Hello Guest User, You are visiting this website from a computer with an IP address of 172.69.63.47 with the name of '?' since Sun Jan 17, 2021 at 5:44:53 PM PT for approx. 0 minutes now.
SDLRC - Scientific Articles all years by Author - Kh-Kn
The Sheahan Diamond Literature Reference Compilation
The Sheahan Diamond Literature Reference Compilation is compiled by Patricia Sheahan who publishes on a monthly basis a list of new scientific articles related to diamonds as well as media coverage and corporate announcementscalled the Sheahan Diamond Literature Service that is distributed as a free pdf to a list of followers. Pat has kindly agreed to allow her work to be made available as an online digital resource at Kaiser Research Online so that a broader community interested in diamonds and related geology can benefit. The references are for personal use information purposes only; when available a link is provided to an online location where the full article can be accessed or purchased directly. Reproduction of this compilation in part or in whole without permission from the Sheahan Diamond Literature Service is strictly prohibited. Return to Diamond Resource Center
Sheahan Diamond Literature Reference Compilation - Scientific Articles by Author for all years
The SDLRC provides 3 types of references identified in the reference code. DS for scientific article, DM for a media article, and DC for a corporate announcement. Consider DS0512-0001. The DS stands for "diamond scientific". 05 stands for 2005, the year the reference was posted. 12 represents the month the reference was posted. For all years prior to 2015 the default month is 12. -0001 is the reference's identifier and it does not mean anything. The number below the refence code, ie 2015, is the year the article was published. Note that the posted year may sometimes be later than the published year.
Sort Order
References are sorted by the "author" name and when the reference was posted to the compilation.
Most Recent
If the reference code is highlighted yellow, the reference was made available through the most recent monthly compilation of new literature. Use this to check out new references. When new references are posted, we make it our priority to track down an online link and obtain an abstract. With regard to older references, tracking down an abstract and an online link is a work in progress.
Link to external location of article:
If the title has a link, it means we have found a location online where you can either retrieve the full article free, or purchase access to it. The Sheahan Diamond Literature Service is not a technical article procurement service; if you want a restricted article, you must deal directly with the vendor who controls the copyright to the article.
Searching this page for a specific term or author
In your Firefox browser click Edit in the menu bar and then Find. In the Find box that shows up at the bottom of the web page enter your search term. Firefox will highlight all occurrences. This is particularly helpful when the author you are seeking was not the lead author by whom the compilation is sorted.
Sending or sharing a reference
The left column (Posted/Published) has an embedded hyperlink for each reference. In Firefox, if you right click on it, you can obtain the link url for that reference's location within the page, which you can copy and paste into an email or any other document. You can also use the "share this link" option to tweet, facebook etc the link.
Nuclear Instruments and Methods in Physics Research Section A., A785, pp. 9-13.
Technology
Methodology
Abstract: A new technology for diamond detection in kimberlite based on the tagged neutron method is proposed. The results of experimental researches on irradiation of kimberlite samples with 14.1-MeV tagged neutrons are discussed. The source of the tagged neutron flux is a portable neutron generator with a built-in 64-pixel silicon alpha-detector with double-sided stripped readout. Characteristic gamma rays resulting from inelastic neutron scattering on nuclei of elements included in the composition of kimberlite are registered by six gamma-detectors based on BGO crystals. The criterion for diamond presence in kimberlite is an increased carbon concentration within a certain volume of the kimberlite sample.
Diamonds from the Poiskovaya, Zapolyarnaya and Leningrad kimberlite pipes, northern Yakutia: correlation of carbon isotopic composition and nitrogen content as an indicator of fluid diamond formation.
Abstract: Approximately 700 diamond crystals were identified in volcanic (mainly pyroclastic) rocks of the Tolbachik volcano, Kamchatka, Russia. They were studied with the use of SIMS, scanning and transmission electron microscopy, and utilization of electron energy loss spectroscopy and electron diffraction. Diamonds have cube-octahedral shape and extremely homogeneous internal structure. Two groups of impurity elements are distinguished by their distribution within the diamond. First group, N and H, the most common structural impurities in diamond, are distributed homogeneously. All other elements observed (Cl, F, O, S, Si, Al, Ca, and K) form local concentrations, implying the existence of inclusions, causing high concentrations of these elements. Most elements have concentrations 3-4 orders of magnitude less than chondritic values. Besides N and H, Si, F, Cl, and Na are relatively enriched because they are concentrated in micro- and nanoinclusions in diamond. Mineral inclusions in the studied diamonds are 70-450 nm in size, round- or oval-shaped. They are represented by two mineral groups: Mn-Ni alloys and silicides, with a wide range of concentrations for each group. Alloys vary in stoichiometry from MnNi to Mn2Ni, with a minor admixture of Si from 0 to 5.20-5.60 at%. Silicides, usually coexisting with alloys, vary in composition from (Mn,Ni)4Si to (Mn,Ni)5Si2 and Mn5Si2, and further to MnSi, forming pure Mn-silicides. Mineral inclusions have nanometer-sized bubbles that contain a fluid or a gas phase (F and O). Carbon isotopic compositions in diamonds vary from -21 to -29‰ d13CVPDB (avg. = -25.4). Nitrogen isotopic compositions in diamond from Tolbachik volcano are from -2.32 to -2.58‰ d15NAir. Geological, geochemical, and mineralogical data confirm the natural origin of studied Tolbachik diamonds from volcanic gases during the explosive stage of the eruption.
Abstract: The terrestrial planets are believed to have been formed from primitive material sampling a broad region of the inner solar system. Several meteoritic mixing models attempting to reconcile isotopic characteristics of Mars and Earth have been proposed, but, because of the inherent non-uniqueness of these solutions, additional independent observations are required to resolve the question of the primary building blocks of the terrestrial planets. Here, we consider existing isotopic measurements of O, ?48Ca, ?50Ti, ?54Cr, ?62Ni, and ?84Sr for primitive chondrites and differentiated achondrites and mix these stochastically to reproduce the isotopic signatures of Mars and Earth. For both planets we observe ~ 105 unique mixing solutions out of 108 random meteoritic mixtures, which are categorised into distinct clusters of mixtures using principal component analysis. The large number of solutions implies that isotopic data alone are insufficient to resolve the building blocks of the terrestrial planets. To further discriminate between isotopically valid mixtures, each mixture is converted into a core and mantle component via mass balance for which geophysical properties are computed and compared to observations. For Mars, the geophysical parameters include mean density, mean moment of inertia, and tidal response, whereas for Earth upper mantle Mg/(Mg+Fe) ratio and core size are employed. The results show that Mars requires an oxidised, FeO-rich differentiated object next to chondritic material as main building blocks. In contrast, Earth's origin remains enigmatic. From a redox perspective, it appears inescapable that enstatite chondrite-like matter constitutes a dominant proportion of the building blocks from which Earth is made. The apparent need for compositionally distinct building blocks for Mars and Earth suggests that dissimilar planetesimal reservoirs were maintained in the inner Solar System during accretion.
Earth and Planetary Science Letters, Vol. 539, 116240 9p. Pdf
Mantle
geophysics - seismics
Abstract: Earth's thermo-chemical structure exerts a fundamental control on mantle convection, plate tectonics, and surface volcanism. There are indications that mantle convection occurs as an intermittent-stage process between layered and whole mantle convection in interaction with a compositional stratification at 660 km depth. However, the presence and possible role of any compositional layering in the mantle remains to be ascertained and understood. By interfacing inversion of a novel global seismic data set with petrologic phase equilibrium calculations, we show that a compositional boundary is not required to explain short- and long-period seismic data sensitive to the upper mantle and transition zone beneath stable continental regions; yet, radial enrichment in basaltic material reproduces part of the complexity present in the data recorded near subduction zones and volcanically active regions. Our findings further indicate that: 1) cratonic regions are characterized by low mantle potential temperatures and significant lateral variability in mantle composition; and 2) chemical equilibration seems more difficult to achieve beneath stable cratonic regions. These findings suggest that the lithologic integrity of the subducted basalt and harzburgite may be better preserved for geologically significant times underneath cratonic regions.
Journal of Geophysical Letters, Vol. 47, e2020GL087222
Mantle
water
Abstract: The amount of water trapped in the Earth's interior has a strong effect on the evolution and dynamics of the planet, which ultimately controls the occurrence of earthquakes and volcanic eruptions. However, the distribution of water inside the Earth is not yet well understood. To study the Earth's deep interior, we make use of changes in the Earth's magnetic field to detect variations in electrical conductivity inside the planet. Electrical conductivity is a characteristic of a rock that varies with temperature and water content. Here, we present a novel methodology to estimate the amount of water in different regions of Earth's mantle. Our analysis suggests the presence of small amounts of water in the mantle underneath Europe, whereas larger amounts are expected beneath North America and northern Asia.
Abstract: Kimberlite field is an example of widespread Mesoproterozoic intracontinental magmatism. Recent studies have identified deep subcontinental lithospheric mantle as a source region of the kimberlite magmatism while timing, origin, and processes responsible for the generation of coeval lamprophyres remain poorly constrained. Here, we present and discuss new petrological and geochemical data for two lamprophyre dykes from the Wajrakarur kimberlite field and assess their petrogenetic relation to the kimberlite occurrences. Based on mineral compositional and whole-rock geochemical characters, it is suggested that lamprophyres are formed through low degrees of partial melting of “enriched” lithospheric mantle that was modified and metasomatized by melts derived from recycled crust. This differs from geochemical imprints found in coeval kimberlites, where a crustal source component appears to be absent and is more consistent with rock derivation from “depleted” lithosphere which has experienced interaction with asthenosphere-derived melts. An apparent lack of garnet in the mantle sources of lamprophyres is suggestive of melting at comparatively shallow depth (~100 km) relative to the kimberlites. Hence, these geochemically contrasting rocks, although have formed at the same time, are derived from vertically heterogeneous lithospheric mantle sources and can be explained through and linked with a thermal anomaly in the underlying convective asthenosphere. We suggest that the deeper mantle source region of the kimberlites was more pristine and devoid of subduction-related signatures, whereas the shallower mantle source region of the lamprophyres seems to have preserved imprints of plate convergence and subduction associated with the evolution of the Dharwar Craton.
Abstract: Detailed mapping of mineral phases at centimeter scale can be useful for geological investigation, including resource exploration. This work reviews case histories of ground-based close-range hyperspectral imaging for mining applications. Studies of various economic deposits are discussed, as well as techniques used for data correction, integration with other datasets, and validation of spectral mapping results using geochemical techniques. Machine learning algorithms suggested for automation of the mining workflow are reviewed, as well as systems for environmental monitoring such as gas leak detection. Three new case studies that use a ground-based hyperspectral scanning system with sensors collecting data in the Visible Near-Infrared and Short-Wave Infrared portions of the electromagnetic spectrum in active and abandoned mines are presented. Vertical exposures in a Carlin Style sediment-hosted gold deposit, an active Cu-Au-Mo mine, and an active asphalt quarry are studied to produce images that delineate the extent of alteration minerals at centimeter scale to demonstrate an efficient method of outcrop characterization, which increases understanding of petrogenesis for mining applications. In the Carlin-style gold deposit, clay, iron oxide, carbonate, and jarosite minerals were mapped. In the copper porphyry deposit, different phases of alteration are delineated, some of which correspond to greater occurrence of ore deposits. A limestone quarry was also imaged, which contains bitumen deposits used for road paving aggregate. Review of current literature suggests use of this technology for automation of mining activities, thus reducing physical risk for workers in evaluating vertical mine faces.
LREE and Nb multi metal potentiality of the Amba Dongar carbonatite complex, Chhota Udepur district, Gujarat.
Carbonatite-alkaline rocks and associated mineral deposits , Dec. 8-11, abstract p. 43-44.
India
deposit - Amba Dongar
Abstract: Rare earth elements (REE) are used in science innovations, due to their unique magnetic, fluorescent and chemical properties. REE are key components in rnany technological devices, like hybrid rechargeable batteries, catalysts, glass polishing, magnets, lasers, TV colour components, superconductors, ceramics etc. They are in great demand for hybrid cars, CD, cameras and high end defence systems. Similarly, niobium (Nb) finds its usage in diverse high tech applications including atomic energy. With increasing technological applications of REE and Nb, their global demand has enhanced over the years. To keep pace with the current demand, many carbonatite complexes in India including the Amba Dongar were revisited to assess their REE and Nb content. Amba Dongar is a classic carbonatite-alkalic rock complex of the Deccan basalt plateau and is emplaced in close proximity to Narmada rift zone. The main rock types of carbonatite affinity include sovite (calcium carbonatite), ankerite (Fe-Mg•Mn carbonatite), siderite (Fe carbonatite), carbonatite breccia (mixed rock. fragments with carbonate cement) etc. Sovite forms a large ring-dyke (nearly 1.5 km dia.) surrounding an incomplete ring of carbonatite breccia. Plugs of ankeritic carbonatite intrude the sovite. To assess rare metal and REE potential of the carbonatite complex geological and radiometric surveys followed by core drilling were carried out in western part of the complex. Rocks of carbonatite affinity have been intercepted in all the boreholes upto a maximum drilled depth of 150 m. It is for the first time that presence of carbonatite and carbonatite breccia has been reported below central basalt in the Amba Dongar complex. Continuity of carbonatites beyond the drilled depth is inferred. Petromineralogical and X-Ray Diffraction studies indicated presence of REE minerals such as monazite, thorite, cerite, synchisite and bastnasite. Besides, rare earth fluorocarbonates, parisite, florencite, barite, strontianite and columbite have also been reported by earlier investigators. Fairly good amount of pyrochlore (Nb mineral) is also present in all the variants of carbonatite. Detailed chemical analysis core at 1 m interval and of composite samples from every borehole was carried out. The results indicate homogeneity of mineralisation in the entire column upto an explored vertical depth of 120 m. Except a few lean zones, the entire column hosts REE mineralisation of the order of >1% SREE. Some zones have indicated REE mineralisation of the order of >4 % also. Major element analysis of a composite sample representing a small block (400 m x 100 m x 113 m) indicates 14.69% SiO2, 10.57% Fe2O3, 7 21% MgO, 32.23% CaO, 2.77%, Al2O3, 1.48% P2O5, 2.13% MnO, 0.84% FeO, 0.37% TiO2, 0.95% Na2O, 1.35% K2O, and 23.50% LOI. 1.16% LREE (including 161 ppm HREE), 215 ppm Y, 650 ppm Nb, 310 ppm Th and 467 ppm V appear to be of economic significance. Additionally, presence of high content of Ba (2.65%), Sr (0.50%), Pb (530 ppm), F (1.95%) and Zn (1248 ppm) is also important. Taking into consideration these results, resource estimation of a small block of 400 m x 100 m (0.04 sq. km) with an average depth of 113 m was carried out Inferred REE resources ~140000 tonnes contained in 12.00 million tonne ore have been estimated with an average grade of 1.16% REE. Additionally, this block contains 9,600 tonnes Nb2O5 at an average grade of 0 08 % Nb2O5. These values indicate high potential of Amba Dongar carbonatite complex.
Khanna, T.C., Subba Rao, D.V., Bizimis, M., Satyanarayanan, M., Krishna, A.K., SeshaSai, V.V.
~2.1 Ga intraoceanic magmatism in the central India tectonic zone: constraints from the petrogenesis of ferropicrites in the Mahakoshal suprarcustal belt.
Abstract: In this contribution, we present detailed field, petrography, mineral chemistry, and geochemistry of newly identified high-Si high-Mg metavolcanic rocks from the southern part of the ~3.3 Ga Holenarsipur greenstone belt in the western Dharwar craton, India. The rocks occur as conformable bands that were interleaved with the mafic-ultramafic units. The entire volcanic package exhibits uniform foliation pattern, and metamorphosed under greenschist to low grade amphibolite facies conditions. The rocks are extremely fine grained and exhibit relict primary igneous textures. They are composed of orthopyroxene and clinopyroxene phenocrysts with serpentine, talc, and amphibole (altered clinopyroxene). Cr-spinel, rutile, ilmenite, and apatite occur as disseminated minute grains in the groundmass. The mineralogical composition and the geochemical signatures comprising of high SiO2 (~53 wt. %), Mg# (~83), low TiO2 (~0.18 wt. %), and higher than chondritic Al2O3/TiO2 ratio (~26), reversely fractionated heavy rare earth elements (REE) (GdN/YbN ~ 0.8), resulting in concave-up patterns, and positive Zr anomaly, typically resembled with the Phanerozoic boninites. Depletion in the high field strength elements Nb, and Ti relative to Th and the REE in a primitive mantle normalized trace element variation diagram, cannot account for contamination by pre-existing Mesoarchean continental crust present in the study area. The trace element attributes instead suggest an intraoceanic subduction-related tectonic setting for the genesis of these rocks. Accordingly, the Holenarsipur high-Si high-Mg metavolcanic rocks have been identified as boninites. It importantly indicates that the geodynamic process involved in the generation of Archean boninites, was perhaps not significantly different from the widely recognized two-stage melt generation process that produced the Phanerozoic boninites, and hence provides compelling evidence for the onset of Phanerozoic type plate tectonic processes by at least ~3.3 Ga, in the Earth’s evolutionary history.
A convective cumulation model for crystallization differentiation of the melt and formation of the apatite deposits in Khibiny ijolite-urtite intrusion
Geochimica et Cosmochimica Acta, Vol. 232 pp. 206-224.
Technology
diamond - inclusions DFT
Abstract: Diffusivities of helium, deuterium and hydrogen have been characterized in diamond. Polished CVD diamond was implanted with either 3He, 2H, or 1H. Implanted samples were sealed under vacuum in silica glass capsules, and annealed in 1-atm furnaces. 3He, 2H and 1H distributions were measured with Nuclear Reaction Analysis. We obtain these Arrhenius relations: DHe = 4.00?×?10-15 exp(-138?±?14?kJ?mol-1/RT) m2?s-1. D2H = 1.02?×?10-4 exp(-262?±?17?kJ?mol-1/RT) m2?s-1. D1H = 2.60?×?10-4 exp(-267?±?15?kJ?mol-1/RT) m2?s-1. Diffusivities of 1H and 2H agree within experimental uncertainties, indicating little diffusive mass fractionation of hydrogen in diamond. To complement the experimental measurements, we performed calculations using a first-principles quantum mechanical description of diffusion in diamond within the Density Functional Theory (DFT). Differences in 1H and 2H diffusivities from calculations are found to be ~4.5%, reflected in differences in the pre-exponential factor. This small difference in diffusivities, despite the large relative mass difference between these isotopes, is due to the fact that the atomistic process involved in the transition along the diffusion pathway is dictated by local changes to the diamond structures rather than to vibrations involving 1H/2H. This finding is consistent with the experimental results given experimental uncertainties. In contrast, calculations for helium diffusion in diamond indicate a difference of 15% between diffusivities of 3He and 4He. Calculations of diffusion distances for hydrogen using our data yield a distance of 50?µm in diamond in 300,000?years at 500?°C and ~30?min at 1400?°C. Diffusion distances for He in diamond are shorter than for H at all temperatures above ~350?°C, but differences increase dramatically with temperature because of the higher activation energy for H diffusion. For example, a 50?µm diffusion distance for He would be attained in ~40 Myr at 500?°C and 400?yr at 1400?°C. For comparison, a 50?µm diffusion distance for N in diamond would require nearly 1 billion years at 1400?°C. The experimental data indicate that diamonds equilibrate with ambient H and He in the mantle on timescales brief relative to most geological processes and events. However, He diffusion in diamond is slower than in any other mineral measured to date, including other kimberlite-hosted minerals. Under some circumstances, diamond may provide information about mantle He not recoverable from other minerals. One possibility is diamonds entrained in kimberlites. Since the ascent of kimberlite from the mantle to near-surface is very rapid, entrained diamonds may retain most or all of the H and He acquired in mantle environments. Calculations using reasonable ascent rates and T-t paths indicate that He diffusive loss from kimberlite-hosted diamonds is negligible for grains of 1.0-0.2?mm radius, with fractional losses <0.15% for all ascent rates considered. If the host kimberlite magma is effectively quenched in the near-surface (or is erupted), diamonds should contain a faithful record of [He] and He isotopes from the mantle source region. Preservation of H in kimberlite-hosted diamonds is less clear-cut, with model outcomes depending critically upon rates of ascent and cooling.
The Journal of the Southern African Institute of Mining and Metallurgy, Vol. 119, pp. 97-103.
Africa, South Africa
deposit - Finsch
Abstract: Accurate delineation of the contact between a kimberlite pipe and country rock at production level depths is a challenge due to limited geological data. Geological information is obtained from widely spaced diamond core boreholes which are drilled either from surface or from higher mining levels within the pipe. Kimberlite pipe/country rock contacts are notoriously irregular and variable, further reducing the confidence in contact positions defined by the drill-holes. At Finsch Diamond Mine (FDM), the opportunity arose to further improve the confidence in the contact positions relative to the planned slot (end) positions of each sublevel cave tunnel during the development stage of these tunnels. As a result, the accuracy of the 3D geological model has improved.
The use of diamond drill core for this purpose is expensive due to site establishment requirements. The lengthy time taken during site establishment also delays the development of tunnels and support cycles, thereby extending the completion dates. FDM has reduced delays during development by adopting percussion drilling, in conjunction with gamma ray logging. The S36 drill rig is mounted on a moveable platform and does not require a costly and lengthy site establishment. The holes are generally drilled (0°/flat) on grade elevation, and these holes could also be drilled from the rim tunnels (developed in waste) into the kimberlite pipe. A single-boom production drill rig is normally used to drill holes about 20 m in length. On completion of the contact delineation drilling, gamma logging of the holes is conducted using the GeoVista geophysical sonde (or probe) to log the natural gamma signature of the dolomite/ kimberlite contact. The advantage of this tool is that the readings are continuous within centimetre intervals, and due to contrasting characteristics between kimberlite (rich in clay minerals) and dolomite, the contact position can be determined accurately. The better definition of contact positions also adds value to tunnel stopping distance in terms of developing the tunnel's slot at the optimum distance from the contact (easier blasting of longhole rings, avoidance of contact overbreak and premature waste ingress, and other matters relating to extraction of ore from these tunnels). This method is highly successful and has reduced development costs (on-time completion), improved definition of the pipe's contact position for geological modelling, improved blast design, and mitigated early waste ingress by maintaining the contact's integrity.
Recognition of emplacement time of Jambil carbonatite complex from NW Pakistan: constraints from fission track dating of apatite using age standard approach.
GAC Annual Meeting Halifax May 15-19, Abstract 1p.
Abstract: The Neoproterozoic peridotite-chromitite complexes in the Central Eastern Desert of Egypt, being a part of the Arabian-Nubian Shield, are outcropped along the E-W trend from Wadi Sayfayn, Wadi Bardah, and Jabal Al-Faliq to Wadi Al-Barramiyah, from east to west. Their peridotites are completely serpentinized, and the abundance of bastite after orthopyroxene suggests harzburgite protoliths with subordinate dunites, confirmed by low contents of Al2O3, CaO and clinopyroxene (< 3 vol%) in bulk peridotites. The primary olivine is Fo89.3-Fo92.6, and the residual clinopyroxene (Cpx) in serpentinites contains, on average, 1.1 wt% Al2O3, 0.7 wt% Cr2O3, and 0.2 wt% Na2O, similar in chemistry to that in Izu-Bonin-Marian forearc peridotites. The wide range of spinel Cr-number [Cr/(Cr + Al)], 0.41-0.80, with low TiO2 (0.03 wt%), MnO (0. 3 wt%) and YFe [(Fe3 +/(Cr + Al + Fe3 +) = 0.03 on average)] for the investigated harzburgites-dunites is similar to spinel compositions for arc-related peridotites. The partial melting degrees of Bardah and Sayfayn harzburgites range mainly from 20 to 25% and 25 to 30% melting, respectively; this is confirmed by whole-rock chemistry and Cpx HREE modelling (~ 20% melting). The Barramiyah peridotite protoliths are refractory residues after a wide range of partial melting, 25-40%, where more hydrous fluids are available from the subducting slab. The Neoproterozoic mantle heterogeneity is possibly ascribed mainly to the wide variations of partial melting degrees in small-scale areas, slab-derived inputs and primordial mantle compositions. The Sayfayn chromitites were possibly crystallized from island-arc basaltic melts, followed by crystallization of Barramiyah chromitites from boninitic melt in the late stage of subduction. The residual Cpx with a spoon-shape REE pattern is rich in both LREE and fluid-mobile elements (e.g., Pb, B, Li, Ba, Sr), but poor in HFSE (e.g., Ta, Nb, Zr, Th), similar to Cpx in supra-subduction zone (SSZ) settings, where slab-fluid metasomatism is a prevalent agent. The studied chromitites and their host peridotites represent a fragment of sub-arc mantle, and originated in an arc-related setting. The systematic increase in the volume of chromitite pods with the increasing of their host-peridotite thickness from Northern to Southern Eastern Desert suggests that the thickness of wall rocks is one factor controlling the chromitite size. The factors controlling the size of Neoproterozoic chromitite pods are the thickness, beside the composition, of the host refractory peridotites, compositions and volumes of the supplied magmas, the amount of slab-derived fluids, and possibly the partial melting degree of the host peridotites.
Abstract: Magmatic pulses in intraplate sedimentary Basins are windows to understand the tectonomagmatic evolution and paleaoposition of the Basin. The present study reports the U-Pb zircon ages of mafic flows from the Cuddapah Basin and link these magmatic events with the Pangean evolution during late Carboniferous-Triassic/Phanerozoic timeframe. Zircon U-Pb geochronology for the basaltic lava flows from Vempalle Formation, Cuddapah Basin suggests two distinct Phanerozoic magmatic events coinciding with the amalgamation and dispersal stages of Pangea at 300 Ma (Late Carboniferous) and 227 Ma (Triassic). Further, these flows are characterized by analogous geochemical and geochronological signatures with Phanerozoic counterparts from Siberian, Panjal Traps, Emeishan and Tarim LIPs possibly suggesting their coeval and cogenetic nature. During the Phanerozoic Eon, the Indian subcontinent including the Cuddapah Basin was juxtaposed with the Pangean LIPs which led to the emplacement of these pulses of magmatism in the Basin coinciding with the assemblage of Pangea and its subsequent breakup between 400 Ma and 200 Ma.
Abstract: This study reports major, trace, rare earth and platinum group element compositions of lava flows from the Vempalle Formation of Cuddapah Basin through an integrated petrological and geochemical approach to address mantle conditions, magma generation processes and tectonic regimes involved in their formation. Six flows have been identified on the basis of morphological features and systematic three-tier arrangement of vesicular-entablature-colonnade zones. Petrographically, the studied flows are porphyritic basalts with plagioclase and clinopyroxene representing dominant phenocrystal phases. Major and trace element characteristics reflect moderate magmatic differentiation and fractional crystallization of tholeiitic magmas. Chondrite-normalized REE patterns corroborate pronounced LREE/HREE fractionation with LREE enrichment over MREE and HREE. Primitive mantle normalized trace element abundances are marked by LILE-LREE enrichment with relative HFSE depletion collectively conforming to intraplate magmatism with contributions from sub-continental lithospheric mantle (SCLM) and extensive melt-crust interaction. PGE compositions of Vempalle lavas attest to early sulphur-saturated nature of magmas with pronounced sulphide fractionation, while PPGE enrichment over IPGE and higher Pd/Ir ratios accord to the role of a metasomatized lithospheric mantle in the genesis of the lava flows. HFSE-REE-PGE systematics invoke heterogeneous mantle sources comprising depleted asthenospheric MORB type components combined with plume type melts. HFSE-REE variations account for polybaric melting at variable depths ranging from garnet to spinel lherzolite compositional domains of mantle. Intraplate tectonic setting for the Vempalle flows with P-MORB affinity is further substantiated by (i) their origin from a rising mantle plume trapping depleted asthenospheric MORB mantle during ascent, (ii) interaction between plume-derived melts and SCLM, (iii) their rift-controlled intrabasinal emplacement through Archean-Proterozoic cratonic blocks in a subduction-unrelated ocean-continent transition zone (OCTZ). The present study is significant in light of the evolution of Cuddapah basin in the global tectonic framework in terms of its association with Antarctica, plume incubation, lithospheric melting and thinning, asthenospheric infiltration collectively affecting the rifted margin of eastern Dharwar Craton and serving as precursors to supercontinent disintegration.
Journal of Asian Earth Sciences, Vol. 105, pp. 300-319.
India
Boninites
Abstract: High MgO volcanic rocks having elevated concentrations of Ni and Cr are potential hosts for platinum group elements (PGE) owing to their primitive mantle origin and eruption at high temperatures. Though their higher PGE abundance is economically significant in mineral exploration studies, their lower concentrations are also valuable geochemical tools to evaluate petrogenetic processes. In this paper an attempt has been made to evaluate the PGE geochemistry of high MgO volcanic rocks from two greenstone belts of western and eastern Dharwar Craton and to discuss different mantle processes operative at diverse geodynamic settings during the Neoarchean time. The Bababudan greenstone belt of western and Gadwal greenstone belt of eastern Dharwar Cratons are dominantly composed of high MgO volcanic rocks which, based on distinct geochemical characteristics, have been identified as komatiites and boninites respectively. The Bababudan komatiites are essentially composed of olivine and clinopyroxene with rare plagioclase tending towards komatiitic basalts. The Gadwal boninites contain clinopyroxene, recrystallized hornblende with minor orthopyroxene, plagioclase and sulphide minerals. The Bababudan komatiites are Al-undepleted type (Al2O3/TiO2 = 23-59) with distinctly high MgO (27.4-35.8 wt.%), Ni (509-1066 ppm) and Cr (136-3036 ppm) contents. These rocks have low SPGE (9-42 ppb) contents with 0.2-2.4 ppb Iridium (Ir), 0.2-1.4 ppb Osmium (Os) and 0.4-4.4 ppb Ruthenium (Ru) among Iridium group PGE (IPGE); and 1.4-16.2 ppb Platinum (Pt), 2.8-19 ppb Palladium (Pd) and 0.2-9.8 ppb Rhodium (Rh) among Platinum group PGE (PPGE). The Gadwal boninites are high-Ca boninites with CaO/Al2O3 ratios varying between 0.8 and 1.0, with 12-24 wt.% MgO, 821-1168 ppm Ni and 2307-2765 ppm Cr. They show higher concentration of total PGE (82-207 ppb) with Pt concentration ranging from 13 to 19 ppb, Pd between 65 and 180 ppb and Rh in the range of 1.4-3 ppb compared to the Bababudan komatiites. Ir, Os and Ru concentrations range from 0.6 to 2.2 ppb, 0.2 to 0.6 ppb and 1.4 to 2.6 ppb respectively in IPGE. The PGE abundances in Bababudan komatiites were controlled by olivine fractionation whereas that in Gadwal boninites were influenced by fractionation of chromite and sulphides. The Al-undepleted Bababudan komatiites are characterized by low CaO/Al2O3, (Gd/Yb)N, (La/Yb)N, with positive Zr, Hf, Ti anomalies and high Cu/Pd, Pd/Ir ratios at low Pd concentrations suggesting the derivation of parent magma by high degrees (>30%) partial melting of mantle under anhydrous conditions at shallow depth with garnet as a residual phase in the mantle restite. The komatiites are geochemically analogous to Al-undepleted Munro type komatiites and their PGE compositions are consistent with Alexo and Gorgona komatiites. The S-undersaturated character of Bababudan komatiites is attributed to decompression and assimilation of lower crustal materials during magma ascent and emplacement. In contrast, the higher Al2O3/TiO2, lower (Gd/Yb)N, for Gadwal boninites in combination with negative Nb, Zr, Hf, Ti anomalies and lower Cu/Pd at relatively higher Pd/Ir and Pd concentrations reflect high degree melting of refractory mantle wedge under hydrous conditions in an intraoceanic subduction zone setting. Higher Pd/Ir ratios and S-undersaturation of these boninites conform to influx of fluids derived by dehydration of subducted slab resulting into high fluid pressure and metasomatism of mantle wedge.
Doklady Earth Sciences, Vol. 464, 2, pp. 1029-1032.
Russia
Carbonatite
Abstract: The isotopic -geochronological features of thorianite and baddeleyite from carbonatites of the Guli massif, located within Maimecha -Kotui province in the north of the Siberian Platform, are characterized for the first time. The economic complex platinum-group element (PGE) and gold placer deposits are closely related to the Guli massif. Similar geochronological data for thorianite (250.1 ± 2.9 Ma, MSWD = 0.09, n = 36) and baddeleyite (250.8 ± 1.2 Ma, MSWD = 0.2, n = 6) obtained by two different methods indicate that carbonatites were formed close to the Permian -Triassic boundary and are synchronous with tholeiitic flood basalts of the Siberian Platform.
Abstract: On the basis of quantum-chemical calculations of the linear to isomeric bent transition of the SiO2 molecule, it is suggested that the bent to linear transition of SiO2 forms can occur in melted mantle minerals of the lower mantle. This may be important for the formation of the peculiarities of mantle convection and origination of plumes.
Petrology and mineralogy of disintegrated mantle inclusions of kimberlite like diatremes from the Aldan Shield ( Chompolo field): mantle reconstructions.
Alkaline Magmatism and the problems of mantle sources, pp. 161-176.
Abstract: Mantle xenoliths (>150) and concentrates from late autolithic breccia and porphyritic kimberlite from the Sytykanskaya pipe of the Alakit field (Yakutia) were analyzed by EPMA and LAM ICP methods. In P-T-X-f(O2) diagrams minerals from xenoliths show widest variations, the trends P-Fe#-CaO, f(O2) for minerals from porphyric kimberlites are more stepped than for xenocrysts from breccia. Ilmenite PTX points mark moving for protokimberlites from the lithosphere base (7.5 GPa) to pyroxenite lens (5-3.5 GPa) accompanied by Cr increase by AFC and creation of two trends P-Fe#Ol ~10-12% and 13-15%. The Opx-Gar-based mantle geotherm in Alakit field is close to 35 mW/m2 at 65 GPa and 600 °C near Moho was determined. The oxidation state for the megacrystalline ilmenites is lower for the metasomatic associations due to reduction of protokimberlites on peridotites than for uncontaminated varieties at the lithosphere base. Highly inclined linear REE patterns with deep HFSE troughs for the parental melts of clinopyroxene and garnet xenocrysts from breccia were influenced by differentiated protokimberlite. Melts for metasomatic xenoliths reveal less inclined slopes without deep troughs in spider diagrams. Garnets reveal S-shaped REE patterns. The clinopyroxenes from graphite bearing Cr-websterites show inclined and inflected in Gd spectrums with LREE variations due to AFC differentiation. Melts for garnets display less inclined patterns and Ba-Sr troughs but enrichment in Nb-Ta-U. The 40Ar/39Ar ages for micas from the Alakit mantle xenoliths for disseminated phlogopites reveal Proterozoic (1154 Ma) age of metasomatism in early Rodinia mantle. Veined glimmerites with richterite - like amphiboles mark ~1015 Ma plume event in Rodinia mantle. The ~600-550 Ma stage manifests final Rodinia break-up. The last 385 Ma metasomatism is protokimberlite-related.
Deep-seated magmatism, its sources and plumes, Proceedings of XIII International Workshop held 2014., Vol. 2014, pp. 203-232.
Russia, Yakutia
Deposit - Sytykanskaya
Abstract: The concentrate from two phases of the kimberlite (breccia and porphyritic kimberlite) and about 130 xenoliths from the Sytykanskaya pipe of the Alakit field (Yakutia) were studied by EPMA and LAM ICP methods. Reconstructions of the PTXfO2 mantle sections were made separately for the two phases. The porphyritic kimberlites and breccia show differences in the minerals although the layering and pressure interval remains the same. For the porphyritic kimberlite the trends P- Fe# - CaO in garnet, fO2 are sub-vertical while the xenocrysts from the breccia show stepped and curved trends possibly due to interaction with fluids. Minerals within xenoliths show the widest variation in all pressure intervals. PT points for the ilmenites which trace the magmatic system show splitting of the magmatic source into two levels at the pyroxenite lens (4GPa) accompanied by peridotite contamination and an increase in Cr in ilmenites. Two groups of metasomatites with Fe#Ol ~ 10-12% and 13-15% were created by the melts derived from protokimberlites and trace the mantle columns from the lithosphere base (Ilm - Gar - Cr diopside) to Moho becoming essentially pyroxenitic (Cr-diopside with Phl). The first Opx-Gar-based mantle geotherm from the Alakit field has been constructed from15 associations and is close to 35 mw/m2 in the lower part of mantle section but deviates to high temperatures in the upper part of the mantle section. The oxidation state for the protokimberlite melts determined from ilmenites is higher than for the other pipes in the Yakutian kimberlite province which probably accounts for the decrease in the diamond grade of this pipe. The geochemistry of the minerals (garnets and clinopyroxenes) from breccias, metasomatic peridotite xenoliths and pyroxenites systematically differ. Xenocrysts from the breccia were produced by the most differentiated melts and enriched protokimberlite or carbonatite; they show highly inclined nearly linear REE patterns and deep troughs of HFSE. Minerals of the metasomatic xenoliths are less inclined with lower La/Cen ratios and without troughs in spider diagrams. The garnets often show S-shaped patterns. Garnets from the Cr websterites show round REE patterns and deep troughs in Ba-Sr but enrichment in Nb-Ta-U. The clinopyroxenes reveal the inclined and inflected on Gd spectrums with variations in LREE due to AFC differentiation. The 40Ar-39Ar ages for micas from the Alakit field reveal three intervals for the metasomatism. The first (1154 Ma) relates to dispersed phlogopites found throughout the mantle column, and probably corresponds to the continental arc stage in the early stage of Rodinia. Veined highly alkaline and Ti-rich veins with richterite ~1015 Ma corresponds to the plume event within the Rodinia mantle. The ~600-550 Ma stage marks the final Rodinia break-up. The last one near 385 Ma is protokimberlite related.
International Geology Review, in press available 24p. Pdf
Europe, Ukraine
deposit - Priazovie
Abstract:
Major, minor and trace element compositions of mantle xenocrysts from Devonian kimberlite pipes in the Priazovie give an insight into the mantle structure beneath the SE Ukranian Shield and its evolution. Garnets yield low temperature conditions as determined by monomineral thermobarometry. The mantle lithosphere is sharply divided at 4.2 GPa, marked by a high temperature Cpx-Ilm-Phl trend, eclogites and changes in pyrope geochemistry. Seven layers are detected: Ist layer at 2.5-1 GPa is enriched mantle (Fe#Ol ~ 0.11 - 0.14) with Gar- pyroxenites and Sp peridotites; IInd at 2.5-3.2 GPa - Gar-Sp (Fe#Ol 0.08 - 0.10) peridotite. IIId at 4.3-3.2 GPa is formed of Archaean- Proterozoic peridotites with Fe#Ol ~0.07 - 0.095. IVth at 3.2-5 GPa- contains pyroxenitic Gar with higher Ca, eclogites, Chr and Cpx (Fe#Ol ~0.10 - 0.125); Vth at 5.8 - 5 GPa is marked by sub-Ca garnets, Cr-rich chromites and Mg-Cr ilmenites; VIth layer at 5.8-6.8 GPa contains Fe-enriched pyropes, almandines and Cr-Mg ilmenites near the lithosphere base; VIIth layer > 6.8 GPa consists of ‘hot’ Fe-rich garnets. Garnets show increasing enrichment in LREE, LILE, Hf, Zr with decreasing pressure. Primitive garnets have round REE patterns; depleted ones have S-type patterns inflected at Nd. Garnets from 6.5 to 3 GPa show increasing La/Ybn, Zr-Hf, LILE. Peridotitic clinopyroxenes have inclined linear trace element patterns rounded from La to Pr with high LILE and HFSE levels. The Fe-rich group (reacted with eclogites) shows bell-shaped irregular patterns with LILE close to the LREE levels. A possible reason for LILE (HFSE and) enrichment of the upper part of the mantle is subduction metasomatsm in Archaean times (with participation of mature continental sediments) activated by plumes at 1.8 Ga and earlier which produced pervasive focused melt flow with remelting of mica-amphibole metasomatites giving continuous REE and LILE enrichment in mantle lithologies from 5.8 to 2.5 GPa.
Solid Earth Discussions, Vol. 5, pp. 1-75. pdf * note date
Russia, Yakutia
picroilmenites
Abstract: Major and trace element variations in picroilmenites from Late Devonian kimberlite pipes in Siberia reveal similarities within the region in general, but show individual features for ilmenites from different fields and pipes. Empirical ilmenite thermobarometry (Ashchepkov et al., 2010), as well as common methods of mantle thermobarometry and trace element geochemical modeling, shows long compositional trends for the ilmenites. These are a result of complex processes of polybaric fractionation of protokimberlite melts, accompanied by the interaction with mantle wall rocks and dissolution of previous wall rock and metasomatic associations. Evolution of the parental magmas for the picroilmenites was determined for the three distinct phases of kimberlite activity from Yubileynaya and nearby Aprelskaya pipes, showing heating and an increase of Fe# (Fe# = Fe / (Fe + Mg) a.u.) of mantle peridotite minerals from stage to stage and splitting of the magmatic system in the final stages.
High-pressure (5.5-7.0 GPa) Cr-bearing Mg-rich ilmenites (group 1) reflect the conditions of high-temperature metasomatic rocks at the base of the mantle lithosphere. Trace element patterns are enriched to 0.1-10/relative to primitive mantle (PM) and have flattened, spoon-like or S- or W-shaped rare earth element (REE) patterns with Pb > 1. These result from melting and crystallization in melt-feeding channels in the base of the lithosphere, where high-temperature dunites, harzburgites and pyroxenites were formed. Cr-poor ilmenite megacrysts (group 2) trace the high-temperature path of protokimberlites developed as result of fractional crystallization and wall rock assimilation during the creation of the feeder systems prior to the main kimberlite eruption. Inflections in ilmenite compositional trends probably reflect the mantle layering and pulsing melt intrusion during melt migration within the channels. Group 2 ilmenites have inclined REE enriched patterns (10-100)/PM with La / Ybn ~ 10-25, similar to those derived from kimberlites, with high-field-strength elements (HFSE) peaks (typical megacrysts). A series of similar patterns results from polybaric Assimilation + fractional crystallization (AFC) crystallization of protokimberlite melts which also precipitated sulfides (Pb < 1) and mixed with partial melts from garnet peridotites. Relatively low-Ti ilmenites with high-Cr content (group 3) probably crystallized in the metasomatic front under the rising protokimberlite source and represent the product of crystallization of segregated partial melts from metasomatic rocks. Cr-rich ilmenites are typical of veins and veinlets in peridotites crystallized from highly contaminated magma intruded into wall rocks in different levels within the mantle columns. Ilmenites which have the highest trace element contents (1000/PM) have REE patterns similar to those of perovskites. Low Cr contents suggest relatively closed system fractionation which occurred from the base of the lithosphere up to the garnet-spinel transition, according to monomineral thermobarometry for Mir and Dachnaya pipes. Restricted trends were detected for ilmenites from Udachnaya and most other pipes from the Daldyn-Alakit fields and other regions (Nakyn, Upper Muna and Prianabarie), where ilmenite trends extend from the base of the lithosphere mainly up to 4.0 GPa. Interaction of the megacryst forming melts with the mantle lithosphere caused heating and HFSE metasomatism prior to kimberlite eruption.
Revista Brasileira de Geociencas*** ENG, Vol. 31, 4, pp. 653-660. pdf
South America, Brazil
kimberlites
Abstract: Garne ts from couc eru ratc from the vargcm l kimberl ite pipe show a long compos itional range and reveallong lincar tre nds within the lherzolite field in a Cr~Ol - CaO% dia gram (Sobolcv et til. 1974) (lip (0 11% MgO). fon ned by grains of different dimensions with fcw deviations to harzburg itcs . Larger grains (fraction +3) arc higher in CaO with less Cr~01 (to 5.5%). TIle Cr20 1 freq uen cy reduc es in hyperbo lic function for each fraction . IImenites reve;1142-56% Ti0 2l..'Olllpositionai range with linear FeO - MgO correhuions but 3(4) separate groups for A I ~01 suggest different proport ion of co-prccipimted gimlet , probably due to polybn ric Irncnonanon. lncreasing Cr~O l nnd r"t..-Q% conte nt (fractionation uegn:e ) with red ucing TiO~ is in accord with Ar c mod el.. Ganict xenolith fnnnldnin II pipe with large Ga r- Cpxgrains and fine Mica-Curb bearing mat rix refer to 60 kbcr and 35 mv/m2 gcothcrm . 11displays enr iched trace c lement pat ter ns but not completely equilibrated compositions for Ga r anti Cpx. sugges ting low degree me lting of rela tively fertile mantle. St udied uuuc rinlmay s uggcsrmcrasomu tized, relat ively fertile and irre gularly heated mantle bene ath Sombcrn Bra zil as found by (Carvalho & Lccnnrdos 1997).
Bessolitsyn, A.E., Ivashutin, V.I., Khmelnitskaya, T.I., Akulshina
Geology of the upper Paleozoic diamond bearing formations of Tunguskasyneclise. Geological history, paleogeography and conditions ofsedimentation.(Russian)
Transactions of the Institute of Institute Geologiya i Geofizika Akademii Nauk, Vol. 646, pp. 36-92
Abstract: HPHT synthesis of diamonds from hydrocarbons attracts great attention due to the opportunity to obtain luminescent nano- and microcrystals of high structure perfection. Systematic investigation of diamond synthesized from the mixture of hetero-hydrocarbons containing dopant elements Si or Ge (C24H20Si and C24H20Ge) with a pure hydrocarbon - adamantane (C10H16) at 8?GPa was performed. The photoluminescence of SiV- and GeV- centers in produced diamonds was found to be saturated when Si and Ge contents in precursors exceed some threshold values. The presence of SiC or Ge as second phases in diamond samples with saturated luminescence indicates that ultimate concentrations of the dopants were reached in diamond. It is shown that SiC inclusions can be captured by growing crystals and be a source of local stresses up to 2?GPa in diamond matrix. No formation of Ge-related inclusions in diamonds was detected, which makes Ge more promising as a dopant in the synthesis method. Surprisingly, the synthesis of diamonds from the C24H20Sn hetero-hydrocarbon was ineffective for SnV- formation: only fluorescence of N-and Si-related color centers was detected at room temperature. As an example of great potential for the synthesis method, mass synthesis of 50-nm diamonds with GeV- centers was realized at 9.4?GPa. Single GeV- production in individual nanodiamond was demonstrated.
Abstract: Hydrogen (H) and carbon (C) have probably been delivered to the Earth mainly during accretion processes at High Temperature (HT) and High Pressure (HP) and at variable redox conditions. We performed HP (1-15?GPa) and HT (1600-2300°C) experiments, combined with state-of-the-art analytical techniques to better understand the behavior of H and C during planetary differentiation processes. We show that increasing pressure makes H slightly siderophile and slightly decreases the highly siderophile nature of C. This implies that the capacity of a growing core to retain significant amounts of H or C is mainly controlled by the size of the planet: small planetary bodies may retain C in their cores while H may have rather been lost in space; larger bodies may store both H and C in their cores. During the Earth's differentiation, both C and H might be sequestrated in the core. However, the H content of the core would remain one or two orders of magnitude lower than that of C since the (H/C)core ratio might range between 0.04 and 0.27.
Earth and Planetary Science Letters, Vol. 467, pp. 99-107.
Mantle
chlorine
Abstract: We report concentrations of Chlorine (Cl) in synthetic wadsleyite (Wd) and ringwoodite (Rw) in the system NaCl-(Mg,?Fe)2SiO4 under hydrous and anhydrous conditions. Multi-anvil press experiments were performed under pressures (14-22 GPa) and temperatures (1100-1400?°C) relevant to the transition zone (TZ: 410-670 km depth). Cl and H contents were measured using Particle Induced X-ray Emission (PIXE) and Elastic Recoil Detection Analysis (ERDA) respectively. Results show that Cl content in Rw and Wd is significantly higher than in other nominally anhydrous minerals from the upper mantle (olivine, pyroxene, garnet), with up to 490 ppm Cl in anhydrous Rw, and from 174 to 200 ppm Cl in hydrous Wd and up to 113 ppm Cl in hydrous Rw. These results put constrains on the Cl budget of the deep Earth. Based on these results, we propose that the TZ may be a major repository for major halogen elements in the mantle, where Cl may be concentrated together with H2OH2O and F (see Roberge et al., 2015). Assuming a continuous supply by subduction and a water-rich TZ, we use the concentrations measured in Wd (174 ppm Cl) and in Rw (106 ppm Cl) and we obtain a maximum value for the Cl budget for the bulk silicate Earth (BSE) of 15.1 × 1022 g Cl, equivalent to 37 ppm Cl. This value is larger than the 17 ppm Cl proposed previously by McDonough and Sun (1995) and evidences that the Cl content of the mantle may be higher than previously thought. Comparison of the present results with the budget calculated for F (Roberge et al., 2015) shows that while both elements abundances are probably underestimated for the bulk silicate Earth, their relative abundances are preserved. The BSE is too rich in F with respect to heavy halogen elements to be compatible with a primordial origin from chondrites CI-like (carbonaceous chondrites CC) material only. We thus propose a combination of two processes to explain these relative abundances: a primordial contribution of different chondritic-like materials, including EC-like (enstatite chondrites), possibly followed by a distinct fractionation of F during the Earth differentiation due to its lithophile behavior compared to Cl, Br and I.
Diamond and Related Materials, Vol. 58, pp. 40-45.
Technology
Diamond synthetics
Abstract: Diamond crystallization from the tin–carbon system has been studied at 7 GPa and temperatures ranging from 1600 to 1900 °C with reaction times from 1 to 20 h. Both diamond growth on the seed crystals and diamond spontaneous nucleation were established, providing evidence for the catalytic ability of tin. A distinctive feature of the Sn–C system is the existence of a significant induction period preceding diamond spontaneous nucleation. Temperature and kinetics are found to be the main factors governing diamond crystallization process. The minimum parameters of diamond spontaneous nucleation are determined to be 7 GPa, 1700 °C and 20 h. The stable form of diamond growth is octahedron and it does not depend on temperature. Synthesized diamonds contain high concentrations of nitrogen impurities up to about 1600 ppm.
Contributions to Mineralogy and Petrology, Vol. 170, 19p.
Russia
Deposit - Udachnaya
Abstract: Experiments are applied to constrain the composition of primary kimberlitic magmas which were in equilibrium with lithospheric peridotite and could resorb the entrained diamond to form typical dissolution features. The experiments are run on samples of a model carbonatite and a melt of the Udachnaya kimberlite at 6.3 GPa and 1400 °C, and at unbuffered or Re-ReO2-buffered oxygen fugacity (1-2 log units above Ni-O). Near-liquidus dry Fe3+-free carbonatitic melt (derived from carbonated harzburgite) is saturated with the Ol-Grt-Opx-Mgs assemblage and is almost inert to diamond. Carbonatitic melts that bear 4.6-6.8 wt% Fe2O3 or 1.5 wt% H2O are in equilibrium only with Mgs ± Ol near the liquidus. Dissolution of diamond by these melts produces surface textures uncommon (corrosion sculptures) or common (negative-oriented trigons, shield-shaped laminae and elongate hillocks) to kimberlitic diamonds. The near-liquidus melt of the Udachnaya kimberlite (Yakutia) with 10-12 wt% H2O is saturated with the Ol-Grt-px assemblage and may result from melting of carbonated garnet-bearing wehrlite. Hydrous kimberlitic melt likewise resorbs diamonds forming typical negative-oriented trigons, shield-shaped laminae and elongate hillocks on their surfaces. Therefore, the melts that could originate in the thermal conditions of subcratonic lithosphere, entrain diamond and dissolve it to produce dissolution features on crystal surfaces, were compositionally close to kimberlite (16-19 wt% SiO2) and rich in H2O. Dry Fe3+-bearing carbonatites with fO2 controlled by the ferric/ferrous equilibrium slightly above the Ni-NiO buffer cannot be diamond carriers.
Abstract: An experimental study on diamond crystallization in CO2-rich sodium-carbonate melts has been undertaken at a pressure of 6.3 GPa in the temperature range of 1250-1570 °C and at 7.5 GPa in the temperature range of 1300-1700 °C. Sodium oxalate (Na2C2O4) was used as the starting material, which over the course of the experiment decomposed to form sodium carbonate, carbon dioxide and elemental carbon. The effects of pressure, temperature and dissolved CO2 in the ultra-alkaline carbonate melt on diamond crystallization, morphology, internal structure and defect-and-impurity content of diamond crystals are established. Diamond growth is found to proceed with formation of vicinal structures on the {100} and {111} faces, resulting eventually in the formation of rounded polyhedrons, whose shape is determined by the combination tetragon-trioctahedron, trigon-trioctahedron and cube faces. Spectroscopic studies reveal that the crystallized diamonds are characterized by specific infrared absorption and photoluminescence spectra. The defects responsible for the 1065 cm- 1 band dominating in the IR spectra and the 566 nm optical system dominating in the PL spectra are tentatively assigned to oxygen impurities in diamond.
Abstract: In the central part of the European part of Russia in the southeastern part of the Kursk tectonic block, some deposits and occurrences of apatite genetically related to the alkaline-carbonatite complex have been revealed. The results of U-Pb analysis of titanite provided the first confident age estimate of silicate-carbonate (phoscorite) rocks in the Dubravin alkaline-ultramafic-carbonatite massif: they formed no later than 2080 ±13 Ma, which indicates their crystallization in the pre-Oskol time during the final stage of the Early Paleoproterozoic (post-Kursk time) stabilization phase of the Kursk block of Sarmatia (about 2.3-2.1 Ga).
Abstract: The composition of volatiles from fluid and melt inclusions in olivine phenocrysts from Yakutian kimberlite pipes of various ages (Olivinovaya, Malokuonapskaya, and Udachnaya-East) were studied for the first time by gas chromatography-mass spectrometry. It was shown that hydrocarbons and their derivatives, as well as nitrogen-, halogen-, and sulfur-bearing compounds, played a significant role in the mineral formation. The proportion of hydrocarbons and their derivatives in the composition of mantle fluids could reach 99%, including up to 4.9% of chlorineand fluorine-bearing compounds.
Abstract: We investigated emerald, the bright-green gem variety of beryl, from a new locality at Kruta Balka, Ukraine, and compare its chemical characteristics with those of emeralds from selected occurrences worldwide (Austria, Australia, Colombia, South Africa, Russia) to clarify the types and amounts of substitutions as well as the factors controlling such substitutions. For selected crystals, Be and Li were determined by secondary ion mass spectrometry, which showed that the generally assumed value of 3 Be atoms per formula unit (apfu) is valid; only some samples such as the emerald from Kruta Balka deviate from this value (2.944 Be apfu). An important substitution in emerald (expressed as an exchange vector with the additive component Al2Be3Si6O18) is (Mg,Fe2+)NaAl1?1, leading to a hypothetical end-member NaAl(Mg,Fe2+)[Be3Si6O18] called femag-beryl with Na occupying a vacancy position (?) in the structural channels of beryl. Based on both our results and data from the literature, emeralds worldwide can be characterized based on the amount of femag-substitution. Other minor substitutions in Li-bearing emerald include the exchange vectors LiNa2Al1?2 and LiNaBe1?1, where the former is unique to the Kruta Balka emeralds. Rarely, some Li can also be situated at a channel site, based on stoichiometric considerations. Both Cr- and V-distribution can be very heterogeneous in individual crystals, as shown in the samples from Kruta Balka, Madagascar, and Zimbabwe. Nevertheless, taking average values available for emerald occurrences, the Cr/(Cr+V) ratio (Cr#) in combination with the Mg/(Mg+Fe) ratio (Mg#) and the amount of femag-substitution allows emerald occurrences to be characterized. The "ultramafic" schist-type emeralds with high Cr# and Mg# come from occur-rences where the Fe-Mg-Cr-V component is controlled by the presence of ultramafic meta-igneous rocks. Emeralds with highly variable Mg# come from "sedimentary" localities, where the Fe-Mg-Cr-V component is controlled by metamorphosed sediments such as black shales and carbonates. A "transitional" group has both metasediments and ultramafic rocks as country rocks. Most "ultramafic" schist type occurrences are characterized by a high amount of femag-component, whereas those from the "sedimentary" and "transitional" groups have low femag contents. Growth conditions derived from the zoning pattern combined replacement, sector, and oscillatory zoning in the Kruta Balka emeralds indicate disequilibrium growth from a fluid along with late-stage Na-infiltration. Inclusions in Kruta Balka emeralds (zircon with up to 11 wt% Hf, tourmaline, albite, Sc-bearing apatite) point to a pegmatitic origin.
Abstract: HPHT synthesis of diamonds from hydrocarbons attracts great attention due to the opportunity to obtain luminescent nano- and microcrystals of high structure perfection. Systematic investigation of diamond synthesized from the mixture of hetero-hydrocarbons containing dopant elements Si or Ge (C24H20Si and C24H20Ge) with a pure hydrocarbon - adamantane (C10H16) at 8?GPa was performed. The photoluminescence of SiV- and GeV- centers in produced diamonds was found to be saturated when Si and Ge contents in precursors exceed some threshold values. The presence of SiC or Ge as second phases in diamond samples with saturated luminescence indicates that ultimate concentrations of the dopants were reached in diamond. It is shown that SiC inclusions can be captured by growing crystals and be a source of local stresses up to 2?GPa in diamond matrix. No formation of Ge-related inclusions in diamonds was detected, which makes Ge more promising as a dopant in the synthesis method. Surprisingly, the synthesis of diamonds from the C24H20Sn hetero-hydrocarbon was ineffective for SnV- formation: only fluorescence of N-and Si-related color centers was detected at room temperature. As an example of great potential for the synthesis method, mass synthesis of 50-nm diamonds with GeV- centers was realized at 9.4?GPa. Single GeV- production in individual nanodiamond was demonstrated.
Abstract: The crystal structure of betalomonosovite, ideally Na6?4Ti4(Si2O7)2[PO3(OH)][PO2(OH)2]O2(OF), a 5.3331(7), b 14.172(2), c 14.509(2) Å, a 103.174(2), ß 96.320(2), ? 90.278(2)°, V 1060.7(4) Å3, from the Lovozero alkaline massif, Kola peninsula, Russia, has been refined in the space group PFormula to R = 6.64% using 3379 observed (Fo > 4sF) reflections collected with a single-crystal APEX II ULTRA three-circle diffractometer with a rotating-anode generator (MoKa), multilayer optics, and an APEX-II 4K CCD detector. Electron-microprobe analysis gave the empirical formula (Na5.39Ca0.36Mn0.04Mg0.01)S5.80 (Ti2.77Nb0.48Mg0.29Fe3+0.23Mn0.20Zr0.02Ta0.01)S4(Si2.06O7)2[P1.98O5(OH)3]O2[O0.82F0.65(OH)0.53]S2, Dcalc. = 2.969 g cm-3, Z = 2, calculated on the basis of 26 (O + F) apfu, with H2O determined from structure refinement. The crystal structure of betalomonosovite is characterized by extensive cation and anion disorder: more than 50% of cation sites are partly occupied. The crystal structure of betalomonosovite is a combination of a titanium silicate (TS) block and an intermediate (I) block. The TS block consists of HOH sheets (H-heteropolyhedral, O-octahedral) and exhibits linkage and stereochemistry typical for Group IV (Ti + Mg + Mn = 4 apfu) of the TS-block minerals. The I block is a framework of Na polyhedra and P tetrahedra which ideally gives {Na2?4[PO3(OH)][PO2(OH)2]} pfu. Betalomonosovite is an Na-poor OH-bearing analogue of lomonosovite, Na10Ti4(Si2O7)2(PO4)2O4. In the betalomonosovite structure, there is less Na in the I block and in the TS block when compared to the lomonosovite structure. The OH groups occur mainly in the I block where they coordinate P and Na atoms and in the O sheet of the TS block (minor). The presence of OH groups in the I block and in the TS block is supported by IR spectroscopy and bond-valence calculations on anions. High-resolution TEM of lomonosovite shows the presence of pervasive microstructural intergrowths, accounting for the presence of signals from H2O in the infrared spectrum of anhydrous lomonosovite. More extensive lamellae in betalomonosovite suggest a topotactic reaction from lomonosovite to betalomonosovite.
Abstract: The paper presents data on the composition of olivine macrocrysts from two Devonian kimberlite pipes in the Arkhangelsk diamond province: the Grib pipe (whose kimberlite belongs to type I) and Pionerskaya pipe (whose kimberlite is of type II, i.e., orangeite). The dominant olivine macrocrysts in kimberlites from the two pipes significantly differ in geochemical and isotopic parameters. Olivine macrocrysts in kimberlite from the Grib pipe are dominated by magnesian (Mg# = 0.92–0.93), Ti-poor (Ti < 70 ppm) olivine possessing low Ti/Na (0.05–0.23), Zr/Nb (0.28–0.80), and Zn/Cu (3–20) ratios and low Li concentrations (1.2–2.0 ppm), and the oxygen isotopic composition of this olivine d18O = 5.64‰ is higher than that of olivine in mantle peridotites (d18O = 5.18 ± 0.28‰). Olivine macrocrysts in kimberlite from the Pionerskaya pipe are dominated by varieties with broadly varying Mg# = 0.90–0.93, high Ti concentrations (100–300 ppm), high ratios Ti/Na (0.90–2.39), Zr/Nb (0.31–1.96), and Zn/Cu (12–56), elevated Li concentrations (1.9–3.4 ppm), and oxygen isotopic composition d18O = 5.34‰ corresponding to that of olivine in mantle peridotites. The geochemical and isotopic traits of low-Ti olivine macrocrysts from the Grib pipe are interpreted as evidence that the olivine interacted with carbonate-rich melts/fluids. This conclusion is consistent with the geochemical parameters of model melt in equilibrium with the low-Ti olivine that are similar to those of deep carbonatite melts. Our calculations indicate that the variations in the d18O of the olivine relative the “mantle range” (toward both higher and lower values) can be fairly significant: from 4 to 7‰ depending on the composition of the carbonate fluid. These variations were formed at interaction with carbonate fluid, whose d18O values do not extend outside the range typical of mantle carbonates. The geochemical parameters of high-Ti olivine macrocrysts from the Grib pipe suggest that their origin was controlled by the silicate (water–silicate) component. This olivine is characterized by a zoned Ti distribution, with the configuration of this distribution between the cores of the crystals and their outer zones showing that the zoning of the cores and outer zones is independent and was produced during two episodes of reaction interaction between the olivine and melt/fluid. The younger episode (when the outer zone was formed) likely involved interaction with kimberlite melt. The transformation of the composition of the cores during the older episode may have been of metasomatic nature, as follows from the fact that the composition varies from grain to grain. The metasomatic episode most likely occurred shortly before the kimberlite melt was emplaced and was related to the partial melting of pyroxenite source material.
Lithospheric structure of an Archean craton and adjacent mobile belt revealed from 2-D and 3-D inversion of magnetotelluric data: example from southern Congo craton in northern Namibia.
Journal of Geophysical Research, Vol. 118, 8, pp. 4378-4397.
Yelisseyev, A., Khrenov, A., Afanasiev, V., Pustavarov, V., Gromilov, S., Panchenko, A., Poikilenko, N., Litasov, K.
Luminesence of impact diamonds from the Popigai astrobleme.
V.S. Sobolev Institute of Geology and Mineralogy Siberian Branch Russian Academy of Sciences International Symposium Advances in high pressure research: breaking scales and horizons ( Courtesy of N. Poikilenko), Held Sept. 22-26, 2p. Abstract
Diamond and Related Materials, Vol. 58, pp. 69-77.
Russia
Deposit - Popigai
Abstract: Impact diamonds (IDs) from the Popigai crater are aggregates of nanoparticulate graphite and cubic and hexagonal diamonds. IDs demonstrate broad-band emissions at 3.05, 2.8, 2.3 and 2.0 eV, which are associated with structural defects and are similar to those in detonation ultra-dispersed diamonds and CVD diamond films. A doublet with components at 1.7856 and 1.7892 eV in some ID samples is related to R1,2 lines of Cr3 + ions in corundum inclusions. The presence of N3, H3, NV0 and NV- vibronic systems in some of the ID samples shows that (i) there is nitrogen impurity and (ii) samples underwent high temperature annealing that promoted vacancies and nitrogen diffusion and defect aggregation. The luminescence decay fits with a sum of two exponential components: lifetime of the fast one is in the 5 to 9 ns range. Parameters of the traps responsible for broad thermoluminescence peaks at 148, 180, 276 and 383 K were estimated.
Portnyagin, M., Hoernie, K., Plechov, P., Mironov, N., Khubunaya, S.
Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles ( H2) S Cl F) and trace elements in melt inclusions from the Kamchatka Arc.
Earth and Planetary Science Letters, Vol. 255, 1-2, pp. 53-69.
Mesoproterozoic to Neoproterozoic evolution of the Siberian Craton and adjacent microcontinents: an overview with constraints for a Laurentian Connection.
Mesoproterozoic to Neoproterozoic evolution of the Siberian Craton and adjacent microcontinents: an overview with constraints for a Laurentian Connection.
The Journal of the Southern African Insitute of Mining and Metallurgy, Vol. 119, Feb. 10p. Pdf
Africa, South Africa
deposit - Cullinan
Abstract: In 2017, Petra Diamonds completed the construction and commissioning of a modern, fit-for-purpose diamond processing plant at Cullinan Diamond Mine (CDM). The design of CDM's milling circuit is unconventional in that it comprises an autogenous (AG) mill with a grate discharge with large ports, low-revolution jaw crushers, and high-pressure grinding roll crushers with large operating gaps. In this paper we review the design to provide guidance on what is expected from the milling circuit and to demonstrate how the design aims to address challenges experienced in the old plant, which was based on staged crushing technology. We assessed the performance of the CDM AG milling circuit from commissioning and early production stages to examine its impact along multiple dimensions. In the assessment we sought to understand the lessons from our milling circuit regarding diamond liberation, energy consumption, and the future of diamond processing as a whole.
Abstract: The paper presents data on the composition of olivine macrocrysts from two Devonian kimberlite pipes in the Arkhangelsk diamond province: the Grib pipe (whose kimberlite belongs to type I) and Pionerskaya pipe (whose kimberlite is of type II, i.e., orangeite). The dominant olivine macrocrysts in kimberlites from the two pipes significantly differ in geochemical and isotopic parameters. Olivine macrocrysts in kimberlite from the Grib pipe are dominated by magnesian (Mg# = 0.92-0.93), Ti-poor (Ti < 70 ppm) olivine possessing low Ti/Na (0.05-0.23), Zr/Nb (0.28-0.80), and Zn/Cu (3-20) ratios and low Li concentrations (1.2-2.0 ppm), and the oxygen isotopic composition of this olivine d18O = 5.64‰ is higher than that of olivine in mantle peridotites (d18O = 5.18 ± 0.28‰). Olivine macrocrysts in kimberlite from the Pionerskaya pipe are dominated by varieties with broadly varying Mg# = 0.90-0.93, high Ti concentrations (100-300 ppm), high ratios Ti/Na (0.90-2.39), Zr/Nb (0.31-1.96), and Zn/Cu (12-56), elevated Li concentrations (1.9-3.4 ppm), and oxygen isotopic composition d18O = 5.34‰ corresponding to that of olivine in mantle peridotites. The geochemical and isotopic traits of low-Ti olivine macrocrysts from the Grib pipe are interpreted as evidence that the olivine interacted with carbonate-rich melts/fluids. This conclusion is consistent with the geochemical parameters of model melt in equilibrium with the low-Ti olivine that are similar to those of deep carbonatite melts. Our calculations indicate that the variations in the d18O of the olivine relative the “mantle range” (toward both higher and lower values) can be fairly significant: from 4 to 7‰ depending on the composition of the carbonate fluid. These variations were formed at interaction with carbonate fluid, whose d18O values do not extend outside the range typical of mantle carbonates. The geochemical parameters of high-Ti olivine macrocrysts from the Grib pipe suggest that their origin was controlled by the silicate (water-silicate) component. This olivine is characterized by a zoned Ti distribution, with the configuration of this distribution between the cores of the crystals and their outer zones showing that the zoning of the cores and outer zones is independent and was produced during two episodes of reaction interaction between the olivine and melt/fluid. The younger episode (when the outer zone was formed) likely involved interaction with kimberlite melt. The transformation of the composition of the cores during the older episode may have been of metasomatic nature, as follows from the fact that the composition varies from grain to grain. The metasomatic episode most likely occurred shortly before the kimberlite melt was emplaced and was related to the partial melting of pyroxenite source material.
Abstract: To provide new insights into the origin and evolution of kimberlitic magmas with different diamond concentrations from the Arkhangelsk diamond province in northwestern Russia, we examined the major-and trace-element compositions of ilmenite from diamondiferous kimberlite of the Grib pipe and diamond barren kimberlites from the Kepino cluster (Stepnaya and TsNIGRI-Arkhangelskaya pipes). Ilmenite from diamond-barren kimberlites shows lower Mg, Ti, Cr, Ni and Cu concentrations with increase in both Fe 3+ and Fe 2+ and Nb, Ta, Zr, Hf, Zn and V concentrations. The main differences between kimberlites with different diamond contents are the Nb and Zr concentrations and their correlation patterns with Mg and Cr concentrations. Ilmenite from the Grib kimberlite has Zr concentrations <110 ppm, whereas ilmenite from the Kepino kimberlites has Zr concentrations >300 ppm. Ilmenite crystallisation within the Grib kimberlite occurred under increasing oxygen fugacity (fO 2), which may reflect assimilation of mantle peridotite by the kimberlitic magmas. Ilmenite from the Kepino kimberlites suggests its crystallisation under constant fO 2 , with the ilmenite composition being controlled by processes of fractional crystallisation of megacrystic minerals. These assumptions were confirmed with assimilation-fractional crystallisation calculations. On the basis of obtained data, we developed a model for the evolution of the kimberlitic magmas for both diamon-diferous and barren kimberlites. The diamond-bearing kimberlitic magmas were generated under intense interaction of kimberlitic magmas with the surrounding lithospheric mantle. It may be that during early modification of the lithospheric mantle by kimberlitic magmas as well as with kimberlitic magmas' local stretching and swift ascent, the capture of the mantle xenoliths was favoured over the crystallisation of phenocrysts. The formation of barren kimberlitic magmas may have occurred when the lithospheric mantle in the vicinity of ascending magmas was already geochemically equilibrated with them. It also is possible that the magma's ascent slowed under conditions of dominantly compressive stresses with crystallisation of olivine and other megacrystic phases.
Abstract: To provide new insights into the origin and evolution of kimberlitic magmas with different diamond concentrations from the Arkhangelsk diamond province in north-western Russia, we examined the major- and trace-element compositions of ilmenite from diamondiferous kimberlite of the Grib pipe and diamond-barren kimberlites from the Kepino cluster (Stepnaya and TsNIGRI-Arkhangelskaya pipes). Ilmenite from diamond-barren kimberlites shows lower Mg, Ti, Cr, Ni and Cu concentrations with increase in both Fe3+ and Fe2+ and Nb, Ta, Zr, Hf, Zn and V concentrations. The main differences between kimberlites with different diamond contents are the Nb and Zr concentrations and their correlation patterns with Mg and Cr concentrations. Ilmenite from the Grib kimberlite has Zr concentrations <110 ppm, whereas ilmenite from the Kepino kimberlites has Zr concentrations >300 ppm. Ilmenite crystallisation within the Grib kimberlite occurred under increasing oxygen fugacity (fO2), which may reflect assimilation of mantle peridotite by the kimberlitic magmas. Ilmenite from the Kepino kimberlites suggests its crystallisation under constant fO2, with the ilmenite composition being controlled by processes of fractional crystallisation of megacrystic minerals. These assumptions were confirmed with assimilation-fractional crystallisation calculations. On the basis of obtained data, we developed a model for the evolution of the kimberlitic magmas for both diamondiferous and barren kimberlites. The diamond-bearing kimberlitic magmas were generated under intense interaction of kimberlitic magmas with the surrounding lithospheric mantle. It may be that during early modification of the lithospheric mantle by kimberlitic magmas as well as with kimberlitic magmas’ local stretching and swift ascent, the capture of the mantle xenoliths was favoured over the crystallisation of phenocrysts. The formation of barren kimberlitic magmas may have occurred when the lithospheric mantle in the vicinity of ascending magmas was already geochemically equilibrated with them. It also is possible that the magma’s ascent slowed under conditions of dominantly compressive stresses with crystallisation of olivine and other megacrystic phases.
Abstract: Carbon from Earth’s interior is thought to be released to the atmosphere mostly via degassing of CO2 from active volcanoes1, 2, 3, 4. CO2 can also escape along faults away from active volcanic centres, but such tectonic degassing is poorly constrained1. Here we use measurements of diffuse soil CO2, combined with carbon isotopic analyses to quantify the flux of CO2 through fault systems away from active volcanoes in the East African Rift system. We find that about 4?Mt?yr-1 of mantle-derived CO2 is released in the Magadi-Natron Basin, at the border between Kenya and Tanzania. Seismicity at depths of 15-30?km implies that extensional faults in this region may penetrate the lower crust. We therefore suggest that CO2 is transferred from upper-mantle or lower-crustal magma bodies along these deep faults. Extrapolation of our measurements to the entire Eastern rift of the rift system implies a CO2 flux on the order of tens of megatonnes per year, comparable to emissions from the entire mid-ocean ridge system2, 3 of 53-97?Mt?yr-1. We conclude that widespread continental rifting and super-continent breakup could produce massive, long-term CO2 emissions and contribute to prolonged greenhouse conditions like those of the Cretaceous.
Abstract: From 2009 to 2016, a drastic increase in seismic activity occurred in the Central and Eastern US (CEUS), particularly in the Oklahoma-Kansas region. The majority of hypocenters were focused in the crystalline basement rock. Information regarding the physical properties (elastic wave velocity, peak strength, etc.) of rocks in the CEUS basement to date is sparse. Forecasting future seismic hazard and predicting the in situ response of the crystalline basement requires their geomechanical parameters be adequately constrained. This work assesses the mechanical and petrophysical properties of several sets of basement rocks from Oklahoma to provide a better framework for understanding intraplate seismicity and overall basement deformation in the continental United States. Laboratory experiments were conducted with granite, rhyolite and diabase basement rock samples collected from southern Oklahoma. Evolution of compressional and shear wave velocity with increasing confinement was measured through a series of ultrasonic velocity tests. A suite of uniaxial and triaxial tests were conducted to measure the elastic and inelastic deformation behavior of the basement rocks. Deformation data was evaluated using the Mohr-Coulomb criterion and compared with additional preexisting deformation data of igneous basement rocks. Dynamic and static elastic properties compare favorably with available field measurements and demonstrate the role physical properties can play in varying mechanical behavior. Granitic samples demonstrate moderate variation of intrinsic physical properties can alter elastic properties and failure behavior significantly. Water-weakening in the basement rocks may indicate fluid-assisted processes such as stress corrosion cracking enhance deformation in the crystalline basement.
South African Journal of Geology, Vol. 120, 3, pp. 371-384.
Africa, Zimbabwe, South Africa
diamond morphology
Abstract: The morphological, chemical impurities and carbon isotope properties of diamonds may reveal subtle details of their mantle source and growth characteristics, supporting efforts towards identifying their original place of harvesting. Here we investigate the mantle carbon and nitrogen sources and growth patterns from selected diamonds mined from four kimberlites: macro-sized diamonds from River Ranch kimberlite in Zimbabwe and the Swartruggens and Klipspringer kimberlitic deposits from South Africa, and micro-sized diamonds from the Klipspringer and Premier kimberlite intrusions in South Africa. Type IaAB diamonds are found in all the samples; Type IaB diamonds only occur in samples from the Swartruggens, River Ranch and Premier kimberlites. A single Type II diamond (nitrogen below the detection limit) was also observed in the River Ranch and Premier kimberlites. Both the micro- and macro-sized diamonds from Klipspringer have similar nitrogen contents. Based on the % B-defect, the diamonds from Klipspringer are grouped into low- and high-nitrogen aggregates (i.e. % of B-defect <40% and >56%, respectively) that likely represent two different diamond forming episodes. Time averaged mantle storage temperatures for Type IaAB diamonds are calculated to have been: 1060°C for Swartruggens; 1190°C for River Ranch; 1100°C (low aggregated); and 1170°C (highly aggregated) for Klipspringer, and 1210°C for Premier diamonds. The CL-images of the River Ranch, Klipspringer and Premier diamonds reveal multi-oscillatory growth zones. The carbon isotopic analyses on the diamonds reveal an average d13CVPDB value of: -4.5‰ for Swartruggens; -4.7‰ for River Ranch; -4.5‰ for Klipspringer; and -3‰ for Premier. With the exception of the diamond from Premier, the average d13C value of the diamonds are similar to the average d13C value of the mantle (-5‰), which is similar to the occurrence of diamonds in the other kimberlites. The internal carbon isotopic variation of individual diamonds from Swartruggens, Klipspringer and Premier are less than 4‰, which is similar to the variability of most other diamond occurrences reported from elsewhere in the world. Up to 6.7‰ internal carbon isotopic variation was observed in a single diamond from River Ranch. The internal carbon isotopic studies of the diamonds reveal that the primary carbon in the Swartruggens and Klipspringer was derived from an oxidation of CH4-bearing fluid, whereas in the River Ranch the primary carbon was derived from the reduction of carbonate-or CO2-bearing fluids. The Swartruggens diamonds also reveal a secondary carbon sourced from a reduction of CO2- or carbonate-rich fluid or melt. Diamonds from Klipspringer exhibit a cyclic change in d13C values that reflects fluctuation in a complex mantle perturbation system or periodic change in fugacity of the mantle. Based on this study, we conclude that, in principle, a selected range of diamond signatures might be used to fingerprint their origins; especially when linked to their other physical properties such as a low temperature magnetic signature.
Abstract: We performed melting experiments on Fe-O alloys up to 204 GPa and 3500 K in a diamond-anvil cell (DAC) and determined the liquidus phase relations in the Fe-FeO system based on textural and chemical characterizations of recovered samples. Liquid-liquid immiscibility was observed up to 29 GPa. Oxygen concentration in eutectic liquid increased from >8 wt% O at 44 GPa to 13 wt% at 204 GPa and is extrapolated to be about 15 wt% at the inner core boundary (ICB) conditions. These results support O-rich liquid core, although oxygen cannot be a single core light element. We estimated the range of possible liquid core compositions in Fe-O-Si-C-S and found that the upper bounds for silicon and carbon concentrations are constrained by the crystallization of dense inner core at the ICB.
Abstract: Canada is host to at least six separate cratons that comprise a significant proportion of its crustal extent. Of these cratons, we possess knowledge of the cratonic lithospheric roots beneath only the Slave craton and, to a lesser extent, the Superior craton, despite the discovery of many new diamond-bearing kimberlites in Canada's North. Here we present the first age, composition and geothermal information for kimberlite-borne peridotite xenoliths from two localities within the central Rae craton: Pelly Bay and Repulse Bay. Our aim is to investigate the nature and evolution of the deep lithosphere in these regions and to examine how events recorded in the mantle may or may not correlate with the complex history of crustal evolution across the craton. Peridotite xenoliths are commonly altered by secondary processes including serpentinization, silicification and carbonation, which have variably affected the major element compositions. These secondary processes, as well as mantle metasomatism recorded in pristine silicate minerals, however, did not significantly modify the relative compositions of platinum-group elements (PGE) and Os isotope ratios in the majority of our samples from Pelly Bay and Repulse Bay, as indicated by the generally high absolute PGE concentrations and mantle-like melt-depleted PGE patterns. The observed PGE signatures are consistent with the low bulk Al2O3 contents (mostly lower than 2.5%) of the peridotites, as well as the compositions of the silicate and oxide minerals. Based on PGE patterns and Os model ages, the peridotites from both localities can be categorized into three age groups: Archean (3.0-2.6 Ga overall; 2.8-2.6 Ga for Pelly Bay and 3.0-2.7 Ga for Repulse Bay), Paleoproterozoic (2.1-1.7 Ga), and "Recent" (<1 Ga, with model ages similar to the ca. 546 Ma kimberlite eruption age). The Archean group provides the first direct evidence of depleted Archean lithospheric mantle forming coevally with the overlying Archean crustal basement, indicating cratonization of the Rae during the Archean. The subtle difference in Os model ages between Pelly Bay and Repulse Bay coincides with the age difference between crustal basement rocks beneath these two areas, supporting the suggestion that the Rae craton was assembled by collision of separate two Archean blocks at 2.7-2.6 Ga. The Paleoproterozoic peridotites are interpreted to represent newly formed lithospheric mantle, most likely associated with regional-scale underplating during the 1.77-1.70 Ga Kivalliq-Nueltin event via removal of the lower portion of Archean lithospheric mantle followed by replacement with juvenile Paleoproterozoic lithospheric mantle. The existence of multiple age clusters in the lithosphere at each locality is consistent with the observation of present-day seismic lithospheric discontinuities (0540 and 0545) that indicate two or more layers of fossil lithospheric mantle fabric beneath this region. Our data define a shallow mantle lithosphere layer dominated by Archean depletion ages underlain by a layer of mixed Archean and Paleoproterozoic ages. This lithospheric mantle structure is probably a response to complex tectonic displacement of portions of the lithospheric mantle during Paleoproterozoic orogeny/underplating. The best equilibrated Archean and Paleoproterozoic peridotites at both Pelly Bay and Repulse Bay define a typical cratonic geotherm at the time of kimberlite eruption, with a ~200 km thick lithospheric root extending well into the diamond stability field, in keeping with the diamondiferous nature of the kimberlites. Such thick lithosphere remains in place to the present day as suggested by seismic and magnetotelluric studies (0540, 0545 and 0550). The metasomatically disturbed peridotites in the Rae lithospheric mantle, yielding model ages indistinguishable from kimberlite eruption, may represent parts of the Rae craton mantle root that show anomalous magnetotelluric signatures.
Abstract: Canada is host to at least six separate cratons that comprise a significant proportion of its crustal extent. Of these cratons, we possess knowledge of the cratonic lithospheric roots beneath only the Slave craton and, to a lesser extent, the Superior craton, despite the discovery of many new diamond-bearing kimberlites in Canada's North. Here we present the first age, composition and geothermal information for kimberlite-borne peridotite xenoliths from two localities within the central Rae craton: Pelly Bay and Repulse Bay. Our aim is to investigate the nature and evolution of the deep lithosphere in these regions and to examine how events recorded in the mantle may or may not correlate with the complex history of crustal evolution across the craton. Peridotite xenoliths are commonly altered by secondary processes including serpentinization, silicification and carbonation, which have variably affected the major element compositions. These secondary processes, as well as mantle metasomatism recorded in pristine silicate minerals, however, did not significantly modify the relative compositions of platinum-group elements (PGE) and Os isotope ratios in the majority of our samples from Pelly Bay and Repulse Bay, as indicated by the generally high absolute PGE concentrations and mantle-like melt-depleted PGE patterns. The observed PGE signatures are consistent with the low bulk Al2O3 contents (mostly lower than 2.5%) of the peridotites, as well as the compositions of the silicate and oxide minerals. Based on PGE patterns and Os model ages, the peridotites from both localities can be categorized into three age groups: Archean (3.0-2.6 Ga overall; 2.8-2.6 Ga for Pelly Bay and 3.0-2.7 Ga for Repulse Bay), Paleoproterozoic (2.1-1.7 Ga), and “Recent” (<1 Ga, with model ages similar to the ca. 546 Ma kimberlite eruption age). The Archean group provides the first direct evidence of depleted Archean lithospheric mantle forming coevally with the overlying Archean crustal basement, indicating cratonization of the Rae during the Archean. The subtle difference in Os model ages between Pelly Bay and Repulse Bay coincides with the age difference between crustal basement rocks beneath these two areas, supporting the suggestion that the Rae craton was assembled by collision of separate two Archean blocks at 2.7-2.6 Ga. The Paleoproterozoic peridotites are interpreted to represent newly formed lithospheric mantle, most likely associated with regional-scale underplating during the 1.77-1.70 Ga Kivalliq-Nueltin event via removal of the lower portion of Archean lithospheric mantle followed by replacement with juvenile Paleoproterozoic lithospheric mantle. The existence of multiple age clusters in the lithosphere at each locality is consistent with the observation of present-day seismic lithospheric discontinuities (0540 and 0545) that indicate two or more layers of fossil lithospheric mantle fabric beneath this region. Our data define a shallow mantle lithosphere layer dominated by Archean depletion ages underlain by a layer of mixed Archean and Paleoproterozoic ages. This lithospheric mantle structure is probably a response to complex tectonic displacement of portions of the lithospheric mantle during Paleoproterozoic orogeny/underplating. The best equilibrated Archean and Paleoproterozoic peridotites at both Pelly Bay and Repulse Bay define a typical cratonic geotherm at the time of kimberlite eruption, with a ~200 km thick lithospheric root extending well into the diamond stability field, in keeping with the diamondiferous nature of the kimberlites. Such thick lithosphere remains in place to the present day as suggested by seismic and magnetotelluric studies (0540, 0545 and 0550). The metasomatically disturbed peridotites in the Rae lithospheric mantle, yielding model ages indistinguishable from kimberlite eruption, may represent parts of the Rae craton mantle root that show anomalous magnetotelluric signatures.
The IR absorption spectrum of water in microinclusion-bearing diamonds.
Proceedings of the 10th. International Kimberlite Conference, Vol. 1, Special Issue of the Journal of the Geological Society of India,, Vol. 1, pp. 271-280.
Diamonds & Related Materials, Vol. 101, 107640, 13p. Pdf
Russia
Popigai
Abstract: The special features of impact diamonds are the orientation of the nanosized grains relative to each other, the presence of hexagonal diamond (lonsdaleite, L) in a large part of the samples and the increased wear resistance. Using Raman spectroscopy and XRD, two groups of translucent samples of Popigai impact diamonds (PIDs) were selected: with and without lonsdaleite and the effect of lonsdaleite on the optical properties of the samples was studied. In all L-containing PIDs there is a strong absorption band of about 1230 cm-1 in the one-phonon region, in the mid-IR. The absorption edge is blurred and described by the Urbach rule. The estimated value of Eg ~4 eV for L is consistent with the first principles calculations. Impurity nitrogen is found only in L-free PIDs: There are signals from nitrogen-vacancy complexes in the photoluminescence (PL) spectra. Variations in the number of nitrogen atoms (N = 1 to 4) in the structure of these centers indicate significant variations in the parameters of PID annealing. L-containing PIDs are characterized by large strains in the lattice and, as a consequence, there are problems with the defect diffusion. The narrow lines in PL spectra, uncommon for diamond, can be the result of several orders of magnitude higher concentrations of impurities in PIDs formed during the solid-phase transition. The broadened peaks of 180, 278 and 383 K are distinguishable in the curves of thermostimulated luminescence (TSL) for L-free PIDs, but in the presence of L the TSL glow becomes continuous as in natural IaA-type diamonds with platelets. In general, lonsdaleite deteriorates the optical properties of impact diamonds and makes it difficult to create certain types of impurity-vacancy complexes for different applications.
Sano, A., Ohtani, E., Litasov, K., Kubo, T., Hosoya, T., Funakoshi, K., Kikegawa, T.
In situ x-ray diffraction study of the effect of water on the garnet perovksite transformation in MORB and implications for the penetration of oceanic crust...
Physics of the Earth and Planetary Interiors, Vol. 159, 1-2, pp. 118-126.
Brief - comments on a meeting held by Rio Tinto on their Diamond & Minerals.... regrouped in a new division but still targeted for growth ( India mentioned).
Earth and Planetary Science Letters, Vol. 481, pp. 143-153.
Africa, South Africa
deposit - Wesselton
Abstract: Rare garnet crystals from a peridotite xenolith from the Wesselton kimberlite, South Africa, have distinct zones related to two separate episodes of mantle metasomatism. The garnet cores were firstly depleted through melt extraction, then equilibrated during metasomatism by a potentially diamond-forming carbonate-bearing or proto-kimberlitic fluid at 1100-1300?°C and 4.5-5.5 GPa. The garnet rim chemistry, in contrast, is consistent with later overgrowth in equilibrium with a kimberlite at around and . This suggests that the rock was physically moved upwards by up to tens of kilometres between the two metasomatic episodes. Preserved high Ca, Al and Cr contents in orthopyroxenes suggest this uplift was tectonic, rather than magmatic. Diffusion profiles were measured over the transitions between garnet cores and rims using electron microprobe (Mg, Ca, Fe for modelling, plus Cr, Mn, Ti, Na, Al) and nano Secondary Ion Mass Spectrometry (NanoSIMS; 89Y, along with 23Na, Ca, Cr, Fe, Mn and Ti) analyses. The short profile lengths (generally <10 µm) and low Y concentrations (0.2-60 ppm) make the NanoSIMS approach preferable. Diffusion profiles at the interface between the zones yield constraints on the timescale between the second metasomatic event and eruption of the kimberlite magma that brought the xenolith to the surface. The time taken to form the diffusion profiles is on the order of 25 days to 400 yr, primarily based on modelling of Y diffusion along with Ca, Fe and Mg (multicomponent diffusion) profiles. These timescales are too long to be produced by the interaction of the mantle xenolith with the host kimberlite magma during a single-stage ascent to the crust (hours to days). The samples offer a rare opportunity to study metasomatic processes associated with failed eruption attempts in the cratonic lithosphere.
Earth and Planetary Science Letters, Vol. 481, 1, pp. 143-153.
Mantle
kimberlite
Abstract: Rare garnet crystals from a peridotite xenolith from the Wesselton kimberlite, South Africa, have distinct zones related to two separate episodes of mantle metasomatism. The garnet cores were firstly depleted through melt extraction, then equilibrated during metasomatism by a potentially diamond-forming carbonate-bearing or proto-kimberlitic fluid at 1100-1300?°C and 4.5-5.5 GPa. The garnet rim chemistry, in contrast, is consistent with later overgrowth in equilibrium with a kimberlite at around and . This suggests that the rock was physically moved upwards by up to tens of kilometres between the two metasomatic episodes. Preserved high Ca, Al and Cr contents in orthopyroxenes suggest this uplift was tectonic, rather than magmatic. Diffusion profiles were measured over the transitions between garnet cores and rims using electron microprobe (Mg, Ca, Fe for modelling, plus Cr, Mn, Ti, Na, Al) and nano Secondary Ion Mass Spectrometry (NanoSIMS; 89Y, along with 23Na, Ca, Cr, Fe, Mn and Ti) analyses. The short profile lengths (generally <10 µm) and low Y concentrations (0.2-60 ppm) make the NanoSIMS approach preferable. Diffusion profiles at the interface between the zones yield constraints on the timescale between the second metasomatic event and eruption of the kimberlite magma that brought the xenolith to the surface. The time taken to form the diffusion profiles is on the order of 25 days to 400 yr, primarily based on modelling of Y diffusion along with Ca, Fe and Mg (multicomponent diffusion) profiles. These timescales are too long to be produced by the interaction of the mantle xenolith with the host kimberlite magma during a single-stage ascent to the crust (hours to days). The samples offer a rare opportunity to study metasomatic processes associated with failed eruption attempts in the cratonic lithosphere.
Geochimica et Cosmochimica Acta, in press available, doi.org/101016 /j.gca.2020.07.013 45p. Pdf
Canada, Northwest Territories
deposit - Lac de Gras
Abstract: Whether hydrogen incorporated in nominally anhydrous mantle minerals plays a role in the strength and longevity of the thick cratonic lithosphere is a matter of debate. In particular, the percolation of hydrogen-bearing melts and fluids could potentially add hydrogen to the mantle lithosphere, weaken its olivines (the dominant mineral in mantle peridotite), and cause delamination of the lithosphere's base. The influence of metasomatism on hydrogen contents of cratonic mantle minerals can be tested in mantle xenoliths from the Slave Craton (Canada) because they show extensive evidence for metasomatism of a layered cratonic mantle. Minerals from mantle xenoliths from the Diavik mine in the Lac de Gras kimberlite area located at the center of the Archean Slave craton were analyzed by FTIR for hydrogen contents. The 18 peridotites, two pyroxenites, one websterite and one wehrlite span an equilibration pressure range from 3.1 to 6.6 GPa and include samples from the shallow (= 145 km), oxidized ultra-depleted layer; the deeper (~145-180 km), reduced less depleted layer; and an ultra-deep (= 180 km) layer near the base of the lithosphere. Olivine, orthopyroxene, clinopyroxene and garnet from peridotites contain 30 - 145, 110 - 225, 105 - 285, 2 - 105 ppm H2O, respectively. Within each deep and ultra-deep layer, correlations of hydrogen contents in minerals and tracers of metasomatism (for example light over heavy rare-earth-element ratio (LREE/HREE), high-field-strength-element (HFSE) content with equilibration pressure) can be explained by a chromatographic process occurring during the percolation of kimberlite-like melts through garnet peridotite. The hydrogen content of peridotite minerals is controlled by the compositions of the evolving melt and of the minerals and by mineral/melt partition coefficients. At the beginning of the process, clinopyroxene scavenges most of the hydrogen and garnet most of the HFSE. As the melt evolves and becomes enriched in hydrogen and LREE, olivine and garnet start to incorporate hydrogen and pyroxenes become enriched in LREE. The hydrogen content of peridotite increases with decreasing depth, overall (e.g., from 75 to 138 ppm H2O in the deep peridotites). Effective viscosity calculated using olivine hydrogen content for the deepest xenoliths near the lithosphere-asthenosphere boundary overlaps with estimates of asthenospheric viscosities. These xenoliths cannot be representative of the overall cratonic root because the lack of viscosity contrast would have caused basal erosion of lithosphere. Instead, metasomatism must be confined in narrow zones channeling kimberlite melts through the lithosphere and from where xenoliths are preferentially sampled. Such localized metasomatism by hydrogen-bearing melts therefore does not necessarily result in delamination of the cratonic root.
Geochimica et Cosmochimica Acta, Vol. 286, pp. 29-83. pdf
Canada, Northwest Territories
xenoliths
Abstract: Whether hydrogen incorporated in nominally anhydrous mantle minerals plays a role in the strength and longevity of the thick cratonic lithosphere is a matter of debate. In particular, the percolation of hydrogen-bearing melts and fluids could potentially add hydrogen to the mantle lithosphere, weaken its olivines (the dominant mineral in mantle peridotite), and cause delamination of the lithosphere's base. The influence of metasomatism on hydrogen contents of cratonic mantle minerals can be tested in mantle xenoliths from the Slave Craton (Canada) because they show extensive evidence for metasomatism of a layered cratonic mantle. Minerals from mantle xenoliths from the Diavik mine in the Lac de Gras kimberlite area located at the center of the Archean Slave craton were analyzed by FTIR for hydrogen contents. The 18 peridotites, two pyroxenites, one websterite and one wehrlite span an equilibration pressure range from 3.1 to 6.6 GPa and include samples from the shallow (=145?km), oxidized ultra-depleted layer; the deeper (~145-180?km), reduced less depleted layer; and an ultra-deep (=180?km) layer near the base of the lithosphere. Olivine, orthopyroxene, clinopyroxene and garnet from peridotites contain 30-145, 110-225, 105-285, 2-105?ppm H2O, respectively. Within each deep and ultra-deep layer, correlations of hydrogen contents in minerals and tracers of metasomatism (for example light over heavy rare-earth-element ratio (LREE/HREE), high-field-strength-element (HFSE) content with equilibration pressure) can be explained by a chromatographic process occurring during the percolation of kimberlite-like melts through garnet peridotite. The hydrogen content of peridotite minerals is controlled by the compositions of the evolving melt and of the minerals and by mineral/melt partition coefficients. At the beginning of the process, clinopyroxene scavenges most of the hydrogen and garnet most of the HFSE. As the melt evolves and becomes enriched in hydrogen and LREE, olivine and garnet start to incorporate hydrogen and pyroxenes become enriched in LREE. The hydrogen content of peridotite increases with decreasing depth, overall (e.g., from 75 to 138?ppm H2O in the deep peridotites). Effective viscosity calculated using olivine hydrogen content for the deepest xenoliths near the lithosphere-asthenosphere boundary overlaps with estimates of asthenospheric viscosities. These xenoliths cannot be representative of the overall cratonic root because the lack of viscosity contrast would have caused basal erosion of lithosphere. Instead, metasomatism must be confined in narrow zones channeling kimberlite melts through the lithosphere and from where xenoliths are preferentially sampled. Such localized metasomatism by hydrogen-bearing melts therefore does not necessarily result in delamination of the cratonic root.
Kilian, T.M., Bleeker, W., Chamberlain. K., Evans, D.A.D., Cousens, B.
Paleomagnetism, geochronology and geochemistry of the Paleoproterozoic Rabbit Creek and Powder River dyke swarms: implications for Wyoming in supercraton Superia.
Geological Society of London Special Publication Supercontinent Cycles through Earth History., Vol. 424, pp. 15-45.
Abstract: Paleoproterozoic suture zones mark the formation of supercontinent Nuna and provide a record of North America's assembly. Conspicuously young ages (ca. 1.715 Ga) associated with deformation in southeast Wyoming craton argue for a more protracted consolidation of Laurentia, long after peak metamorphism in the Trans-Hudson orogen. Using paleomagnetic data from the newly dated 1899 ± 5 Ma Sourdough mafic dike swarm (Wyoming craton), we compare the relative positions of Wyoming, Superior, and Slave cratons before, during, and after peak metamorphism in the Trans-Hudson orogen. With these constraints, we refine a collisional model for Laurentia that incorporates Wyoming craton after Superior and Slave cratons united, redefining the Paleoproterozoic sutures that bind southern Laurentia.
Abstract: Paleoproterozoic suture zones mark the formation of supercontinent Nuna and provide a record of North America’s assembly. Conspicuously young ages (ca. 1.715 Ga) associated with deformation in southeast Wyoming craton argue for a more protracted consolidation of Laurentia, long after peak metamorphism in the Trans-Hudson orogen. Using paleomagnetic data from the newly dated 1899 ± 5 Ma Sourdough mafic dike swarm (Wyoming craton), we compare the relative positions of Wyoming, Superior, and Slave cratons before, during, and after peak metamorphism in the Trans-Hudson orogen. With these constraints, we refine a collisional model for Laurentia that incorporates Wyoming craton after Superior and Slave cratons united, redefining the Paleoproterozoic sutures that bind southern Laurentia.
Nuclear instruments and methods in Physics Research Section B , Vol. 123 ( 1-4) pp. 579-582.
Technology
spectrometry
Abstract: A brief overview is provided of the uses of AMS in mineral analysis, emphasizing the selection of appropriate samples. Simple guidelines are given for judging the suitability of a set of samples (and the type of problem that they pose) for AMS, as opposed to other methods of in-situ analysis. Optimal interpretation of the AMS data requires that the method be employed in conjunction with a range of other types of information. These include textural and mineralogical observations obtained with petrographic or scanning electron microscopes, plus in-situ chemical data for areas of the target typically 1–250 µm in diameter, obtained by some combination of complementary techniques, such as electron, proton or ion microprobe analysis (EPM, PIXE and SIMS, respectively).
Abstract: Paleoproterozoic suture zones mark the formation of supercontinent Nuna and provide a record of North America's assembly. Conspicuously young ages (ca. 1.715 Ga) associated with deformation in southeast Wyoming craton argue for a more protracted consolidation of Laurentia, long after peak metamorphism in the Trans-Hudson orogen. Using paleomagnetic data from the newly dated 1899 ± 5 Ma Sourdough mafic dike swarm (Wyoming craton), we compare the relative positions of Wyoming, Superior, and Slave cratons before, during, and after peak metamorphism in the Trans-Hudson orogen. With these constraints, we refine a collisional model for Laurentia that incorporates Wyoming craton after Superior and Slave cratons united, redefining the Paleoproterozoic sutures that bind southern Laurentia.
Critical evaluation of the status of the areas for future research regarding the wide band GAP semi-conductors diamond, gallium nitride and silicon carbide
Material Sci. Eng. B. Solid State Adv. Technol, Vol. B1, No. 1, Aug. pp. 77-104
Geophysical Research Letters, Vol. 45, 10, pp. 4725-4732.
Mantle
bridgmanite
Abstract: Seismic heterogeneities in the Earth's lower mantle have been attributed to thermal and/or chemical variations of constituent minerals. Bridgmanite is the most abundant lower-mantle mineral and contains Fe and Al in its structure. Knowing the effect of Fe on compressional and shear wave velocities (VP, VS) and density of bridgmanite at relevant pressure-temperature conditions can help to understand seismic heterogeneities in the region. However, experimental studies on both VP and VS of Fe-bearing bridgmanite have been limited to pressures below 40 GPa. In this study, VP and VS of Fe-bearing bridgmanite were measured up to 70 GPa in the diamond anvil cell. We observed drastic softening of VP by ~6(±1)% at 42.6-58 GPa and increased VS at pressures above 40 GPa. We interpret these observations as due to a spin transition of Fe3+. These observations are different to previous views on the effect of Fe on seismic velocities of bridgmanite. We propose that the abnormal sound velocities of Fe-bearing bridgmanite could help to explain the seismically observed low correlation between VP and VS in the mid-lower mantle. Our results challenge existing models of Fe enrichment to explain the origin of Large Low Shear Velocity provinces in the lowermost mantle.
Geochemistry, Geophysics, Geosystems, Vol. 19, 5, pp. 1690-1712.
Africa
geomorphology
Abstract: West African drainage reorganization during Cretaceous opening of the Atlantic Ocean is deciphered here from geochemical provenance studies of Central Atlantic sediments. Changes in the geochemical signature of marine sediments are reflected in major and trace element concentrations and strontium-neodymium radiogenic isotopic compositions of Cretaceous sedimentary rocks from eight Deep Sea Drilling Project (DSDP) sites and one exploration well. Homogeneous major and trace element compositions over time indicate sources with average upper (continental) crust signatures. However, detailed information on the ages of these sources is revealed by neodymium isotopes (expressed as ?Nd). The ?Nd(0) values from the DSDP sites show a three-step decrease during the Late Cretaceous: (1) the Albian-Middle Cenomanian ?Nd(0) values are heterogeneous (-5.5 to -14.9) reflecting the existence of at least three subdrainage basins with distinct sedimentary sources (Hercynian/Paleozoic, Precambrian, and mixed Precambrian/Paleozoic); (2) during the Late Cenomanian-Turonian interval, ?Nd(0) values become homogeneous in the deepwater basin (-10.3 to -12.4), showing a negative shift of 2 epsilon units interpreted as an increasing contribution of Precambrian inputs; (3) this negative shift continues in the Campanian-Maastrichtian (?Nd(0)?=?-15), indicating that Precambrian sources became dominant. These provenance changes are hypothesized to be related to the opening of the South and Equatorial Atlantic Ocean, coincident with tectonic uplift of the continental margin triggered by Africa-Europe convergence. Finally, the difference between ?Nd(0)values of Cretaceous sediments from the Senegal continental shelf and from the deepwater basins suggests that ocean currents prevented detrital material from the Mauritanides reaching deepwater areas.
Earth and Planetary Science Letters, Vol. 477, pp.
Mantle
geophysics - seismics
Abstract: We exploit conversions between P and S waves for large-scale, high-resolution imaging of the mantle transition zone beneath Northwest Pacific and the margin of Eastern Asia. We find pervasive reflectivity concentrated in two bands with apparent wave-speed reduction of -2% to -4% about 50 km thick at the top of the transition zone and 100 km thick at the bottom. This negative reflectivity associated with the scattered-waves at depth is interpreted jointly with larger-scale mantle tomographic images, and is shown to delineate the stagnant portions of the subducted Pacific plate in the transition zone, with largely positive shear-wave velocity contrasts. The upper reflectivity zone connects to broad low-velocity regions below major intra-plate volcanoes, whereas the lower zone coincides locally with the occurrence of deep-focus earthquakes along the East Asia margin. Similar reflectivity is found in Pacific Northwest of the USA. We demonstrate that the thermal signature of plates alone is not sufficient to explain such features. Alternative explanations for these reflective zones include kinetic effects on olivine phase transitions (meta-stability), compositional heterogeneities within and above stagnant plates, complex wave-propagation effects in the heterogeneous slab structure, or a combination of such factors. We speculate that part of the negative reflectivity is the signature of compositional heterogeneities, as revealed by numerous other studies of seismic scattering throughout the mantle, and that such features could be widespread across the globe.
Review of 1989 international mineral industry activities.Brief mention Of diamonds in several countries. ie. South Africa, Zaire, Namibia, Angola, Guinea
Mining Engineering, Vol. 42, No. 7, July, pp. 665-675
South Africa, Democratic Republic of Congo, Namibia, Angola, Guinea
Geostandards and Geoanalytical Research, in press available, 21p.
Asia, Mongolia
olivine
Abstract: A new olivine reference material - MongOL Sh11-2 - for in situ analysis has been prepared from the central portion of a large (20 × 20 × 10 cm) mantle peridotite xenolith from a ~ 0.5 My old basaltic breccia at Shavaryn-Tsaram, Tariat region, central Mongolia. The xenolith is a fertile mantle lherzolite with minimal signs of alteration. Approximately 10 g of 0.5-2 mm gem quality olivine fragments were separated under binocular microscope and analysed by EPMA, LA-ICP-MS, SIMS and bulk analytical methods (ID-ICP-MS for Mg and Fe, XRF, ICP-MS) for major, minor and trace elements at six institutions world-wide. The results show that the olivine fragments are sufficiently homogeneous with respect to major (Mg, Fe, Si), minor and trace elements. Significant inhomogeneity was revealed only for phosphorus (homogeneity index of 12.4), whereas Li, Na, Al, Sc, Ti and Cr show minor inhomogeneity (homogeneity index of 1-2). The presence of some mineral and fluid-melt micro-inclusions may be responsible for the inconsistency in mass fractions obtained by in situ and bulk analytical methods for Al, Cu, Sr, Zr, Ga, Dy and Ho. Here we report reference and information values for twenty-seven major, minor and trace elements.
Society of Economic Geology Geoscience and Exploration of the Argyle, Bunder, Diavik, and Murowa Diamond Deposits, Special Publication no. 20, pp. 253-266.
43rd Annual Yellowknife Geoscience Forum Abstracts, abstract p. 47.
Canada, Northwest Territories
Garnet chemistry
Abstract: In diamond exploration, the use of compositional data to identify diamond-related peridotitic xenocrysts has long been a widely used and powerful tool. In contrast, the application of similar methods to eclogitic garnet chemistry remains a challenge. The inability to unequivocally classify certain “eclogitic” garnet compositions as either mantle- or crust-derived implies that a high abundance of lower-crustal garnets will increase diamond-exploration expenditures by introducing a number of “false positives.” Revising existing classification schemes (e.g., Schulze, 2003) to reduce the abundance of “false positives” may, however, increase the number of “false negatives” through the misclassification of mantle-derived garnets as crustal. This study presents new geochemical and petrographical data for garnet and clinopyroxene from 724 kimberlite-hosted, crust- and mantle-derived xenoliths from localities worldwide, with a focus on samples whose lithology is constrained petrographically, rather than single mineral grains from concentrate. Mantle samples are primarily eclogitic and pyroxenitic, as constrained by mineral assemblage and garnet and clinopyroxene mineral chemistry, while crustal samples are dominantly plagioclase-bearing garnet-granulites. For those localities where an established geothermal gradient is available from literature resources, garnet-clinopyroxene pairs are employed in the estimation of pressure-temperature conditions of equilibration through the iterative coupling of the Krogh (1988) geothermometer and the relevant geothermal gradient. Our preliminary results suggest that closure temperatures for Fe-Mg exchange exceed the temperatures of residence of many lower-crustal samples, as geotherm-based calculated pressures of equilibration exceed the apparent stability of plagioclase (see Green and Ringwood, 1972). Comparison of equilibration pressures with sodium contents in garnet for mantle-derived samples (the diamond-facies criterion of Gurney, 1984) shows a positive correlation at localities for which an adequate range of pressures is observed (e.g., the Diavik mine). Other populations, such as mantle eclogitic garnets from Roberts Victor, plot at a much more restricted range of pressures and hence fail to demonstrate this correlation; instead, these samples may reflect the influence of a broader range of bulk-compositions, providing varying amounts of sodium to their constituent garnets. The results presented here demonstrate clearly that garnets from mantle- and crust-derived samples show significant overlap in geochemical character, for example in garnet Ca# vs. Mg# space (discrimination diagram of Schulze, 2003), where approximately 66% of our crust-derived garnet analyses plot in the “mantle” field. This percentage varies among locations. A selection of particularly high-Mg#, low-Ca# garnets derived from crustal, plagioclase-bearing lithologies in this study highlights the potential for crust-mantle confusion, as these garnets have Mg# in-excess of many mantle-derived eclogitic/pyroxenitic garnets. As a consequence, Fe-Mg-Ca-based classifications alone cannot reliably discriminate mantle and crustal garnets. The next step in this project will be to obtain trace element data for the entire sample suite. This will allow us to test the Li-geobarometer of Hanrahan et al. (2009) for eclogites and to search for trace element signatures that can be used as robust indicators of a diamond-facies origin of eclogitic garnets. Trace element data will also be employed in the refinement of the crust/mantle division discussed above.
Abstract: Experimental data reveal that Earth’s mantle melts more readily than previously thought, and may have remained mushy until two to three billion years ago.
Earth and Planetary Science Letters, Vol. 533, 11p. Pdf
Mantle
carbon
Abstract: Knowledge of the effect of water on the density of carbonate melts is fundamental to constrain their mobility in the Earth's interior and the exchanges of carbon between deep and surficial reservoirs. Here we determine the density of hydrous MgCO3 and CaMg(CO3)2 melts (10 wt% H2O) from 1.09 to 2.98 GPa and 1111 to 1763 K by the X-ray absorption method in a Paris-Edinburgh press and report the first equations of state for hydrous carbonate melts at high pressure. Densities range from 2.26(3) to 2.50(3) g/cm3 and from 2.34(3) to 2.48(3) g/cm3 for hydrous MgCO3 and CaMg(CO3)2 melts, respectively. Combining the results with density data for the dry counterparts from classical Molecular Dynamic (MD) simulations, we derive the partial molar volume (, ) and compressibility of H2O and CO2 components at crustal and upper mantle conditions. Our results show that in alkaline carbonate melts is larger and less compressible than at the investigated conditions. Neither the compressibility nor depend on carbonate melt composition within uncertainties, but they are larger than those in silicate melts at crustal conditions. in alkaline earth carbonate melts decreases from 25(1) to 16.5(5) cm3/mol between 0.5 and 4 GPa at 1500 K. Contrastingly, comparison of our results with literature data suggests strong compositional effects on , that is also less compressible than in transitional melts (e.g., kimberlites) and carbonated basalts. We further quantify the effect of hydration on the mobility of carbonate melts in the upper mantle and demonstrate that 10 wt% H2O increases the mobility of MgCO3 melts from 37 to 67 g.cm-3.Pa-1s-1 at 120 km depth. These results suggest efficient carbonate melt extraction during partial melting and fast migration of incipient melts in the shallow upper mantle.
Abstract: Trapped-charge dating methods including luminescence and electron spin resonance dating have high potential as low temperature (< 100 °C) thermochronometers. Despite an early proof of concept almost 60 years ago, it is only in the past two decades that thermoluminescence (TL), electron-spin-resonance (ESR), and optically stimulated luminescence (OSL), have begun to gain momentum in geological thermochronometry and thermometry applications. Here we review the physics of trapped-charge dating, the studies that led to its development and its first applications for deriving palaeo-temperatures and/or continuous cooling histories. Analytical protocols, which enable the derivation of sample specific kinetic parameters over laboratory timescales, are also described. The key limitation of trapped-charge thermochronometry is signal saturation, which sets an upper limit of its application to < 1 Ma, thus restricting it to rapidly exhuming terrains (> 200 °C Ma- 1), or elevated-temperature underground settings (> 30 °C). Despite this limitation, trapped-charge thermochronometry comprises a diverse suite of versatile methods, and we explore potential future applications and research directions.
Abstract: Permian dikes, sills, and diatremes in southern Illinois and northwestern Kentucky (the Omaha, Wildcat Hills, Cottage Grove, Will Scarlet, Williams, Grant, and Clay Lick intrusions) share similar geochemistry and are classified as ultramafic lamprophyres. Major element compositions are 30-35 wt% SiO2, 6-7% Al2O3, 12-14% FeOt, 16-19% MgO, 3-5% TiO2, 11-16% CaO, 0.1-0.7% Na2O, 1.2-2.7% K2O, and 0.4-1.3% P2O5. The Grant Intrusive Breccia is an exception, with lower SiO2, Al2O3, FeOt, MgO, TiO2, and higher CaO. Typically, these rocks are fine grained, with phlogopite, serpentinized olivine ( Fo88), diopside, perovskite, Fe-Ti-spinel, apatite, and calcite. Blocky and lath-shaped pseudomorphs in some samples probably represent melilite, which would make the rocks alnöites. The Grant and Williams diatremes contain sedimentary and igneous clasts (including amphibole megacrysts) within a carbonate-rich matrix. The Grant exhibits pelletal lapilli and is characterized as a lamprophyre-carbonatite tuffisite. Trace element patterns exhibit enrichment of LREE, strong REE fractionation, and relative depletions of K, Sr, Zr, and Hf, closely matching those of the mela-aillikites of Aillik Bay, Labrador. The Grant Intrusive exhibits even greater REE enrichment and notable peaks at Nb, La, and Ce. Geochemical characteristics, including distributions of 143Nd/144Nd and 87Sr/86Sr, are consistent with near-primary melts from a metasomatized peridotite source containing phlogopite-rich veins. Derivation of the lamprophyres from carbonate-rich parental melts similar to the Grant Intrusive could be achieved by separation of carbonatite. A narrow range of initial 87Sr/86Sr (0.70301-0.70449), and initial eNd (3.7-5.1), suggests a uniform mantle source close to Bulk Earth. T-depleted mantle model ages range from 540 to 625 Ma, and might correlate with timing of enrichment of a lithospheric mantle source during the breakup of Rodinia.
Recovery Plant Practice at de Beers Consolidated Mines Limited, Kimberley with Particular Reference to Improvements Made for the Sorting of the Final Concentrates.
South African Institute of Mining and Metallurgy. Journal, Vol. 80, No. 9, PP. 317-328.
Diamonds & Related Materials, in press available, 31p. Pdf
Global
carbon
Abstract: Natural diamonds that have been partially replaced by graphite have been observed to occur in natural rocks. While the graphite-to-diamond phase transition has been extensively studied the opposite of this (diamond to graphite) remains poorly understood. We performed high-pressure and temperature hydrous and anhydrous experiments up to 1.0?GPa and 1300?°C using Amplex premium virgin synthetic diamonds (20-40?µm size) as the starting material mixed with Mg (OH)2 as a source of H2O for the hydrous experiments. The experiments revealed that the diamond-to-graphite transformation at P?=?1GPa and T?=?1300?°C was triggered by the presence of H2O and was accomplished through a three-stage process. Stage 1: diamond reacts with a supercritical H2O producing an intermediate 200-500?nm size “globular carbon” phase. This phase is a linear carbon chain; i.e. a polyyne or carbyne. Stage 2: the linear carbon chains are unstable and highly reactive, and they decompose by zigzagging and cross-linking to form sp2-bonded structures. Stage 3: normal, disordered, and onion-like graphite is produced by the decomposition of the sp-hybridized carbon chains which are re-organized into sp2 bonds. Our experiments show that there is no direct transformation from sp3 C-bonds into sp2 C-bonds. Our hydrous high-pressure and high-temperature experiments show that the diamond-to-graphite transformation requires an intermediate metastable phase of a linear hydrocarbon. This process provides a simple mechanism for the substitution of other elements into the graphite structure (e.g. H, S, O).
American Institute of Mining, Metallurgical, and Petroleum Engineers (AIME) Preprint held Las Vegas Feb. 27-March 2, 1989, No. 89-139, 4p. Database # 17688
Abstract: The asthenosphere—derived from the Greek asthenes, meaning weak—is the uppermost part of Earth's mantle, right below the tectonic plates that make up the solid lithosphere. First proposed by Barrell 100 years ago (1), the asthenosphere has traditionally been viewed as a passive region that decouples the moving tectonic plates from the mantle and provides magmas to the global spreading ridge system. Recent studies suggest that the asthenosphere may play a more active role as the source of the heat and magma responsible for intraplate volcanoes. Furthermore, it may have a major impact on plate tectonics and the pattern of mantle flow.
Geological Society of America Special Paper, No. 514, pp. SPE514-07.
Mantle
Geothermometry
Abstract: Calculations of mantle convection generally use constant rates of internal heating and time invariant core-mantle boundary temperature. In contrast parameterized convection calculations, sometimes called thermal history calculations, allow these properties to vary with time but only provide a single average temperature for the entire mantle. Here I consider 3D spherical convection calculations that run for the age of the Earth with heat producing elements that decrease with time, a cooling core boundary condition, and a mobile lid. The calculations begin with a moderately hot initial temperature, consistent with a relatively short accretion time for the formation of the planet. I find that the choice of a mobile or stagnant lid has the most significant effect on the average temperature as a function of time in the models. However the choice of mobile versus stagnant lid has less of an effect on the distribution of hot and cold anomalies within the mantle, or planform. I find the same low-degree (one upwelling or two upwelling) temperature structures in the mobile lid calculations that have previously been found in stagnant lid calculations. While having less of an effect on the mean mantle temperature, the viscosity of the asthenosphere has a profound effect on the pattern of temperature anomalies, even in the deep mantle. If the asthenosphere is weaker than the upper mantle by more than an order of magnitude, then the low-degree (one or two giant upwellings) pattern of temperature anomalies results. If the asthenosphere is less than an order of magnitude weaker than the upper mantle, then the pattern of temperature anomalies has narrow cylindrical upwellings and cold down going sheets. The low-degree pattern of temperature anomalies is more consistent with the plate model than the plume model (Foulger, 2007).
Geophysical Research Letters, DOI: 10.1003/ 2017GL072943
Mantle
plumes
Abstract: Conventional wisdom holds that there is a change in the pattern of mantle convection between 410 and at 660 km, where structural transformations convert olivine into its high-pressure polymorphs. In this regard, recent tomographic studies have been a complete surprise, revealing (i) rapid broadening of slow seismic anomalies beneath hotspots from hundreds of kilometers wide at shallow depths to 2000-3000 km wide deeper than ~800 km, and (ii) fast seismic anomalies associated with subducted lithosphere that appear to flounder at 800-1000 km. It is difficult to reconcile these observations with the conventional view of a mantle that experiences limited mineralogical change below 660 km. Here we propose that plumes and slabs contain significant proportions of lithologies that experience an entirely different suite of mineral reactions, demonstrating that both subducted basalt and pyroxenite upwelling in plumes experience substantial changes in mineralogy and thus physical properties at ~800 km depth. We show the importance of this for mantle rheology and dynamics and how it can explain hitherto puzzling mantle tomographic results.
Lithos, doi.org/10.1016/ j.lithos.2020.105918 67p. Pdf
Africa, South Africa
deposit - Roberts Victor
Abstract: Platinum-group elements (PGE) display a chalcophile behaviour and are largely hosted by base metal sulphide (BMS) minerals in the mantle. During partial melting of the mantle, BMS release their metal budget into the magma generated. The fertility of magma sources is a key component of the mineralisation potential of large igneous provinces (LIP) and the origin of orthomagmatic sulphide deposits hosted in cratonic mafic magmatic systems. Fertility of mantle-derived magma is therefore predicated on our understanding of the abundance of metals, such as the PGE, in the asthenospheric and lithospheric mantle. Estimations of the abundance of chalcophile elements in the upper mantle are based on observations from mantle xenoliths and BMS inclusions in diamonds. Whilst previous assessments exist for the BMS composition and chalcophile element budget of peridotitic mantle, relatively few analyses have been published for eclogitic mantle. Here, we present sulphide petrography and an extensive in situ dataset of BMS trace element compositions from Roberts Victor eclogite xenoliths (Kaapvaal Craton, South Africa). The BMS are dominated by pyrite-chalcopyrite-pentlandite (± pyrrhotite) assemblages with S/Se ratios ranging 1200 to 36,840 (with 87% of analyses having S/Se this editing is incorrect. This should read "(with 87% of analyses having S/Se < 10,000)" Please note the <<10,000). Total PGE abundance in BMS range from 0.17 to 223 ppm. We recognise four end-member compositions (types i to iv), distinguished by total PGE abundance and Pt/Pd and Au/Pd ratios. The majority of BMS have low PGE abundances (< 10 ppm) but Type iv BMS have the highest concentration of PGE recorded in eclogites so far (> 100 ppm) and are characteristically enriched in Os, Ir, Ru and Rh. Nano- and micron-scale Pd-Pt antimonide, telluride and arsenide platinum-group minerals (PGM) are observed spatially associated with BMS. We suggest that the predominance of pyrite in the xenoliths reflects the process of eclogitisation and that the trace element composition of the eclogite BMS was inherited from oceanic crustal protoliths of the eclogites, introduced into the SCLM via ancient subduction during formation of the Colesberg Magnetic Lineament c. 2.9 Ga and the cratonisation of the Kaapvaal Craton. Crucially, we demonstrate that the PGE budget of eclogitic SCLM may be substantially higher than previously reported, akin to peridotitic compositions, with significant implications for the PGE fertility of cratonic mafic magmatism and metallogenesis. We quantitatively assess these implications by modelling the chalcophile geochemistry of an eclogitic melt component in parental magmas of the mafic Rustenburg Layered Suite of the Bushveld Complex.
Dating the cratonic lower crust by the ion microprobe SHRIMP: an U-Th-lead isotopic study on zircons from lower crustal xenoliths from kimberlite pipes
Proceedings of Fifth International Kimberlite Conference held Araxa June 1991, Servico Geologico do Brasil (CPRM) Special, pp. 45-48
On the stability of thermal stratification of highly compressible fluids with depth dependent physical properties: implications for the mantle convection.
Geophysical Journal International, Vol. 195, 3, pp. 1443-1454.
Abstract: Slab-slab interaction is a characteristic feature of tectonically complex areas. Outward dipping double-sided subduction is one of these complex cases, which has several examples on Earth, most notably the Molucca Sea and Adriatic Sea. This study focuses on developing a framework for linking plate kinematics and slab interactions in an outward dipping subduction geometry. We used analog and numerical models to better understand the underlying subduction dynamics. Compared to a single subduction model, double-sided subduction exhibits more time-dependent and vigorous toroidal flow cells that are elongated (i.e., not circular). Because both the Molucca and Adriatic Sea exhibit an asymmetric subduction configuration, we also examine the role that asymmetry plays in the dynamics of outward dipping double-sided subduction. We introduce asymmetry in two ways; with variable initial depths for the two slabs (geometric asymmetry), and with variable buoyancy within the subducting plate (mechanical asymmetry). Relative to the symmetric case, we probe how asymmetry affects the overall slab kinematics, whether asymmetric behavior intensifies or equilibrates as subduction proceeds. While initial geometric asymmetry disappears once the slabs are anchored to the 660 km discontinuity, the mechanical asymmetry can cause more permanent differences between the two subduction zones. In the most extreme case, the partly continental slab stops subducting due to the unequal slab pull force. The results show that the slab-slab interaction is most effective when the two trenches are closer than 10-8 cm in the laboratory, which is 600-480 km when scaled to the Earth.
Geochemistry, Geophysics, Geosystems, 10.1029/ 2020GC009159 22p. Pdf
Mantle
olivine
Abstract: The uppermost layer of Earth's mantle, the asthenosphere, experiences large deformations due to a variety of tectonic processes. During deformation, grains of olivine, the main rock-forming mineral in the asthenosphere, rotate into a preferred direction parallel to the deformation, developing a texture that can affect the response of the asthenosphere to tectonic stresses. Laboratory measurements show that the deformation rate depends on the orientation of the shear stress relative to the olivine texture. We use numerical models to apply the findings of the laboratory measurements to geodynamic situations that are difficult to simulate in a laboratory. These models track the development of olivine texture and its directional response to shear stress, which are highly coupled. Our results suggest that anisotropic viscosity in the asthenosphere can significantly affect the motions of tectonic plates, as plate motion in a continuous direction should become faster, while abrupt changes in the direction of plate motion should meet high resistance in the underlying asthenosphere. We suggest that olivine textures in the asthenosphere play a critical role in upper mantle dynamics.
Abstract: In this study, we present a number of experiments on the transformation of graphite, diamond, and multiwalled carbon nanotubes under high pressure conditions. The analysis of our results testifies to the instability of diamond in the 55-115 GPa pressure range, at which onion-like structures are formed. The formation of interlayer sp3-bonds in carbon nanostructures with a decrease in their volume has been studied theoretically. It has been found that depending on the structure, the bonds between the layers can be preserved or broken during unloading.