. 193-235.
Perceptions of the impact of board members' individual perspectives on the social and environmental performance of companies. ( Based on SA and not junior companies).
Journal of the South African Institute of Mining and Metallurgy, Vol. 114, Nov. pp. 957-969.
Diamond & Related Materials, Vol. 109, 108049, 6p. Pdf
Mantle
nitrogen
Abstract: Single crystal diamond (<5?ppm nitrogen) containing native NV centers with coherence time of 150?µs was irradiated with 2?MeV alpha particles, with doses ranging from 1012 ion/cm2 to 1015 ion/cm2. The effect of ion damage on the coherence time of NV centers was studied using optically detected magnetic resonance and supplemented by fluorescence and Raman microscopy. A cross-sectional geometry was employed so that the NV coherence time could be measured as a function of increasing defect concentration along the ion track. Surprisingly, although the ODMR contrast was found to decrease with increasing ion induced vacancy concentration, the measured decoherence time remained undiminished at 150us despite the estimated vacancy concentration reaching a value of 40?ppm at the end of range. These results suggest that ion induced damage in the form of an increase in vacancy concentration does not necessarily result in a significant increase in the density of the background spin bath.
Cartigny, P., Farquar, J., Thomassot, E., Harris, J.W., Wing, B., Masterson, A., McKeegan, K., Stachel, T.
A mantle origin for Paleoarchean peridotite diamonds from the PAnd a kimberlite, Slave Province: evidence from 13C, 15N and 34,34S stable isotope systematics.
Aulbach, S., Stachel, T., Craeser, R.A., Heaman, L.M., Shirey, S.B., MUehlenbachs, K., Eichenberg, D., Harris
Sulphide survival and diamond genesis during formation and evolution of Archean subcontinental lithosphere: a comparison between the Slave and Kaapvaal cratons.
Diamond growth from oxidized carbon sources beneath the Northern Slave Craton, Canada: A delta 13 C-N study of eclogite hosted diamonds from the Jericho kimberlite.
Geochimica et Cosmochimica Acta, Vol. 75, pp. 6027-6047.
Hunt, L., Stachel, T., Grutter, H., Armstrong, J., McCandless, T.E., Simonetti, A., Tappe, S.
Small mantle fragments from the Renard kimberlites, Quebec: powerful recorders of mantle lithosphere formation and modification beneath the eastern Superior Craton.
Howell, D., Stern, R.A., Griffin, W.L., Southworth, R., Mikhail, S., Stachel, T., Verchovsky, A.B., O'Reilly, S.Y., Pearson, N.J.
New thermodynamic models and calculated phase equilibration temperatures in NCFMAS for basic and ultrabasic compositions through the transition zone into the uppermost lower mantle.
Hua, C., Zhili, Q., Taijin, L., Stern, R., Stachel, T., Yuan, S., Jian, Z., Jie, K., Shyu, P., Shecai, Q.
Variations in carbon isotopic composition in the subcontinental lithospheric mantle beneath the Yangtze and North Chin a cratons; evidence from in-situ analysis of diamonds using SIMS.
Multiple growth episodes or prolonged formation of diamonds? Inferences from infrared absorption data.
Proceedings of the 10th. International Kimberlite Conference, Vol. 1, Special Issue of the Journal of the Geological Society of India,, Vol. 1, pp. 281-296.
Palot, M., Pearson, D.G., Stern, R.A., Stachel, T., Harris, J.W.
Multiple growth events, processes and fluid sources involved in diamond genesis: a micro-analytical study of sulphide bearing diamonds from Finsch mine, RSA.
Geochimica et Cosmochimica Acta, Vol. 106, pp. 51-70.
Palot, M., Pearson, D.G., Stern, R.A., Stachel, T., Harris, J.W.
Isotopic constraints on the nature and circulation of deep mantle C-H-O-N fluids: Carbon and nitrogen systematics within ultra-deep diamonds from Kankan ( Guinea).
Geochimica et Cosmochimica Acta, Vol. 139, pp. 26-46.
Abstract: Size frequency distributions are the principal tool for predicting the macro-diamond grade of new kimberlite discoveries, based on micro-diamonds (i.e., diamond = 0.5 mm) recovered from small exploration samples. Lognormal size frequency distributions – as observed for the Artemisia kimberlite (Slave Craton, Canada) – suggest a common source for micro- and macro-diamonds recovered from single samples, an implication that has never been conclusively tested. We analyzed 209 diamonds between 0.2 and 2 mm in size from the Artemisia kimberlite for their carbon isotopic compositions and nitrogen characteristics to determine the nature of the micro-/macro-diamond relationship.-Despite overall similarity in the d13C distributions of micro- and macro-diamonds – both are bimodal with peaks in classes - 5.0 to - 4.5‰ and - 3.5 to - 3.0‰ – rare diamonds with d13C between - 14.2 and - 24.5‰ of presumed eclogitic origin are restricted to macro-diamonds, whereas positive values are only observed for micro-diamonds. In addition, a shift in main mode and median value in d13C of about +1‰ is observed for micro- relative to macro-diamonds. Fundamental differences between micro- and macro-diamonds at Artemisia were revealed through the analysis of nitrogen concentrations: 68% of micro-diamonds are Type II (“nitrogen free”) versus 21% of macro-diamonds, and only 19% of micro-diamonds have nitrogen contents > 100 atomic ppm versus 43% of macro-diamonds. Similarly, the presence of a detectable hydrogen related peak (at 3107 cm- 1) increases from 40% for micro-diamonds to 94% for macro-diamonds.-Previous studies on diamond populations from individual deposits have documented that single batches of ascending kimberlite or lamproite magma sample multiple diamond subpopulations formed during distinct growth events in compositionally variable sources and at various depth levels. The Artemisia data clearly show that even over a fairly narrow size interval, spanning the micro- to macro-diamond transition, the specific diamond subpopulations present and their relative proportions may vary significantly with diamond size. At Artemisia, we conclude that the observed lognormal size distribution is not a reflection of an entirely common origin of micro- and macro-diamonds.
43rd Annual Yellowknife Geoscience Forum Abstracts, abstract p. 47.
Canada, Northwest Territories
Garnet chemistry
Abstract: In diamond exploration, the use of compositional data to identify diamond-related peridotitic xenocrysts has long been a widely used and powerful tool. In contrast, the application of similar methods to eclogitic garnet chemistry remains a challenge. The inability to unequivocally classify certain “eclogitic” garnet compositions as either mantle- or crust-derived implies that a high abundance of lower-crustal garnets will increase diamond-exploration expenditures by introducing a number of “false positives.” Revising existing classification schemes (e.g., Schulze, 2003) to reduce the abundance of “false positives” may, however, increase the number of “false negatives” through the misclassification of mantle-derived garnets as crustal. This study presents new geochemical and petrographical data for garnet and clinopyroxene from 724 kimberlite-hosted, crust- and mantle-derived xenoliths from localities worldwide, with a focus on samples whose lithology is constrained petrographically, rather than single mineral grains from concentrate. Mantle samples are primarily eclogitic and pyroxenitic, as constrained by mineral assemblage and garnet and clinopyroxene mineral chemistry, while crustal samples are dominantly plagioclase-bearing garnet-granulites. For those localities where an established geothermal gradient is available from literature resources, garnet-clinopyroxene pairs are employed in the estimation of pressure-temperature conditions of equilibration through the iterative coupling of the Krogh (1988) geothermometer and the relevant geothermal gradient. Our preliminary results suggest that closure temperatures for Fe-Mg exchange exceed the temperatures of residence of many lower-crustal samples, as geotherm-based calculated pressures of equilibration exceed the apparent stability of plagioclase (see Green and Ringwood, 1972). Comparison of equilibration pressures with sodium contents in garnet for mantle-derived samples (the diamond-facies criterion of Gurney, 1984) shows a positive correlation at localities for which an adequate range of pressures is observed (e.g., the Diavik mine). Other populations, such as mantle eclogitic garnets from Roberts Victor, plot at a much more restricted range of pressures and hence fail to demonstrate this correlation; instead, these samples may reflect the influence of a broader range of bulk-compositions, providing varying amounts of sodium to their constituent garnets. The results presented here demonstrate clearly that garnets from mantle- and crust-derived samples show significant overlap in geochemical character, for example in garnet Ca# vs. Mg# space (discrimination diagram of Schulze, 2003), where approximately 66% of our crust-derived garnet analyses plot in the “mantle” field. This percentage varies among locations. A selection of particularly high-Mg#, low-Ca# garnets derived from crustal, plagioclase-bearing lithologies in this study highlights the potential for crust-mantle confusion, as these garnets have Mg# in-excess of many mantle-derived eclogitic/pyroxenitic garnets. As a consequence, Fe-Mg-Ca-based classifications alone cannot reliably discriminate mantle and crustal garnets. The next step in this project will be to obtain trace element data for the entire sample suite. This will allow us to test the Li-geobarometer of Hanrahan et al. (2009) for eclogites and to search for trace element signatures that can be used as robust indicators of a diamond-facies origin of eclogitic garnets. Trace element data will also be employed in the refinement of the crust/mantle division discussed above.
43rd Annual Yellowknife Geoscience Forum Abstracts, abstract p. 98.
Mantle
Diamond genesis
Abstract: Studies of mineral inclusions in diamond have conclusively established that the principal diamond substrates in Earth's mantle are peridotitic (about 2/3) and eclogitic (about 1/3) domains located at 140-200 km depth in the subcratonic lithosphere. There, the formation of the dominant harzburgitic diamond association generally occurred under subsolidus (melt-absent) conditions. In eclogitic and lherzolitic substrates, however, diamond grew in the presence of a melt, with relatively rare exceptions relating to formation from strongly reducing fluids or at relatively low pressure (<50 kbar) and temperature (<1050°C). Complex internal growth structures indicate that in many instances, diamond formation did not occur in a single short lived event. The observed close agreement of radiometric ages involving different isotope systems and inclusion minerals for diamonds from individual occurrences, however, cannot be coincidental and implies that the temporal extent of individual diamond growth events is contained within the uncertainty of the age dates. Diamond formed through most of Earth's history, from the Paleoarchean to at least the Mesozoic. Diamond forming episodes occur on regional to global scales in response to tectonothermal events such as suturing, subduction and plume impact. Individual diamond forming episodes may be associated with particular substrates, with harzburgitic paragenesis diamonds generally yielding Paleoarchean (3.6-3.2 Ga) ages and lherzolitic paragenesis diamonds forming mostly in the Paleoproterozoic at ~2 Ga. Peridotitic diamond growth, however, continued through Earth's history, with the youngest age date being ~90 Ma. Formation of diamonds hosted by eclogite is documented from the Mesoarchean to the Neoproterozoic (2.9 and 0.6 Ga) and may well continue up to the present. Multiple lines of evidence suggest that formation of fibrous diamonds and diamond coats often is penecontemporaneous to kimberlite magmatism and hence, for the Central Slave, may even extent into the Tertiary. When it comes to the actual process(es) driving the precipitation of diamond, our knowledge is much less complete. Diamond grows during the infiltration of carbon-bearing fluids or melts into a suitable substrate. But what exactly is the diamond forming reaction that occurs there? The conventional view that redox reactions between percolating fluids/melts and wall rocks are nature's diamond recipe is inconsistent with both the low redox capacity of lithospheric mantle and the occurrence of large diamonds. Based on thermodynamic modeling, we instead propose that isochemical cooling or ascent of carbon-bearing fluids is a key mechanism of diamond formation. It operates particularly efficiently in chemically depleted mantle rocks (harzburgite), where a high melting temperature precludes dilution of the infiltrating fluid (see above), thereby explaining the long observed close association between diamond and harzburgitic garnet.
Abstract: Canada is host to at least six separate cratons that comprise a significant proportion of its crustal extent. Of these cratons, we possess knowledge of the cratonic lithospheric roots beneath only the Slave craton and, to a lesser extent, the Superior craton, despite the discovery of many new diamond-bearing kimberlites in Canada's North. Here we present the first age, composition and geothermal information for kimberlite-borne peridotite xenoliths from two localities within the central Rae craton: Pelly Bay and Repulse Bay. Our aim is to investigate the nature and evolution of the deep lithosphere in these regions and to examine how events recorded in the mantle may or may not correlate with the complex history of crustal evolution across the craton. Peridotite xenoliths are commonly altered by secondary processes including serpentinization, silicification and carbonation, which have variably affected the major element compositions. These secondary processes, as well as mantle metasomatism recorded in pristine silicate minerals, however, did not significantly modify the relative compositions of platinum-group elements (PGE) and Os isotope ratios in the majority of our samples from Pelly Bay and Repulse Bay, as indicated by the generally high absolute PGE concentrations and mantle-like melt-depleted PGE patterns. The observed PGE signatures are consistent with the low bulk Al2O3 contents (mostly lower than 2.5%) of the peridotites, as well as the compositions of the silicate and oxide minerals. Based on PGE patterns and Os model ages, the peridotites from both localities can be categorized into three age groups: Archean (3.0-2.6 Ga overall; 2.8-2.6 Ga for Pelly Bay and 3.0-2.7 Ga for Repulse Bay), Paleoproterozoic (2.1-1.7 Ga), and "Recent" (<1 Ga, with model ages similar to the ca. 546 Ma kimberlite eruption age). The Archean group provides the first direct evidence of depleted Archean lithospheric mantle forming coevally with the overlying Archean crustal basement, indicating cratonization of the Rae during the Archean. The subtle difference in Os model ages between Pelly Bay and Repulse Bay coincides with the age difference between crustal basement rocks beneath these two areas, supporting the suggestion that the Rae craton was assembled by collision of separate two Archean blocks at 2.7-2.6 Ga. The Paleoproterozoic peridotites are interpreted to represent newly formed lithospheric mantle, most likely associated with regional-scale underplating during the 1.77-1.70 Ga Kivalliq-Nueltin event via removal of the lower portion of Archean lithospheric mantle followed by replacement with juvenile Paleoproterozoic lithospheric mantle. The existence of multiple age clusters in the lithosphere at each locality is consistent with the observation of present-day seismic lithospheric discontinuities (0540 and 0545) that indicate two or more layers of fossil lithospheric mantle fabric beneath this region. Our data define a shallow mantle lithosphere layer dominated by Archean depletion ages underlain by a layer of mixed Archean and Paleoproterozoic ages. This lithospheric mantle structure is probably a response to complex tectonic displacement of portions of the lithospheric mantle during Paleoproterozoic orogeny/underplating. The best equilibrated Archean and Paleoproterozoic peridotites at both Pelly Bay and Repulse Bay define a typical cratonic geotherm at the time of kimberlite eruption, with a ~200 km thick lithospheric root extending well into the diamond stability field, in keeping with the diamondiferous nature of the kimberlites. Such thick lithosphere remains in place to the present day as suggested by seismic and magnetotelluric studies (0540, 0545 and 0550). The metasomatically disturbed peridotites in the Rae lithospheric mantle, yielding model ages indistinguishable from kimberlite eruption, may represent parts of the Rae craton mantle root that show anomalous magnetotelluric signatures.
Abstract: Canada is host to at least six separate cratons that comprise a significant proportion of its crustal extent. Of these cratons, we possess knowledge of the cratonic lithospheric roots beneath only the Slave craton and, to a lesser extent, the Superior craton, despite the discovery of many new diamond-bearing kimberlites in Canada's North. Here we present the first age, composition and geothermal information for kimberlite-borne peridotite xenoliths from two localities within the central Rae craton: Pelly Bay and Repulse Bay. Our aim is to investigate the nature and evolution of the deep lithosphere in these regions and to examine how events recorded in the mantle may or may not correlate with the complex history of crustal evolution across the craton. Peridotite xenoliths are commonly altered by secondary processes including serpentinization, silicification and carbonation, which have variably affected the major element compositions. These secondary processes, as well as mantle metasomatism recorded in pristine silicate minerals, however, did not significantly modify the relative compositions of platinum-group elements (PGE) and Os isotope ratios in the majority of our samples from Pelly Bay and Repulse Bay, as indicated by the generally high absolute PGE concentrations and mantle-like melt-depleted PGE patterns. The observed PGE signatures are consistent with the low bulk Al2O3 contents (mostly lower than 2.5%) of the peridotites, as well as the compositions of the silicate and oxide minerals. Based on PGE patterns and Os model ages, the peridotites from both localities can be categorized into three age groups: Archean (3.0-2.6 Ga overall; 2.8-2.6 Ga for Pelly Bay and 3.0-2.7 Ga for Repulse Bay), Paleoproterozoic (2.1-1.7 Ga), and “Recent” (<1 Ga, with model ages similar to the ca. 546 Ma kimberlite eruption age). The Archean group provides the first direct evidence of depleted Archean lithospheric mantle forming coevally with the overlying Archean crustal basement, indicating cratonization of the Rae during the Archean. The subtle difference in Os model ages between Pelly Bay and Repulse Bay coincides with the age difference between crustal basement rocks beneath these two areas, supporting the suggestion that the Rae craton was assembled by collision of separate two Archean blocks at 2.7-2.6 Ga. The Paleoproterozoic peridotites are interpreted to represent newly formed lithospheric mantle, most likely associated with regional-scale underplating during the 1.77-1.70 Ga Kivalliq-Nueltin event via removal of the lower portion of Archean lithospheric mantle followed by replacement with juvenile Paleoproterozoic lithospheric mantle. The existence of multiple age clusters in the lithosphere at each locality is consistent with the observation of present-day seismic lithospheric discontinuities (0540 and 0545) that indicate two or more layers of fossil lithospheric mantle fabric beneath this region. Our data define a shallow mantle lithosphere layer dominated by Archean depletion ages underlain by a layer of mixed Archean and Paleoproterozoic ages. This lithospheric mantle structure is probably a response to complex tectonic displacement of portions of the lithospheric mantle during Paleoproterozoic orogeny/underplating. The best equilibrated Archean and Paleoproterozoic peridotites at both Pelly Bay and Repulse Bay define a typical cratonic geotherm at the time of kimberlite eruption, with a ~200 km thick lithospheric root extending well into the diamond stability field, in keeping with the diamondiferous nature of the kimberlites. Such thick lithosphere remains in place to the present day as suggested by seismic and magnetotelluric studies (0540, 0545 and 0550). The metasomatically disturbed peridotites in the Rae lithospheric mantle, yielding model ages indistinguishable from kimberlite eruption, may represent parts of the Rae craton mantle root that show anomalous magnetotelluric signatures.
Contributions to Mineralogy and Petrology, Vol. 171, 15p.
Canada, Northwest Territories
Deposit - Diavik
Abstract: Fibrous diamonds are often interpreted as direct precipitates of primary carbonate-bearing fluids in the lithospheric mantle, sourced directly from common reservoirs of “mantle” carbon and nitrogen. Here we have examined fibrous growth layers in five diamonds (as three rims or “coats” and two whole-crystal cuboids) from the Diavik Diamond Mine, Canada, using in situ C- and N-isotope and N-abundance measurements to investigate the origin and evolution of their parental fluids, and in particular, to test for isotopic variability within a suite of fibrous diamonds. High-resolution growth structure information was gleaned from cathodoluminescence (CL) imaging and, in combination with the isotopic data, was used to assess the nature of the transition from gem to fibrous growth in the coated diamonds. The two cuboids are characterized by fine concentric bands of fibrous and/or milky opaque diamond, with one sample (S1719) having intermittent gem-like growth layers that are transparent and colourless. The three coated diamonds comprise octahedral gem cores mantled by massive or weakly zoned fibrous rims, with sharp and well-defined gem-fibrous boundaries. For the two cuboid samples, d 13C and d 15N values were -7.7 to -3.2 ‰ (mean -6.3 ± 1.3 ‰; 1 SD; n = 84) and -5.6 to -2.1 ‰ (mean -4.0 ± 0.8 ‰; 1 SD; n = 48), respectively. The three fibrous rims have combined d 13C values of -8.3 to -4.8 ‰ (mean -6.9 ± 0.7 ‰; 1 SD; n = 113) and d 15N values of -3.8 to -1.9 ‰ (mean -2.7 ± 0.4 ‰; 1 SD; n = 43). N-abundances of the combined cuboid-fibrous rim dataset range from 339 to 1714 at. ppm. The gem cores have d 13C and d 15N values of -5.4 to -3.5 ‰ and -17.7 to +4.5 ‰, respectively, and N-abundances of 480 to 1699 at. ppm. Broadly uniform C- and N-isotope compositions were observed in each of the gem cores (variations of ~<1 ‰ for carbon and ~<3 ‰ for nitrogen). This limited C- and N- isotope variability implies that the gem cores formed from separate pulses of fluid that remained isotopically uniform throughout the duration of growth. Significant isotopic and abundance differences were observed between the gem and fibrous growth zones, including in one detailed isotopic profile d 13C and d 15N offsets of ~-2.4 and ~-3.7 ‰, respectively, and a ~230 at. ppm increase in N-abundance. Combined with the well-defined gem-fibrous boundaries in plane light and CL, these sharp isotopic differences indicate separate parental fluid histories. Notably, in the combined fibrous diamond dataset prominent C- and N-isotope differences between the whole-crystal cuboid and fibrous rim data were observed, including a consistent ~1.3 ‰ offset in d 15N values between the two growth types. This bimodal N-isotope distribution is interpreted as formation from separate parental fluids, associated with distinct nitrogen sources. The bimodal N-isotope distribution could also be explained by differences in N-speciation between the respective parental fluids, which would largely be controlled by the oxidation state of the fibrous rim and cuboid growth environments (i.e., N2 vs. NH4 + or NH3). We also note that this C- and N-isotope variability could indicate temporal changes to the source(s) of the respective parental fluids, such that each stage of fibrous diamond growth reflects the emplacement of separate pulses of proto-kimberlitic fluid—from distinct carbon and nitrogen sources, and/or with varying N-species—into the lithospheric mantle.
Bussweiler, Y., Pearson, D.G., Luth, R.W., Kjarsgaard, B.A., Stachel, T.
The evolution of calcite-bearing kimberlite by rock-melt reaction during ascent - evidence from polymineralic inclusions within Cr- diopside and Cr-pyrope megacrysts from Lac de Gras kimberlites, Northwest Territories, Canada.
GAC MAC Meeting Special Session SS11: Cratons, kimberlites and diamonds., abstract 1/4p.
Abstract: First predictions of the macrodiamond grade of newly discovered kimberlites are commonly obtained using size frequency distributions of microdiamonds. The success of this approach suggests a common origin of microdiamonds and macrodiamonds, an implication not yet conclusively established or disproved. In contrast to previous comparative studies on microdiamonds and macrodiamonds from single deposits, here all diamonds analyzed originate from the same microdiamond samples (558 diamonds, ranging from 0.212 to 3.35 mm). The diamonds were analyzed for their carbon isotope compositions and nitrogen characteristics, and, based on this dataset, statistical comparisons were conducted across the size range to assess cogenesis. As a whole, the Misery diamond suite shows high nitrogen contents (median = 850 at. ppm), a bimodal distribution in time-averaged mantle residence temperatures (two distinct subpopulations in mantle residence temperatures: =1,125° and =1,175°C), a high degree of platelet degradation, and d13C compositions that are isotopically slightly heavier (median = -4.4‰) than the global median. Statistical comparisons of the various size classes indicate the presence of subtly different subpopulations at Misery; however, the nature and magnitude of these geochemical differences are very small in the context of the global diamond database and are viewed as petrogenetically insignificant. The general geochemical similarity of diamonds from different size fractions at Misery reinforces the use of size-frequency analysis to predict diamond grade in kimberlite diamond deposits.
GAC MAC Meeting Special Session SS11: Cratons, kimberlites and diamonds., abstract 1/4p.
Canada, Northwest Territories
Diamond indicators
Abstract: The Central Mackenzie Valley (CMV) area of the Northwest Territories (NWT) comprises a Phanerozoic sedimentary basin that lies between the western margin of the Slave craton and the Cordillera. Although the region is considerably outside the bounds of the exposed Slave craton, both LITHOPROBE and more recent regional-scale surface wave studies (e.g., Priestley and McKenzie, 2006) indicate the likely presence of lithospheric mantle extending into the diamond stability field. Recent work conducted by Olivut Resources Ltd. led to the discovery of 29 kimberlites in the CMV. However, the indicator mineral chemistry of discovered kimberlites does not appear to be a good match (www.olivut.ca) with those during regional till and stream sediment sampling by the Geologic Survey of Canada (GSC) and Northwest Territories Geologic Survey (NTGS) in August 2003 and July 2005. We present new geochemical data on the regional indicator minerals with the aim of obtaining geotherm and depth of mantle sampling constraints on those indicator minerals discovered to date. A statistical evaluation of the data will compare the similarities to indicator mineral chemistry with parts of the Slave craton to evaluate whether the CMV indicators may ultimately be derived from that region. In total 3600 kimberlite indicator mineral grains were picked from the 0.25-2.0 mm size fractions. Peridotitic garnet grains dominate (46%), followed by magnesium ilmenite (26%), with decreasing individual proportions >15% of chromite, low-chrome diopside, olivine, chrome-diopside and eclogitic garnet. A sub-sample of these grains (3143) were analysed by EPMA. Garnet grains classify (after Grütter et al., 2004) as 1015 (62.1%) G9, 270 (16.5%) G11, 113 (6.9%) G10, 103 (6.3%) G12, 57 (3.5%) G1, 46 (2.8%) G10D, and the remaining 31 (1.9%) as G0, G3, G3D, G4, and G5. A sub-set of garnet grains (~700) were selected for LA-ICP-MS trace element analysis. Of the grains selected 74% G9, 14% G10 (and G10D), and 8% G11, with only 4% G12 and G0 (Grütter et al., 2004). Nickel concentrations from these grains range from 2.6-168.2 ppm, with the majority (>80%) between 20-100 ppm, yielding TNi (Canil, 1999) values ranging from 643-1348°C, with the majority between ~1000-1200°C. Using a central Slave craton geothermal gradient (Hasterok and Chapman, 2011), equilibration pressures for these garnet grains range from 20-80 kbars with the majority between 40-60 kbars (120-185 km). Preliminary analysis has 581 (81%) of the erupted peridotitic mantle garnet grains plotting within the diamond stability field (Kennedy and Kennedy, 1976). Of the 128 clinopyroxene grains analysed, only a few represent garnet peridotite (lherzolite) facies KIM clinopyroxene grains following compositional screening. Thermobarometry of these grains (Nimis and Taylor, 2000), assuming they were all derived from the same lithospheric section, yields P-T arrays identical to the central Slave geotherm that was 220 km thick at the time of eruption. These results are encouraging for diamond exploration. We thank Overburden Drilling Management Ltd. for grain picking and recovery of the small diamond, SGS Lakefield Research for mounting grains, and the GSC for probing of the grains.
Geochimica et Cosmochimica Acta, Vol. 157, pp. 1-12.
Technology
Diamond morphology
Abstract: Nitrogen isotope values from mantle diamonds are a commonly used tracer in the quest to track volatiles within the Earth’s mantle through deep time. Interpretations of this isotope data are valid so long as stable isotope fractionation processes in the mantle are understood. The fractionation of nitrogen isotopes between {1 1 1} and {1 0 0} growth sectors is well documented for high-pressure high-temperature (HPHT) synthetic diamonds, but there is little data on whether it also occurs in natural mixed-habit diamonds. We present 91 in-situ nitrogen isotope (d15N) measurements, along with carbon isotope (d13C) values and nitrogen abundances [N], obtained from three mixed-habit diamonds by secondary ion mass spectrometry (SIMS). While the well-documented enrichment of nitrogen concentrations in octahedral sectors compared to contemporaneous cuboid sectors is observed, a similarly clear disparity is not obvious in the d15N data. Whereas HPHT synthetic diamonds exhibit 15N enrichment in the {1 0 0} sectors by ~+30‰, the mixed-habit diamonds studied here show enrichment of the octahedral sectors in 15N by only 0.4-1‰. This major difference between HPHT synthetic and natural mixed-habit diamonds is proposed to be the result of different physical properties of the growth interfaces. The smooth interfaces of the octahedral sectors are the same in both types of crystal, but the outermost atoms on the smooth cube interfaces of an HPHT synthetic diamond behave differently to those on the rough cuboid interfaces of the natural mixed-habit diamonds, resulting in different d15N values. Both the d13C (average of ~-8.7‰) and d15N (average of ~0‰) data show only minor offsets from the typical mantle values (d13C = -5 ± 3‰, d15N = -5 ± 4‰). This may indicate diamond formation from a mantle derived fluid/melt containing a minor subducted component (lowering d13C values and elevating d15N) or relate to moderate degrees of isotopic fractionation of a pure mantle fluid/melt by prior diamond precipitation. The homogeneous nature of both the carbon and nitrogen isotopic compositions of all three diamonds, however, documents continuous and unlimited supply of diamond forming fluid/melt, with a constant composition. Such homogenous isotopic compositions exclude fluid mixing or isotopic fractionation close to the site of diamond formation and preclude distinguishing between these two processes based on diamond analyses alone.
Contributions to Mineralogy and Petrology, Vol. 171, 7, 25p.
Canada, Northwest Territories
Deposit - Lac de Gras arena
Abstract: Megacrystic (>1 cm) clinopyroxene (Cr-diopside) and garnet (Cr-pyrope) xenocrysts within kimberlites from Lac de Gras (Northwest Territories, Canada) contain fully crystallized melt inclusions. These ‘polymineralic inclusions’ have previously been interpreted to form by necking down of melts at mantle depths. We present a detailed petrographical and geochemical investigation of polymineralic inclusions and their host crystals to better understand how they form and what they reveal about the evolution of kimberlite melt. Genetically, the megacrysts are mantle xenocrysts with peridotitic chemical signatures indicating an origin within the lithospheric mantle (for the Cr-diopsides studied here ~4.6 GPa, 1015 °C). Textural evidence for disequilibrium between the host crystals and their polymineralic inclusions (spongy rims in Cr-diopside, kelyphite in Cr-pyrope) is consistent with measured Sr isotopic disequilibrium. The preservation of disequilibrium establishes a temporal link to kimberlite eruption. In Cr-diopsides, polymineralic inclusions contain phlogopite, olivine, chromite, serpentine, and calcite. Abundant fluid inclusion trails surround the inclusions. In Cr-pyropes, the inclusions additionally contain Al-spinel, clinopyroxene, and dolomite. The major and trace element compositions of the inclusion phases are generally consistent with the early stages of kimberlite differentiation trends. Extensive chemical exchange between the host phases and the inclusions is indicated by enrichment of the inclusions in major components of the host crystals, such as Cr2O3 and Al2O3. This chemical evidence, along with phase equilibria constraints, supports the proposal that the inclusions within Cr-diopside record the decarbonation reaction: dolomitic melt + diopside ? forsterite + calcite + CO2, yielding the observed inclusion mineralogy and producing associated (CO2-rich) fluid inclusions. Our study of polymineralic inclusions in megacrysts provides clear mineralogical and chemical evidence for an origin of kimberlite that involves the reaction of high-pressure dolomitic melt with diopside-bearing mantle assemblages producing a lower-pressure melt that crystallizes a calcite-dominated assemblage in the crust.
Contributions to Mineralogy and Petrology, in press available 25p.
Canada, Northwest Territories
Deposit - Lac de Gras
Abstract: Megacrystic (>1 cm) clinopyroxene (Cr-diopside) and garnet (Cr-pyrope) xenocrysts within kimberlites from Lac de Gras (Northwest Territories, Canada) contain fully crystallized melt inclusions. These ‘polymineralic inclusions’ have previously been interpreted to form by necking down of melts at mantle depths. We present a detailed petrographical and geochemical investigation of polymineralic inclusions and their host crystals to better understand how they form and what they reveal about the evolution of kimberlite melt. Genetically, the megacrysts are mantle xenocrysts with peridotitic chemical signatures indicating an origin within the lithospheric mantle (for the Cr-diopsides studied here ~4.6 GPa, 1015 °C). Textural evidence for disequilibrium between the host crystals and their polymineralic inclusions (spongy rims in Cr-diopside, kelyphite in Cr-pyrope) is consistent with measured Sr isotopic disequilibrium. The preservation of disequilibrium establishes a temporal link to kimberlite eruption. In Cr-diopsides, polymineralic inclusions contain phlogopite, olivine, chromite, serpentine, and calcite. Abundant fluid inclusion trails surround the inclusions. In Cr-pyropes, the inclusions additionally contain Al-spinel, clinopyroxene, and dolomite. The major and trace element compositions of the inclusion phases are generally consistent with the early stages of kimberlite differentiation trends. Extensive chemical exchange between the host phases and the inclusions is indicated by enrichment of the inclusions in major components of the host crystals, such as Cr2O3 and Al2O3. This chemical evidence, along with phase equilibria constraints, supports the proposal that the inclusions within Cr-diopside record the decarbonation reaction: dolomitic melt + diopside ? forsterite + calcite + CO2, yielding the observed inclusion mineralogy and producing associated (CO2-rich) fluid inclusions. Our study of polymineralic inclusions in megacrysts provides clear mineralogical and chemical evidence for an origin of kimberlite that involves the reaction of high-pressure dolomitic melt with diopside-bearing mantle assemblages producing a lower-pressure melt that crystallizes a calcite-dominated assemblage in the crust.
Abstract: In this study, we report the first direct evidence for water-bearing fluids in the uppermost lower mantle from natural ferropericlase crystal contained within a diamond from São Luíz, Brazil. The ferropericlase exhibits exsolution of magnesioferrite, which places the origin of this assemblage in the uppermost part of the lower mantle. The presence of brucite-Mg(OH)2 precipitates in the ferropericlase crystal reflects the later-stage quenching of H2O-bearing fluid likely in the transition zone, which has been trapped during the inclusion process in the lower mantle. Dehydration melting may be one of the key processes involved in transporting water across the boundary between the upper and lower mantle.
Abstract: Using stable isotope data obtained on multiple aliquots of diamonds from worldwide sources, it has been argued that carbon and nitrogen in diamond are decoupled. Here we re-investigate the carbon-nitrogen relationship based on the most comprehensive microbeam data set to date of stable isotopes and nitrogen concentrations in diamonds (n = 94) from a single locality. Our diamond samples, derived from two kimberlites in the Chidliak Field (NE Canada), show large variability in d13C (- 28.4 ‰ to - 1.1‰, mode at - 5.8‰), d15N (- 5.8 to + 18.8‰, mode at - 3.0‰) and nitrogen contents ([N]; 3800 to less than 1 at.ppm). In combination, cathodoluminescence imaging and microbeam analyses reveal that the diamonds grew from multiple fluid pulses, with at least one major hiatus documented in some samples that was associated with a resorption event and an abrupt change from low d13C and [N] to mantle-like d13C and high [N]. Overall, d13C appears to be uncorrelated to d15N and [N] on both the inter- and intra-diamond levels. Co-variations of d15N-log[N], however, result in at least two parallel, negatively correlated linear arrays, which are also present on the level of the individual diamonds falling on these two trends. These arrays emerge from the two principal data clusters, are characterized by slightly negative and slightly positive d15N (about - 3 and + 2‰, respectively) and variable but overall high [N]. Using published values for the diamond-fluid nitrogen isotope fractionation factor and nitrogen partition coefficient, these trends are perfectly reproduced by a Rayleigh fractionation model. Overall, three key elements are identified in the formation of the diamond suite studied: (1.) a low d13C and low [N] component that possibly is directly associated with an eclogitic diamond substrate or introduced during an early stage fluid event. (2.) Repeated influx of a variably nitrogen-rich mantle fluid (mildly negative d13C and d15N). (3.) In waning stages of influx, availability of the mantle-type fluid at the site of diamond growth became limited, leading to Rayleigh fractionation. These fractionation trends are clearly depicted by d15N-[N] but are not detected when examining co-variation diagrams involving d13C. Also on the level of individual diamonds, large (= 5‰) variations in d15N are associated with d13C values that typically are constant within analytical uncertainty. The much smaller isotope fractionation factor for carbon (considering carbonate- or methane-rich fluids as possible carbon sources) compared to nitrogen leads to an approximately one order of magnitude lower sensitivity of d13C values to Rayleigh fractionation processes (i.e. during fractionation, a 1‰ change in d13C is associated with a 10‰ change in d15N). As a consequence, even minor heterogeneity in the primary isotopic composition of diamond forming carbon (e.g., due to addition of minor subducted carbon) will completely blur any possible co-variations with d15N or [N]. We suggest this strong difference in isotope effects for C and N to be the likely cause of observations of an apparently decoupled behaviour of carbon and nitrogen isotopes in diamond.
Abstract: Using stable isotope data obtained on multiple aliquots of diamonds from worldwide sources, it has been argued that carbon and nitrogen in diamond are decoupled. Here we re-investigate the carbon-nitrogen relationship based on the most comprehensive microbeam data set to date of stable isotopes and nitrogen concentrations in diamonds (n = 94) from a single locality. Our diamond samples, derived from two kimberlites in the Chidliak Field (NE Canada), show large variability in d13C (- 28.4 ‰ to - 1.1‰, mode at - 5.8‰), d15N (- 5.8 to + 18.8‰, mode at - 3.0‰) and nitrogen contents ([N]; 3800 to less than 1 at.ppm). In combination, cathodoluminescence imaging and microbeam analyses reveal that the diamonds grew from multiple fluid pulses, with at least one major hiatus documented in some samples that was associated with a resorption event and an abrupt change from low d13C and [N] to mantle-like d13C and high [N]. Overall, d13C appears to be uncorrelated to d15N and [N] on both the inter- and intra-diamond levels. Co-variations of d15N-log[N], however, result in at least two parallel, negatively correlated linear arrays, which are also present on the level of the individual diamonds falling on these two trends. These arrays emerge from the two principal data clusters, are characterized by slightly negative and slightly positive d15N (about - 3 and + 2‰, respectively) and variable but overall high [N]. Using published values for the diamond-fluid nitrogen isotope fractionation factor and nitrogen partition coefficient, these trends are perfectly reproduced by a Rayleigh fractionation model. Overall, three key elements are identified in the formation of the diamond suite studied: (1.) a low d13C and low [N] component that possibly is directly associated with an eclogitic diamond substrate or introduced during an early stage fluid event. (2.) Repeated influx of a variably nitrogen-rich mantle fluid (mildly negative d13C and d15N). (3.) In waning stages of influx, availability of the mantle-type fluid at the site of diamond growth became limited, leading to Rayleigh fractionation. These fractionation trends are clearly depicted by d15N-[N] but are not detected when examining co-variation diagrams involving d13C. Also on the level of individual diamonds, large (= 5‰) variations in d15N are associated with d13C values that typically are constant within analytical uncertainty. The much smaller isotope fractionation factor for carbon (considering carbonate- or methane-rich fluids as possible carbon sources) compared to nitrogen leads to an approximately one order of magnitude lower sensitivity of d13C values to Rayleigh fractionation processes (i.e. during fractionation, a 1‰ change in d13C is associated with a 10‰ change in d15N). As a consequence, even minor heterogeneity in the primary isotopic composition of diamond forming carbon (e.g., due to addition of minor subducted carbon) will completely blur any possible co-variations with d15N or [N]. We suggest this strong difference in isotope effects for C and N to be the likely cause of observations of an apparently decoupled behaviour of carbon and nitrogen isotopes in diamond.
European Geosciences Union General Assembly 2017, Vienna April 23-28, 1p. 9187 Abstract
Africa, Zimbabwe, Sierra Leone
Deposit - Marange, Zimmi
Abstract: Traditional models for diamond formation within the lithospheric mantle invoke either carbonate reduction or methane oxidation. Both these mechanisms require some oxygen exchange with the surrounding wall-rock at the site of diamond precipitation. However, peridotite does not have sufficient buffering capacity to allow for diamond formation via these traditional models and instead peridotitic diamonds may form through isochemical cooling of H 2 O-rich CHO fluids [1]. Marange mixed-habit diamonds from eastern Zimbabwe provide the first natural confirmation of this new diamond growth model [2]. Although Marange diamonds do not contain any silicate or sulphide inclusions, they contain Ni-N-vacancy complexes detected through photoluminescence (PL) spectroscopy that suggest the source fluids equilibrated in the Ni-rich depleted peridotitic lithosphere. Cuboid sectors also contain abundant micro-inclusions of CH 4 , the first direct observation of reduced CH 4-rich fluids that are thought to percolate through the lithospheric mantle [2]. In fluid inclusion-free diamonds, core-to-rim trends in d 13 C and N content are used to infer the speciation of the diamond-forming fluid. Core to rim trends of increasing d 13 C with decreasing N content are interpreted as diamond growth from oxidized CO 2-or carbonate-bearing fluids. Diamond growth from reduced species should show the opposite trends-decreasing d 13 C from core to rim with decreasing N content. Within the CH 4-bearing growth sectors of Marange diamonds, however, such a 'reduced' trend is not observed. Rather, d 13 C increases from core to rim within a homogeneously grown zone [2]. These contradictory observations can be explained through either mixing between CH 4-and CO 2-rich end-members of hydrous fluids [2] or through closed system precipitation from an already mixed CH 4-CO 2 H 2 O-maximum fluid with XCO 2 (CO 2 /[CO 2 +CH 4 ]) between 0.3 and 0.7 [3]. These results demonstrate that Marange diamonds precipitated from cooling CH 4-CO 2-bearing hydrous fluids rather than through redox buffering. As this growth mechanism applies to both the fluid-rich cuboid and gem-like octahedral sectors of Marange diamonds, a non-redox model for diamond formation from mixed CH 4-CO 2 fluids is indicated for a wider range of gem-quality peridotitic diamonds. Indeed, at the redox conditions of global diamond-bearing lithospheric mantle (FMQ-2 to-4; [4]), CHO fluids are strongly water-dominated and contain both CH 4 and CO 2 as dominant carbon species [5]. By contrast diamond formation in eclogitic assemblages, through either redox buffering or cooling of carbon-bearing fluids, is not as well constrained. Zimmi diamonds from the West African craton have eclogitic sulphide inclusions (with low Ni and high Re/Os) and formed at 650 Ma, overlapping with the timing of subduction [6]. In one Zimmi diamond, a core to rim trend of decreasing d 13 C (-23.4 to-24.5 %¸) and N content is indicative of formation from reduced C 2 H 6 /CH 4-rich fluids, likely derived from oceanic crust recycled during Neoproterozoic subduction. Unlike mixed CH 4-CO 2 fluids near the water maximum, isochemical cooling or ascent of such reduced CHO fluids is not effficient at diamond precipitation. Furthermore, measurable carbon isotopic variations in diamond are not predicted in this model and therefore cannot be reconciled with the ~1 internal variation seen. Consequently, this Zimmi eclogitic diamond likely formed through redox buffering of reduced subduction-related fluids, infiltrating into sulphide-bearing eclogite.
Earth and Planetary Science Letters, Vol. 473, pp. 44-51.
Africa, Zimbabwe
deposit - Marange
Abstract: Because of the inability of depleted cratonic peridotites to effectively buffer oxygen fugacities when infiltrated by CHO or carbonatitic fluids, it has been proposed recently (Luth and Stachel, 2014) that diamond formation in peridotites typically does not occur by rock-buffered redox reactions as previously thought but by an oxygen-conserving reaction in which minor coexisting CH4 and CO2 components in a water-rich fluid react to form diamond (CO2 + CH4 = 2C + 2H2O). In such fluid-buffered systems, carbon isotope fractionation during diamond precipitation occurs in the presence of two dominant fluid carbon species. Carbon isotope modelling of diamond precipitation from mixed CH4CH4- and CO2-bearing fluids reveals unexpected fundamental differences relative to diamond crystallization from a single carbon fluid species: (1) irrespective of which carbon fluid species (CH4 or CO2) is dominant in the initial fluid, diamond formation is invariably associated with progressive minor (<1‰) enrichment of diamond in 13C as crystallization proceeds. This is in contrast to diamond precipitation by rock-buffered redox processes from a fluid containing only a single carbon species, which can result in either progressive 13C enrichment (CO2 or carbonate fluids) or View the MathML sourceC13 depletion (CH4 fluids) in the diamond. (2) Fluid speciation is the key factor controlling diamond d13Cd13C values; as XCO2 (XCO2 = CO2/[CO2 + CH4]) in the initial fluid increases from 0.1 to 0.9 (corresponding to an increase in fO2fO2 of 0.8 log units), the carbon isotope composition of the first-precipitated diamond decreases by 3.7‰. The tight mode in d13C of -5 ±1‰-5 ±1‰ for diamonds worldwide places strict constraints on the dominant range of XCO2 in water-rich fluids responsible for diamond formation. Specifically, precipitation of diamonds with d13C values in the range -4 to -6‰ from mantle-derived fluids with an average d13C value of -5‰ (derived from evidence not related to diamonds) requires that diamond-forming fluids were relatively reduced and had methane as the dominant carbon species (XCO2 = 0.1–0.5). Application of our model to a recently published set of in-situ carbon isotope analyses for peridotitic diamonds from Marange, Zimbabwe (Smit et al., 2016), which contain CH4 fluid inclusions, allows us to perfectly match the observed co-variations in d13Cd13C, d15Nd15N and N content and at the same time explain the previously counter-intuitive observation of progressive View the MathML sourceC13 enrichment in diamonds that appear to have grown from a fluid with methane as the dominant carbon species. Similarly, the almost complete absence in the published record of progressive View the MathML sourceC13 depletion trends within diamonds likely reflects ubiquitous precipitation from CH4- and CO2-bearing water-rich fluids, rather than diamond formation exclusively by carbonate-bearing and CH4-free oxidized fluids or melts.
Abstract: Diamond inclusions are the only samples from the mantle transition zone (410-660 km) and the lower mantle. Majoritic garnet is a rare inclusion, limited to pressures of ~8-20 Gpa with Si content being indicative of depth of re-equilibration. These garnet inclusions can therefore provide information on properties of the transition zone such as oxidation state. In this study, we used Synchrotron Mössbauer Source (SMS) to determine the ferric-ferrous ratios of 13 small (30 to 100 micrometers diameter) majoritic inclusions in diamonds from Jagersfontein. The studied inclusions have pyroxenitic affinities [1], with compositions intermediate between typical peridotite and eclogite. They contain 4.62-11.2 wt% CaO, 0.03-0.34 wt% Cr2O3 and Mg# of 0.65-0.81. Minimum pressures for their equilibration using Beyer and Frost [2] barometer are between 8 and 18 GPa with at least 4 of these inclusions being formed in the transition zone. The Fe3+/Fetotal ratios in the garnets increase from 0.08±0.01 to 0.30±0.03 with increasing pressure. These values define a clear extension of the trend apparent in the data from peridotite xenoliths crystallised at lower pressures. Thermodynamic calculations suggest that these high ferric contents correspond to oxygen fugacities above the FeFeO (IW) buffer, which means that the high Fe3+ contents were not generated by disproportionation of Fe2+ to Fe3+ and Fe0 . It is more likely that carbonate was the oxidising agent responsible for generating the high Fe3+ of these garnets.
Abstract: Based on the mineral inclusion content, diamonds from the Argyle Mine, Western Australia, derive primarily (~90%) from eclogitic sources with a minor peridotitic contribution from both harzburgitic and lherzolitic lithologies. The eclogitic inclusions cover a large compositional range and show in part unusually high concentrations of mantle incompatible elements (P, Ti, Na and K). Coherent trends in major elements (e.g., of Ti or Na versus Mg-number) suggest that the eclogitic diamond source was created by a single process, namely igneous fractionation. Calculated bulk rock REEN patterns match a section of oceanic crust reaching from lavas and sheeted dykes to upper gabbros. Positive Eu anomalies for garnet and clinopyroxene, with calculated bulk rock REEN patterns similar to upper (non-layered) gabbros, are strong evidence for plagioclase accumulation, which is characteristic for the gabbroic portions of oceanic crust. Linking previously published oxygen isotope analyses of eclogitic garnet inclusions with their major element composition reveals a correlation between d18O (mean of +7.2‰) and Na content, consistent with coupled 18O and Na enrichment during low temperature alteration of oceanic crust. The carbon isotopic composition of Argyle eclogitic diamonds forms a normal distribution around a d13C value of -11‰, indicative of mixing and homogenization of mantle and crustal (organic matter) derived carbon prior to diamond precipitation. Previously published noble gas data on Argyle diamonds support this two component model. Inclusion and nitrogen-in-diamond based thermometry indicate an unusually hot origin of the eclogitic diamond suite, indicative of derivation from the lowermost 25 km (about 180-205 km depth) of the local lithospheric mantle. This is consistent with emplacement of an oceanic protolith during subduction along the Kimberley Craton margin, likely during the Halls Creek Orogeny (about 1.85 Ga). For Argyle eclogitic diamonds the relationship between the rate of platelet degradation and mantle residence temperature indicates that both temperature and strain play an important role in this process. Therefore, ubiquitous platelet degradation and plastic deformation of Argyle diamonds are consistent with derivation from a high temperature environment (softening the diamond lattice) close to the lithosphere-asthenosphere boundary (inducing strain). In combination, the Argyle data set represents a uniquely strong case for a subduction origin of an eclogitic diamond source followed by mixing of mantle and crustal components during diamond formation. Some lherzolitic inclusions show a similarity in incompatible element enrichments (elevated P, Na and K) to the eclogitic suite. The presence of a mildly majoritic lherzolitic garnet further supports a link to eclogitic diamond formation, as very similar majoritic components were found in two eclogitic garnet inclusions. The carbon isotopic composition of peridotitic diamonds shows a mode between -5 to -4 ‰ and a tail extending towards the eclogitic mode (-11 ‰). This suggests the presence of multiple generations of peridotitic diamonds, with indications for an origin linked to the eclogitic suite being restricted to diamonds of lherzolitic paragenesis.
Argyle diamonds – how subduction along the Kimberley Craton edge generated the world's biggest diamond deposit.
Journal of Geochemical Exploration, Vol. 186, pp. 24-35.
Mantle
garnet diamond exploration
Abstract: In diamond exploration, the accurate distinction between garnets from the crust or mantle, or from those having a cognate origin with kimberlite (low-Cr megacrysts), is important for the assessment of indicator mineral samples; misclassifications potentially result in costly misdirection of exploration efforts. Existing literature databases and graphical classification schemes for garnets suffer from a paucity of craton-derived, lower-crustal garnets that - as shown here - are among the most difficult to distinguish from garnets of mantle origin. To improve this situation, a large database of new and literature garnet major element analyses has been compiled. Using this dataset, it is shown that the conventionally used Mg# (Mg/(Mg + Fe)) vs. Ca# (Ca/(Mg + Ca)) plot (Schulze, 2003) for discrimination of crust and mantle garnets results in significant overlap (39.2% crustal failure rate using our dataset). We propose a new graphical classification scheme that uses the parameters ln(Ti/Si) and ln(Mg/Fe) to discriminate low-Cr garnets of crust origin from those of a mantle eclogite-pyroxenite origin with an error rate of 10.1 ± 2.1% at the 95% confidence level (assessed via K-fold cross-validation with ten random test datasets), significantly lower than existing methods. Multivariate statistical solutions, which incorporate a wide selection of geochemical variables, represent additional possibilities for discrimination. Using our new database, logistic regression (LR) and linear discriminant analysis (LDA) approaches are evaluated and new crust-mantle garnet discrimination schemes derived. The resulting solutions, using a wide variety of cations in garnet, provide lower misclassification rates than existing literature schemes. Both LR and LDA are successful discrimination techniques with error rates for the discrimination of crust from mantle eclogite-pyroxenite of 7.5 ± 1.9% and 8.2 ± 2.3%, respectively. LR, however, involves fewer stipulations about the distribution of training data (i.e., it is more "robust") and can return an estimate for probability of classification certainty for single garnets. New data from diamond exploration programs can be readily classified using these new graphical and statistical methods. As the discrimination of low-Cr megacrysts from mantle eclogite-pyroxenite is not the focus of this study, we recommend the method of Schulze (2003) or Grütter et al. (2004) for low-Cr megacryst discrimination to identify megacrysts in the "mantle" suite. Runstreams for our LDA and LR approaches using the freeware "R" are provided for quick implementation.
Earth Planetary Science Letters, Vol. 490, pp. 77-87.
Canada, Ontario
deposit - Victor
Abstract: The central Superior Craton hosts both the diamondiferous 1.1 Ga Kyle Lake and Jurassic Attawapiskat kimberlites. A major thermal event related to the Midcontinent Rift at ca. 1.1 Ga induced an elevated geothermal gradient that largely destroyed an older generation of diamonds, raising the question of when, and how, the diamond inventory beneath Attawapiskat was formed. We determined Re-Os isotope systematics of sulphides included in diamonds from Victor by isotope dilution negative thermal ionisation mass spectrometry in order to obtain insights into the age and nature of the diamond source in the context of regional tectonothermal evolution. Regression of the peridotitic inclusion data (n = 14 of 16) yields a 718 ± 49 Ma age, with an initial 187Os/188Os ratio of 0.1177 ± 0.0016, i.e. depleted at the time of formation (?Os -3.7 ± 1.3). Consequently, Re depletion model ages calculated for these samples are systematically overestimated. Given that reported 187Os/188Os in olivine from Attawapiskat xenoliths varies strongly (0.1012-0.1821), the low and nearly identical initial Os of sulphide inclusions combined with their high 187Re/188Os (median 0.34) suggest metasomatic formation from a mixed source. This was likely facilitated by percolation of amounts of melt sufficient to homogenise Os, (re)crystallise sulphide and (co)precipitate diamond; that is, the sulphide inclusions and their diamond host are synchronous if not syngenetic. The ~720 Ma age corresponds to rifting beyond the northern craton margin during Rodinia break-up. This suggests mobilisation of volatiles (C, N, S) and Os due to attendant mantle stretching and metasomatism by initially oxidising and S-undersaturated melts, which ultimately produced lherzolitic diamonds with high N contents compared to older Kyle Lake diamonds. Thus, some rift-influenced settings are prospective with respect to diamond formation. They are also important sites of hidden, intra-lithospheric volatile redistribution that can be revealed by diamond studies. Later emplacement of the Attawapiskat kimberlites, linking the carbon cycle to the surface, was associated with renewed disturbance during passage of the Great Meteor Hotspot. Lherzolitic diamond formation from oxidising small-volume melts may be the expression of an early and deep stage of the lithospheric conditioning required for the successful eruption of kimberlites, which complements the late and shallow emplacement of volatile-rich metasomes after upward displacement of a redox freezing front.
Mineralogy and Petrology, in press available, 12p.
Canada, Ontario, Attawapiskat
deposit - Victor
Abstract: The Jurassic Victor kimberlite (Attawapiskat Field) was emplaced into an area of the central Superior Craton that was affected by a lithosphere-scale thermal event at ~1.1 Ga. Victor diamonds formed ca. 400 million years after this event, in a lithospheric mantle characterized by an unusually cool model geotherm (37-38 mW/m2; Hasterok and Chapman 2011). The bulk of Victor diamonds derives from a thin (<10 km thick) layer that is located at about 180 km depth and represents lherzolitic substrates (for 85% of diamonds). Geothermobarometric calculations (average pressure and temperature at the 1 sigma level are 57?±?2 kbar and 1129?±?16 °C) coupled with typical fluid metasomatism-associated trace element patterns for garnet inclusions indicate diamond precipitation under sub-solidus (lherzolite + H2O) conditions. This conclusion links the presence of a diamond-rich lherzolitic layer in the lithospheric mantle, just above the depth where ascending melts would freeze, to the unusually low paleogeotherm beneath Attawapiskat, because along an average cratonic geotherm (40 mW/m2) lherzolite in the presence of hydrous fluid would melt at depths >140 km.
Mineralogy and Petrology, 10.1007/s00710 -018-0599-2, 14p.
Canada, Northwest Territories
deposit - Diavik, Ekati
Abstract: Kimberlites from the Diavik and Ekati diamond mines in the Lac de Gras kimberlite field contain abundant large (>1 cm) clinopyroxene (Cr-diopside) and garnet (Cr-pyrope) crystals. We present the first extensive mineral chemical dataset for these megacrysts from Diavik and Ekati and compare their compositions to cratonic peridotites and megacrysts from the Slave and other cratons. The Diavik and Ekati Cr-diopside and Cr-pyrope megacrysts are interpreted to belong to the Cr-rich megacryst suite. Evidence for textural, compositional, and isotopic disequilibrium suggests that they constitute xenocrysts in their host kimberlites. Nevertheless, their formation may be linked to extensive kimberlite magmatism and accompanying mantle metasomatism preceding the eruption of their host kimberlites. It is proposed that the formation of megacrysts may be linked to failed kimberlites. In this scheme, the Cr-rich megacrysts are formed by progressive interaction of percolating melts with the surrounding depleted mantle (originally harzburgite). As these melts percolate outwards, they may contribute to the introduction of clinopyroxene and garnet into the depleted mantle, thereby forming lherzolite. This model hinges on the observation that lherzolitic clinopyroxenes and garnets at Lac de Gras have compositions that are strikingly similar to those of the Cr-rich megacrysts, in terms of major and trace elements, as well as Sr isotopes. As such, the Cr-rich megacrysts may have implications for the origin of clinopyroxene and garnet in cratonic lherzolites worldwide.
Mineralogy and Petrology, 10.1007/ s710-018-0576 -9, 10p.
South America, Brazil
deposit - Sao Luiz
Abstract: Three diamonds from Sao Luiz, Brazil carrying nano- and micro-inclusions of molecular d-N2 that exsolved at the base of the transition zone were studied for their C and N isotopic composition and the concentration of N utilizing SIMS. The diamonds are individually uniform in their C isotopic composition and most spot analyses yield d13C values of -3.2?±?0.1‰ (ON-SLZ-390) and?-?4.7?±?0.1‰ (ON-SLZ-391 and 392). Only a few analyses deviate from these tight ranges and all fall within the main mantle range of -5?±?3‰. Most of the N isotope analyses also have typical mantle d15N values (-6.6?±?0.4‰, -3.6?±?0.5‰ and?-?4.1?±?0.6‰ for ON-SLZ-390, 391 and 392, respectively) and are associated with high N concentrations of 800-1250 atomic ppm. However, some N isotopic ratios, associated with low N concentrations (<400 ppm) and narrow zones with bright luminescence are distinctly above the average, reaching positive d15N values. These sharp fluctuations cannot be attributed to fractionation. They may reflect arrival of new small pulses of melt or fluid that evolved under different conditions. Alternatively, they may result from fractionation between different growth directions, so that distinct d15N values and N concentrations may form during diamond growth from a single melt/fluid. Other more continuous variations, in the core of ON-SLZ-390 or the rim of ON-SLZ-392 may be the result of Rayleigh fractionation or mixing.
Mineralogy and Petrology, doi.org/10.1007/s00710-018-0604-9 12p.
Africa, Botswana
deposit - Karowe
Abstract: Mineral inclusions in diamonds play a critical role in constraining the relationship between diamonds and mantle lithologies. Here we report the first major and trace element study of mineral inclusions in diamonds from the Karowe Mine in north-east Botswana, along the western edge of the Zimbabwe Craton. From a total of 107 diamonds, 134 silicate, 15 oxide, and 22 sulphide inclusions were recovered. The results reveal that 53% of Karowe inclusion-bearing diamonds derived from eclogitic sources, 44% are peridotitic, 2% have a sublithospheric origin, and 1% are websteritic. The dominant eclogitic diamond substrates sampled at Karowe are compositionally heterogeneous, as reflected in wide ranges in the CaO contents (4-16 wt%) of garnets and the Mg# (69-92) and jadeite contents (14-48 mol%) of clinopyroxenes. Calculated bulk rock REEN patterns indicate that both shallow and deep levels of the subducted slab(s) were sampled, including cumulate-like protoliths. Peridotitic garnet compositions largely derive from harzburgite/dunite substrates (~90%), with almost half the garnets having CaO contents <1.8 wt%, consistent with pyroxene-free (dunitic) sources. The highly depleted character of the peridotitic diamond substrates is further documented by the high mean and median Mg# (93.1) of olivine inclusions. One low-Ca garnet records a very high Cr2O3 content (14.7 wt%), implying that highly depleted cratonic lithosphere at the time of diamond formation extended to at least 220 km depth. Inclusion geothermobarometry indicates that the formation of peridotitic diamonds occurred along a 39-40 mW/m2 model geotherm. A sublithospheric inclusion suite is established by three eclogitic garnets containing a majorite component, a feature so far unique within the Orapa cluster. These low- and high-Ca majoritic garnets follow pyroxenitic and eclogitic trends of majoritic substitution, respectively. The origin of the majorite-bearing diamonds is estimated to be between 330 to 420 km depth, straddling the asthenosphere-transition zone boundary. This new observation of superdeep mineral inclusions in Karowe diamonds is consistent with a sublithospheric origin for the exceptionally large diamonds from this mine.
deposit - Argyle, De Beers Pool, Jwaneng, Orapa, Udachnaya, Venetia, Wawa, Diavik
Abstract: Earth’s mantle is by far the largest silicate-hosted reservoir of carbon. Diamonds are unrivalled in their ability to record the cycle of mantle carbon and other volatiles over a vast portion of the Earth’s history. They are the product of ascending, cooling, carbon-saturated, metasomatic fluidsmelts and/or redox reactions, predominantly within peridotitic and eclogitic domains in the mantle lithosphere. This paper reports the results of a major secondary ion mass spectrometry (SIMS) carbon isotope study, carried out on 127 diamond samples, spanning a large range of geological time. Detailed transects across the incremental growth zones within each diamond were measured for C isotopes, N abundances and, for samples with N >~200 at.ppm, N isotopes. Given that all of the samples are fragments, recovered when the original crystals were broken to liberate their inclusions, 81 of the analytical traverses have confirmed growth direction context. 98 samples are from studies that have confirmed the dates of the individual diamonds through analysis of their silicate or sulphide inclusions, from source localities including Argyle, De Beers Pool, Jwaneng, Orapa, Udachnaya & Venetia. Additional samples come from Wawa (a minimum age) and Diavik where the samples are tied via inclusion paragenesis to published ages. The peridotitic dataset covers the age range of ~3.3 - 2.0 Ga, with the eclogitic data from 2.9 - 1.0 Ga. In total, 751 carbon isotope and nitrogen concentration measurements have been obtained (425 on peridotitic diamonds, and 326 on eclogitic diamonds) with 470 nitrogen isotope measurements (190 P, 280 E). We attempt to constrain the diamond carbon isotope record through time and its implications for (i) the mantle carbon reservoir, (ii) its oxygen fugacity, (iii) the fluid / melt growth environment of diamonds, (iv) fractionation trends recorded in individual diamonds, and (v) diamond population studies using bulk combustion carbon isotope analysis.
Abstract: Polycrystalline diamond aggregates (framesites, boart, diamondite) are an understudied variety of mantle diamond, but can make up 20% of the production in some Group I kimberlites. Their polycrystalline nature indicates rapid precipitation from carbon-oversaturated fluids and individual PDAs often contain a chemically heterogeneous suite of websteritic and pyroxenitic inclusions and minerals intimately intergrown with the diamond crystals. Geochemical and microstructural evidence suggests that fluid-driven redox reactions with lithospheric material occurring episodically over millions of years play a major role in freezing carbon in the subcratonic lithosphere (Jacob et al., 2000; 2016; Mikhail et al., 2014). A suite of 39 samples from the Venetia kimberlite pipe in South Africa allows a more detailed look at the diamondforming fluids. 13C values in the diamonds measured by secondary ion mass spectrometry range from +2 to -28 and cover the entire range for PDA from the literature. Nitrogen concentrations are mostly very low (less than 100 at ppm), but reach up to 2660 at ppm in individual samples. These high nitrogen concentrations in concert with mostly positive 15N values of up to +17 and some very negative 3C values suggest crustal material as the source of the nitrogen and the carbon. However, detailed analysis of the sample provides evidence for a more complex growth history followed by alteration. Individual diamond crystals show complex growth zonations by cathodoluminescence imaging that can be related with the carbon and nitrogen isotopic compositions and points to growth incorporating several pulses of carbon-nitrogen fluid with distinct isotopic compositions. Most of these growth events show decoupled carbon and nitrogen systematics. In addition, EBSD identifies deformation and recrystallization and nitrogen aggregation states range from pure IaA to pure IaB, supporting a heterogeneous and episodic growth history.
Africa, South Africa, Guinea, South America, Brazil
deposit - Kankan, Jagersfontein, Juina
Abstract: Inclusions in super-deep diamonds provide a unique window to the sublithospheric mantle (e.g. [1-4]). Here we present oxygen isotopes for Kankan majoritic garnet and former bridgmanite inclusions. The clustering of Kankan majorites around a d18O of +9‰ is nearly identical to those reported from Jagersfontein [1]. This elevated and nearly constant d18O signal indicates homogenization of partial melts from the uppermost part of altered basaltic slabs. Conversely, d18O values in Juina majorites are highly variable [2] due to crystallization from small, discrete melt pockets in a heterogeneous eclogitic source. While all these majorites have eclogitic/pyroxenitic Cr2O3 and CaO contents, charge-balance for Si[VI] is achieved very differently, with Jagersfontein [3], Kankan [4], and Juina [2] majorites transitioning from eclogitic Na[VIII]Si[VI] to peridotitic-pyroxenitic [5] Mg[VI]Si[VI] substitutions. We interpret this shift as the result of homogenized eclogitic partial melts infiltrating and reacting with adjacent pyrolitic mantle at Kankan and Jagersfontein. Increases in Mg# and Cr2O3 with reductions in d18O support this reaction. This model is in agreement with recent experiments in which majorites and diamonds form from a reaction of slab-derived carbonatite with reduced pyrolite at 300-700 km depth [6]. The Kankan diamonds also provide an opportunity to establish the chemical environment of the lower mantle. Four inclusions of MgSiO3, inferred to be former bridgmanite [4], provide the first-measured d18O values for lower mantle samples. These values suggest derivation from primitive mantle, or unaltered subducted oceanic lithospheric mantle. The Kankan super-deep inclusions thus provide a cross-section of deep mantle that highlights slab-pyrolite reactions in the asthenosphere and primitive compositions in the lower mantle.
Society of Economic Geology Geoscience and Exploration of the Argyle, Bunder, Diavik, and Murowa Diamond Deposits, Special Publication no. 20, pp.319-342.
Bulbuc, K.M., Galarneau, M., Stachel, T., Stern, R.A., Kong, J., Chinn, I.
Contrasting growth conditions for sulphide-and garnet-included diamonds from the Victor mine ( Ontario).
2018 Yellowknife Geoscience Forum , p. 97-98. abstract
Canada, Ontario, Attawapiskat
deposit - Victor
Abstract: The Victor Diamond Mine, located in the Attawapiskat kimberlite field (Superior Craton), is known for its exceptional diamond quality. Here we study the chemical environment of formation of Victor diamonds. We imaged eight sulphide-included diamond plates from Victor using cathodoluminescence (CL). Then, along core-rim transects, we measured nitrogen content and aggregation state utilizing Fourier Transform Infrared (FTIR) spectroscopy, and the stable isotope compositions of carbon (d13C) and nitrogen (d15N), using a multi-collector ion microprobe (MC-SIMS). We compare the internal growth features and chemical characteristics of these sulphide inclusion-bearing diamonds with similar data on garnet inclusion-bearing diamonds from Victor (BSc thesis Galarneau). Using this information, possible fractionation processes during diamond precipitation are considered and inferences on the speciation of the diamond forming fluid(s) are explored. Sulphide inclusion-bearing diamonds show much greater overall complexity in their internal growth features than garnet inclusion-bearing diamonds. Two of the sulphide-included samples have cores that represent an older generation of diamond growth. Compared to garnet inclusion-bearing diamonds, the sulphide-included diamonds show very little intra-sample variation in both carbon and nitrogen isotopic composition; the inter-sample variations in carbon isotopic composition, however, are higher than in garnet included diamonds. For sulphide-included diamonds, d13C ranges from -3.4 to -17.5 and d15N ranges from -0.2 to -9.2. Garnet inclusion-bearing diamonds showed d13C values ranging from -4.6 to -6.0 and d15N ranging from -2.8 to -10.8. The observation of some 13C depleted samples indicates that, unlike the lherzolitic garnet inclusion-bearing diamonds, the sulphide inclusion-bearing diamonds are likely both peridotitic and eclogitic in origin. The total range in N content across sulphide inclusion-bearing diamonds was 2 to 981 at ppm, similar to the garnet-included samples with a range of 5 to 944 at ppm. The very limited variations in carbon and nitrogen isotopic signatures across growth layers indicate that sulphide-included Victor diamonds grew at comparatively high fluid:rock ratios. This is contrasted by the garnet inclusion-bearing diamonds that commonly show the effects of Rayleigh fractionation and hence grew under fluid-limited conditions.
Society of Economic Geology Geoscience and Exploration of the Argyle, Bunder, Diavik, and Murowa Diamond Deposits, Special Publication no. 20, pp. 343-358.
Canada, Ontario, Attawapiskat, Africa, South Africa
deposit - Victor, Finsch, Newlands
Abstract: Quantitative trace element data from high-purity gem diamonds from the Victor Mine, Ontario, Canada as well as near-gem diamonds from peridotite and eclogite xenoliths from the Finsch and Newlands mines, South Africa, acquired using an off-line laser ablation method show that we see the same spectrum of fluids in both high-purity gem and near-gem diamonds that was previously documented in fibrous diamonds. “Planed” and “ribbed” trace element patterns characterize not only the high-density fluid (HDF) inclusions in fibrous diamonds but also in gem diamonds. Two diamonds from two Finsch harzburgite xenoliths show trace element patterns similar to those of saline fluids, documenting the involvement of saline fluids in the precipitation of gem diamonds, further strengthening the link between the parental fluids of both gem and fibrous diamonds. Differences in trace element characteristics are evident between Victor diamonds containing silicate inclusions compared with Victor diamonds containing sulphide inclusions. The sulphide-bearing diamonds show lower levels of inter-element fractionation and more widely varying siderophile element concentrations - indicating that the silicate and sulphide-bearing diamonds likely formed by gradations of the same processes, via melt-rock reaction or from a subtly different fluid source. The shallow negative LREEN-HREEN slopes displayed by the Victor diamonds establish a signature indicative of original derivation of the diamond forming agent during major melting (~10% melt). Consequently, this signature must have been passed on to HDFs separating from such silicate melts.
Mineralogy and Petrology, doi.org/10.1007/ s00710-018-0641-4 18p.
Canada, Northwest Territories
indicator minerals, geocthermobarometry
Abstract: The Central Mackenzie Valley (CMV) area of Northwest Territories is underlain by Precambrian basement belonging to the North American Craton. The potential of this area to host kimberlitic diamond deposits is relatively high judging from the seismologically-defined lithospheric thickness, age of basement rocks (2.2-1.7 Ga) and presence of kimberlite indicator minerals (KIMs) in Quaternary sediments. This study presents data for a large collection of KIMs recovered from stream sediments and till samples from two study areas in the CMV, the Horn Plateau and Trout Lake. In the processed samples, peridotitic garnets dominate the KIM grain count for both regions (> 25% each) while eclogitic garnet is almost absent in both regions (< 1% each). KIM chemistry for the Horn Plateau indicates significant diamond potential, with a strong similarity to KIM systematics from the Central and Western Slave Craton. The most significant issue to resolve in assessing the local diamond potential is the degree to which KIM chemistry reflects local and/or distal kimberlite bodies. Radiogenic isotope analysis of detrital kimberlite-related CMV ilmenite and rutile grains requires at least two broad age groups for eroded source kimberlites. Statistical analysis of the data suggests that it is probable that some of these KIMs were derived from primary and/or secondary sources within the CMV area, while others may have been transported to the area from the east-northeast by Pleistocene glacial and/or glaciofluvial systems. At this stage, KIM chemistry does not allow the exact location of the kimberlitic source(s) to be constrained.
Regier, M.E., Pearson, D.G., Stachel, T., Stern, R.A., Harris, J.
Tracing the formation and abundance of superdeep diamonds.
2018 Yellowknife Geoscience Forum , p. 63. abstract
Africa, Guinea
deposit - Kankan
Abstract: Super-deep diamonds from the transition zone and lower mantle are valuable targets for mining, as they are often large, gem-quality1 or ultra-valuable type IIb stones2. Hence, in mine prospects, it may become important to determine the various populations of sub-lithospheric diamonds. Unambiguously identifying a diamond’s depth of formation is difficult as some minerals can be indicative of various depth regimes (e.g., ferropericlase, Ca-walstromite, enstatite, clinopyroxene, coesite). Here, we use the oxygen isotope compositions of inclusions in Kankan diamonds from Guinea to distinguish between the various diamond-forming processes that happen at lithospheric, asthenospheric to transition zone, and lower mantle depths. In this way, we hope to establish a process by which isotope geochemistry can better constrain the populations of superdeep diamonds in kimberlites, and can assist in estimating a pipe’s propensity for large, valuable stones. Oxygen isotopic analysis by secondary ion mass spectrometry (SIMS) is a high-precision technique that can track hydrothermal alteration that occurred at or close below the ocean floor. Our analyses of inclusions from Kankan diamonds demonstrate that garnets with 3-3.03 Si cations (pfu) have d18O that are well-constrained within the normal values expected for peridotitic and eclogitic inclusions, but that garnets with =3.04 Si cations (pfu) have consistently high d18O (median: 10‰) that slightly decreases with increasing Cr2O3. We interpret this signal as the reaction between a melted carbonate-rich oceanic slab and normal convecting asthenosphere3. In contrast, retrogressed, or former, bridgmanite has d18O values similar to primitive mantle, suggesting little involvement of slab melts. In contrast to the worldwide suite of lithospheric inclusions of eclogitic paragenesis (median d18O of 7.03‰)4,5, diamonds derived from ~250 to 500 km have inclusions with consistent, extremely high oxygen isotopes (median: 9.32‰)6,7, due to the melting of extremely enriched carbonated oceanic crust. Diamonds from the lower mantle, however, have inclusions with primitive mantle oxygen isotopes, suggesting a different formation process. The clear distinction in inclusion d18O between lithospheric, asthenospheric to transition zone, and lower mantle diamond populations is useful in informing the depth regime of a suite of stones, especially those with inclusions of ambiguous depths (e.g., clinopyroxene, coesite, Ca-walstromite, enstatite, ferropericlase, etc.). For instance, we are currently searching for exotic oxygen isotopes in ferropericlase that indicate asthenospheric diamond growth, rather than the primitive mantle values expected for lower mantle ferropericlase. In conclusion, oxygen isotopic analyses of diamond inclusions can identify various sublithsopheric diamond populations, and may benefit the assessment of a mine’s potential for large gem-quality, or type IIb diamonds.
Siva-Jothy, W., Chinn, I., Stachel, T., Pearson, D.G.
Resorption features of macro and micro diamonds from Gahcho Kue.
2018 Yellowknife Geoscience Forum , p. 120. abstract
Canada, Northwest Territories
deposit - Gahcho Kue
Abstract: Studies into the relationship between oxygen fugacity of mantle fluids/melts and etch features on diamond surfaces have shown specific fluid/melt compositions correspond to associated etch features. A classification scheme has been proposed to determine the fluid composition within a kimberlite by examining etch features associated with diamond surfaces as a proxy for fluid composition in an ascending diamondiferous kimberlite. A suite of 388 microdiamonds (defined as diamonds which pass through a 0.5 mm square mesh screen) and 88 macrodiamonds taken from various drill hole depths in the Hearne kimberlite and 88 inclusion-bearing macrodiamonds from the Gahcho Kué mine (NWT) were viewed under a secondary electron microscope for their surface features in accordance with this scheme. Two hundred and thirty specimens show shallow-depth etch features that can be easily classified: the main features observed were trigons and truncated trigons on the {111} faces and/or tetragons on the {100} faces (indicating etching by fluids of variable CO2:H2O ratios). Thirty-four specimens show deeper etched features that represent either extreme degrees of regular etching (such as deeply-etched tetragons), or corrosion type etching, wherein the diamond lattice is etched in a fluid-free melt. Variability between crystal habits exists between the size fractions studied, with cubic habits only being observed in the microdiamond population. This implies variable formation conditions for the two different diamond size fractions studied from Gahcho Kué. Among microdiamonds, surface textures associated with fluid-related etching are markedly more variable, with truncated trigons, tetragons, and both positive and negative trigons being observed. However, these often occur in combination with features showing a large variability in their depth to size ratio between samples, which is typically caused by mantle-related etching. These observations suggest repeated interaction of fluids/melts with the Gahcho Kué diamond population, with at least some of the fluids affecting the microdiamonds being more CO2-rich than those that etched the macrodiamond fraction.
Society of Economic Geology Geoscience and Exploration of the Argyle, Bunder, Diavik, and Murowa Diamond Deposits, Special Publication no. 20, pp. 145-168.
Gems & Gemology, Sixth International Gemological Symposium Vol. 54, 3, 1p. Abstract p. 271-2.
Global
diamond inclusions
Abstract: Through research on inclusions in diamonds over the past 50 years, a detailed picture has emerged of the mineralogical and chemical composition of diamond substrates in Earth’s mantle and of the pressure-temperature conditions during diamond formation. The exact diamond-forming processes, however, are still a subject of debate. One approach to constrain diamond-forming processes is through model calculations that aim to obtain the speciation and the carbon content of carbon-hydrogen-oxygen (CHO) fluids at particular O/(O+H) ratios and pressure-temperature conditions (using GFluid of Zhang and Duan, 2010, or other thermodynamic models of fluids). The predictions of such model calculations can then be tested against carbon and nitrogen stable isotopes and nitrogen content fractionation models, based on in situ analyses across homogenously grown diamond growth layers. Based on this approach, Luth and Stachel (2014) proposed that diamond precipitation occurs predominantly from cooling or ascending CHO fluids, composed of water with minor amounts of CO2 and CH4 (which in response to decreasing temperature may react to form diamond: CO2+ CH4 ? 2C + 2H2O). The second approach focuses on constraining the diamondforming medium by studying submicrometer fluid inclusions in fibrous-clouded and, more recently, gem diamonds. Such studies established the presence of four compositional end members of inclusions: hydrous-saline, hydrous-silicic, high-Mg carbonatitic, and low-Mg carbonatitic (e.g., Navon et al., 1988; Weiss et al., 2009). Although these fluid inclusions only depict the state of the diamond-forming medium after formation, they nevertheless provide unique insights into the major and trace-element composition of such fluids that otherwise could not be obtained. The apparent dichotomy between the two approaches—models for pure CHO fluids and actual observation of impure fluids (socalled high-density fluids) in clouded and fibrous diamonds—relates to the observation that in high-pressure and high-temperature experiments close to the melting temperature of mantle rocks, hydrous fluids contain 10–50% dissolved solid components (e.g., Kessel et al., 2015). Although at this stage the impurity content in natural CHO fluids cannot be included in numerical models, the findings for clouded and fibrous diamonds are not in conflict with the isochemical diamond precipitation model. Specifically, the fact that observed high-density inclusions are often carbonate bearing is not in conflict with the relatively reducing redox conditions associated with the O/(O+H) ratios of modeled diamond-forming CHO fluids. The model for the minimum redox stability of carbonate - bearing melts of Stagno and Frost (2010) permits fluid carbonate contents of up to about 30% at such redox conditions. Although additional data need to be obtained to build a thermodynamic model for CHO fluids with dissolved silicates and to better characterize the major and trace-element composition of high-density CHO fluids in equilibrium with typical diamond substrates (the rock types peridotite and eclogite), we already see sufficient evidence to suggest that the two approaches described above are converging to a unified model of isochemical diamond precipitation from cooling or ascending high-density CHO fluids.
Abstract: The oxidation state of iron in Earth’s mantle is well known to depths of approximately 200?km, but has not been characterized in samples from the lowermost upper mantle (200-410?km depth) or the transition zone (410-660?km depth). Natural samples from the deep (>200?km) mantle are extremely rare, and are usually only found as inclusions in diamonds. Here we use synchrotron Mössbauer source spectroscopy complemented by single-crystal X-ray diffraction to measure the oxidation state of Fe in inclusions of ultra-high pressure majoritic garnet in diamond. The garnets show a pronounced increase in oxidation state with depth, with Fe3+/(Fe3++ Fe2+) increasing from 0.08 at approximately 240?km depth to 0.30 at approximately 500?km depth. The latter majorites, which come from pyroxenitic bulk compositions, are twice as rich in Fe3+ as the most oxidized garnets from the shallow mantle. Corresponding oxygen fugacities are above the upper stability limit of Fe metal. This implies that the increase in oxidation state is unconnected to disproportionation of Fe2+ to Fe3+ plus Fe0. Instead, the Fe3+ increase with depth is consistent with the hypothesis that carbonated fluids or melts are the oxidizing agents responsible for the high Fe3+ contents of the inclusions.
Abstract: Quantitative trace element data from high-purity gem diamonds from the Victor Mine, Ontario, Canada as well as near-gem diamonds from peridotite and eclogite xenoliths from the Finsch and Newlands mines, South Africa, acquired using an off-line laser ablation method show that we see the same spectrum of fluids in both high-purity gem and near-gem diamonds that was previously documented in fibrous diamonds. "Planed" and "ribbed" trace element patterns characterize not only the high-density fluid (HDF) inclusions in fibrous diamonds but also in gem diamonds. Two diamonds from two Finsch harzburgite xenoliths show trace element patterns similar to those of saline fluids, documenting the involvement of saline fluids in the precipitation of gem diamonds, further strengthening the link between the parental fluids of both gem and fibrous diamonds. Differences in trace element characteristics are evident between Victor diamonds containing silicate inclusions compared with Victor diamonds containing sulphide inclusions. The sulphide-bearing diamonds show lower levels of inter-element fractionation and more widely varying siderophile element concentrations - indicating that the silicate and sulphide-bearing diamonds likely formed by gradations of the same processes, via melt-rock reaction or from a subtly different fluid source. The shallow negative LREEN-HREEN slopes displayed by the Victor diamonds establish a signature indicative of original derivation of the diamond forming agent during major melting (~10% melt). Consequently, this signature must have been passed on to HDFs separating from such silicate melts.
Geochemical Perspectives Letters, Vol. 9, pp. 6-10. 10.7185/geochemlet.1830
Mantle
peridotites
Abstract: The origin of the peridotites that form cratonic mantle roots is a central issue in understanding the history and survival of Earth’s oldest continents. A long-standing hypothesis holds that the unusual bulk compositions of some cratonic peridotites stem from their origin as subducted oceanic serpentinite, dehydrated during subduction to form rigid buoyant keels (Schulze, 1986; Canil and Lee, 2009). We present oxygen isotope data from 93 mantle peridotites from five different Archean cratons to evaluate their possible origin as serpentinites. Cratonic mantle peridotite shows remarkably uniform d18O values, identical to modern MORB-source mantle, that do not vary with bulk rock Si-enrichment or Ca-depletion. These data clearly conflict with any model for cratonic lithosphere that invokes serpentinite as a protolith for cratonic peridotite, and place additional constraints on cratonic mantle origins. We posit that the uniform d18O was produced by sub-arc and/or MOR depletion processes and that the Si-enriched nature of some samples is unlikely to be related to slab melt infiltration. Instead, we suggest a peridotitic source of Si-enrichment, derived from ascending mantle melts, or a water-fluxed depleted mantle. These variably Si-enriched, cratonic mantle protoliths were then collisionally compressed into the thick cratonic roots that have protected Earth’s oldest continental crust for over 2.5 Gyr.
Chemical Geology, doi.org/10,1016/j.chem geo.2019.04.014 37p.
Africa, Sierra Leone
deposit - Zimmi
Abstract: Here we present SIMS data for a suite of Zimmi sulphide-bearing diamonds that allow us to evaluate the origin and redox-controlled speciation of diamond-forming fluids for these Neoproterozoic eclogitic diamonds. Low d13C values below -15‰ in three diamonds result from fluids that originated as carbon in the oceanic crust, and was recycled into the diamond-stable subcratonic lithospheric mantle beneath Zimmi during subduction. d13C values between -6.7 and -8.3‰ in two diamonds are within the range for mantle-derived carbon and could reflect input from mantle fluids, serpentinised peridotite, or homogenised abiogenic and/or biogenic carbon (low d13C values) and carbonates (high d13C values) in the oceanic crust. Diamond formation processes in eclogitic assemblages are not well constrained and could occur through redox exchange reactions with the host rock, cooling/depressurisation of CHO fluids or during H2O-loss from CHO fluids. In one Zimmi diamond studied here, a core to rim trend of decreasing d13C (-23.4 to -24.5‰) and decreasing [N] is indicative of formation from reduced CH4-bearing fluids. Unlike mixed CH4-CO2 fluids near the water maximum, isochemical diamond precipitation from such reduced CHO fluids will only occur during depressurisation (ascent) and should not produce coherent fractionation trends in single diamonds that reside at constant depth (pressure). Furthermore, due to a low relative proportion of the total carbon in the fluid being precipitated, measurable carbon isotopic variations in diamond are not predicted in this model and therefore cannot be reconciled with the 1‰ internal core-to- rim variation. Consequently, this Zimmi eclogitic diamond showing a coherent trend in d13C and [N] likely formed through oxidation of methane by the host eclogite, although the mineralogical evidence for this process is currently lacking.
Earth and Planetary Science Letters, Vol. 516, pp. 190-201.
Mantle
carbon
Abstract: A long-standing unresolved problem in understanding Earth's deep carbon cycle is whether crustal carbon is recycled beyond arc depths. While isotopic signatures of eclogitic diamonds and their inclusions suggest deep recycling of crustal material, the crustal carbon source remains controversial; seafloor sediment - the widely favored crustal carbon source - cannot explain the combined carbon and nitrogen isotopic characteristics of eclogitic diamonds. Here we examined the carbon and oxygen isotopic signatures of bulk-rock carbonate for 80 geographically diverse samples from altered mafic-ultramafic oceanic crust (AOC), which comprises 95 vol% of the crustal material in subducting slabs. The results show: (i) AOC contains carbonate with C values as low as -24‰, indicating the presence of biogenic carbonate; (ii) carbonate in AOC was mainly formed during low-temperature (<100 °C) alteration processes. Modeling accounting for this newly recognized carbon source in the oceanic crust with formation temperatures <100 °C yields a global carbon influx of 1.5±0.3 × 1012 mol C/yr carried by subducting AOC into the trench, which is 50-90% of previous estimates, but still of the same order of the carbon influx carried by subducting sediments into the trench. The AOC can retain carbon better than sediment during subduction into the asthenosphere, transition zone and lower mantle. Mixing of asthenospheric and AOC fluids provides the first consistent explanation of the diverse record of carbon and nitrogen isotopes in diamonds, suggesting that AOC, instead of sediment, is the key carrier of crustal carbon into the deep mantle.
www.minsocam.org/ MSA/Centennial/ MSA_Centennial _Symposium.html The next 100 years of mineral science, June 20-21, p. 22. Abstract
Mantle
diamond inclusions
Abstract: Much of the temporal record of Earth’s evolution, including its trace of plate tectonics, is blurred due to the dynamic nature of the crust-mantle system. While zircon provides the highest fidelity crustal record, diamond takes over in the mantle as the go-to mineral, capable of retaining critical information for a variety of geochemical proxies, over billion year timescales. Here we use diamond and its inclusions to tell the story of the recycling of C, N, O, H and B from the crust to various depths in Earth’s mantle. In this story, altered oceanic crust (AOC) and lithospheric mantle will play a prominent role. The carbon isotope record of diamond has long been thought to reflect the mixing of primitive mantle carbon with carbon recycled from isotopically light organic material originating from the crust. A major difficulty has been reconciling this view with the highly varied nitrogen and carbon isotope signatures in diamonds of eclogitic paragenesis, which cannot be interpreted by the same mechanism. Recent work on AOC of igneous origin (Li et al., EPSL in press) shows how isotopically varied carbon and nitrogen can be subducted to great depth and retained in spatial juxtaposition with the mafic silicate component of AOC to form the complex C-N isotope systematics observed in diamonds and the varied O isotope compositions of their inclusions. In this model a large portion of the 13C depleted carbon originated from biogenic carbonate within the AOC rather than from overlying sediments. Metamorphosed and partially devolatilized AOC will have very variable C/N ratios and highly variable nitrogen isotopes, explaining why simple two component mixing between organic matter and convecting upper mantle cannot explain the complexity of C-N isotope systematics in diamonds. Igneous AOC and its underlying altered mantle are considerably more efficient than subducted sediment at retaining their volatile inventory when recycled to transition zone and even lower mantle depths. Hence, this combination of mixing between AOC-derived volatiles and those from the convecting mantle produces the isotopic fingerprints of superdeep diamonds and their inclusions. These amazing diamonds, some worth millions of dollars, can contain pristine ultra-high pressure mineral phases never before seen in terrestrial samples. The first hydrous ringwoodite found in Earth provides evidence in support of a locally water-saturated transition zone that may result from altered oceanic lithospheric mantle foundering at that depth in the mantle. The O isotope composition of deep asthenosphere and transition zone phases document clearly crustal precursors that have interacted with the hydrosphere before residing hundreds of km deep within the Earth. Finally, spectacular blue diamonds contain boron, an element of strong crustal affinities, transported into the deep Earth along with crustal carbon, by the plate tectonic conveyor system. Diamond - such a simple mineral - and its inclusions, will continue to provide a unique, brightly illuminating light into the darkest recesses of Earth’s mantle for many years to come.
Abstract: Primary diamond deposits are typically restricted to the stable Archean cores of continents, an association known as Clifford’s rule. Archean to Palaeoproterozoic crustal ages (3.3 - 2.1 Ga) have been reported for the Sask Craton, a small terrane in Western Canada, which hosts the diamondiferous Cretaceous Fort à la Corne (FALC) Kimberlite Field. Yet the craton is enclosed by the Palaeoproterozoic (1.9 - 1.8 Ga) Trans Hudson Orogen (THO). In this study we evaluate the age and geochemistry (major, trace, and platinum group elements data, as well as Re-Os isotope systematics) of the lithospheric mantle root beneath the Sask Craton to assess the timing of craton formation and the potential role played by the THO in its evolution. The lithospheric mantle root is dominated by lherzolite with average olivine Mg# of 91.5, which is more fertile than observed in other cratons. Garnets from concentrate further highlight the rarity of harzburgite in the lithospheric mantle. Single clinopyroxene thermobarometry provides temperaturepressure constraints for the garnet-bearing lithospheric mantle (840 to 1250 °C and 2.7 to 5.5 GPa), indicative of a cool geotherm (38 mW/m2) and a large diamond window of ~100 km thickness (from ~120-220 km depth). Most of the studied xenoliths show evidence for melt metasomatism in their trace and major element compositions, while retaining platinum group element patterns expected for melt residues. 187Os/188Os compositions span a broad range from 0.1109 to 0.1507, corresponding to Re-depletion (TRD) ages between 2.4 to 0.3 Ga, with a main mode in the Palaeoproterozoic (2.4 to 1.7 Ga). With the absence of Archean ages, the main depletion and stabilisation of the Sask Craton occurred in the Palaeoproterozoic, closely associated with the Wilson cycle of the THO. From a diamond exploration perspective this indicates that major diamond deposits can be found on cratons that were stabilised in the Palaeoproterozoic.
Abstract: The recently recognised Sask Craton, a small terrane with Archean (3.3-2.5 Ga) crustal ages, is enclosed in the Paleoproterozoic (1.9-1.8 Ga) Trans Hudson Orogen (THO). Only limited research has been conducted on this craton, yet it hosts major diamond deposits within the Cretaceous (~106 to ~95 Ma) Fort à la Corne (FALC) Kimberlite Field. This study describes major, trace and platinum group element data, as well as osmium isotopic data from peridotitic mantle xenoliths (n = 26) from the Star and Orion South kimberlites. The garnet-bearing lithospheric mantle is dominated by moderately depleted lherzolite. Equilibration pressures and temperatures (2.7 to 5.5 GPa and 840 to 1250 °C) for these garnet peridotites define a cool geotherm indicative of a 210 km thick lithosphere, similar to other cratons worldwide. Many of the peridotite xenoliths show the major and trace element signatures of carbonatitic and kimberlitic melt metasomatism. The Re-Os isotopic data yield TRD (time of Re-depletion) model ages, which provide minimum estimates for the timing of melt depletion, ranging from 2.4 to 0.3 Ga, with a main mode spanning from 2.4 to 1.7 Ga. No Archean ages were recorded. This finding and the complex nature of events affecting this terrane from the Archean through the Palaeoproterozoic provide evidence that the majority of the lithospheric mantle was depleted and stabilised in the Palaeoproterozoic, significantly later than the Archean crust. The timing of the dominant lithosphere formation is linked to rifting (~2.2 Ga - 2.0 Ga), and subsequent collision (1.9-1.8 Ga) of the Superior and Hearne craton during the Wilson cycle of the Trans Hudson Orogen.
Contributions to Mineralogy and Petrology, Vol. 174, (12) doi: 10.1007/s00410-019-1634-y
Africa, Ghana
deposit - Akwatia
Abstract: Trace-element concentrations in olivine and coexisting garnets included in diamonds from the Akwatia Mine (Ghana, West African Craton) were measured to show that olivine can provide similar information about equilibration temperature, diamond paragenesis and mantle processes as garnet. Trace-element systematics can be used to distinguish harzburgitic olivines from lherzolite ones: if Ca/Al ratios of olivine are below the mantle lherzolite trend (Ca/Al??300 µg/g Ca or?>?60 µg/g Na are lherzolitic. Conventional geothermobarometry indicates that Akwatia diamonds formed and resided close to a 39 mW/m2 conductive geotherm. A similar value can be derived from Al in olivine geothermometry, with TAl-ol ranging from 1020 to 1325 °C. Ni in garnet temperatures is on average somewhat higher (TNi-grt?=?1115-1335 °C) and the correlation between the two thermometers is weak, which may be not only due to the large uncertainties in the calibrations, but also due to disequilibrium between inclusions from the same diamond. Calcium in olivine should not be used as a geothermobarometer for harzburgitic olivines, and often gives unrealistic P-T estimates for lherzolitic olivine as well. Diamond-hosted olivine inclusions indicate growth in an extremely depleted (low Ti, Ca, Na, high Cr#) environment with no residual clinopyroxene. They are distinct from olivines from mantle xenoliths which show higher, more variable Ti contents and lower Cr#. Hence, most olivine inclusions in Akwatia diamonds escaped the refertilisation processes that have affected most mantle xenoliths. Lherzolitic inclusions are probably the result of refertilisation after undergoing high-degree melting first. Trivalent cations appear to behave differently in harzburgitic diamond-hosted olivine inclusions than lherzolitic inclusions and olivine from mantle xenoliths. Some divalent chromium is predicted to be present in most olivine inclusions, which may explain high concentrations up to 0.16 wt% Cr2O3 observed in some diamond inclusions. Strong heterogeneity of Cr, V and Al in several inclusions may also result in apparent high Cr contents, and is probably due to late-stage processes during exhumation. However, in general, diamond-hosted olivine inclusions have lower Cr and V than expected compared to mantle xenoliths. Reduced Na activity in depleted harzburgites limits the uptake of Cr, V and Sc via Na-M3+ exchange. In contrast, Al partitioning in harzburgites is not significantly reduced compared to lherzolites, presumably due to uptake of Al in olivine by Al-Al exchange.
Diamonds & Related Materials, Vol. 101, 107642, 8p. Pdf
Canada, Northwest Territories
deposit - Ekati
Abstract: High pressure high temperature (HPHT) treatment has long been applied in the gem trade for changing the body colour of diamonds. The identification of HPHT-treated diamonds is a field of on-going research in gemological laboratories, as different parameters of treatment will result in either the creation or the destruction of a variety of lattice defects in diamonds. Some features that exist in treated diamonds can also be found in natural diamonds, and consequently must not be employed for the separation of treated and natural diamonds. In this research, we investigated the properties of 11 natural yellow diamonds (directly obtained from the Ekati Diamond Mine to ensure that they are untreated) before and after HPHT treatment, conducted at a temperature of 2100 °C and a pressure of 6 GPa for 10 min. We report spectroscopic data and fluorescence characteristics, collected using PL mapping, FTIR mapping and fluorescence imaging showing the distribution of lattice defects and internal growth structures. PL mapping indicates SiV defects exist in one of the nitrogen-rich natural diamonds prior to treatment. Silicon-related defects can also be created by HPHT treatment, and they seem to show a relationship with pre-existing NV- centres. SIMS analysis was conducted to confirm the presence of silicon in these diamonds. The increase in the hydrogen-related infrared absorption peak at 3107 cm-1 (VN3H) is very strong in some diamonds that do not form B-centres during treatment. NVH was observed in our HPHT-treated natural diamonds, so it is possible that this strong increase in VN3H suppresses the aggregation of A- to B-centres as the newly formed A-centres were captured by NVH lattice defects to form VN3H. HPHT-altered and HPHT-induced platelet peaks are different from their natural counterparts in peak width and shape. Strong green fluorescence over a large area of a diamond, which is linked to relatively high concentration of H3 centres, was produced after HPHT treatment. We are confident that the unusual platelet peaks and strong emission of H3 centres are reliable indicators for HPHT-treated diamonds as they are not observed in untreated natural diamonds.
Mineralogy and Petrology, in press available 13p. Pdf
Canada, Northwest Territories
deposit - Chidliak, Ekati
Abstract: Yellow diamonds from the CH-7 (Chidliak) and the Misery (Ekati Mine) kimberlites in northern Canada are characterised for their nitrogen characteristics, visible light absorption, internal growth textures, and carbon isotope compositions. The diamonds are generally nitrogen-rich, with median N contents of 1230 (CH-7) and 1030 at.ppm (Misery). Normally a rare feature in natural diamonds, single substitutional nitrogen (C centres) and related features are detected in infrared absorption spectra of 64% of the studied diamonds from CH-7 and 87% from Misery and are considered as the major factor responsible for their yellow colouration. Episodically grown diamonds, characterised by colourless cores containing some nitrogen in the fully aggregated form (B centres) and yellow outer layers containing C centres, occur at both localities. Carbon isotope compositions and N contents also are significantly different in such core and rim zones, documenting growth during at least two temporally distinct events and involving different diamond forming fluids. Based on their nitrogen characteristics, both the yellow diamonds and yellow rims must have crystallized in close temporal proximity (<<1 Ma) to kimberlite activity at CH-7 and Misery.
Geochimica et Cosmochimica Acta, Vol. 275, pp. 99-122.
Mantle
carbon
Abstract: Diamonds are unrivalled in their ability to record the mantle carbon cycle and mantle fO2 over a vast portion of Earth’s history. Diamonds’ inertness and antiquity means their carbon isotopic characteristics directly reflect their growth environment within the mantle as far back as ~3.5 Ga. This paper reports the results of a thorough secondary ion mass spectrometry (SIMS) carbon isotope and nitrogen concentration study, carried out on fragments of 144 diamond samples from various locations, from ~3.5 to 1.4 Ga for P [peridotitic]-type diamonds and 3.0 to 1.0 Ga for E [eclogitic]-type diamonds. The majority of the studied samples were from diamonds used to establish formation ages and thus provide a direct connection between the carbon isotope values, nitrogen contents and the formation ages. In total, 908 carbon isotope and nitrogen concentration measurements were obtained. The total d¹³C data range from -17.1 to -1.9 ‰ (P = -8.4 to -1.9 ‰; E = -17.1 to -2.1‰) and N contents range from 0 to 3073 at. ppm (P = 0 to 3073 at. ppm; E = 1 to 2661 at. ppm). In general, there is no systematic variation with time in the mantle carbon isotope record since > 3 Ga. The mode in d¹³C of peridotitic diamonds has been at -5 (±2) ‰ since the earliest diamond growth ~3.5 Ga, and this mode is also observed in the eclogitic diamond record since ~3 Ga. The skewness of eclogitic diamonds’ d¹³C distributions to more negative values, which the data establishes began around 3 Ga, is also consistent through time, with no global trends apparent. No isotopic and concentration trends were recorded within individual samples, indicating that, firstly, closed system fractionation trends are rare. This implies that diamonds typically grow in systems with high excess of carbon in the fluid (i.e. relative to the mass of the growing diamond). Any minerals included into diamond during the growth process are more likely to be isotopically reset at the time of diamond formation, meaning inclusion ages would be representative of the diamond growth event irrespective of whether they are syngenetic or protogenetic. Secondly, the lack of significant variation seen in the peridotitic diamonds studied is in keeping with modeling of Rayleigh isotopic fractionation in multicomponent systems (RIFMS) during isochemical diamond precipitation in harzburgitic mantle. The RIFMS model not only showed that in water-maximum fluids at constant depths along a geotherm, fractionation can only account for variations of <1‰, but also that the principal d¹³C mode of -5 ± 1‰ in the global harzburgitic diamond record occurs if the variation in fO2 is only 0.4 log units. Due to the wide age distribution of P-type diamonds, this leads to the conclusion that the speciation and oxygen fugacity of diamond forming fluids has been relatively consistent. The deep mantle has therefore generated fluids with near constant carbon speciation for 3.5 Ga.
Abstract: Because of their robust nature, diamonds survive mantle processes and protect occluded minerals since the time of diamond formation. For the Kaapvaal Craton - the archetype for craton formation and evolution - the geochemical signatures of inclusions in Koffiefontein diamonds tell a story from craton formation to evolution and from lithospheric (below about 160 km) to lower mantle (>660 km) environs. We analysed a suite of 94 lithospheric to lower mantle diamonds and their silicate and oxide inclusions. Geochemical results confirm that the diamond substrates are very depleted, with Mg#OL of 91.5-95.0 and a dominance of low-Ca (<1.8 wt% CaO), presumably dunite-derived garnet. The Si-rich nature and preserved high Mg# of the peridotitic diamond substrates beneath Koffiefontein and the formation of KNbO3 (goldschmidtite) from an extremely fractionated melt/fluid indicate that potentially both mantle- and subduction-related fluids are the cause of metasomatism in the Kaapvaal cratonic root. Mantle-like, restricted carbon isotopic compositions of both P- and E-type diamonds (avg. d13C -5.7 ‰ and -6.6 ‰, respectively) indicate that an abundant, mantle-derived CHO fluid is responsible for diamond formation. Diamonds have a large range in nitrogen concentrations and isotopic compositions, suggesting decoupling from carbon and heterogeneous sources. d18O of former bridgmanite and d13C of its host diamond document a purely mantle-derived lower mantle component. Combined, these results reveal a complex and multistage evolution of the Kaapvaal Craton whereby multiple episodes of fluid and melt metasomatism re-enriched the craton already, prior to diamond formation, followed by diamond entrainment in a kimberlite possibly derived from the lower mantle.
Abstract: Among mineral inclusions in diamond, sulphides are the most abundant. Also, they are the keel tool for dating diamond formation given their high concentration of highlysiderophile elements. However, the mineralogical nature of these inclusions is not well understood, mainly due to the exsolution of the original, high temperature monosulphide solid solution (Mss) to Fe-, Ni- and Cu-rich endmembers during cooling, obscuring the original composition. This complex exsolution observed in sulphide inclusions in diamonds can also cause problems with Re-Os age determinations if the whole inclusion is not extracted. To overcome this issue, recently, sulphide inclusions have been homogenized at high temperature and controlled oxygen fugacity [1]. However, X-ray diffraction or Raman spectroscopy analyses, required to accurately identify the inclusion phases, and define their degree of crystallographic plus compositional homogeneity, have not been reported. Here we combine for the first time a thorough nondestructive multi-technique characterization of sulphide inclusions in diamonds from the Victor Mine (Canada) with homogenization experiments and isotopic analyses. In particular, we report X-ray diffraction data of the sulphides before and after homogenization, confirming a change from a polycrystalline assemblage of pyrrothite, pentlandite and chalcopyrite to single-crystal Mss. The data are used to reconstruct the Mss’ original bulk composition, define the true bulk isotopic ratios and document any difference in Re- Os isotope systematics.
Abstract: Majoritic garnet has been predicted to be a major component of peridotite and eclogite in Earth's deep upper mantle (>250 km) and transition zone. The investigation of mineral inclusions in diamond confirms this prediction, but there is reported evidence of other majorite-bearing lithologies, intermediate between peridotitic and eclogitic, present in the mantle transition zone. If these lithologies are derived from olivine-free pyroxenites, then at mantle transition zone pressures majorite may form monomineralic or almost monomineralic garnetite layers. Since majoritic garnet is presumably the seismically fastest major phase in the lowermost upper mantle, the existence of such majorite layers might produce a detectable seismic signature. However, a test of this hypothesis is hampered by the absence of sound wave velocity measurements of majoritic garnets with relevant chemical compositions, since previous measurements have been mostly limited to synthetic majorite samples with relatively simple compositions. In an attempt to evaluate the seismic signature of a pyroxenitic garnet layer, we measured the sound wave velocities of three natural majoritic garnet inclusions in diamond by Brillouin spectroscopy at ambient conditions. The chosen natural garnets derive from depths between 220 and 470 km and are plausible candidates to have formed at the interface between peridotite and carbonated eclogite. They contain elevated amounts (12-30%) of ferric iron, possibly produced during redox reactions that form diamond from carbonate. Based on our data, we model the velocity and seismic impedance contrasts between a possible pyroxenitic garnet layer and the surrounding peridotitic mantle. For a mineral assemblage that would be stable at a depth of 350 km, the median formation depth of our samples, we found velocities in pyroxenite at ambient conditions to be higher by 1.9(6)% for shear waves and 3.3(5)% for compressional waves compared to peridotite (numbers in parentheses refer to uncertainties in the last given digit), and by 1.3(13)% for shear waves and 2.4(10)% for compressional waves compared to eclogite. As a result of increased density in the pyroxenitic layer, expected seismic impedance contrasts across the interface between the monomineralic majorite layer and the adjacent rocks are about 5-6% at the majorite-eclogite-interface and 10-12% at the majoriteperidotite-boundary. Given a large enough thickness of the garnetite layer, velocity and impedance differences of this magnitude could become seismologically detectable.
Abstract: The transport of carbon into Earth’s mantle is a critical pathway in Earth’s carbon cycle, affecting both the climate and the redox conditions of the surface and mantle. The largest unconstrained variables in this cycle are the depths to which carbon in sediments and altered oceanic crust can be subducted and the relative contributions of these reservoirs to the sequestration of carbon in the deep mantle1. Mineral inclusions in sublithospheric, or ‘superdeep’, diamonds (derived from depths greater than 250 kilometres) can be used to constrain these variables. Here we present oxygen isotope measurements of mineral inclusions within diamonds from Kankan, Guinea that are derived from depths extending from the lithosphere to the lower mantle (greater than 660 kilometres). These data, combined with the carbon and nitrogen isotope contents of the diamonds, indicate that carbonated igneous oceanic crust, not sediment, is the primary carbon-bearing reservoir in slabs subducted to deep-lithospheric and transition-zone depths (less than 660 kilometres). Within this depth regime, sublithospheric inclusions are distinctly enriched in 18O relative to eclogitic lithospheric inclusions derived from crustal protoliths. The increased 18O content of these sublithospheric inclusions results from their crystallization from melts of carbonate-rich subducted oceanic crust. In contrast, lower-mantle mineral inclusions and their host diamonds (deeper than 660 kilometres) have a narrow range of isotopic values that are typical of mantle that has experienced little or no crustal interaction. Because carbon is hosted in metals, rather than in diamond, in the reduced, volatile-poor lower mantle2, carbon must be mobilized and concentrated to form lower-mantle diamonds. Our data support a model in which the hydration of the uppermost lower mantle by subducted oceanic lithosphere destabilizes carbon-bearing metals to form diamond, without disturbing the ambient-mantle stable-isotope signatures. This transition from carbonate slab melting in the transition zone to slab dehydration in the lower mantle supports a lower-mantle barrier for carbon subduction.
Abstract: The magnetotelluric component of the EarthScope USArray program has covered over 35% of the continental United States. Resistivity tomography models derived from these data image lithospheric structure and provide constraints on the distribution of fluids and melt within the lithosphere. We present a three-dimensional resistivity model of the northwestern United States which provides new insight into the tectonic assembly of western North America from the Archean to present. Comparison with seismic tomography models reveals regions of correlated and anti-correlated resistivity and velocity that help identify thermal and compositional variations within the lithosphere. Recent (Neogene) tectonic features reflected in the model include the subducting Juan de Fuca–Gorda plate which can be traced beneath the forearc to more than 100 km depth, high lithospheric conductivity along the Snake River Plain, and pronounced lower-crustal and upper-mantle conductivity beneath the Basin and Range. The latter is abruptly terminated to the northwest by the Klamath–Blue Mountains Lineament, which we interpret as an important structure during and since the Mesozoic assembly of the region. This boundary is interpreted to separate hot extended lithosphere from colder, less extended lithosphere. The western edge of Proterozoic North America, as indicated by the Cretaceous initial 87Sr/86Sr = 0.706 contour, is clearly reflected in the resistivity model. We further image an Archean crustal block (“Pend Oreille block”) straddling the Washington/Idaho border, which we speculate separated from the Archean Medicine Hat block in the Proterozoic. Finally, in the modern Cascades forearc, the geometry and internal structure of the Eocene Siletz terrane is reflected in the resistivity model. The apparent eastern edge of the Siletz terrane under the Cascades arc suggests that pre-Tertiary rocks fill the Washington and Oregon back-arc.
Perceptions of the impact of board members' individual perspectives on the social and environmental performance of companies. ( Based on SA and not junior companies).
Journal of the South African Institute of Mining and Metallurgy, Vol. 114, Nov. pp. 957-969.
Carbon speciation in the asthenosphere: experimental measurements of the redox conditions at which carbonate bearing melts coexist with graphite or diamond in peridotite assemblages.
Earth and Planetary Science Letters, Vol. 300, 1-2, Nov. 15, pp. 72-84.
Abstract: Chemical reduction-oxidation mechanisms within mantle rocks link to the terrestrial carbon cycle by influencing the depth at which magmas can form, their composition, and ultimately the chemistry of gases released into the atmosphere. The oxidation state of the uppermost mantle has been widely accepted to be unchanged over the past 3800 m.y., based on the abundance of redox-sensitive elements in greenstone belt-associated samples of different ages. However, the redox signal in those rocks may have been obscured by their complex origins and emplacement on continental margins. In contrast, the source and processes occurring during decompression melting at spreading ridges are relatively well constrained. We retrieve primary redox conditions from metamorphosed mid-oceanic ridge basalts (MORBs) and picrites of various ages (ca. 3000-550 Ma), using V/Sc as a broad redox proxy. Average V/Sc values for Proterozoic suites (7.0 ± 1.4, 2s, n = 6) are similar to those of modern MORB (6.8 ± 1.6), whereas Archean suites have lower V/Sc (5.2 ± 0.4, n = 5). The lower Archean V/Sc is interpreted to reflect both deeper melt extraction from the uppermost mantle, which becomes more reduced with depth, and an intrinsically lower redox state. The pressure-corrected oxygen fugacity (expressed relative to the fayalite-magnetite-quartz buffer, ?FMQ, at 1 GPa) of Archean sample suites (?FMQ -1.19 ± 0.33, 2s) is significantly lower than that of post-Archean sample suites, including MORB (?FMQ -0.26 ± 0.44). Our results imply that the reducing Archean atmosphere was in equilibrium with Earth's mantle, and further suggest that magmatic gases crossed the threshold that allowed a build-up in atmospheric O2 levels ca. 3000 Ma, accompanied by the first "whiffs" of oxygen in sediments of that age.
Abstract: Chemical reduction-oxidation mechanisms within mantle rocks link to the terrestrial carbon cycle by influencing the depth at which magmas can form, their composition, and ultimately the chemistry of gases released into the atmosphere. The oxidation state of the uppermost mantle has been widely accepted to be unchanged over the past 3800 m.y., based on the abundance of redox-sensitive elements in greenstone belt-associated samples of different ages. However, the redox signal in those rocks may have been obscured by their complex origins and emplacement on continental margins. In contrast, the source and processes occurring during decompression melting at spreading ridges are relatively well constrained. We retrieve primary redox conditions from metamorphosed mid-oceanic ridge basalts (MORBs) and picrites of various ages (ca. 3000-550 Ma), using V/Sc as a broad redox proxy. Average V/Sc values for Proterozoic suites (7.0 ± 1.4, 2s, n = 6) are similar to those of modern MORB (6.8 ± 1.6), whereas Archean suites have lower V/Sc (5.2 ± 0.4, n = 5). The lower Archean V/Sc is interpreted to reflect both deeper melt extraction from the uppermost mantle, which becomes more reduced with depth, and an intrinsically lower redox state. The pressure-corrected oxygen fugacity (expressed relative to the fayalite-magnetite-quartz buffer, ?FMQ, at 1 GPa) of Archean sample suites (?FMQ -1.19 ± 0.33, 2s) is significantly lower than that of post-Archean sample suites, including MORB (?FMQ -0.26 ± 0.44). Our results imply that the reducing Archean atmosphere was in equilibrium with Earth's mantle, and further suggest that magmatic gases crossed the threshold that allowed a build-up in atmospheric O2 levels ca. 3000 Ma, accompanied by the first "whiffs" of oxygen in sediments of that age.
Journal of Volcanology and Geothermal Research, in press available 15p.
Africa, Algeria
Lamproite
Abstract: The late Miocene (11-9 Ma) volcanic rocks of Kef Hahouner, ~ 40 km NE of Constantine (NE Algeria), are commonly classified as lamproites in literature. However, these rocks are characterized by an anhydrous paragenesis with plagioclase and Mg-rich olivine phenocrysts, set in a groundmass made up of feldspars, pyroxenes and opaque minerals. Thus, we classify the Kef Hahouner rocks as ultrapotassic shoshonites and latites, having K2O > 3 wt.%, K2O/Na2O > 2.5, MgO > 3-4 wt.%, SiO2 < 55-57 wt.% and SiO2/K2O < 15. All the investigated samples show primitive mantle-normalized multi-element patterns typical of orogenic (arc-type) magmas, i.e. enriched in LILE (e.g. Cs, Rb and Ba) and LREE (e.g. La/Yb = 37-59) with respect to the HFSE, peaks at Pb and troughs at Nb and Ta. Initial isotopic ratios are in the range of 87Sr/86Sr = 0.70874-0.70961, 143Nd/144Nd = 0.51222-0.51223, 206Pb/204Pb = 18.54-18.60, 207Pb/204Pb = 15.62-15.70 and 208Pb/204Pb = 38.88-39.16. The Kef Hahouner volcanic rocks show multi-element patterns similar to the other circum-Mediterranean lamproites and extreme Sr, Nd and Pb isotopic compositions. Nevertheless, the abundant plagioclase, the presence of Al-rich augite coupled with high Al2O3 whole rock compositions (9.6-21.4 wt.%), and the absence of phlogopite are all at inconsistent with the definition of lamproite. We reviewed the rocks classified as lamproites worldwide, and found that many of these rocks, as for the Kef Hahouner samples, should be actually defined as "normal" potassic to ultrapotassic volcanic rocks. Even the grouping of lamproites into "orogenic" and "anorogenic" types appears questionable.
Abstract: The deep carbon cycle and the origin of carbonatitic melts into the Earth’s mantle have been studied through the effect of CO2 on phase equilibria within carbonated eclogitic assemblage in the last decades. However the effect of temperature (T), pressure (P) and oxygen fugacity (fO2) on the melt composition remains unclear. This study aims to determine the melt composition of CO2-rich melts at fO2 buffered by the C/carbonate equilibrium as function of P and T. Experiments were performed using the Voggenreiter 840 t, Walker-type multi anvil press available at HP/HT Lab at National Institute of Geophysics and Volcanology (INGV) in Rome. The starting material employed for all the experiments is a mixture of synthetic omphacitic glass, quartz, dolomite and graphite representative of the Dolomite-CoesiteDiopside-Graphite buffering assemblage [DCDG; 1], doped with ilmenite and rutile and ~3 wt% iridium used as redox sensor to monitorate the oxygen fugacity during the experiment. The recovered quenched samples were polished for textural and chemical analysis of the mineral phases using Field emission scanning electron microscope and electron microprobe at the INGV. Preliminary results were combined with previous published data [2], and the determined fo2 compared with thermodynamic predictions. The obtained data show that at 800°C run product consists of a subsolidus mineral assemblage representative of the DCDG mineral assemblage. With increasing temperature, a carbonatitic melt forms with 1-5 wt% SiO2 at 900 °C, then evolves to a carbonate-silicate melt with 25 wt% SiO2 at 1100 °C, and to a silicate melt with ~32 wt% SiO2 at 1200 °C. Preliminary results demonstrate that magmas with compositions from carbonatitic to carbonate-silicate (hybrid) melts can form within less than 1 log unit of fO2 by redox melting of elemental carbon-bearing eclogite rocks.
Abstract: The composition of the early Earth’s atmosphere is believed to result from significant magma outgassing during the Archaean eon. It has been widely debated whether the oxygen fugacity (fo2) of the Earth’s mantle has remained constant over the last ~3.8 Ga to levels where volatiles were mostly in their mobile form [1,2], or whether the mantle has experienced a gradual increase of its redox state [3]. Both hypotheses raise fundamental questions on the effect of composition of the early Earth’s accreting material, the origin and availability of primordial carbon in Earth’s interior, and the migration rate of CO2-rich magmas. In addition, the occurrence in nature of carbonatites (or silicate-carbonatitic rocks), diamonds and carbides indicate a dominant control of the mantle redox state on the volatile speciation over time and, maybe, on mechanisms of their formation, reaction and migration through the silicate mantle. A recent model has been developed that combines both experimental results on the fo2 of preserved carbonaceous chondrites at high pressure and thermodynamic predictions of the the temporal variation of the mantle redox state, with the CO2-bearing magmas that could form in the early asthenospheric mantle. Since any variation in melt composition is expected to cause significant changes in the physical properties (e.g., viscosity and density), the migration rate of these magmas has been determined using recent in situ viscosity data on CO2-rich melts with the falling sphere technique. Our results allow determining the composition of CO2- bearing magmas as function of the increasing mantle redox state over time, and the mechanisms and rate for exchange of carbon between mantle reservoirs.
Abstract: Knowledge of the rheology of molten materials at high pressure and temperature is required to understand magma mobility and ascent rate at conditions of the Earth's interior. We determined the viscosity of nominally anhydrous sodium carbonate (Na2CO3), an analogue and ubiquitous component of natural carbonatitic magmas, by the in situ “falling sphere” technique at 1.7, 2.4 and 4.6?GPa, at 1200 to 1700?°C, using the Paris-Edinburgh press. We find that the viscosity of liquid Na2CO3 is between 0.0028?±?0.0001?Pa•s and 0.0073?±?0.0001?Pa•s in the investigated pressure-temperature range. Combination of our results with those from recent experimental studies indicate a negligible dependence on pressure from 1?atm to 4.6?GPa, and a small compositional dependence between molten alkali metal-bearing and alkaline earth metal-bearing carbonates. Based on our results, the viscosity of Na2CO3 is consistent with available viscosity data of both molten calcite (determined at high pressure and temperature) and Na2CO3 at ambient pressure. Molten Na2CO3 is a valid experimental analogue for study of the rheology of natural and/or synthetic near-solidus carbonatitic melts. Estimated values of the mobility and ascent velocity of carbonatitic melts at upper conditions are between 70 and 300?g?cm-3•Pa-1•s-1 and 330-1450?m•year-1, respectively, when using recently proposed densities for carbonatitic melts. The relatively slow migration rate allows magma-rock interaction over time causing seismic anomalies and chemical redox exchange.
Researchgate preprint, 10.31223/ofs.io/uh5c8 40p. Pdf
Mantle
carbonatite
Abstract: Over the last decades, many experimental studies have focused on the effect of CO2 on phase equilibria and melting behavior of synthetic eclogite and peridotite rocks as function of pressure and temperature. These studies have been of fundamental importance to understanding the origin of carbonated magmas varying in composition from carbonatitic to kimberlitic. The occurrence of diamonds in natural rocks is a further evidence of the presence of (reduced) carbon in the Earth’s interior. The oxygenation of the Earth’s interior (i.e. its redox state) through time has strongly influenced the speciation of carbon from the mantle to mantle-derived magmas and, in turn, to the released volcanic gases to the atmosphere. This paper explains how the knowledge of the oxygen fugacity recorded by mantle rocks and determined through the use of appropriate oxy-thermobarometers allows modeling the speciation of carbon in the mantle, its mobilization in the asthenospheric mantle by redox partial melting, and its sequestration and storage during subduction by redox freezing processes. The effect of a gradual increase of the mantle fo2 on the mobilization of C is here discussed along with the main variables affecting its transport by subduction down to the mantle.
Journal of the Geological Society of London, Vol. 176, pp. 375-387.
Global
carbonatite
Abstract: Over the last decades, many experimental studies have focused on the effect of CO2 on phase equilibria and melting behavior of synthetic eclogite and peridotite rocks as function of pressure and temperature. These studies have been of fundamental importance to understanding the origin of carbonated magmas varying in composition from carbonatitic to kimberlitic. The occurrence of diamonds in natural rocks is a further evidence of the presence of (reduced) carbon in the Earth’s interior. The oxygenation of the Earth’s interior (i.e. its redox state) through time has strongly influenced the speciation of carbon from the mantle to mantle-derived magmas and, in turn, to the released volcanic gases to the atmosphere. This paper explains how the knowledge of the oxygen fugacity recorded by mantle rocks and determined through the use of appropriate oxy-thermobarometers allows modeling the speciation of carbon in the mantle, its mobilization in the asthenospheric mantle by redox partial melting, and its sequestration and storage during subduction by redox freezing processes. The effect of a gradual increase of the mantle fo2 on the mobilization of C is here discussed along with the main variables affecting its transport by subduction down to the mantle.
Minerals MDPI, Vol. 10, 267 doi: 10.23390/min10030267 14p. Pdf
Mantle
Melililite, carbon
Abstract: Understanding the viscosity of mantle-derived magmas is needed to model their migration mechanisms and ascent rate from the source rock to the surface. High pressure-temperature experimental data are now available on the viscosity of synthetic melts, pure carbonatitic to carbonate-silicate compositions, anhydrous basalts, dacites and rhyolites. However, the viscosity of volatile-bearing melilititic melts, among the most plausible carriers of deep carbon, has not been investigated. In this study, we experimentally determined the viscosity of synthetic liquids with ~31 and ~39 wt% SiO2, 1.60 and 1.42 wt% CO2 and 5.7 and 1 wt% H2O, respectively, at pressures from 1 to 4.7 GPa and temperatures between 1265 and 1755 °C, using the falling-sphere technique combined with in situ X-ray radiography. Our results show viscosities between 0.1044 and 2.1221 Pa•s, with a clear dependence on temperature and SiO2 content. The atomic structure of both melt compositions was also determined at high pressure and temperature, using in situ multi-angle energy-dispersive X-ray diffraction supported by ex situ microFTIR and microRaman spectroscopic measurements. Our results yield evidence that the T-T and T-O (T = Si,Al) interatomic distances of ultrabasic melts are higher than those for basaltic melts known from similar recent studies. Based on our experimental data, melilititic melts are expected to migrate at a rate ~from 2 to 57 km•yr-1 in the present-day or the Archaean mantle, respectively.
Proceedings of the National Academy of Sciences, pnas.org/cgi/doi.10.1073 /pnas.2004269117 7p. Pdf
Mantle
diamond inclusions
Abstract: The recent discovery in high-pressure experiments of compounds stable to 24-26 GPa with Fe4O5, Fe5O6, Fe7O9, and Fe9O11 stoichiometry has raised questions about their existence within the Earth’s mantle. Incorporating both ferric and ferrous iron in their structures, these oxides if present within the Earth could also provide insight into diamond-forming processes at depth in the planet. Here we report the discovery of metallic particles, dominantly of FeNi (Fe0.71Ni0.24Cu0.05), in close spatial relation with nearly pure magnetite grains from a so-called superdeep diamond from the Earth’s mantle. The microstructural relation of magnetite within a ferropericlase (Mg0.60Fe0.40)O matrix suggests exsolution of the former. Taking into account the bulk chemistry reconstructed from the FeNi(Cu) alloy, we propose that it formed by decomposition of a complex metal M oxide (M4O5) with a stoichiometry of (Fe3+2.15Fe2+1.59Ni2+0.17Cu+0.04)S = 3.95O5. We further suggest a possible link between this phase and variably oxidized ferropericlase that is commonly trapped in superdeep diamond. The observation of FeNi(Cu) metal in relation to magnetite exsolved from ferropericlase is interpreted as arising from a multistage process that starts from diamond encapsulation of ferropericlase followed by decompression and cooling under oxidized conditions, leading to the formation of complex oxides such as Fe4O5 that subsequently decompose at shallower P-T conditions.
Abstract: he interior of the Earth is an important reservoir for elements that are chemically bound in minerals, melts, and gases. Analyses of the proportions of redox-sensitive elements in ancient and contemporary natural rocks provide information on the temporal redox evolution of our planet. Natural inclusions trapped in diamonds, xenoliths, and erupted magmas provide unique windows into the redox conditions of the deep Earth, and reveal evidence for heterogeneities in the mantle’s oxidation state. By examining the natural rock record, we assess how redox boundaries in the deep Earth have controlled elemental cycling and what effects these boundaries have had on the temporal and chemical evolution of oxygen fugacity in the Earth’s interior and atmosphere.
Contributions to Mineralogy and Petrology, Vol. 175, 107, 17p. Pdf
Russia
deposit - Udachnaya
Abstract: The formation of diamonds within eclogitic rocks has been widely linked to the fate of carbon during subduction and, therefore, referred to conditions of pressure, temperature, and oxygen fugacity (fo2). Mantle-derived eclogite xenoliths from Udachnaya kimberlite pipes represent a unique window to investigate the formation of carbon-free, graphite-diamond-bearing and diamond-bearing rocks from the Siberian craton. With this aim, we exploited oxy-thermobarometers to retrieve information on the P-T-fo2 at which mantle eclogites from the Siberian craton equilibrated along with elemental carbon. The chemical analyses of coupled garnet and omphacitic clinopyroxene were integrated with data on their iron oxidation state, determined both by conventional and synchrotron 57Fe Mössbauer spectroscopy. The calculated fo2s largely vary for each suite of eclogite samples from 0.10 to - 2.43 log units (?FMQ) for C-free eclogites, from - 0.01 to - 2.91 (?FMQ) for graphite-diamond-bearing eclogites, and from - 2.08 to - 3.58 log units (?FMQ) for diamond-bearing eclogites. All eclogite samples mostly fall in the fo2 range typical of diamond coexisting with CO2-rich water-bearing melts and gaseous fluids, with diamondiferous eclogites being more reduced at fo2 conditions where circulating fluids can include some methane. When uncertainties on the calculated fo2 are taken into account, all samples essentially fall within the stability field of diamonds coexisting with CO2-bearing melts. Therefore, our results provide evidence of the potential role of CO2-bearing melts as growth medium on the formation of coexisting diamond and graphite in mantle eclogites during subduction of the oceanic crust.
Tappert, M.C., Rivard, B., Fulop, A., Rogge, D., Feng, J., Tappert, R., Stalder, R.
Characterizing kimberlite dilution by crustal rocks at the Snap Lake diamond mine ( Northwest Territories, Canada) using SWIR ( 1.90-2.36 um) and LWIR ( 8.1-11.1um) hypersprectal imagery collected from drill core.
Economic Geology, Vol. 110, 6, Sept-Oct. pp. 1375-1387.
Abstract: Garnets from kimberlite-hosted mantle and a few xenoliths from the lower crust were investigated for water, major, minor, and trace elements. Xenoliths from the mantle comprise pyroxenite, eclogite, alkremite, and peridotite, and crustal xenoliths are mafic high-pressure granulites. Samples from South Africa, Lesotho, and Namibia comprise two principal settings, Kaapvaal Craton (‘on craton’) and Rehoboth terrane (‘off craton’). The composition of garnet depends on rock type but is unrelated to the setting, except for Ti and Cr. In garnets from ‘off craton’ mantle xenoliths, Ti positively correlates with Cr whereas those from ‘on craton’ samples reveal a negative correlation between both elements. Rare earth element patterns indicative of a metasomatic overprint are observed in garnets from both settings, especially in eclogitic garnet. Water contents in garnet are low and range from <1 to about 40 ppm. No setting-related difference occurs, but a weak correlation between water and rock type exists. Water contents in garnets from eclogite and mafic granulite are lower than those in pyroxenite, alkremite, and peridotite. All garnets are water under-saturated, i.e. they do not contain the maximum amount of water that can be accommodated in the mineral structure. Cratonic and non-cratonic samples also show the same characteristics in the infrared (IR) absorption spectra. An absorption band at 3650 cm-1 is typical for most mantle garnets. Bands at 3520 and 3570 cm-1 are present only in TiO2-rich garnets from the Rehoboth terrane and are ascribed to a Ti-related hydrogen substitution. A number of garnets, especially from the Kaapvaal Craton, contain molecular water in addition to structural water. Molecular water is inhomogeneously distributed at grain scale pointing to local interaction with fluid and to disequilibrium at grain scale. These garnets consistently reveal either submicroscopic hydrous phases or additional IR bands at 3630 and 3610-3600 cm-1 caused by structural water. Both features do not occur in garnets in which molecular water is absent. The observations imply (i) relatively late introduction of fluid, at least in cases where hydrous phases formed, and (ii) a relatively dry environment because only water-deficient garnets are able to incorporate additional structural water. Most importantly, they imply (iii) that the low water contents are primary and not due to water loss during upward transport. This late water influx is not responsible for the metasomatic overprint indicated by garnet REE patterns. The results of this study suggest dry conditions in the lithosphere, including mantle and crustal sections of both the Kaapvaal Craton (‘on craton’) and the Rehoboth terrane (‘off craton’). If the low water contents contributed to the stabilization of the Kaapvaal cratonic root (Peslier et al., 2010) the same should apply to the Rehoboth lithosphere where the same variety of rock types occurs. The extremely low water contents in eclogite relative to pyroxenite may be explained by an oceanic crust origin of the eclogites. Subduction and partial melting would cause depletion of water and incompatible elements. The pyroxenites formed by crystal accumulation in the mantle and did not suffer melt depletion. Such a difference in origin can be reconciled with the low Ti contents in eclogitic garnet and the high Ti contents in pyroxenitic garnet.
Physics and Chemistry of Minerals, dor.org/10.1007/ d00269-018-0987-5 13p.
Russia, Kazakhstan, Alps
coesite, UHP
Abstract: The high-pressure silica polymorphs coesite and stishovite were synthesized under water-saturated conditions from a natural granitic composition doped with Li and B. Experiments were performed in a Multi-Anvil apparatus between 4 and 9.1 GPa and 900 and 950 °C, based on the conditions of a subducting continental crust as realistic for the ultrahigh-pressure metamorphic units Dora Maira and Kochetav massifs. Run products consisted of coesite/stishovite?+?kyanite?±?phengite?±?omphacite, and quench material. The synthesized silica polymorphs were successively analyzed by infrared spectroscopy, electron microprobe, and Secondary-Ion Mass Spectrometry (SIMS). No hydrous defects were observed in coesite synthesized at 4 GPa and 900 °C, whereas coesite grown at higher pressures revealed a triplet of infrared absorptions bands at 3575, 3523, and 3459 cm-?1, two minor bands at 3535 and 3502 cm-?1, and a small band at 3300 cm-?1 that was only visible at 7.7 GPa. The total amount of Al was charge-balanced by H and the other monovalent cations. However, the band triplet could not be associated with AlOH defects, while the band doublet was inferred to BOH defects and the small band probably corresponded to interstitial H. Stishovite displayed one dominant band at 3116 cm-?1 with a shoulder at 3170 cm-?1, and a minor band at 2665 cm-?1, probably all associated with AlOH defects. BOH defects were not observed in stishovite, and LiOH defects were neither observed in coesite nor stishovite, probably because of preferentially partition of Li in other phases such as omphacite. The total amount of defect protons increased with pressure and with metal impurity concentrations. The general increase in OH defects in silica polymorphs with increasing pressure (this study) contrasted the negative pressure trend of OH in quartz observed previously from the same starting material, and revealed an incorporation minimum of OH in silica polymorphs around the quartz/coesite phase transition.
Physics and Chemistry of Minerals, Vol. 46, pp. 77-89.
Russia, Europe, Alps
UHP
Abstract: The high-pressure silica polymorphs coesite and stishovite were synthesized under water-saturated conditions from a natural granitic composition doped with Li and B. Experiments were performed in a Multi-Anvil apparatus between 4 and 9.1 GPa and 900 and 950 °C, based on the conditions of a subducting continental crust as realistic for the ultrahigh-pressure metamorphic units Dora Maira and Kochetav massifs. Run products consisted of coesite/stishovite?+?kyanite?±?phengite?±?omphacite, and quench material. The synthesized silica polymorphs were successively analyzed by infrared spectroscopy, electron microprobe, and Secondary-Ion Mass Spectrometry (SIMS). No hydrous defects were observed in coesite synthesized at 4 GPa and 900 °C, whereas coesite grown at higher pressures revealed a triplet of infrared absorptions bands at 3575, 3523, and 3459 cm-?1, two minor bands at 3535 and 3502 cm-?1, and a small band at 3300 cm-?1 that was only visible at 7.7 GPa. The total amount of Al was charge-balanced by H and the other monovalent cations. However, the band triplet could not be associated with AlOH defects, while the band doublet was inferred to BOH defects and the small band probably corresponded to interstitial H. Stishovite displayed one dominant band at 3116 cm-?1 with a shoulder at 3170 cm-?1, and a minor band at 2665 cm-?1, probably all associated with AlOH defects. BOH defects were not observed in stishovite, and LiOH defects were neither observed in coesite nor stishovite, probably because of preferentially partition of Li in other phases such as omphacite. The total amount of defect protons increased with pressure and with metal impurity concentrations. The general increase in OH defects in silica polymorphs with increasing pressure (this study) contrasted the negative pressure trend of OH in quartz observed previously from the same starting material, and revealed an incorporation minimum of OH in silica polymorphs around the quartz/coesite phase transition.
Immiscible transition from carbonate rich to silicate rich melts in the 3 GPa melting interval of eclogite + CO2 and genesis of silica undersaturated Oceanic lavas.
Journal of Petrology, Vol. 47, 4, April pp. 647-671.
Earth and Planetary Science Letters, Vol. 474, pp. 309-321.
Canada, Nunavut
deposit - Jericho
Abstract: During ascent, kimberlites react with the lithospheric mantle, entrain and assimilate xenolithic material, loose volatiles and suffer from syn- and post-magmatic alteration. Consequently, kimberlite rocks deviate heavily from their primary melt. Experiments at 7 GPa, 1300–1480?°C, 10–30 wt% CO2 and 0.46 wt% H2O on a proposed primitive composition from the Jericho kimberlite show that saturation with a lherzolitic mineral assemblage occurs only at 1300–1350?°C for a carbonatitic melt with <8 wt% SiO2 and >35 wt% CO2. At asthenospheric temperatures of >1400?°C, where the Jericho melt stays kimberlitic, this composition saturates only in low-Ca pyroxene, garnet and partly olivine. We hence forced the primitive Jericho kimberlite into multiple saturation with a lherzolitic assemblage by adding a compound peridotite. Saturation in olivine, low- and high-Ca pyroxene and garnet was obtained at 1400–1650 °C (7 GPa), melts are kimberlitic with 18–29 wt% SiO2 + Al2O3, 22.1–24.6 wt% MgO, 15–27 wt% CO2 and 0.4–7.1 wt% H2O; with a trade-off of H2O vs. CO2 and temperature. Melts in equilibrium with high-Ca pyroxene with typical mantle compositions have =2.5 wt% Na2O, much higher than the commonly proposed 0.1–0.2 wt%. The experiments allow for a model of kimberlite origin in the convective upper mantle, which only requires mantle upwelling that causes melting at the depth where elemental carbon (in metal, diamond or carbide) converts to CO2 (at ~250 km). If primary melts leading to kimberlites contain a few wt% H2O, then adiabatic temperatures of 1400–1500?°C would yield asthenospheric mantle melts that are kimberlitic (>18 wt% SiO2 + Al2O3) but not carbonatitic (<10 wt% SiO2 + Al2O3) in composition, carbonatites only forming 100–200?°C below the adiabat. These kimberlites represent small melt fractions concentrating CO2 and H2O and then acquire part of their chemical signature by assimilation/fractionation during ascent in the subcratonic lithosphere.
Contributions to Mineralogy and Petrology, Vol. 173, pp. 76- doi.org/10.1007/ s00410-018-1502-1
Africa, Lesotho
deposit - Letseng
Abstract: The Letšeng-la-Terae kimberlite (Lesotho), famous for its large high-value diamonds, has five distinct phases that are mined in a Main and a Satellite pipe. These diatreme phases are heavily altered but parts of a directly adjacent kimberlite blow are exceptionally fresh. The blow groundmass consists of preserved primary olivine with Fo86-88, chromite, magnesio-ulvöspinel and magnetite, perovskite, monticellite, occasional Sr-rich carbonate, phlogopite, apatite, calcite and serpentine. The bulk composition of the groundmass, extracted by micro-drilling, yields 24-26 wt% SiO2, 20-21 wt% MgO, 16-19 wt% CaO and 1.9-2.1 wt% K2O, the latter being retained in phlogopite. Without a proper mineral host, groundmass Na2O is only 0.09-0.16 wt%. However, Na-rich K-richterite observed in orthopyroxene coronae allows to reconstruct a parent melt Na2O content of 3.5-5 wt%, an amount similar to that of highly undersaturated primitive ocean island basanites. The groundmass contains 10-12 wt% CO2, H2O is estimated to 4-5 wt%, but volatiles and alkalis were considerably reduced by degassing. Mg# of 77.9 and 530 ppm Ni are in equilibrium with olivine phenocrysts, characterize the parent melt and are not due to olivine fractionation. 87Sr/86Sr(i)?=?0.703602-0.703656, 143Nd/144Nd(i)?=?0.512660 and 176Hf/177Hf(i)?=?0.282677-0.282679 indicate that the Letšeng kimberlite originates from the convective upper mantle. U-Pb dating of groundmass perovskite reveals an emplacement age of 85.5?±?0.3 (2s) Ma, which is significantly younger than previously proposed for the Letšeng kimberlite.
Abstract: Silicon carbide (SiC, moissanite) is a common industrial material that is rarely found in terrestrial rocks and meteorites. It has been found to adopt over 300 different crystal structures, most of which are polytypic: they consist of alternating layers of Si and C, with only small stacking faults or shears distinguishing them from one another. In nature, only a few polytypes of SiC have been found, primarily a cubic zincblende type (3C-SiC), several hexagonal wurtzite types (4H-SiC and 6H-SiC), and a rhombohedral type (15R-SiC). Our natural silicon carbide sample is from a Miocene tuff (Yizre’el Valley, Israel) related to interplate alkaline basalt volcanism. Three SiC grains with native silicon and metal silicide inclusions were analyzed using Raman spectroscopy and synchrotron Laue X-ray microdiffraction accompanied by mapping at a 5-8 um resolution. SiC is found to crystallize in only the 4H and 6H polytypes. Due to the crystal orientation of the grains, as well as the significant difference in the c-axis length (~10 vs. ~15 um in 4H and 6H respectively), we were able to unambiguously assign polytypes to each diffraction pattern. Each grain contains large areas where one polytype dominates as a single crystal. In some cases, multiple stacking faults and misoriented polycrystalline aggregates of SiC occur at the 4H/6H interface. In other cases we see intercalation of the 4H and 6H crystals throughout the diffracting volume without a significant change in their crystallographic axes orientation, pointing to a possibly incommensurate crystal structure. Stress and strain are also mapped for all three grains, showing a slight (< 2 ppt) compressive strain in the y direction of all three grains, and a tensile strain in the x and z directions. In the SiC-2 grain, a mostly single-crystalline Si inclusion was found, with an exposed surface diameter of ~30 um. We examine residual strain in Si by both Laue X-ray diffraction and Raman spectroscopy, and find results to generally agree between the two measurements.
Abstract: Moissanite, SiC, is an uncommon accessory mineral that forms under low oxygen fugacity. Here, we analyze natural SiC from a Miocene tuff-sandstone using synchrotron Laue microdiffraction and Raman spectroscopy, in order to better understand the SiC phases and formation physics. The studied crystals of SiC consist of 4H- and 6H-SiC domains, formed from either, continuous growth or, in one case, intergrown, together with native Si. The native Si is polycrystalline, with a large crystal size relative to the analytical beam dimensions (>1-2 µm). We find that the intergrown region shows low distortion or dislocation density in SiC, but these features are comparatively high in Si. The distortion/deformation observed in Si may have been caused by a mismatch in the coefficients of thermal expansion of the two materials. Raman spectroscopic measurements are discussed in combination with our Laue microdiffraction results. Our results suggest that these SiC grains likely grew from an igneous melt.
A period of global uncertainty ( Blank spot) in the Precambrian history of the southern Siberian Craton and the problem of the transproterozoic supercontinent.
Flourine , yttrium and lanthaide rich cerianite (Ce) from carbonatitic rocks of the Kerimasi volcano and surrounding explosive craters Gregory Rift Tanzania.
Mineralogical Magazine, Vol. 75, 6, pp. 2813-2822.
Geochemistry: Exploration, Environment, Analysis, Vol. 17, 2, pp. 63-91.
Technology
classification
Abstract: Mineral deposit models strategically guide exploration. The lithologies from which these models are built have genetic connotations. Thus, rock classification must be accurate to ensure that mineral exploration is effective and successful. Rock classification is based on mineral proportions, and these are commonly determined by: (1) visual inspection, which is subject to large errors; (2) point counting, which is tedious and time-consuming; (3) image analysis of stained slabs or polished thin sections, which is expensive and constrained by the availability of appropriate stains; and (4) image analysis of spectrometric data, which is expensive. These features make rock classification difficult and undermine its quality, thereby negatively impacting geological conclusions and mineral exploration results. A novel alternative procedure for igneous rock classification involves using whole rock lithogeochemical data for classification on Streckeisen ternary diagrams. This approach employs several calculations that transform: (1) mass-based element concentrations (the original lithogeochemical data produced by the laboratory) sequentially into (2) unstandardized (do not sum to unity) molar element numbers; (3) unstandardized molar mineral numbers; (4) unstandardized volume mineral numbers; and finally (5) standardized (closed; sum to unity) volume mineral concentrations that estimate the mineral modes in rocks. These mineral mode estimates can then be plotted on (projected onto) Streckeisen ternary diagrams, to classify the rocks in the normal manner. This new approach has advantages over conventional classification strategies, in that it is relatively inexpensive, adaptable to all forms of igneous rocks, quantitative, accurate, and precise. Required petrographic information necessary to conduct such a classification includes only knowledge of chemical formulae of the ‘essential’ mineral assemblage. Essential minerals are, here, considered those minerals having concentrations exceeding 5% in 5% of the rocks under consideration. This criterion allows this lithogeochemical classification procedure to be applicable to a wide variety of igneous rocks. This lithogeochemical classification procedure has additional applications beyond the classification of plutonic igneous rocks. For example, if an essential mineral assemblage can be identified or hypothesized, classification of felsic or mafic volcanic rocks can also be achieved. Additionally, an essential mineral assemblage does not have to consist exclusively of igneous minerals. As a result, conversion from molar element numbers to molar mineral numbers can be undertaken using many mineral assemblages. This allows analogous lithogeochemical classification to be undertaken for almost any rock type (e.g. clastic sedimentary rocks, using the calculated proportions of quartz, feldspar, and clay minerals). Consequently, lithogeochemical calculation of the essential mineral modes in rocks can be used to establish mineral zoning maps in space or time, allowing exploration geoscientists to create down-hole logs depicting hydrothermal alteration mineral abundances, or surface maps of hydrothermal alteration zones on a mineral property. To demonstrate this new procedure, results from classifications of metaluminous, peraluminous, and alkaline felsic plutonic and volcanic rocks, and mafic and ultramafic plutonic and volcanic rocks are compared with mineral modes acquired by independent means (visual estimates, point counts, image analysis, spectrometry). These case studies demonstrate that the proposed lithogeochemical classification procedure is as or more accurate than conventional classification methods. Furthermore, because lithogeochemical samples are far larger, and thus more representative than the surfaces used to estimate mineral modes by conventional means, this lithogeochemical classification procedure is also far more precise. The resulting classification is thus especially effective when working with fine-grained rocks where mineral identification and volume estimation is difficult.
Documenting the chemical, physical and thermodynamic changes associated with all possible geochemical reactions in rocks using Gale vector space:Jericho
Geological Association of Canada, Gac-Mac Yellowknife 2007, May 23-25, Volume 32, 1 pg. abstract p.78-79.
Thompson-Howarth error analysis: unbiased alternatives to the large sample method for assessing non-normally distributed measurement error in geochemical samples.
Geochemistry, Exploration, Environment Analysis, Vol. 8, pp. 173-182.
Emerging computer techniques for the minerals industry
Society for Mining, Metallurgy and Exploration (SME), American Institute of Mining, Metallurgical, and Petroleum Engineers (AIME) Publication, 400p. approx. $ 65.00
European Geosciences Union General Assembly 2017, Vienna April 23-28, 1p. 18924 Abstract
Africa
Geochronology
Abstract: Kimberlites provide rich information about the composition and evolution of cratonic lithosphere. Accurate geochronology of these eruptions is key for discerning spatiotemporal trends in lithospheric evolution, but kimberlites can sometimes be difficult to date with available methods. We explored whether (U-Th)/He dating of zircon and perovskite can serve as reliable techniques for determining kimberlite emplacement ages. We obtained zircon and/or perovskite (U-Th)/He (ZHe, PHe) dates from 16 southern African kimberlites. Most samples with abundant zircon yielded reproducible ZHe dates (=15% dispersion) that are in good agreement with published eruption ages. The majority of dated zircons were xenocrystic. Zircons with reproducible dates were fully reset during eruption or resided at temperatures above the ZHe closure temperature prior to entrainment in the kimberlite magma. Not dating hazy and radiation damaged grains can help avoid anomalous results for more shallowly sourced zircons that underwent incomplete damage annealing and/or partial He loss during the eruptive process. All seven kimberlites dated with PHe yielded reproducible (=15% dispersion) and reasonable results. We conducted two preliminary perovskite 4He diffusion experiments, which suggest a PHe closure temperature of >300°C. Perovskite in kimberlites is unlikely to be xenocrystic and its relatively high temperature sensitivity suggests that PHe dates will typically record emplacement rather than postemplacement processes. ZHe and PHe geochronology can effectively date kimberlite emplacement and provide useful complements to existing techniques.
Abstract: Topographic uplift of the southern African Plateau is commonly attributed to mantle causes, but the links between mantle processes, uplift, and erosion patterns are not necessarily straightforward. We acquired apatite (U-Th)/He (AHe) dates from eight kimberlite and basement samples from the lower reaches of the large westward-draining Orange River system with the goal of evaluating the roles of lithospheric modification and river incision on the erosion history here. Average AHe dates range from 79 to 118 Ma and thermal history models suggest that most samples are consistent with a main erosion phase at ca. 120-100 Ma, with some variability across the region indicating a complex erosion history. Major erosion overlaps with the timing of strong lithospheric thermochemical modification as recorded in xenoliths from the studied kimberlites, but the denudation pattern does not mimic the northward progression of lithospheric alteration across the study region. We attribute this area’s denudation history to a combination of mantle effects, rifting, establishment of the Orange River outlet at its current location, and later faulting. When considering these results with other kimberlite-derived surface histories from an ~1000-km-long E-W transect across the plateau, an eastward-younging trend in denudation is evident. The interplay of mantle processes and the shape of the large, west-draining Orange River basin likely control this first order-pattern.
Abstract: A 5.6-km-long line of refraction and reflection seismic data spanning the Pliocene-Pleistocene fill of the Olduvai Basin, Tanzania is presented. The line is oriented along a northwest-southeast profile through the position of Olduvai Gorge Coring Project (OGCP) Borehole 2A. Our aims are to (1) delineate the geometry of the basin floor by tracing bedrock topography of the metaquartzitic and gneissic basement, (2) map synsedimentary normal faults and trace individual strata at depth, and (3) provide context for the sequence observed in OGCP cores. Results with refraction tomography and poststack migration show that the maximum basin depth is around 405?m (±25?m) in the deepest portion, which quadruples the thickness of the basin-fill previously known from outcrops. Variations in seismic velocities show the positions of lower density lake claystones and higher density well-cemented sedimentary sequences. The Bed I Basalt lava is a prominent marker in the refraction seismic results. Bottom-most sediments are dated to >2.2?Ma near where Borehole 2A bottoms out at the depth of 245?m. However, the seismic line shows that the basin-fill reaches a maximum stratigraphic thickness of around 380?m deep at Borehole 2A, in the western basin where the subsidence was greatest. This further suggests that potential hominin palaeoenvironments were available and preserved within the basin-fill possibly as far back as around 4?Ma, applying a temporal extrapolation using the average sediment accretion rate.
Abstract: We report new geological, mineralogical, geochemical and geochronological data about the Katugin Ta-Nb-Y-Zr (REE) deposit, which is located in the Kalar Ridge of Eastern Siberia (the southern part of the Siberian Craton). All these data support a magmatic origin of the Katugin rare-metal deposit rather than the previously proposed metasomatic fault-related origin. Our research has proved the genetic relation between ores of the Katugin deposit and granites of the Katugin complex. We have studied granites of the eastern segment of the Eastern Katugin massif, including arfvedsonite, aegirine-arfvedsonite and aegirine granites. These granites belong to the peralkaline type. They are characterized by high alkali content (up to 11.8?wt% Na2O?+?K2O), extremely high iron content (FeO*/(FeO*?+?MgO)?=?0.96-1.00), very high content of most incompatible elements - Rb, Y, Zr, Hf, Ta, Nb, Th, U, REEs (except for Eu) and F, and low concentrations of CaO, MgO, P2O5, Ba, and Sr. They demonstrate negative and CHUR-close eNd(t) values of 0.0…-1.9. We suggest that basaltic magmas of OIB type (possibly with some the crustal contamination) represent a dominant part of the granitic source. Moreover, the fluorine-enriched fluid phases could provide an additional source of the fluorine. We conclude that most of the mineralization of the Katugin ore deposit occurred during the magmatic stage of the alkaline granitic source melt. The results of detailed mineralogical studies suggest three major types of ores in the Katugin deposit: Zr mineralization, Ta-Nb-REE mineralization and aluminum fluoride mineralization. Most of the ore minerals crystallized from the silicate melt during the magmatic stage. The accessory cryolites in granites crystallized from the magmatic silicate melt enriched in fluorine. However, cryolites in large veins and lens-like bodies crystallized in the latest stage from the fluorine enriched melt. The zircons from the ores in the aegirine-arfvedsonite granite have been dated at 2055?±?7?Ma. This age is close to the previously published 2066?±?6?Ma zircon age of the aegirine-arfvedsonite granites, suggesting that the formation of the Katugin rare-metal deposit is genetically related to the formation of peralkaline granites. We conclude that Katugin rare-metal granites are anorogenic. They can be related to a Paleoproterozoic (~2.05?Ga) mantle plume. As there is no evidence of the 2.05?Ga mantle plume in other areas of southern Siberia, we suggest that the Katugin mineralization occurred on the distant allochtonous terrane, which has been accreted to Siberian Craton later.
Abstract: The Archean Yilgarn Craton in Western Australia is intruded by numerous mafic dykes of varying orientations, which are poorly exposed but discernible in aeromagnetic maps. Previous studies have identified two craton-wide dyke swarms, the 2408?Ma Widgiemooltha and the 1210?Ma Marnda Moorn Large Igneous Provinces (LIP), as well as limited occurrences of the 1075?Ma Warakurna LIP in the northern part of the craton. We report here a newly identified NW-trending mafic dyke swarm in southwestern Yilgarn Craton dated at 1888?±?9?Ma with ID-TIMS U-Pb method on baddeleyite from a single dyke and at 1858?±?54?Ma, 1881?±?37 and 1911?±?42?Ma with in situ SHRIMP U-Pb on baddeleyite from three dykes. Preliminary interpretation of aeromagnetic data indicates that the dykes form a linear swarm several hundred kilometers long, truncated by the Darling Fault in the west. This newly named Boonadgin dyke swarm is synchronous with post-orogenic extension and deposition of granular iron formations in the Earaheedy basin in the Capricorn Orogen and its emplacement may be associated with far field stresses. Emplacement of the dykes may also be related to initial stages of rifting and formation of the intracratonic Barren Basin in the Albany-Fraser Orogen, where the regional extensional setting prevailed for the following 300?million years. Recent studies and new paleomagnetic evidence raise the possibility that the dykes could be part of the coeval 1890?Ma Bastar-Cuddapah LIP in India. Globally, the Boonadgin dyke swarm is synchronous with a major orogenic episode and records of intracratonic mafic magmatism on many other Precambrian cratons.
Abstract: The Archean Yilgarn Craton in Western Australia hosts at least five generations of Proterozoic mafic dykes, the oldest previously identified dykes belonging to the ca. 2408-2401?Ma Widgiemooltha Supersuite. We report here the first known Archean mafic dyke dated at 2615?±?6?Ma by the ID-TIMS U-Pb method on baddeleyite and at 2610?±?25?Ma using in situ SHRIMP U-Pb dating of baddeleyite. Aeromagnetic data suggest that the dyke is part of a series of NE-trending intrusions that potentially extend hundreds of kilometres in the southwestern part of the craton, here named the Yandinilling dyke swarm. Mafic magmatism at 2615?Ma was possibly related to delamination of the lower crust during the final stages of assembly and cratonisation, and was coeval with the formation of late-stage gold deposit at Boddington. Paleogeographic reconstructions suggest that the Yilgarn and Zimbabwe cratons may have been neighbours from ca. 2690?Ma to 2401?Ma and if the Zimbabwe and Kaapvaal cratons amalgamated at 2660-2610?Ma, the 2615?Ma mafic magmatism in the southwestern Yilgarn Craton may be associated with the same tectonic event that produced the ca. 2607-2604?Ma Stockford dykes in the Central Zone of the Limpopo Belt. Paleomagnetic evidence and a similar tectonothermal evolution, including coeval low-pressure high-temperature metamorphism, voluminous magmatism, and emplacement of mafic dykes, support a configuration where the northern part of the Zimbabwe Craton was adjacent to the western margin of the Yilgarn Craton during the Neoarchean. Worldwide, reliably dated mafic dykes of this age have so far been reported from the Yilgarn Craton, the Limpopo Belt and the São Francisco Craton.
Osmium isotopes in Baffin Island and West Greenland picrites: implications for the 187 Os and 188 Os composition of the convection mantle and nature 3He/4he
Earth and Planetary Interiors, Vol. 278, 3-4, pp. 267-277.
Abstract: Olivine is distinguished from all other minerals in providing a remarkable chemical narrative about magmatic processes that occurred in Earth’s crust, mantle, and core over the entire age of Earth history. Olivines in mantle peridotite have Ni contents and Mg numbers that were largely produced by equilibrium crystallization in an early turbulently convecting magma ocean; subsequent stages of partial melting operated to slightly elevate Ni and Mg number in residual olivines. Olivines from Archean komatiites from the Abitibi greenstone belt have Ni contents and Mg numbers that are consistent with an extensively melted peridotite source at great depths in the mantle. Olivines from basaltic oceanic crust, the Icelandic mantle plume and other Phanerozoic occurrences have compositions that record magma chamber crystallization, recharge, mixing, and partial melting. Olivines from the present-day Icelandic mantle plume have compositions that are consistent the melting of a peridotite source; unlike Hawaii, the melting of recycled crust as a distinct pyroxenite lithology is not evident in the olivine chemistry of Iceland. Paleocene picrites from Baffin Island and West Greenland from the ancient Icelandic plume have olivines with Ni contents that are consistent with either Ni-rich peridotite that formed by core-mantle interaction or by low-pressure crystallization of hot and deep magmas. In general, hot magma oceans, mantle plumes, and ambient mantle magmatism form in ways that are captured by the compositions of the olivine crystals that they contain.
Journal of the Russell Society, Vol. 18, pp. 24-45.
Europe, United Kingdom
History
Abstract: The presence of quartz crystals in t he soils around Buxton has been known for centuries, and at one time theses so-called 'Buxton Diamonds' were, from published sources, apparently realtively abundant, and well-knwn to both visitors and to commentators. However, few specimens survive in museum collections, and there is considerable confusion in published accounts as to what exactly constitutes a 'Buxton Diamond'. No satisfactory description or explanation of their origin r occurrence has hitherto been published. Attractive specimens of quartz and amethyst are known from various occurrences in the Peak District, associated with igneous rocks, but these are not true 'Buxton Diamonds' . This paper presents the history of 'Buxton Diamonds', and confirms the occurrence of these, sometime highly attractive, crystals of quartz in the limestone of Diamond Hill and the surrounding area.
Organic petrology, organic geochemistry, palynology and petrophysics dat a from Lac de Gras kimberlites and associated sedimentary rocks and xenoliths.
Geological Survey of Canada Open File, No. 4272, 1 CD $ 32.50
Geostandards and Geoanalytical Research, in press available
Technology
REE mass fractions
Abstract: Olivine offers huge, largely untapped, potential for improving our understanding of magmatic and metasomatic processes. In particular, a wealth of information is contained in rare earth element (REE) mass fractions, which are well studied in other minerals. However, REE data for olivine are scarce, reflecting the difficulty associated with determining mass fractions in the low ng g-1 range and with controlling the effects of LREE contamination. We report an analytical procedure for measuring REEs in olivine using laser ablation quadrupole-ICP-MS that achieved limits of determination (LOD) at sub-ng g-1 levels and biases of ~ 5-10%. Empirical partition coefficients (D values) calculated using the new olivine compositions agree with experimental values, indicating that the measured REEs are structurally bound in the olivine crystal lattice, rather than residing in micro-inclusions. We conducted an initial survey of REE contents of olivine from mantle, metamorphic, magmatic and meteorite samples. REE mass fractions vary from 0.1 to double-digit ng g-1 levels. Heavy REEs vary from low mass fractions in meteoritic samples, through variably enriched peridotitic olivine to high mass fractions in magmatic olivines, with fayalitic olivines showing the highest levels. The variable enrichment in HREEs demonstrates that olivine REE patterns have petrological utility.
Abstract: It is now well established that the cratonic sub-continental lithospheric mantle (SCLM) represents a residue of extensively melted fertile peridotite. The widespread occurrence of garnet in the Archaean SCLM remains a paradox because many experiments agree that garnet is exhausted beyond c. 20% melting. It has been suggested that garnet may have formed by exsolution from Al-rich orthopyroxene [1,2,3]. However, the few examples of putative garnet exsolution in cratonic samples remain exotic and have not afforded a link to garnet that occurs as distinct grains in granular harzburgite. We present crystallographic (EBSD), petrographic and chemical (SEM-EDS and LA-ICP-MS) data for an exceptionally well-preserved orthopyroxene megacryst juxtaposed against granular harzburgite. Garnet lamellae within the megacryst show crystallographic continuity and have a strong fabric relative to the host orthopyroxene, strongly indicating that the megacryst formed by exsolution. Garnet lamellae are sub-calcic Cr-pyropes with sinusoidal rare earth element patterns, while the orthopyroxene host is high-Mg enstatite; the reconstructed precursor is clinoestatite. The megacryst shows evidence for disintegrating into granular peridotite, and garnet and orthopyroxene within the granular peridotite are texturally and chemically identical to equivalent phases in the megacryst. Collectively, this evidence supports a common origin for the granular and exsolved portions of the sample. The compositions of the exsolved Cr pyrope and enstatite are typical of harzburgites and depleted lherzolites from the SCLM. Furthermore, garnet inclusions within orthopyroxene in several granular peridotites exhibit the same fabric as those in the exsolved megacryst. We hypothesise that clinoenstatite was a common phase in cratonic SCLM and that exsolution is the likely origin of many sub-calcic garnets in depleted peridotites.
Abstract: It is well established that the cratonic subcontinental lithospheric mantle (C-SCLM) represents a residue of extensively melted peridotite. The widespread occurrence of garnet in C-SCLM remains a paradox because experiments show that it should be exhausted beyond ~20% melting. It has been suggested that garnet may have formed by exsolution from Al-rich orthopyroxene; however, the few documented examples of garnet exsolution in cratonic samples are exotic and do not afford a direct link to garnet in granular harzburgite. We report crystallographic, petrographic, and chemical data for an exceptionally well preserved orthopyroxene megacryst containing garnet lamellae, juxtaposed against granular harzburgite. Garnet lamellae are homogeneously distributed within the host orthopyroxene and occur at an orientation that is unrelated to orthopyroxene cleavage, strongly indicating that they formed by exsolution. Garnet lamellae are subcalcic Cr-pyrope, and the orthopyroxene host is high-Mg enstatite; these phases equilibrated at 4.4 GPa and 975 °C. The reconstructed precursor is a high-Al enstatite that formed at higher pressure and temperature conditions of ~6 GPa and 1750 °C. The megacryst shows evidence for disintegrating into granular peridotite, and garnet and orthopyroxene within the granular peridotite are texturally and chemically identical to equivalent phases in the megacryst. Collectively, this evidence supports a common origin for the granular and exsolved portions of the sample. We hypothesize that high-Al enstatite was a common phase in the C-SCLM and that exsolution during cooling and stabilization of the C-SCLM could be the origin of most subcalcic garnets in depleted peridotites.
Circumferential Faulting Around Wells Creek Basin, Houston And Stewart Counties, Tennessee- a Manuscript by Safford, J.m. and Lander, D.w.t. : Circa 1895.
Tennessee Academy of Science Journal, Vol. 41, No. 1, PP. 37-48.
Global
Kimberlite, Western Tennessee, Central States, Cryptoexplosion
Variable temperature 27Al and 29Si NMR studies of synthetic forsterite and Fe bearing Dora Maira pyrope garnet: temperature dependence and mechanisms of paramagnetically shifted peaks.
Smit, K.V., Shirey, S.B., Stern, R.A., Steele, A., Wang, W.
Diamond growth from C-H-N-O recycled fluids in the lithosphere: Evidence from CH4 micro-inclusions and dleta 13 C-Delta 15 N-N content in Marange mixed-habit diamonds.
European Geosciences Union General Assembly 2017, Vienna April 23-28, 1p. 9187 Abstract
Africa, Zimbabwe, Sierra Leone
Deposit - Marange, Zimmi
Abstract: Traditional models for diamond formation within the lithospheric mantle invoke either carbonate reduction or methane oxidation. Both these mechanisms require some oxygen exchange with the surrounding wall-rock at the site of diamond precipitation. However, peridotite does not have sufficient buffering capacity to allow for diamond formation via these traditional models and instead peridotitic diamonds may form through isochemical cooling of H 2 O-rich CHO fluids [1]. Marange mixed-habit diamonds from eastern Zimbabwe provide the first natural confirmation of this new diamond growth model [2]. Although Marange diamonds do not contain any silicate or sulphide inclusions, they contain Ni-N-vacancy complexes detected through photoluminescence (PL) spectroscopy that suggest the source fluids equilibrated in the Ni-rich depleted peridotitic lithosphere. Cuboid sectors also contain abundant micro-inclusions of CH 4 , the first direct observation of reduced CH 4-rich fluids that are thought to percolate through the lithospheric mantle [2]. In fluid inclusion-free diamonds, core-to-rim trends in d 13 C and N content are used to infer the speciation of the diamond-forming fluid. Core to rim trends of increasing d 13 C with decreasing N content are interpreted as diamond growth from oxidized CO 2-or carbonate-bearing fluids. Diamond growth from reduced species should show the opposite trends-decreasing d 13 C from core to rim with decreasing N content. Within the CH 4-bearing growth sectors of Marange diamonds, however, such a 'reduced' trend is not observed. Rather, d 13 C increases from core to rim within a homogeneously grown zone [2]. These contradictory observations can be explained through either mixing between CH 4-and CO 2-rich end-members of hydrous fluids [2] or through closed system precipitation from an already mixed CH 4-CO 2 H 2 O-maximum fluid with XCO 2 (CO 2 /[CO 2 +CH 4 ]) between 0.3 and 0.7 [3]. These results demonstrate that Marange diamonds precipitated from cooling CH 4-CO 2-bearing hydrous fluids rather than through redox buffering. As this growth mechanism applies to both the fluid-rich cuboid and gem-like octahedral sectors of Marange diamonds, a non-redox model for diamond formation from mixed CH 4-CO 2 fluids is indicated for a wider range of gem-quality peridotitic diamonds. Indeed, at the redox conditions of global diamond-bearing lithospheric mantle (FMQ-2 to-4; [4]), CHO fluids are strongly water-dominated and contain both CH 4 and CO 2 as dominant carbon species [5]. By contrast diamond formation in eclogitic assemblages, through either redox buffering or cooling of carbon-bearing fluids, is not as well constrained. Zimmi diamonds from the West African craton have eclogitic sulphide inclusions (with low Ni and high Re/Os) and formed at 650 Ma, overlapping with the timing of subduction [6]. In one Zimmi diamond, a core to rim trend of decreasing d 13 C (-23.4 to-24.5 %¸) and N content is indicative of formation from reduced C 2 H 6 /CH 4-rich fluids, likely derived from oceanic crust recycled during Neoproterozoic subduction. Unlike mixed CH 4-CO 2 fluids near the water maximum, isochemical cooling or ascent of such reduced CHO fluids is not effficient at diamond precipitation. Furthermore, measurable carbon isotopic variations in diamond are not predicted in this model and therefore cannot be reconciled with the ~1 internal variation seen. Consequently, this Zimmi eclogitic diamond likely formed through redox buffering of reduced subduction-related fluids, infiltrating into sulphide-bearing eclogite.
Abstract: The formation of Iron Oxide-Apatite (IOA) systems has long been enigmatic. The compositions of both magnetite and apatite and the other component elements suggest derivation from high temperature (T) magmatic systems, with genetic models including iron oxide magmas or igneous magnetite and apatite flotation. Ideas related to the role of H2O and associated oxidative mechanisms have resurfaced from models of the late 1960s. As such, salt melts forming in open, differentially degassing systems could represent an end-member to the formation of IOA deposits. Another end-member involves autometasomatic decarbonation reactions involving ferroan carbonatites with co-genetic melts or host rocks generating CO2 capable of oxidizing carbonatites to enhance magnetite-apatite saturation. The syntectic decarbonation end-member presented here examines the reactions of carbonate melts of mantle origin or from syntectic reactions with limestone, with cogenetic silicate magmas. Although carbonate and silicate melts can coexist at magmatic pressure (P) and T, their compositions must be peralkalic. However, as P decreases, immiscibility or reactivity between these melts is such that CO2 is exsolved (decarbonation) to the point that at near surface conditions, decarbonation is complete. The addition of CO2 to silicate melt will drive the conversion of FeO to Fe2O3 in order to make carbon monoxide (CO), thus shifting the redox equilibria. For most silicate magmas, the amount of dissolved carbonate and CO2 is quite limited, and differential CO2 degassing results. These carbonate: silicate melt reactions then may result in oxidation of the silicate magma, to enhance immiscibility of IOA (liquation) and elemental partitioning associated with liquid-liquid immiscibility. This could be an oxidative mechanism for Fe-Ti tholeiites (ferrobasalts) and diorites to reach a two-liquid field and form IOA melts via liquation. Carbonates would typically be consumed in these reactions, although CO2 is an important degassing product that would substantially increase ?V of the reaction, which has implications during high-level emplacement.
Abstract: Studies on fluid inclusions in carbonatitic rocks are essential to understand the physicochemical processes involved in carbonatite-related hydrothermal ore mineralization. Although little is known about the composition of carbonatite-derived fluids. We investigated fluid inclusions in the Kaiserstuhl carbonatites, SW Germany [1,2] and identified four different types typically known from carbonatitic systems worldwide [3]: (I): Vapor-poor H2O-NaCl fluids with <50 wt.% salinity. (II): Vapor-rich H2O-NaCl-CO2 fluids with <5 wt.% salinity. (III): Multi-component fluids with high salinity and CO2. (IV): Multi-component fluids with high salinity, no CO2. Homogenization temperatures (156 to 530°C) of all fluid types generally show a wide range [this study, 2]. Primary type I fluid inclusions occur in early magmatic olivine/monticellite, as well as paragenetically later apatites and calcites [2]. This indicates a ubiquitous existence of a saline brine, which does not reach saturation with respect to halite, during early to late crystallization stages. Liquidus surface modelling based quantifications for fluid type III suggest that carbonatite melts predomonantly exsolve Na-K-sulfate-carbonate/bicarbonate-chloride brines (type III or IV, respectively). Such fluid inclusions, with type III (CO2-free) on one side and type IV (and II, both CO2-rich) on the other side, may represent immiscible fluids that were trapped after segregation by boiling from a parental highly saline brine (type I). Fluid boiling, in turn, is probably triggered by a rapid pressure release during “pneumatic hammer-like,” discontinuous melt ascent.
Geochimica et Cosmochimica Acta, Vol. 277, pp. 224-242. pdf
Europe, Germany
carbonatite
Abstract: Studies of fluid inclusions in carbonatitic rocks are essential for understanding physicochemical processes involved in carbonatite-related hydrothermal ore mineralization and fenitization. However, the composition of many carbonatite-derived fluids is challenging to quantify, which hampers their detailed interpretation. Here, we present a systematic study of microthermometry of fluid inclusions found in carbonatites from the Kaiserstuhl (SW Germany), and a simple numerical model to estimate the compositions of such fluids, which are typical of numerous carbonatites worldwide. Four types of fluid inclusions have been identified in the Kaiserstuhl carbonatites: (I) vapor-poor H2O-NaCl fluids with <50?wt.% salinity; (II) vapor-rich H2O-NaCl-CO2 fluids with <5?wt.% salinity; (III) multi-component fluids with high salinity and high CO2 contents; and (IV) multi-component fluids with high salinity but little to no CO2. At present, it is only possible to quantify fluid compositions for types I and II. For the complex types III and IV, we conducted predictive modeling of the liquidus surface based on the Margules equations. The results suggest that carbonatite melts predominantly exsolve Na-K-sulfate-carbonate/bicarbonate-chloride brines (types III or IV). Such fluid inclusions may represent immiscible fluids that were trapped after segregation by boiling from a parental highly saline brine (type I). Fluid boiling, in turn, was probably triggered by a rapid pressure release during melt ascent. The present model enables quantification of fluid compositions associated with carbonatitic magmatism.
Geochimica et Cosmochimica Acta, Vol. 277, pp. 224-242. pdf
Europe, Germany
deposit - Kaiserstuhl
Abstract: Studies of fluid inclusions in carbonatitic rocks are essential for understanding physicochemical processes involved in carbonatite-related hydrothermal ore mineralization and fenitization. However, the composition of many carbonatite-derived fluids is challenging to quantify, which hampers their detailed interpretation. Here, we present a systematic study of microthermometry of fluid inclusions found in carbonatites from the Kaiserstuhl (SW Germany), and a simple numerical model to estimate the compositions of such fluids, which are typical of numerous carbonatites worldwide. Four types of fluid inclusions have been identified in the Kaiserstuhl carbonatites: (I) vapor-poor H2O-NaCl fluids with <50?wt.% salinity; (II) vapor-rich H2O-NaCl-CO2 fluids with <5?wt.% salinity; (III) multi-component fluids with high salinity and high CO2 contents; and (IV) multi-component fluids with high salinity but little to no CO2. At present, it is only possible to quantify fluid compositions for types I and II. For the complex types III and IV, we conducted predictive modeling of the liquidus surface based on the Margules equations. The results suggest that carbonatite melts predominantly exsolve Na-K-sulfate-carbonate/bicarbonate-chloride brines (types III or IV). Such fluid inclusions may represent immiscible fluids that were trapped after segregation by boiling from a parental highly saline brine (type I). Fluid boiling, in turn, was probably triggered by a rapid pressure release during melt ascent. The present model enables quantification of fluid compositions associated with carbonatitic magmatism.
Sand, K.K., Nielsen, T.F.D., Secher, K., Steenfelt, A.
Kimberlite and carbonatite exploration in southern West Greenland: summary of previous activities and recent work by the kimberlite research group at the Geological Survey of Denmark and Greenland.
Steenfelt, A., Jensen, S.M., Nielsen, T.F.D., Sand, K.K.
Provinces of ultramafic lamprophyre dykes, kimberlite dykes and carbonatite in West Greenland characterised by minerals and chemical components in surface media.
Astheospheric source of Neoproterozoic and Mesozoic kimberlites from the North Atlantic craton, West Greenland: new high precision U-Pb and Sr-Nd isotope dat a on perovskite.
Earth and Planetary science Letters, Vol. 466, pp. 152-167.
Mantle
Metasomatism, magma, carbonatite
Abstract: Kimberlite and carbonatite magmas that intrude cratonic lithosphere are among the deepest probes of the terrestrial carbon cycle. Their co-existence on thick continental shields is commonly attributed to continuous partial melting sequences of carbonated peridotite at >150 km depths, possibly as deep as the mantle transition zone. At Tikiusaaq on the North Atlantic craton in West Greenland, approximately 160 Ma old ultrafresh kimberlite dykes and carbonatite sheets provide a rare opportunity to study the origin and evolution of carbonate-rich melts beneath cratons. Although their Sr-Nd-Hf-Pb-Li isotopic compositions suggest a common convecting upper mantle source that includes depleted and recycled oceanic crust components (e.g., negative ?eHf?eHf coupled with View the MathML source>+5‰d7Li), incompatible trace element modelling identifies only the kimberlites as near-primary low-degree partial melts (0.05-3%) of carbonated peridotite. In contrast, the trace element systematics of the carbonatites are difficult to reproduce by partial melting of carbonated peridotite, and the heavy carbon isotopic signatures (-3.6 to View the MathML source-2.4‰d13C for carbonatites versus -5.7 to View the MathML source-3.6‰d13C for kimberlites) require open-system fractionation at magmatic temperatures.
Given that the oxidation state of Earth's mantle at >150 km depth is too reduced to enable larger volumes of ‘pure’ carbonate melt to migrate, it is reasonable to speculate that percolating near-solidus melts of carbonated peridotite must be silicate-dominated with only dilute carbonate contents, similar to the Tikiusaaq kimberlite compositions (e.g., 16-33 wt.% SiO2). This concept is supported by our findings from the North Atlantic craton where kimberlite and other deeply derived carbonated silicate melts, such as aillikites, exsolve their carbonate components within the shallow lithosphere en route to the Earth's surface, thereby producing carbonatite magmas. The relative abundances of trace elements of such highly differentiated ‘cratonic carbonatites’ have only little in common with those of metasomatic agents that act on the deeper lithosphere. Consequently, carbonatite trace element systematics should only be used with caution when constraining carbon mobility and metasomatism at mantle depths. Regardless of the exact nature of carbonate-bearing melts within the mantle lithosphere, they play an important role in enrichment processes, thereby decreasing the stability of buoyant cratons and promoting rift initiation - as exemplified by the Mesozoic-Cenozoic breakup of the North Atlantic craton.
Butler, J.P., Jamieson, R.A., Steenkamp, H.M., Robinson, P.
Discovery of coesite eclogite from the Nordyane UHP domain, Western Gneiss region, Norway: field relations, metamorphic history and tectonic significance.
Journal of Metamorphic Geology, in press available
Journal of the Southern African Institute of Mining and Metallurgy, 8p. Pdf
Africa, South Africa
legal
Abstract: Despite the importance that barrier identification has for policy-making and industry stakeholders alike; little guidance exists on consistent processes to systematically identify barriers that are hindering the different sectors of a value chain’s expansion and growth. This article describes the development of a framework that supports the identification of barriers to growth in mineral value chains. The resultant process was applied to the case of the manganese value chain in South Africa, and revealed 31 barriers within this industry. The results were validated by a panel of experts and the feedback was used to rework and improve the framework.
Preliminary report on the Texaco deep Precambrian drill hole in The midcontinent rift system
United States Geological Survey (USGS) Open file, United States Geological Survey (USGS)-Missouri G.S. Symp: Mineral resource potential of, p. 2. (abstract.)
Proterozoic mantle xenoliths in ultramafic dykes near Wawa, Ontario: implications for the lithospheic mantle underneath the central North American craton.
Geological Society of America Annual Meeting ABSTRACTS, Nov. 7-10, Paper 17-7, Vol. 36, 5, p. 47.
Geochimica et Cosmochimica Acta, Vol. 243, pp. 133-148.
Mantle
olivine
Abstract: Chemical exchange between seawater and the oceanic crust is thought to play a significant role in the regulation of the global magnesium (Mg) cycle, yet relatively little is known about the rates and mechanisms of Mg exchange in these crustal environments. In this study we experimentally characterize the extent, and nature, of Mg isotope fractionation during the carbonation and serpentinization of olivine (one of the principal minerals found in ultramafic rocks) under hydrothermal conditions. Olivine alteration was found to be incongruent, with the reactant fluid composition varying according to the extent of olivine dissolution and the precipitation of secondary minerals. In mildly acid water (pH?~?6.5), olivine dissolved to form Mg-Fe carbonate solid solutions and minor chrysotile. Upon carbonation and a decrease of CO2 in the water, the pH increased to >8, with chrysotile and brucite becoming the dominant alteration minerals. The Mg-rich carbonates preferentially incorporated lighter Mg isotopes, resulting in a ~0.5‰ increase of the d26Mg composition of the fluid relative to olivine during the initial carbonation and serpentinization reactions. This was followed by a decrease in d26Mg under higher pH conditions associated with the formation of brucite. Our experimental and modeling results therefore demonstrate that the d26Mg composition of fluids involved in olivine alteration reflect the type and quantity of secondary Mg minerals formed, which in turn depend on the pH and CO2 concentration of the water. Comparison of these results with natural groundwaters and geothermal waters from basaltic terrains indicate that the d26Mg composition of natural waters are likely to also be controlled by mafic rock dissolution and the preferential incorporation of isotopically light Mg into carbonates and isotopically heavy Mg into Mg-Si minerals. Together, these findings improve our understanding of Mg isotope systematics during water-rock interaction, and suggest that d26Mg may be a useful tool for tracing reactions that are critical to geological CO2 sequestration.
Abstract: Nitrogen is the main constituent of the Earth’s atmosphere, but its provenance in the Earth’s mantle remains uncertain. The relative contribution of primordial nitrogen inherited during the Earth’s accretion versus that subducted from the Earth’s surface is unclear1,2,3,4,5,6. Here we show that the mantle may have retained remnants of such primordial nitrogen. We use the rare 15N15N isotopologue of N2 as a new tracer of air contamination in volcanic gas effusions. By constraining air contamination in gases from Iceland, Eifel (Germany) and Yellowstone (USA), we derive estimates of mantle d15N (the fractional difference in 15N/14N from air), N2/36Ar and N2/3He. Our results show that negative d15N values observed in gases, previously regarded as indicating a mantle origin for nitrogen7,8,9,10, in fact represent dominantly air-derived N2 that experienced 15N/14N fractionation in hydrothermal systems. Using two-component mixing models to correct for this effect, the 15N15N data allow extrapolations that characterize mantle endmember d15N, N2/36Ar and N2/3He values. We show that the Eifel region has slightly increased d15N and N2/36Ar values relative to estimates for the convective mantle provided by mid-ocean-ridge basalts11, consistent with subducted nitrogen being added to the mantle source. In contrast, we find that whereas the Yellowstone plume has d15N values substantially greater than that of the convective mantle, resembling surface components12,13,14,15, its N2/36Ar and N2/3He ratios are indistinguishable from those of the convective mantle. This observation raises the possibility that the plume hosts a primordial component. We provide a test of the subduction hypothesis with a two-box model, describing the evolution of mantle and surface nitrogen through geological time. We show that the effect of subduction on the deep nitrogen cycle may be less important than has been suggested by previous investigations. We propose instead that high mid-ocean-ridge basalt and plume d15N values may both be dominantly primordial features.
Abstract: Botswana experienced a Mw 6.5 earthquake on 3rd April 2017, the second largest earthquake event in Botswana's recorded history. This earthquake occurred within the Limpopo-Shashe Belt, ~350 km southeast of the seismically active Okavango Rift Zone. The region has no historical record of large magnitude earthquakes or active faults. The occurrence of this earthquake was unexpected and underscores our limited understanding of the crustal configuration of Botswana and highlight that neotectonic activity is not only confined to the Okavango Rift Zone. To address this knowledge gap, we applied a regularized inversion algorithm to the Bouguer gravity data to construct a high-resolution crustal thickness map of Botswana. The produced crustal thickness map shows a thinner crust (35-40 km) underlying the Okavango Rift Zone and sedimentary basins, whereas thicker crust (41-46 km) underlies the cratonic regions and orogenic belts. Our results also show localized zone of relatively thinner crust (~40 km), one of which is located along the edge of the Kaapvaal Craton within the MW 6.5 Botswana earthquake region. Based on our result, we propose a mechanism of the Botswana Earthquake that integrates crustal thickness information with elevated heat flow as the result of the thermal fluid from East African Rift System, and extensional forces predicted by the local stress regime. The epicentral region is therefore suggested to be a possible area of tectonic reactivation, which is caused by multiple factors that could lead to future intraplate earthquakes in this region.
Abstract: Raman spectral characteristics of a range of diamond-based abrasives (powders and sprays) and drilling and cutting tools, originating from preparation laboratories worldwide, are presented. Some abrasives show strong broadening of the main diamond band [FWHM (full width at half band-maximum) > 5 cm- 1] accompanied by strong band-downshift (View the MathML source?˜ = 1316-1330 cm- 1). Others are characterised by moderate band broadening (FWHM = 1.8-5 cm- 1) at rather regular band position (View the MathML source?˜ = 1331-1333 cm- 1). In addition we found that a "fresh" abrasive and its used analogue may in some cases show vast differences in their Raman spectra. The Raman parameters of diamond-based abrasives overlap widely with Raman parameters of UHP (ultra-high pressure) microdiamond. It is hence impossible to assign diamond detected in a geological specimen to either an introduced artefact or a genuine UHP relict, from the Raman spectrum alone. Raman is an excellent technique for the detection of minute amounts of diamond; however it does not provide conclusive evidence for the identification of UHP microdiamond. The latter requires thorough verification, for instance by optical microscopy or, if doubts cannot be dispelled, transmission electron microscopy.
Global trench migration velocities and slab migration induced upper mantle volume fluxes: constraints to find an Earth reference frame based on minimizing viscous dissipation.
Earth Science Reviews, Vol. 88, 1-2, May pp. 118-144.
Earth and Planetary Science Letters, Vol. 500, pp. 156-167.
United States
geodynamics
Abstract: The origin of the complex pattern of SKS splitting over the western United States (U.S.) remains a long-lasting debate, where a model that simultaneously matches the various SKS features is still lacking. Here we present a series of quantitative geodynamic models with data assimilation that systematically evaluate the influence of different lithospheric and mantle structures on mantle flow and seismic anisotropy. These tests reveal a configuration of mantle deformation more complex than ever envisioned before. In particular, we find that both lithospheric thickness variations and toroidal flows around the Juan de Fuca slab modulate flow locally, but their co-existence enhances large-scale mantle deformation below the western U.S. The ancient Farallon slab below the east coast pulls the western U.S. upper mantle eastward, spanning the regionally extensive circular pattern of SKS splitting. The prominent E-W oriented anisotropy pattern within the Pacific Northwest reflects the existence of sustaining eastward intrusion of the hot Pacific oceanic mantle to beneath the continental interior, from within slab tears below Oregon to under the Snake River Plain and the Yellowstone caldera. This work provides an independent support to the formation of intra-plate volcanism due to intruding shallow hot mantle instead of a rising mantle plume.
Mineralogy and Petrology, doi.org/10.1007/s00710-018-0627-2 9p.
Africa, Botswana
deposit - Orapa
Abstract: This paper presents the results of an investigation into the structure of eolian kimberlite indicator minerals (KIMs) haloes present within Quaternary Kalahari Group sediments (up to 20 m thick) overlying the Late Cretaceous kimberlites in the Orapa field in North-East Botswana. A database of more than 8000 samples shows that kimberlites create a general mineralogical blanket of KIMs of various distances of transportation from primary sources in the Orapa area. Models of the reflection and dispersion patterns of KIMs derived from kimberlite pipes including AK10/ AK22/AK23 have been revealed based on 200 selected heavy mineral samples collected during diamond prospecting activities in Botswana from 2014 to 2017. Short distance eolian haloes situated close to kimberlite bodies cover gentle slopes within plains up to 500 × 1000 m in size. They have regularly have oval or conical shapes and are characterized by the presence mainly of unabraded or only slightly abraded KIMs. A sharp reduction of their concentration from hundreds and thousands of grains / 20 l immediately above kimberlites toto 10 grains/20 l at a distance of only 100-200 m from the pipes is a standard feature of these haloes. The variation of concentration, morphology and abrasion of specific KIMs with increasing distance from the primary sources has been investigated and presented herein. Sample volumes recommended for pipes present within a similar setting as those studied, with different depth of sedimentary cover are as follows: up to 10-20 m cover at 20-50 l, 20-30 m cover at 50-100 l and 30-80 m cover at 250 l. It is important to appreciate that the discovery of even single grains of unabraded or slightly abraded KIMs in eolian haloes are of high prospecting significance in this area. The results of the research can be applied to in diamond prospecting programs in various regions with similar environments.
Mineralogy and Petrology, doi.org/10.1007/ s00710-018-0628-1 14p.
Africa, Angola
kimberlites
Abstract: Based on a comprehensive analysis of kimberlite pipes of Angola, including the near surface structural setting, deep lithospheric structure, pipe morphology and emplacement, mineralogical and petrographic features, diamond characteristics and locations of secondary deposits four geographical regions have been outlined within Angola representing four types of diamond bearing potential. These areas include high diamond bearing potential pipes, possible potential, no potential, and unclear potential areas. It was found that the depth of magmatism and diamond potential of kimberlites increases from the Atlantic coast in southwestern Angola into the continent in the north-easterly direction. Areas prospective for the discovery of new primary diamond deposits have been identified.
Deep-seated magmatism, its sources and plumes, Proceedings of XIII International Workshop held 2014., Vol. 2014, pp. 178-202.
Africa, South Africa, Russia, Yakutia
Deposit - Dike Newlands, Nyurbinskaya
Abstract: Green garnets occur in concentrates of diamondiferous kimberlite bodies in Yakutia (Udachnaya, Mir, etc.), South Africa (Newlands, Bellsbank), Venezuela (Guaniamo sills), and Canada (Mud Lake field). Mantle xenoliths of rocks containing such garnets are very rare. We found peridotite xenoliths with green garnet in situ in kimberlites of the Newlands dike. Xenoliths are irregular in form, 4.5*1.9 cm, 1.5*0.8 cm, and 1.0*0.5 cm in size, and have similar modal compositions: gar(70)+ol(28)+sp(2), gar(9)+ol(90)+sp(1) and gar(50)+ol(30)+sp(20). Rock texture is medium-crystalline, while structure is massive. We also identified a garnet macrocryst of 0.5*0.4 cm in size with a pale green kelyphytic rim. Garnet composition in the studied samples is quite constant and is characterized by the high Cr2O3 content (10.94-11.99%) and CaO content (19.52-24.94%) at the reduced contents of TiO2 (0.24-0.52%). The chrome spinel is high Cr2O3 (55%) content and the low TiO2 (0.5-0.6%) content. Olivine is high-Mg (Fo95), but elevated CaO content (0.09%). Isotopic composition of oxygen in garnet (d18O = 4.05-4.25 pm) and olivine (d18O = 4.91 pm) differs drastically from the mantle values. Rb-Sr and Sm-Nd isotopic composition show the relatively "young" model age of the sample relative to the depleted mantle (1.78 billion years), the age of formation of this rocks is also relatively "young" - probable mezoproterozoic. In kimberlites and placers of the Nyurbinskaya pipe (Nakyn field, Yakutia) there are 4 green garnet grains of 0.5-2.0 mm in size, including one intergrowth gar+sp. Most garnets are characterized by the higher CaO (18.06-22.87%) and TiO2 (1.46, 1.65, 1.75%) contents not noted before for similar garnets. Studied green garnets have the similar "sine wave" type of REE distribution for low-Ti garnets and a "raised" type of REE distribution with enrichment in medium and light REE for high-Ti garnet.
All green garnets are characterized by an increased content of light REE and Sc. High-Ti garnets are characterized by an increased content of light and middle REE, as well as titanium, and a particularly sharply increased content of Zr (!). Paragenesis ol+sp is formed at 805oand 23.4 kbar, and paragenesis ol+gar is formed at 1080oand 23.8 kbar. The rocks are characterized by nonequilibrium paragenesis ol+sp+gar and formation at moderate depths (80-90 km) under conditions of high heat flow (52-55 mW/m2). Judging from modal composition of studied xenoliths (absence of clinopyroxene), variations in chemical compositions and trace element compositions, relatively "young" model age and non-mantle isotopy of oxygen in garnets, these rocks are not "wehrlites" and likely represent metasomatic rocks such as uvarovite-chromite veins or schlierens at the moderate depths of upper mantle - it is similar to uvarovite-chromite veins of the metasomatic or a hydrothermal origin in the crustal serpentinites.
Ashchepkov, I., Ntaflos, T., Logvinova, A., Vladykin, N., Ivanov, A., Spetsius, Z., Stegnitsky, Y., Kostrovitsky, S., Salikhov, R., Makovchuk, I., Shmarov, G., Karpenko, M., Downes, H., Madvedev, N.
Abstract: The PTX diagrams for the separate phases in Sytykanskaya (Ashchepkov et al., 2016) Dalnyaya (Ashchepkov et al., 2017), pipes shows that the PK show the relatively simple P-X trends and geotherms and shows more contrast and simple layering. The PK contain most abundant material from the root of the magma generation they are dunitic veins as the magma feeders represented by the megacrysts. New results for the Aykhal, Zarya and Komsomolskaya pipes in Alake field and Zarnitsa and Udachnaya pipes in Daldyn field show that evolution is accompanied by the developing of metasomatites and branching and veining of the wall rock peridotites . In Aykhal pipe in PK the Gar- dunites prevail, the xenoliths from the dark ABK "Rebus" contain Cr-Ti - rich garnets and ilmenites, more abundant compared with the grey carbonited breccia Nearly the same features were found for Yubileinaya pipe. The example of Komsomolskya pipes show that the ABK contain more eclogitic xenolith than PK. The developing of the magma channel shown in satellite Chukukskaya and Structurnaya pipe was followed by the separation of some parts of the magmatic feeders and crystallization of abundant Gar megacrysts near o the walls blocking the peridotites from the magma feeder. This drastically decrease diamond grade of pipes. Such blocking seems to be the common features for the latest breccias. In Zarnitsa pipe, the dark PK and ABK also contain fresh xenoliths but not only dunites but also sheared and metasomatic varieties and eclogites. Most of dark ABK in Yakutia contain the intergrowth of ilmenites with brown Ti- Cpx showing joint evolution trends. The late breccia contains completely altered peridotite xenoliths mainly of dunite- harzburgite type. The comparison of the trace elements of the coexisting minerals in megacryst show that they were derived from the protokimberlites but are not in complete equilibrium as well as other megacrystalline phases. Ilmenites show inflections of the trace element patterns of most Ilmenites but more regular for the Cpx and Garnets revealing the sub parallel patterns elevating LREE with the rising TRE. But commonly these are not continuous sequances because they developed in the pulsing moving systems like beneath Zarnitsa. The minerals from the feeders like dunites also show the inflected or S-type REE patterns. From the earlier to later phases the TRE compositions became more evolved reflecting the evolution of protokimberlites. The wall rocks also often show the interaction with the more evolved melts and sometimes "cut" spectrums due to the dissolution some phases and repeated melting events So we could suggest the joint evolution of the mantle column protokimberlites and megacrysts composition and type of kimberlites with the diamond grade. The mantle lithospheric base captured by the PK. The developing and rising protokimbelrites was followed by the crystallization of the diamonds in the gradient in FO2 zone in wall rocks due to reductions of C -bearing fluids and carbonatites (> 1 QMF) on peridotites ((< -2 -5 QMF). The most intensive reactions are near the graphite - diamond boundary where protokimberlites are breaking and where most framesites are forming.
Solid Earth Discussions, Vol. 5, pp. 1-75. pdf * note date
Russia, Yakutia
picroilmenites
Abstract: Major and trace element variations in picroilmenites from Late Devonian kimberlite pipes in Siberia reveal similarities within the region in general, but show individual features for ilmenites from different fields and pipes. Empirical ilmenite thermobarometry (Ashchepkov et al., 2010), as well as common methods of mantle thermobarometry and trace element geochemical modeling, shows long compositional trends for the ilmenites. These are a result of complex processes of polybaric fractionation of protokimberlite melts, accompanied by the interaction with mantle wall rocks and dissolution of previous wall rock and metasomatic associations. Evolution of the parental magmas for the picroilmenites was determined for the three distinct phases of kimberlite activity from Yubileynaya and nearby Aprelskaya pipes, showing heating and an increase of Fe# (Fe# = Fe / (Fe + Mg) a.u.) of mantle peridotite minerals from stage to stage and splitting of the magmatic system in the final stages.
High-pressure (5.5-7.0 GPa) Cr-bearing Mg-rich ilmenites (group 1) reflect the conditions of high-temperature metasomatic rocks at the base of the mantle lithosphere. Trace element patterns are enriched to 0.1-10/relative to primitive mantle (PM) and have flattened, spoon-like or S- or W-shaped rare earth element (REE) patterns with Pb > 1. These result from melting and crystallization in melt-feeding channels in the base of the lithosphere, where high-temperature dunites, harzburgites and pyroxenites were formed. Cr-poor ilmenite megacrysts (group 2) trace the high-temperature path of protokimberlites developed as result of fractional crystallization and wall rock assimilation during the creation of the feeder systems prior to the main kimberlite eruption. Inflections in ilmenite compositional trends probably reflect the mantle layering and pulsing melt intrusion during melt migration within the channels. Group 2 ilmenites have inclined REE enriched patterns (10-100)/PM with La / Ybn ~ 10-25, similar to those derived from kimberlites, with high-field-strength elements (HFSE) peaks (typical megacrysts). A series of similar patterns results from polybaric Assimilation + fractional crystallization (AFC) crystallization of protokimberlite melts which also precipitated sulfides (Pb < 1) and mixed with partial melts from garnet peridotites. Relatively low-Ti ilmenites with high-Cr content (group 3) probably crystallized in the metasomatic front under the rising protokimberlite source and represent the product of crystallization of segregated partial melts from metasomatic rocks. Cr-rich ilmenites are typical of veins and veinlets in peridotites crystallized from highly contaminated magma intruded into wall rocks in different levels within the mantle columns. Ilmenites which have the highest trace element contents (1000/PM) have REE patterns similar to those of perovskites. Low Cr contents suggest relatively closed system fractionation which occurred from the base of the lithosphere up to the garnet-spinel transition, according to monomineral thermobarometry for Mir and Dachnaya pipes. Restricted trends were detected for ilmenites from Udachnaya and most other pipes from the Daldyn-Alakit fields and other regions (Nakyn, Upper Muna and Prianabarie), where ilmenite trends extend from the base of the lithosphere mainly up to 4.0 GPa. Interaction of the megacryst forming melts with the mantle lithosphere caused heating and HFSE metasomatism prior to kimberlite eruption.
Volcanic rocks of the Nyurbinskaya pipe: a portrayal of regional upper mantle evolution from the Riphean to the Carboniferous time, and its geodynamic relationship.
Deep Seated Magmatism, its sources and plumes, Ed. Vladykin, N.V., 2008 pp. 71-103.
The diamond bearing territories of Africa and their importance for expansion of the raw material base of the Russian diamond mining industry. ***IN RUS
Mineral Resources of Russia: economics and Management *** IN RUS, No. 6, pp. 66-72. pdf