Hello Guest User, You are visiting this website from a computer with an IP address of 108.162.219.96 with the name of '?' since Fri Jan 15, 2021 at 1:25:00 PM PT for approx. 0 minutes now.
SDLRC - Scientific Articles all years by Author - Kr+
The Sheahan Diamond Literature Reference Compilation
The Sheahan Diamond Literature Reference Compilation is compiled by Patricia Sheahan who publishes on a monthly basis a list of new scientific articles related to diamonds as well as media coverage and corporate announcementscalled the Sheahan Diamond Literature Service that is distributed as a free pdf to a list of followers. Pat has kindly agreed to allow her work to be made available as an online digital resource at Kaiser Research Online so that a broader community interested in diamonds and related geology can benefit. The references are for personal use information purposes only; when available a link is provided to an online location where the full article can be accessed or purchased directly. Reproduction of this compilation in part or in whole without permission from the Sheahan Diamond Literature Service is strictly prohibited. Return to Diamond Resource Center
Sheahan Diamond Literature Reference Compilation - Scientific Articles by Author for all years
The SDLRC provides 3 types of references identified in the reference code. DS for scientific article, DM for a media article, and DC for a corporate announcement. Consider DS0512-0001. The DS stands for "diamond scientific". 05 stands for 2005, the year the reference was posted. 12 represents the month the reference was posted. For all years prior to 2015 the default month is 12. -0001 is the reference's identifier and it does not mean anything. The number below the refence code, ie 2015, is the year the article was published. Note that the posted year may sometimes be later than the published year.
Sort Order
References are sorted by the "author" name and when the reference was posted to the compilation.
Most Recent
If the reference code is highlighted yellow, the reference was made available through the most recent monthly compilation of new literature. Use this to check out new references. When new references are posted, we make it our priority to track down an online link and obtain an abstract. With regard to older references, tracking down an abstract and an online link is a work in progress.
Link to external location of article:
If the title has a link, it means we have found a location online where you can either retrieve the full article free, or purchase access to it. The Sheahan Diamond Literature Service is not a technical article procurement service; if you want a restricted article, you must deal directly with the vendor who controls the copyright to the article.
Searching this page for a specific term or author
In your Firefox browser click Edit in the menu bar and then Find. In the Find box that shows up at the bottom of the web page enter your search term. Firefox will highlight all occurrences. This is particularly helpful when the author you are seeking was not the lead author by whom the compilation is sorted.
Sending or sharing a reference
The left column (Posted/Published) has an embedded hyperlink for each reference. In Firefox, if you right click on it, you can obtain the link url for that reference's location within the page, which you can copy and paste into an email or any other document. You can also use the "share this link" option to tweet, facebook etc the link.
Abstract: Recent exploration work in South Morocco revealed the occurrence of several carbonatite bodies, including the Paleoproterozoic Gleibat Lafhouda magnesiocarbonatite and its associated iron oxide mineralization, recognized here as iron-oxide-apatite (IOA) deposit type. The Gleibat Lafhouda intrusion is hosted by Archean gneiss and schist and not visibly associated with alkaline rocks. Metasomatized micaceous rocks occur locally at the margins of the carbonatite outcrop and were identified as glimmerite fenite type. Rare earth element (REE) and Nb mineralization is mainly linked to the associated IOA mineralization and is represented by monazite-(Ce) and columbite-(Fe) as major ore minerals. The IOA mineralization mainly consists of magnetite and hematite that usually contain large apatite crystals, quartz and some dolomite. Monazite-(Ce) is closely associated with fluorapatite and occurs as inclusions within the altered parts of apatite and along cracks or as separate phases near apatite. Monazite shows no zonation patterns and very low Th contents (<0.4?wt%), which would be beneficial for commercial extraction of the REE and which indicates monazite formation from apatite as a result of hydrothermal volatile-rich fluids. Similar monazite-apatite mineralization and chemistry also occurs at depth within the carbonatite, although the outcropping carbonatite is barren, suggesting an irregular REE ore distribution within the carbonatite body. The barren carbonatite contains some tiny unidentified secondary Nb-Ta-U phases, synchysite and monazite. Niobium mineralization is commonly represented by anhedral minerals of columbite-(Fe) which occur closely associated with magnetite-hematite and host up to 78?wt% Nb2O5, 7?wt% Ta2O5 and 1.6?wt% Sc2O3. This association may suggest that columbite-(Fe) precipitated by an interaction of Nb-rich fluids with pre-existing Fe-rich minerals or as pseudomorphs after pre-existing Nb minerals like pyrochlore. Our results most strongly suggest that the studied mineralization is economically important and warrants both, further research and exploration with the ultimate goal of mineral extraction.
Abstract: Recent exploration work in South Morocco revealed the occurrence of several carbonatite bodies, including the Paleoproterozoic Gleibat Lafhouda magnesiocarbonatite and its associated iron oxide mineralization, recognized here as iron-oxide-apatite (IOA) deposit type. The Gleibat Lafhouda intrusion is hosted by Archean gneiss and schist and not visibly associated with alkaline rocks. Metasomatized micaceous rocks occur locally at the margins of the carbonatite outcrop and were identified as glimmerite fenite type. Rare earth element (REE) and Nb mineralization is mainly linked to the associated IOA mineralization and is represented by monazite-(Ce) and columbite-(Fe) as major ore minerals. The IOA mineralization mainly consists of magnetite and hematite that usually contain large apatite crystals, quartz and some dolomite. Monazite-(Ce) is closely associated with fluorapatite and occurs as inclusions within the altered parts of apatite and along cracks or as separate phases near apatite. Monazite shows no zonation patterns and very low Th contents (<0.4?wt%), which would be beneficial for commercial extraction of the REE and which indicates monazite formation from apatite as a result of hydrothermal volatile-rich fluids. Similar monazite-apatite mineralization and chemistry also occurs at depth within the carbonatite, although the outcropping carbonatite is barren, suggesting an irregular REE ore distribution within the carbonatite body. The barren carbonatite contains some tiny unidentified secondary Nb-Ta-U phases, synchysite and monazite. Niobium mineralization is commonly represented by anhedral minerals of columbite-(Fe) which occur closely associated with magnetite-hematite and host up to 78?wt% Nb2O5, 7?wt% Ta2O5 and 1.6?wt% Sc2O3. This association may suggest that columbite-(Fe) precipitated by an interaction of Nb-rich fluids with pre-existing Fe-rich minerals or as pseudomorphs after pre-existing Nb minerals like pyrochlore. Our results most strongly suggest that the studied mineralization is economically important and warrants both, further research and exploration with the ultimate goal of mineral extraction.
Abstract: The recently discovered REE and Nb mineralization in the Twihinat area in the western part of the Oulad Dlim Massif (Adrar Souttouf) in South Morocco is linked to a Cretaceous calciocarbonatite intrusion which was likely formed in an intracontinental rift setting and crops out locally within a ring structure that mainly consists of massive Fe-oxide mineralization and silica breccia. The carbonatite shows intensively metasomatized zones, which contain bastnaesite and pyrochlore-group minerals as the main REE and Nb ore minerals. They are usually associated with apatite, quartz and Fe-oxides, or trapped in calcite voids, suggesting a secondary ore formation. Within the associated Fe-oxide mineralization, pyrochlore and monazite-(Ce) are the main ore minerals occurring closely associated with quartz and magnetite or hematite. The silica breccia also shows significant subsequent infill of barite, bastnaesite-(Ce) and hydrated ceriopyrochlore, which was identified by EPMA and Raman spectroscopy. Bastnaesite commonly forms prismatic aggregates whereas pyrochlore and ceriopyrochlore usually display subhedral grains along tiny fractures. Structural and textural relationships clearly indicate epigenetic ore formation induced by multiple stages of hydrothermal fluid flow and fracturing. Ore precipitation likely resulted from interaction between low-pH mineralizing hydrothermal fluids and the wall-rock. The latter efficiently buffered the acidity of the fluids and allowed significant amounts of REE and Nb ore minerals to precipitate. Trace element ICP-MS analyses show very high REE and Nb concentrations of up to 0.76 wt% SREE and 0.21 wt% Nb in carbonatite and up to 3 wt% SREE and 1.3 wt% Nb in the associated silica and Fe-oxide mineralization. The results clearly demonstrate that the Twihinat REE-Nb deposits are significant and represent a potential new high-grade resource for these critical metals.
Abstract: We investigate the mantle of central-eastern Greenland by using recordings with data from 24 local broad-band seismograph stations. We apply P wave receiver function technique and evaluate the difference in the arrival times of seismic phases that are formed by P to SV mode conversion at the 410-km and 660-km seismic discontinuities. These boundaries mark the top and bottom of the mantle transition zone (MTZ). The difference in the arrival time of the phases from the 410-km and 660-km discontinuities is sensitive to the thickness of the MTZ and relatively insensitive to volumetric velocity anomalies above the 410-km discontinuity. Near the east coast of Greenland in the region of the Skaergaard basalt intrusions we find two regions where the differential time is reduced by more than 2 s. The 410-km discontinuity in these regions is depressed by more than 20 km. The depression may be explained by a temperature elevation of 150 °C. We hypothesize that the basaltic intrusions and the temperature anomalies at a depth of 400 km are, at least partly, effects of the passage of Greenland over the Iceland hotspot at about 55 Ma. This explanation is consistent with the concept of tectosphere and implies that the upper mantle to a depth of 400 km translates coherently with the Greenland plate.
GSA Annual Meeting, Paper 300-1, 1p. Abstract only Booth
South America, Brazil, Minas Gerais
Deposit - Coromandel
Abstract: The origin of diamonds in the Coromandel area has been an enigma for many years, in spite of high investment in conventional and high tech prospecting methods by major mining companies for over half a century. The authors review the history, and then discuss the two principal hypotheses to explain the source of these alluvial diamonds. After mapping the headwater region of one of the richest alluvial diamond rivers, the Santo Antônio do Bonito River, they reject both principal hypotheses and conclude that the surficial source can be only the Upper Cretaceous Capacete Formation, composed of pyroclastics and epiclastics. Based on geophysical data from the literature, combined with field observations the authors suggest that the largest alkaline complex, situated within the diamond producing area, the Serra Negra/Salitre Complex has been the primary source for those pyroclastics of the Capacete Formation and the diamonds. The plugs of this complex are 15-30 times deeper than average kimberlites and other alkaline complexes in the region, and its excess of volume of the intrusive is three orders of magnitude larger than a typical kimberlite. With an intrusive volume of over 1000 km3 the complex is suggested to be a possible supervolcano. This explains the vast areal distribution of the pyroclastics and diamonds. This new hypothesis has advantages and disadvantages, some of them discussed in the paper and leading to the conclusion that further research is needed.
The Australian Gemmologist, Vol. 26, 5&6, pp. 88-99.
South America, Brazil, Minas Gerais
deposit - Alto Paranaiba
Abstract: The authors, in a paper in this journal in 2009, note a puzzle, that in spite of extensive exploration for diamonds by major producers in the Alto Paranaiba region of West Minas Gerais State, Brazil, no primary source, such as kimberlites, for the many diamonds produced since their discovery over 250 years has been found. To answer this puzzle we propose that the diamonds are present within a large extrusive volcanic unit probably derived from the Serra Negra alkaline-carbonatitic complex which comprises a super volcano. This origin fits with the 1995 prediction of Nixon on the future direction of diamona-exploration that extrusive units may contain very large volumes of ore, and that carbonatitic emplacement sources need to be considered. The authors argue, based on available evidence from geology and geophysics, that such an origin is compatible with the known data, but that much additional information is needed to substantiate these ideas. Diamonds of the Alto Paraniaba, Brazil: Nixon's prediction verified?
Earth and Planetary Science Letters, Vol. 434, pp. 10-17.
Mantle
Tectonics
Abstract: It has been proposed that the spatial variations recorded in the geochemistry of hotspot lavas, such as the bilateral asymmetry recorded at Hawaii, can be directly mapped as the heterogeneous structure and composition of their deep-mantle source. This would imply that source-region heterogeneities are transported into, and preserved within, a plume conduit, as the plume rises from the deep-mantle to Earth's surface. Previous laboratory and numerical studies, which neglect density and rheological variations between different chemical components, support this view. However, in this paper, we demonstrate that this interpretation cannot be extended to distinct chemical domains that differ from surrounding mantle in their density and viscosity. By numerically simulating thermo-chemical mantle plumes across a broad parameter space, in 2-D and 3-D, we identify two conduit structures: (i) bilaterally asymmetric conduits, which occur exclusively for cases where the chemical effect on buoyancy is negligible, in which the spatial distribution of deep-mantle heterogeneities is preserved during plume ascent; and (ii) concentric conduits, which occur for all other cases, with dense material preferentially sampled within the conduit's centre. In the latter regime, the spatial distribution of geochemical domains in the lowermost mantle is not preserved during plume ascent. Our results imply that the heterogeneous structure and composition of Earth's lowermost mantle can only be mapped from geochemical observations at Earth's surface if chemical heterogeneity is a passive component of lowermost mantle dynamics (i.e. its effect on density is outweighed by, or is secondary to, the effect of temperature). The implications of our results for: (i) why oceanic crust should be the prevalent component of ocean island basalts; and (ii) how we interpret the geochemical evolution of Earth's deep-mantle are also discussed.
Abstract: Earth’s surface topography is a direct physical expression of our planet’s dynamics. Most is isostatic, controlled by thickness and density variations within the crust and lithosphere, but a substantial proportion arises from forces exerted by underlying mantle convection. This dynamic topography directly connects the evolution of surface environments to Earth’s deep interior, but predictions from mantle flow simulations are often inconsistent with inferences from the geological record, with little consensus about its spatial pattern, wavelength and amplitude. Here, we demonstrate that previous comparisons between predictive models and observational constraints have been biased by subjective choices. Using measurements of residual topography beneath the oceans, and a hierarchical Bayesian approach to performing spherical harmonic analyses, we generate a robust estimate of Earth’s oceanic residual topography power spectrum. This indicates water-loaded power of 0.5?±?0.35?km2 and peak amplitudes of up to ~0.8?±?0.1?km at long wavelengths (~104?km), decreasing by roughly one order of magnitude at shorter wavelengths (~103?km). We show that geodynamical simulations can be reconciled with observational constraints only if they incorporate lithospheric structure and its impact on mantle flow. This demonstrates that both deep (long-wavelength) and shallow (shorter-wavelength) processes are crucial, and implies that dynamic topography is intimately connected to the structure and evolution of Earth’s lithosphere.
Abstract: The Pilanesberg Alkaline Complex (South Africa) consists of a partially eroded phonolitic-trachytic package of lavas and tuffs, intruded by consanguinous syenites and nepheline syenites (foyaites). The latter have been divided in several units, based on their colour and mineralogy. Most of the foyaitic units are sodic in composition, but whole rock analyses show that some samples are more potassic, with Na2O/K2O<0.8. This observation, together with old reports of leucite-bearing lavas [1], could suggest the existence of a second, potassic magmatic lineage. To investigate whether the observed potassium-enrichment is a primary feature, or the result of deuteric alteration, the mineralogical distinction between sodic and potassic samples was investigated. The mineralogy of the sodic samples is dominated by nepheline, alkali-feldspar and aegirine, ± titanite, amphibole, biotite, and late agpaitic phases [2]. Within the potassic samples, the main primary ferromagnesian mineral is biotite, which shows conspicuous zoning in thin section; nepheline has been extensively replaced by sodalite and cancrinite, but alkali-feldspar appears relatively unaltered. No agpaitic minerals were observed. U-Pb isotope systematics of titanite are similar for sodic and potassic samples in terms of the age (ca. 1.4 Ga) and composion of common Pb; Ar-Ar dating of biotite also gives ca. 1.4 Ga, showing that biotite is a primary magmatic phase. Compositions of the biotite in sodic and potassic samples are similar, with the sodic samples having slightly higher Fe# (independent of whole rock Fe#), higher Na, but lower (Na+K) and Ba. Zoning in biotite from potassic samples is related to a decrease in Mg, Ti and F in the rim of the crystals. Despite the primary character of the biotite, the question whether the potassic samples reflect a combination of alteration and perhaps minor crustal contamination, or a separate mag
The structural, metamorphic and temporal evolution of the country rocks surrounding Venetia mine, Limpopo belt: evidence for a single paleoproterozoic event
Precambrian Research, Vol. 186, 1-4, pp. 51-69.
Africa, South Africa
Tectonometamorphic - implications for a tectonic model
43rd Annual Yellowknife Geoscience Forum Abstracts, abstract p. 93.
Canada, Northwest Territories
Deposit - Gahcho Kue
Abstract: Construction of the De Beers Gahcho Kué Mine required that a portion of Kennady Lake be dewatered to provide access to kimberlite pipes on the lakebed. The Construction Water Management Plan considered an initial dewatering volume of approximately 18.7 Mm3, to be discharged to two downstream waterbodies (Lake N11 and Kennady Lake Area 8). This dewatering was originally planned to occur during the open water season, after the spring freshet peak. The project received its Type A Water Licence from the Mackenzie Valley Land and Water Board on September 24, 2014, and before that date it had become apparent that winter dewatering would be required to prevent a significant delay in the project development. Potential adverse impacts related to winter dewatering were identified and were primarily related to aufeis development. Aufeis is defined as an ice deposit, formed by vertical growth of layers as thin flows of water are exposed to freezing temperatures. These may have adverse effects on erosion, fish and fish habitat. Action levels for winter dewatering were developed, based on site-specific hydrological characteristics, and were included in the Aquatic Effects Monitoring Program for the Mine. This allowed field measurements to be compared to action levels during the dewatering program. Field measurements included telemetry to monitor lake hydrostatic water surface elevations, as well as periodic visits to the receiving lake outlets and downstream areas to examine ice and flow conditions. Winter dewatering commenced on December 20, 2014, with pumping to Kennady Lake Area 8. Pumping was suspended on January 4, 2015, as the action level for that location was approached. Approximately 779,000 m3 of water was released over 16 days. Dewatering discharges were then pumped to Lake N11, with pumping commencing on February 1, 2015 and continuing through the winter period, as the action level for that location was not exceeded. Over the 103 day period through May 14, 2015, approximately 6,021,000 m3 of water was released. A total of 6,800,000 m3 of water was discharged from Kennady Lake over the winter dewatering period, or about 36% of the planned initial dewatering volume. Winter and subsequent open-water season reconnaissance did not identify any adverse effects due to winter dewatering. This presentation will discuss winter dewatering risks, action level development, field program observations, and factors contributing to the overall success of the program.
International Journal of Earth Sciences, in press available 17p.
Africa, Namibia
Alkaline rocks
Abstract: Rb-Sr whole-rock and mineral isotope data from nepheline syenite, tinguaite, and carbonatite samples of the Kalkfeld Complex within the Damaraland Alkaline Province, NW Namibia, indicate a date of 242?±?6.5 Ma. This is interpreted as the age of final magmatic crystallization in the complex. The geological position of the complex and the spatially close relationship to the Lower Cretaceous Etaneno Alkaline Complex document a repeated channeling of small-scale alkaline to carbonatite melt fractions along crustal fractures that served as pathways for the mantle-derived melts. This is in line with Triassic extensional tectonic activity described for the nearby Omaruru Lineament-Waterberg Fault system. The emplacement of the Kalkfeld Complex more than 100 Ma prior to the Paraná-Etendeka event and the emplacement of the Early Cretaceous Damaraland intrusive complexes excludes a genetic relationship to the Tristan Plume. The initial eSr-eNd pairs of the Kalkfeld rocks are typical of younger African carbonatites and suggest a melt source, in which EM I and HIMU represent dominant components.
International Journal of Earth Sciences, Vol. 106, pp. 2797-2813.
Africa, Namibia
carbonatites
Abstract: Rb-Sr whole-rock and mineral isotope data from nepheline syenite, tinguaite, and carbonatite samples of the Kalkfeld Complex within the Damaraland Alkaline Province, NW Namibia, indicate a date of 242?±?6.5 Ma. This is interpreted as the age of final magmatic crystallization in the complex. The geological position of the complex and the spatially close relationship to the Lower Cretaceous Etaneno Alkaline Complex document a repeated channeling of small-scale alkaline to carbonatite melt fractions along crustal fractures that served as pathways for the mantle-derived melts. This is in line with Triassic extensional tectonic activity described for the nearby Omaruru Lineament-Waterberg Fault system. The emplacement of the Kalkfeld Complex more than 100 Ma prior to the Paraná-Etendeka event and the emplacement of the Early Cretaceous Damaraland intrusive complexes excludes a genetic relationship to the Tristan Plume. The initial eSr-eNd pairs of the Kalkfeld rocks are typical of younger African carbonatites and suggest a melt source, in which EM I and HIMU represent dominant components.
International Journal of Earth Sciences, Vol. 106, 8, pp. 2797-2813.
Africa, Namibia
carbonatite
Abstract: Rb-Sr whole-rock and mineral isotope data from nepheline syenite, tinguaite, and carbonatite samples of the Kalkfeld Complex within the Damaraland Alkaline Province, NW Namibia, indicate a date of 242 ± 6.5 Ma. This is interpreted as the age of final magmatic crystallization in the complex. The geological position of the complex and the spatially close relationship to the Lower Cretaceous Etaneno Alkaline Complex document a repeated channeling of small-scale alkaline to carbonatite melt fractions along crustal fractures that served as pathways for the mantle-derived melts. This is in line with Triassic extensional tectonic activity described for the nearby Omaruru Lineament-Waterberg Fault system. The emplacement of the Kalkfeld Complex more than 100 Ma prior to the Paraná-Etendeka event and the emplacement of the Early Cretaceous Damaraland intrusive complexes excludes a genetic relationship to the Tristan Plume. The initial ?Sr-?Nd pairs of the Kalkfeld rocks are typical of younger African carbonatites and suggest a melt source, in which EM I and HIMU represent dominant components.
Abstract: Archaean komatiites (ultramafic lavas) result from melting under extreme conditions of the Earth’s mantle. Their chemical compositions evoke very high eruption temperatures, up to 1,600 degrees Celsius, which suggests even higher temperatures in their mantle source1, 2. This message is clouded, however, by uncertainty about the water content in komatiite magmas. One school of thought holds that komatiites were essentially dry and originated in mantle plumes3, 4, 5, 6 while another argues that these magmas contained several per cent water, which drastically reduced their eruption temperature and links them to subduction processes7, 8, 9. Here we report measurements of the content of water and other volatile components, and of major and trace elements in melt inclusions in exceptionally magnesian olivine (up to 94.5?mole per cent forsterite). This information provides direct estimates of the composition and crystallization temperature of the parental melts of Archaean komatiites. We show that the parental melt for 2.7-billion-year-old komatiites from the Abitibi greenstone belt in Canada contained 30 per cent magnesium oxide and 0.6 per cent water by weight, and was depleted in highly incompatible elements. This melt began to crystallize at around 1,530 degrees Celsius at shallow depth and under reducing conditions, and it evolved via fractional crystallization of olivine, accompanied by minor crustal assimilation. As its major- and trace-element composition and low oxygen fugacities are inconsistent with a subduction setting, we propose that its high H2O/Ce ratio (over 6,000) resulted from entrainment into the komatiite source of hydrous material from the mantle transition zone10. These results confirm a plume origin for komatiites and high Archaean mantle temperatures, and evoke a hydrous reservoir in the deep mantle early in Earth’s history.
Abstract: Mesozoic (125-135 Ma) cratonic low-Ti lamproites from the northern part of the Aldan Shield do not conform to typical classification schemes of ultrapotassic anorogenic rocks. Here we investigate their origins by analyzing olivine and olivine-hosted inclusions from the Ryabinoviy pipe, a well preserved lamproite intrusion within the Aldan Shield. Four types of olivine are identified: (1) zoned phenocrysts, (2) high-Mg, high-Ni homogeneous macrocrysts, (3) high-Ca and low-Ni olivine and (4) mantle xenocrysts. Olivine compositions are comparable to those from the Mediterranean Belt lamproites (Olivine-1 and -2), kamafugites (Olivine-3) and leucitites. Homogenized melt inclusions (MIs) within olivine-1 phenocrysts have lamproitic compositions and are similar to the host rocks, whereas kamafugite-like compositions are obtained for melt inclusions within olivine-3. Estimates of redox conditions indicate that “lamproitic” olivine crystallized from anomalously oxidized magma (?NNO +3 to +4 log units.). Crystallization of "kamafugitic" olivine occurred under even more oxidized conditions, supported by low V/Sc ratios. We consider high-Ca olivine (3) to be a fingerprint of kamafugite-like magmatism, which also occurred during the Mesozoic and slightly preceded lamproitic magmatism. Our preliminary genetic model suggests that low-temperature, extension-triggered melting of mica- and carbonate-rich veined subcontitental lithospheric mantle (SCLM) generated the kamafugite-like melts. This process exhausted carbonate and affected the silicate assemblage of the veins. Subsequent and more extensive melting of the modified SCLM produced volumetrically larger lamproitic magmas. This newly recognized kamafugitic "fingerprint" further highlights similarities between the Aldan Shield potassic province and the Mediterranean Belt, and provides evidence of an overlap between "orogenic" and "anorogenic" varieties of low-Ti potassic magmatism. Moreover, our study also demonstrates that recycled subduction components are not an essential factor in the petrogenesis of low-Ti lamproites, kamafugites and leucitites.
Abstract: Sulfide liquids that immiscibly separate from silicate melts in different magmatic processes accumulate chalcophile metals and may represent important sources of the metals in Earth's crust for the formation of ore deposits. Sulfide phases commonly found in some primitive mid-ocean ridge basalts (MORB) may support the occurrence of sulfide immiscibility in the crust without requiring magma contamination and/or extensive fractionation. However, the records of incipient sulfide melts in equilibrium with primitive high-Mg olivine and Cr-spinel are scarce. Sulfide globules in olivine phenocrysts in picritic rocks of MORB-affinity at Kamchatsky Mys (Eastern Kamchatka, Russia) represent a well-documented example of natural immiscibility in primitive oceanic magmas. Our study examines the conditions of silicate-sulfide immiscibility in these magmas by reporting high precision data on the compositions of Cr-spinel and silicate melt inclusions, hosted in Mg-rich olivine (86.9-90 mol% Fo), which also contain globules of magmatic sulfide melt. Major and trace element contents of reconstructed parental silicate melts, redox conditions (?QFM = +0.1 ± 0.16 (1s) log. units) and crystallization temperature (1200-1285 °C), as well as mantle potential temperatures (~1350 °C), correspond to typical MORB values. We show that nearly 50% of sulfur could be captured in daughter sulfide globules even in reheated melt inclusions, which could lead to a significant underestimation of sulfur content in reconstructed silicate melts. The saturation of these melts in sulfur appears to be unrelated to the effects of melt crystallization and crustal assimilation, so we discuss the reasons for the S variations in reconstructed melts and the influence of pressure and other parameters on the SCSS (Sulfur Content at Sulfide Saturation).
Nuclear Instruments and Methods in Physics Research Section A., A785, pp. 9-13.
Technology
Methodology
Abstract: A new technology for diamond detection in kimberlite based on the tagged neutron method is proposed. The results of experimental researches on irradiation of kimberlite samples with 14.1-MeV tagged neutrons are discussed. The source of the tagged neutron flux is a portable neutron generator with a built-in 64-pixel silicon alpha-detector with double-sided stripped readout. Characteristic gamma rays resulting from inelastic neutron scattering on nuclei of elements included in the composition of kimberlite are registered by six gamma-detectors based on BGO crystals. The criterion for diamond presence in kimberlite is an increased carbon concentration within a certain volume of the kimberlite sample.
Kovdor apatite francolite deposit as an example of explosive and phreatomagmatic endogeneous activity in the ultramafic alkaline and carbonatite complex Kola.
Plumes and problems of deep sources of alkaline magmatism, pp. 155-170.
Abstract: Two Neoproterozoic carbonatite suites of spatially related carbonatites and associated silicate alkaline rocks from Sevattur and Samalpatti, south India, have been investigated in terms of petrography, chemistry and radiogenic–stable isotopic compositions in order to provide further constraints on their genesis. The cumulative evidence indicates that the Sevattur suite is derived from an enriched mantle source without significant post-emplacement modifications through crustal contamination and hydrothermal overprint. The stable (C, O) isotopic compositions confirm mantle origin of Sevattur carbonatites with only a modest difference to Paleoproterozoic Hogenakal carbonatite, emplaced in the same tectonic setting. On the contrary, multiple processes have shaped the petrography, chemistry and isotopic systematics of the Samalpatti suite. These include pre-emplacement interaction with the ambient crustal materials with more pronounced signatures of such a process in silicocarbonatites. Calc-silicate marbles present in the Samalpatti area could represent a possible evolved end member due to the inability of common silicate rocks (pyroxenites, granites, diorites) to comply with radiogenic isotopic constraints. In addition, Samalpatti carbonatites show a range of C–O isotopic compositions, and d13CV-PDB values between + 1.8 and + 4.1‰ found for a sub-suite of Samalpatti carbonatites belong to the highest values ever reported for magmatic carbonates. These heavy C–O isotopic signatures in Samalpatti carbonatites could be indicative of massive hydrothermal interaction with carbonated fluids. Unusual high-Cr silicocarbonatites, discovered at Samalpatti, seek their origin in the reaction of pyroxenites with enriched mantle-derived alkali-CO2-rich melts, as also evidenced by mantle-like O isotopic compositions. Field and petrographic observations as well as isotopic constraints must, however, be combined with the complex chemistry of incompatible trace elements as indicated from their non-uniform systematics in carbonatites and their individual fractions. We emphasise that, beside common carriers of REE like apatite, other phases may be important for incompatible element budgets, such as mckelveyite–(Nd) and kosmochlor, found in these carbonatites. Future targeted studies, including in-situ techniques, could help further constrain temporal and petrologic conditions of formation of Sevattur and Samalpatti carbonatite bodies.
Abstract: We report preliminary data for sulfur isotopes from two spatially related Neoproterozoic carbonatite complexes in Tamil Nadu, S India, with the aim of getting further insights into their magmatic and/or post-emplacement histories [1]. The major sulfide phase in these rocks is pyrite, with minor chalcopyrite, whereas sulfate occurs as barite. A bimodal distribution of G34Ssulfide is found for Samalpatti (13.5 to 14.0‰), and Sevattur (-2.1 to 1.4‰) carbonatites. A significantly larger range of G34Ssulfide values is found for the associated Samalpatti silicate rocks (-5.2 to 7.4‰) relative to Sevattur pyroxenites and gabbros (-1.1 to 2.1‰). High G34Ssulfide values for Samalpatti carbonatites are unsual [2,3] but could reflect hydrothermal post-emplacement modification [1] of S isotopes. The low G34Ssulfide values for Sevattur may represent a mantle source signature. The G34Ssulfate is uniformly positive for both complexes, with most data falling in a narrow range (5.7 to 7.8‰) and one datum for a pyroxenite yielding more positive G34Ssulfate = 13.3‰. Data for '33S varies outside of analytical uncertainty (-0.07 to 0.04‰), indicating contribution from a source with a surface-derrived component. The small range of '33S values does not allow us to determine whether these sources contain S fractionated by biogeochemical (mass-dependent) or photochemical (mass-independent, pre GOE) processes. Data for '36S is positive, and varies within uncertainty (0.28 ± 0.15‰). Variations of this magnitude have been observed in other localities, and are not diagnostic of any unique source or process. The sulfur isotope data imply addition of crustal sulfur to Samalpatti. In contrast, sulfur from Sevattur has a mantle-like G34S but '33S with anomalous character. These observations support the idea of a different evolutionary story for these complexes, possibly more complex than previously thought.
Ackerman, L., Magna, T., Rapprich, V., Upadhyay, D., Kratky, O., Cejkova, B., Erban, V., Kochergina, Y.V., Hrstka, T.
Contrasting petrogenesis of spatially related carbonatites from Samalpatti and Sevattur, Tamil Nadu, India: insights from trace element and isotopic geochemistry.
Carbonatite-alkaline rocks and associated mineral deposits , Dec. 8-11, abstract p. 31-33.
India
deposit - Samalpatti, Sevattur
Abstract: The Tamil Nadu region in southern India hosts several carbonatite bodies (e.g., Hogenakal, Samalpatti, Sevattur, Pakkanadu-Mulakkadu) which are closely associated with alkaline silicate rocks such as syenites, pyroxenites or dunites (e.g, Kumar et al., 1998; Schleicher et al., 1998; Srivastava, 1998). This is in contrast to the carbonatite occurrences in north-western India associated with the Deccan Trap basalts (e.g., Amba Dongar) or Proterozoic Newania dolomitic carbonatites. We have studied two, spatially related, Neoproterozoic carbonatite-silico(carbonatite) suites in association with alkaline silicate rocks (e.g., pyroxenite, gabbro) from Sevattur and Samalpatti in terms of petrography, chemistry and radiogenic-stable isotopic compositions in order to provide constraints on their genesis and evolution. In these two bodies, several different carbonatite types have been reported previously with striking differences in their trace element and isotopic compositions (Srivastava, 1998; Viladkar and Subramanian, 1995; Schleicher et al., 1998; Pandit et al., 2002). Collected data for previously poorly studied calcite carbonatites from the Sevattur representing the first carbonatite magmas on this locality, indicate similar geochemical characteristics to those of dolomitic carbonatites, such as high LREE/HREE ratios, very high Sr and Ba contents, large amounts of apatite and magnetite, identical Sr-Nd-C-O isotopic compositions. Thus, they were derived from an enriched mantle source without significant post-emplacement modifications through crustal contamination and hydrothermal overprint, in agreement with previous studies (e.g., Schleicher et al., 1998). Detailed microprobe analyses revealed that high levels of some incompatible elements (e.g., REE, Y, Sr, Ba) cannot be accounted by matrix calcite hosting only significant amounts of SrO (~0.6-1.2 wt.%). On the other hand, abundant micro- to nano-scale exsolution lamellae and/or inclusions of mckelveyite-(Nd) appear to host a significant fraction of LREE in parallel with apatite. Distribution of Sr is most likely influenced also by common but heterogeneously dispersed barite and strontianite. Newly acquired as well as detailed inspection of available geochemical data permits distinguish two different types of carbonatites in Samalpatti: (1) Type I similar to Sevattur carbonatites in terms of mineralogy, trace element and radiogenic-stable isotopic compositions and (2) Type II with remarkably low concentrations of REE and other incompatible trace elements, more radiogenic Sr isotopic compositions and extremely variable C–O isotopic values. The petrogenesis of the Type II seems to be intimately associated with the presence of silicocarbonatites and abundant silicate mineral domains. Instead of liquid immiscible separation from a silicate magma, elevated SiO2 contents observed in silico-carbonatites may have resulted from the interaction of primary carbonatitic melts and crustal rocks prior to and/or during magma emplacement. Arguments for such hypothesis include variable, but radiogenic Sr isotopic compositions correlated with SiO2 and other lithophile elements (e.g., Ti, Y, Zr, REE). Calc-silicate marbles present in the Samalpatti area could represent a possible evolved crustal end member for such process due to the inability of common silicate rocks (pyroxenites, granites, diorites) to comply with radiogenic isotopic constraints. The wide range of C-O isotopic compositions found in Samalpatti carbonatites belong to the highest values ever reported for magmatic carbonates and can be best explained by massive hydrothermal interaction with carbonated fluids. Unusual high-Cr silicocarbonatites were discovered at Samalpatti forming centimetre to decimetre-sized enclaves enclosed in pyroxenites with sharp contacts at hand specimen scale. Detailed microprobe analyses revealed peculiar chemical compositions of the Mgamphibole with predominantly sodic composition embaying and replacing Na-Cr-rich pyroxene (kosmochlor), accompanied by the common presence of Cr-spinel and titanite. Such association have been reported for hydrous metasomatism by Na-rich carbonatitic melts at upper mantle conditions (Ali and Arai, 2013). However, the mineralogy and the mode of occurrence of Samalpatti Mg–-r-rich silicocarbonatites argue against such origin. We explain the petrogenesis of these rocks through the reaction of pyroxenites with enriched mantle-derived alkali-CO2-rich melts, as also evidenced by mantle-like O and Hf isotopic compositions.
Abstract: Mining the deep seabed is fraught with challenges. Untapped mineral potential under the shallow, more accessible continental shelf could add a new dimension to offshore mining and help meet future mineral demand.
Abstract: Over geological timescales, CO2 levels are determined by the operation of the long term carbon cycle, and it is generally thought that changes in atmospheric CO2 concentration have controlled variations in Earth's surface temperature over the Phanerozoic Eon. Here we compile independent estimates for global average surface temperature and atmospheric CO2 concentration, and compare these to the predictions of box models of the long term carbon cycle COPSE and GEOCARBSULF. We find a strong relationship between CO2 forcing and temperature from the proxy data, for times where data is available, and we find that current published models reproduce many aspects of CO2 change, but compare poorly to temperature estimates. Models are then modified in line with recent advances in understanding the tectonic controls on carbon cycle source and sink processes, with these changes constrained by modelling 87Sr/86Sr ratios. We estimate CO2 degassing rates from the lengths of subduction zones and rifts, add differential effects of erosion rates on the weathering of silicates and carbonates, and revise the relationship between global average temperature changes and the temperature change in key weathering zones. Under these modifications, models produce combined records of CO2 and temperature change that are reasonably in line with geological and geochemical proxies (e.g. central model predictions are within the proxy windows for >~75% of the time covered by data). However, whilst broad long-term changes are reconstructed, the models still do not adequately predict the timing of glacial periods. We show that the 87Sr/86Sr record is largely influenced by the weathering contributions of different lithologies, and is strongly controlled by erosion rates, rather than being a good indicator of overall silicate chemical weathering rates. We also confirm that a combination of increasing erosion rates and decreasing degassing rates over the Neogene can cause the observed cooling and Sr isotope changes without requiring an overall increase in silicate weathering rates. On the question of a source or sink dominated carbon cycle, we find that neither alone can adequately reconstruct the combination of CO2, temperature and strontium isotope dynamics over Phanerozoic time, necessitating a combination of changes to sources and sinks. Further progress in this field relies on >108?year dynamic spatial reconstructions of ancient tectonics, paleogeography and hydrology. Whilst this is a significant challenge, the latest reconstruction techniques, proxy records and modelling advances make this an achievable target.
Phanerozoic hot spot traces and paleogeographic reconstructions of the Siberian continent based on interaction with the Africa large low shear velocity province.
Contributions to Mineralogy and Petrology, Vol. 175, 62 17p. Pdf
Mantle
ilmenite
Abstract: The Fe-Mg and Fe-Mn interdiffusion coefficients for ilmenite have been determined as a function of temperature and crystallographic orientation. Diffusion annealing experiments were conducted at 1.5 GPa between 800 and 1100 °C. For Fe-Mg interdiffusion, each diffusion couple consisted of an ilmenite polycrystal and an oriented single crystal of geikielite. The activation energy (Q) and pre-exponential factor (D0) for Fe-Mg diffusion in the ilmenite polycrystal were found to be Q = 188±15 kJ mol-1 and logD0 = -6.0±0.6 m2 s-1. For the geikielite single crystal, Fe-Mg interdiffusion has Q=220±16 kJ mol-1 and logD0=-4.6±0.7 m2 s-1. Our results indicate that crystallographic orientation did not significantly affect diffusion rates. For Fe-Mn interdiffusion, each diffusion couple consisted of one ilmenite polycrystal and one Mn-bearing ilmenite polycrystal. For Fe-Mn interdiffusion, Q = 264±30 kJ mol-1 and logD0 = -2.9±1.3 m2 s-1 in the ilmenite. We did not find a significant concentration dependence for the Fe-Mg and Fe-Mn interdiffusion coefficients. In comparing our experimental results for cation diffusion in ilmenite with those previously reported for hematite, we have determined that cation diffusion is faster in ilmenite than in hematite at temperatures <1100 °C. At oxygen fugacities near the wüstite-magnetite buffer, Fe and Mn diffusion rates are similar for ilmenite and titanomagnetite. We apply these experimentally determined cation diffusion rates to disequilibrium observed in ilmenites from natural volcanic samples to estimate the time between perturbation and eruption for the Bishop Tuff, Fish Canyon Tuff, Mt. Unzen, Mt. St. Helens, and kimberlites. When integrated with natural observations of chemically zoned ilmenite and constraints on pre-eruptive temperature and grain size, our experimentally determined diffusivities for ilmenite can be used to estimate a minimum time between magmatic perturbation and eruption on the timescale of hours to months.
Abstract: First predictions of the macrodiamond grade of newly discovered kimberlites are commonly obtained using size frequency distributions of microdiamonds. The success of this approach suggests a common origin of microdiamonds and macrodiamonds, an implication not yet conclusively established or disproved. In contrast to previous comparative studies on microdiamonds and macrodiamonds from single deposits, here all diamonds analyzed originate from the same microdiamond samples (558 diamonds, ranging from 0.212 to 3.35 mm). The diamonds were analyzed for their carbon isotope compositions and nitrogen characteristics, and, based on this dataset, statistical comparisons were conducted across the size range to assess cogenesis. As a whole, the Misery diamond suite shows high nitrogen contents (median = 850 at. ppm), a bimodal distribution in time-averaged mantle residence temperatures (two distinct subpopulations in mantle residence temperatures: =1,125° and =1,175°C), a high degree of platelet degradation, and d13C compositions that are isotopically slightly heavier (median = -4.4‰) than the global median. Statistical comparisons of the various size classes indicate the presence of subtly different subpopulations at Misery; however, the nature and magnitude of these geochemical differences are very small in the context of the global diamond database and are viewed as petrogenetically insignificant. The general geochemical similarity of diamonds from different size fractions at Misery reinforces the use of size-frequency analysis to predict diamond grade in kimberlite diamond deposits.
Abstract: "Super-deep" diamonds are thought to crystallize between 300 and 800 km depth because some of the inclusions trapped within them are considered to be the products of retrograde transformation from lower mantle or transition zone precursors. In particular, single inclusion CaSiO3-walstromite is believed to derive from CaSiO3-perovskite, although its real depth of origin has never been proven. Our aim is therefore to determine for the first time the pressure of formation of the diamond-CaSiO3-walstromite pair by “single-inclusion elastic barometry” and to determine whether CaSiO3-walstromite derives from CaSiO3-perovskite or not. We investigated several single phases and assemblages of Ca-silicate inclusions still trapped in a diamond coming from Juina (Brazil) by in-situ analyses (single-crystal X-ray diffraction and micro-Raman spectroscopy) and we obtained a minimum entrapment pressure of ~ 5.7 GPa (~ 180 km) at 1500 K. However, the observed coexistence of CaSiO3-walstromite, larnite (ß-Ca2SiO4) and CaSi2O5-titanite in one multiphase inclusion within the same diamond indicates that the sample investigated is sub-lithospheric with entrapment pressure between ~ 9.5 and ~ 11.5 GPa at 1500 K, based on experimentally-determined phase equilibria. In addition, thermodynamic calculations suggested that, within a diamond, single inclusions of CaSiO3-walstromite cannot derive from CaSiO3-perovskite, unless the diamond around the inclusion expands by ~ 30% in volume.
Canada, Ontario, Attawapiskat, Africa, South Africa
deposit - Victor, Finsch, Newlands
Abstract: Quantitative trace element data from high-purity gem diamonds from the Victor Mine, Ontario, Canada as well as near-gem diamonds from peridotite and eclogite xenoliths from the Finsch and Newlands mines, South Africa, acquired using an off-line laser ablation method show that we see the same spectrum of fluids in both high-purity gem and near-gem diamonds that was previously documented in fibrous diamonds. “Planed” and “ribbed” trace element patterns characterize not only the high-density fluid (HDF) inclusions in fibrous diamonds but also in gem diamonds. Two diamonds from two Finsch harzburgite xenoliths show trace element patterns similar to those of saline fluids, documenting the involvement of saline fluids in the precipitation of gem diamonds, further strengthening the link between the parental fluids of both gem and fibrous diamonds. Differences in trace element characteristics are evident between Victor diamonds containing silicate inclusions compared with Victor diamonds containing sulphide inclusions. The sulphide-bearing diamonds show lower levels of inter-element fractionation and more widely varying siderophile element concentrations - indicating that the silicate and sulphide-bearing diamonds likely formed by gradations of the same processes, via melt-rock reaction or from a subtly different fluid source. The shallow negative LREEN-HREEN slopes displayed by the Victor diamonds establish a signature indicative of original derivation of the diamond forming agent during major melting (~10% melt). Consequently, this signature must have been passed on to HDFs separating from such silicate melts.
Society of Economic Geology Geoscience and Exploration of the Argyle, Bunder, Diavik, and Murowa Diamond Deposits, Special Publication no. 20, pp. 403-424.
Abstract: Quantitative trace element data from high-purity gem diamonds from the Victor Mine, Ontario, Canada as well as near-gem diamonds from peridotite and eclogite xenoliths from the Finsch and Newlands mines, South Africa, acquired using an off-line laser ablation method show that we see the same spectrum of fluids in both high-purity gem and near-gem diamonds that was previously documented in fibrous diamonds. "Planed" and "ribbed" trace element patterns characterize not only the high-density fluid (HDF) inclusions in fibrous diamonds but also in gem diamonds. Two diamonds from two Finsch harzburgite xenoliths show trace element patterns similar to those of saline fluids, documenting the involvement of saline fluids in the precipitation of gem diamonds, further strengthening the link between the parental fluids of both gem and fibrous diamonds. Differences in trace element characteristics are evident between Victor diamonds containing silicate inclusions compared with Victor diamonds containing sulphide inclusions. The sulphide-bearing diamonds show lower levels of inter-element fractionation and more widely varying siderophile element concentrations - indicating that the silicate and sulphide-bearing diamonds likely formed by gradations of the same processes, via melt-rock reaction or from a subtly different fluid source. The shallow negative LREEN-HREEN slopes displayed by the Victor diamonds establish a signature indicative of original derivation of the diamond forming agent during major melting (~10% melt). Consequently, this signature must have been passed on to HDFs separating from such silicate melts.
Geochimica et Cosmochimica Acta, in press available 29p.
Africa, South Africa, Botswana
deposit - Koffiefontein, Letlhakane, Orapa, Finsch, De Beers Pool
Abstract: Ten individual gem-quality monocrystalline diamonds of known peridotite/eclogite paragenesis from Southern Africa (Koffiefontein, Letlhakane, Orapa) were studied for trace element concentrations and He and Ar abundances and isotopic compositions. In addition, two samples, consisting of pooled fragments of gem-quality peridotitic diamonds from Finsch and DeBeers Pool respectively, were analysed for noble gases. Previous studies (Richardson et al., 1984; Pearson et al., 1998; Gress et al., 2017; Timmerman et al., 2017) provided age constraints of 0.09, 1.0-1.1, 1.7, 2.3, and 3.2-3.4?Ga on mineral inclusions in the studied diamonds, allowing us to study trace elements and noble gases over 3 Gyr of geological time. Concentrations of trace elements in the diamonds are very low - a few hundred ppt to several tens of ppbs - and are likely dependent on the amount of sub-micron inclusions present. Trace element patterns and trace element/3He ratios of the studied monocrystalline diamonds are similar to those in fibrous diamonds, suggesting that trace elements and stable noble gas isotopes reside within the same locations in diamond and track the same processes that are reflected in the trace element patterns. We cannot discern any temporal differences in these geochemical tracers, suggesting that the processes generating them have been occurring over at least the past 2.3?Ga. 3He/4He ratios decrease and 4He and 40Ar* contents increase with increasing age of peridotitic and some eclogitic diamonds, showing the importance of in-situ radiogenic 4He and 40Ar ingrowth by the decay of U-Th-Sm and K respectively. For most gem-quality monocrystalline diamonds, uncertainties in the 3He/4He evolution of the continental lithospheric mantle combined with large analytical uncertainties and possible spatial variability in U-Th-Sm concentrations limit our ability to provide estimates of diamond formation ages using 4He ingrowth. However, the limited observed 4He ingrowth (low U?+?Th/3He) together with a R/Ra value of 5.3 for peridotitic diamond K306 is comparable to the present-day sub-continental lithospheric mantle value and supports the young diamond formation age found by Re-Os dating of sulphides in the same diamond by Pearson et al. (1998). After correction for in-situ radiogenic 4He produced since diamond formation a large variation in 3He/4He remains in ~1?Ga old eclogitic diamonds that is suggested to result from the variable influence of subducted altered oceanic crust that has low 3He/4He. Hence, the 3He/4He isotope tracer supports an origin of the diamond-forming fluids from recycled oceanic crust for eclogitic diamonds, as indicated by other geochemical proxies.
Abstract: The physical characteristics and impermeability of diamonds allow them to retain radiogenic 4He produced in-situ from radioactive decay of U, Th and Sm. This study investigates the U-Th/He systematics of fibrous diamonds and provides a first step in quantification of the uncertainties associated with determining the in-situ produced radiogenic 4He concentration. Factors determining the total amount of measured helium in a diamond are the initial trapped 4He, the in-situ produced radiogenic 4He, a-implantation, a-ejection, diffusion, and cosmogenic 3He production. Alpha implantation is negligible, and diffusion is slow, but the cosmogenic 3He component can be significant for alluvial diamonds as the recovery depth is unknown. Therefore, samples were grouped based on similar major and trace element compositions to determine possible genetically related samples. A correlation between the 4He and U-Th concentrations approximates the initial 4He concentration at the axis-intersect and age as the slope. In this study, the corrections were applied to eight fibrous cubic diamonds from the Democratic Republic of the Congo and two diamonds from the Jwaneng kimberlite in Botswana. A correlation exists between the 4He and U-Th concentrations of the group ZRC2, 3, and 6, and of the group CNG2, 3, and 4 and both correlations deviate significantly from a 71?Ma kimberlite eruption isochron. The U-Th/He dating method appears a promising new approach to date metasomatic fluid events that result in fibrous diamond formation and this is the first evidence that some fibrous diamonds can be formed 10s to 100s Myr before the kimberlite eruption.
www.minsocam.org/ MSA/Centennial/ MSA_Centennial _Symposium.html The next 100 years of mineral science, June 20-21, p. 36. Abstract
Asia, Pakistan, Kashmir, South America, Colombia
sapphire, emerald
Abstract: The geographic origin of gemstones has emerged as one of the major factors affecting their sale on the colored stone market, in large part due to the prestige attributed to certain regions (e.g. sapphires from Kashmir or emeralds from Colombia) but also because of political, environmental and ethical considerations. Identifying the geographic provenance of a colored stone has, therefore, developed into one of the main tasks for gem-testing laboratories, providing a strong motivation to establish accurate scientific methods. The properties and features of individual gemstones reflect the specific geological conditions of their formation and the main challenge of origin determination is to find the link between the two. In addition, access to a complete collection of authentic reference samples and analytical data for all economically relevant mining areas worldwide is key. Different techniques have been developed for determining gemstone provenance, including a range of gemological observations, and spectroscopic, chemical, and isotopic analyses[1]. These have proven useful in distinguishing the origin of gemstones from different geological settings but for many gemstones (including ruby and sapphire) to reliably distinguish between gems from different geographic regions that share a similar geological setting is not always possible. So far, no unique fingerprint exists, and the geographic origin remains a challenge, especially for high-clarity stones, emphasizing the need for a more powerful tool. Here we will give an overview of the current techniques, and outline some of the challenges and limitations of geographical origin determination of colored gemstones. In addition, we present new trace element data and the first radiogenic isotope compositions (Sr and Pb) obtained for ruby and sapphire from several different localities of geologically similar deposits. The acquisition of quantitative data of a range of ultra-trace elements along with the most commonly observed elements in ruby and sapphire (Mg, Fe, Ti, Ca, Ga, V and Cr) makes it possible to explore new elements as potential provenance discriminators. Among the elements consistently above the limits of quantification (Zn, Nb, Ni, and Pb), Ni in particular shows promise as a discriminator for amphibolite-type ruby. Measured 87Sr/86Sr and Pb isotope ratios clearly show distinct ranges for the different localities of amphibolitetype ruby, ranges for marble-related ruby and metamorphic blue sapphires from different geographic regions overlap. These results suggest that radiogenic isotopes potentially offer a powerful means of provenance discrimination for different localities of amphibolite-type ruby, their potential for geographical origin determination among marble-hosted ruby and metamorphic sapphire, however, appears to be limited.
Abstract: Trace element characteristics of rubies from the Aappaluttoq deposit, SW Greenland, were measured using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), laser ablation - inductively coupled plasma-time of flight-mass spectrometry (LA-ICP-TOF-MS) and offline laser ablation followed by solution ICP-MS. LA-ICP-TOF-MS - applied to rubies for the first time - effectively maps trace element spatial variation in these gems. With the exception of a small number of elements that can substitute for Al3+ in the crystal structure (e.g., Ti, Fe, V, Cr, Mg), trace element mapping clearly demonstrates that most elements such as Th, U, Sr and Rb are hosted in mineral and fluid inclusions or are present along fractures. Primitive mantle normalized trace element patterns show characteristics that are broadly correlative to mineral inclusions within the analysed rubies. These minerals include rutile (enrichment of HFSE over LREE, high Ta/Nb and Hf/Zr ratios and low Th/U ratios), phlogopite (enrichment in Rb and Ba and positive Sr anomalies), and zircon (extreme enrichment in Zr-Hf, U and Th, HREE enrichment over LREE and positive Ce anomalies). The sample suite analysed here is derived from a bulk sample of ore composed of three different rock types (sapphirine-gedrite, leucogabbro and phlogopitite). Two different populations of ruby were identified at Aappaluttoq; these can be defined on the basis of their different V content within the corundum lattice. Therefore, V content may be able to geochemically define rubies from different host rocks within the same deposit. Using offline laser ablation followed by thermal ionization mass spectrometry (TIMS) we measured the radiogenic isotope compositions in ruby for the first time. A Pb-Pb isochron age of 2686 +300/-74?Ma, was defined for gem formation at Aappaluttoq. We believe that this is the first ever direct age determined on a ruby suite, independent of associated minerals, derived by bulk sampling sub-micron to micron sized inclusions in the corundum lattice. This age likely reflects the re-crystallization and re-setting of the ruby (and its U-Pb system) during the Neoarchean in SW Greenland, due to regional granulite to upper-amphibolite facies metamorphism.
Abstract: Marange diamonds (Zimbabwe) contain both fluid-poor (gem-quality) and fluid-bearing growth zones with abundant CH4. As such, they provide the unique opportunity to compare trace element compositions of CH4-bearing diamonds with those of carbonatitic and saline high density fluid (HDF)-bearing diamonds (gem-quality and fibrous) to obtain an overview of mantle source fluids for diamond growth. HDF’s in fibrous diamonds and some gem-quality diamonds have been linked to subduction of surficial material, consistent with the global link between diamond age and collisional tectonic events. Even though Marange diamonds have +d15N indicative of surficial recycling, they do not display the expected Eu or Sr anomalies. Fibrous diamonds have the most fractionated REE patterns, with negligible HREE and high (La/Yb)N ˜ 100- 10000. Gem-quality diamonds have highly variable (La/Yb)N; the most unfractionated HDF’s are in Victor and Cullinan diamonds with low (La/Yb)N <76. HDF’s in Marange diamonds are intermediate between these two extremes, with (La/Yb)N = 23-240. Differences in (La/Yb)N between different diamond suites relate either to varying initial compositions (where low (La/Yb)N reflects derivation during higher degrees of melting) or to the increasing interaction of HDF’s in fibrous diamonds with mantle rocks during fluid infiltration. Marange diamonds have rare +Ce anomalies, that have so far only been reported for Victor and Brazil (sub-lithospheric) gem-quality diamonds. The oxidation state of Ce (Ce4+ vs Ce3+) and development of Ce anomalies could be attributed to ƒO2, melt/fluid composition, and PT conditions. In Marange, Victor and Brazil diamonds, Ce4+ substitution for Zr4+ does not appear to be a factor since we find no correlation between Zr content and Ce anomalies. However, in Marange diamonds, CH4-bearing zones have less variable Ce anomalies compared to the CH4-free zones, which may suggest Ce anomalies are indicative of fluid oxidation state.
Journal of Gemmology, Vol. 37, 2, pp. 180-191. pdf
South America, Suriname
deposit - Paramaka Creek
Abstract: Alluvial diamonds have been found in Suriname since the late 19th century, but to date the details of their origin remain unclear. Here we describe diamonds from Paramaka Creek (Nassau Mountains area) in the Marowijne greenstone belt, Guiana Shield, north-eastern Suriname. Thirteen samples were studied, consisting mainly of euhedral crystals with dominant octahedral and dodecahe-dral habits. They had colourless to brown to slightly greenish body colours, and some showed green or (less commonly) brown irradiation spots. Surface features showed evidence of late-stage resorption that occurred during their transport to the earth’s surface. The studied diamonds were predominantly type IaAB, with nitrogen as both A and B aggregates. In the DiamondView most samples displayed blue and/or green luminescence and concentric growth patterns. Their mineral inclusion assemblages (forsterite and enstatite) indicate a peridotitic (possibly harzburgitic) paragenesis.
Abstract: The results of testing a prototype of a separator for detecting diamonds in kimberlite ore using tagged neutron method are discussed. Kimberlite ore was irradiated with fast tagged neutrons with an energy of 14.1 MeV. The elemental content of the tray with kimberlite ore was determined. The criterion for detecting diamond was the presence of excess carbon concentration in a certain region of a kimberlite sample.
Abstract: The structure, geochemistry, and U-Pb and Lu-Hf isotopic composition of zircon crystals from garnet granulite xenoliths of the lower crust in the Belomorian mobile belt have been studied. It has been established that Early Paleoproterozoic zircon, 2.47 Ga in age, is primary magmatic and formed during crystallization of mafic rocks in the lower crust. Meso- and Neoarchean zircons are xenogenic crystals trapped by mafic melt during its contamination with older crustal sialic rocks. Metamorphic zircon grains have yielded a Late Paleoproterozoic age (1.75 Ga). A Paleozoic age has been established for a magmatic crystal formed due to interaction of xenoliths with an alkaline ultramafic melt, which delivered xenoliths to surface. The U-Pb datings and Lu-Hf systematics of crystals have been used to delineate the stages of formation and transformation of the lower crust in this region.
Abstract: Southern Africa is characterised by unusually elevated topography and abnormal heat flow. This can be explained by thermal perturbation of the mantle, but the origin of this is unclear. Geophysics has not detected a thermal anomaly in the upper mantle and there is no geochemical evidence of an asthenosphere mantle contribution to the Cenozoic volcanic record of the region. Here we show that natural CO2 seeps along the Ntlakwe-Bongwan fault within KwaZulu-Natal, South Africa, have C-He isotope systematics that support an origin from degassing mantle melts. Neon isotopes indicate that the melts originate from a deep mantle source that is similar to the mantle plume beneath Réunion, rather than the convecting upper mantle or sub-continental lithosphere. This confirms the existence of the Quathlamba mantle plume and importantly provides the first evidence in support of upwelling deep mantle beneath Southern Africa, helping to explain the regions elevation and abnormal heat flow.
Simandl, G.J., Paradis, S., Stone, R.S., Fajber, R., Kressall, R.D., Grattan, K., Crozier, J., Simandl, L.J.
Applicablity of handheld X-ray fluroescence spectrometry in the exploration and development of carbonatite related niobium deposits: a case study of the Aley carbonatite, British Columbia, Canada.
Geochemistry: Exploration, Environment, Analysis, Vol. 14, 3, pp. 211-221.
Abstract: In this paper an improved prediction-area plot has been developed. This type of plot includes performance measures similar to other existing methods (receiver operating characteristics, success-rate curves and ordinary prediction-area plots) and, therefore, offers a reliable method for evaluating the performance of spatial evidence maps and prospectivity models. To demonstrate the reliability of the improved prediction-area plot proposed, we investigated the benefits of augmented targeting criteria through remotely sensed exploration features, compared to only geological map-derived criteria, for mineral prospectivity analysis using as an example the podiform chromite deposits of the Sabzevar Ophiolite Belt, Iran. The application of the newly developed improved prediction-area plot to the prospectivity models generated in this study indicated that the augmented targeting criteria by using remote sensing data perform better than non-updated geological map-derived criteria, and that model effectiveness can be improved by using an integrated approach that entails geologic remote sensing.
SAXI-XI Inter Guiana Geological Conferene 2019: Paramaribo, Suriname, 6p. Pdf
South America, Brazil, Venezuela
Guiana shield
Abstract: The Guiana Shield records a long history that starts in the Archean, but culminates in the Trans-Amazonian Orogeny between 2.26-2.09 Ga as a result of an Amazonian-West-Africa collision. This event is responsible for the emplacement of a major part of its mineralisations, especially gold, iron and manganese. The diamondiferous Roraima Supergroup represents its molasse. Between 1.86 and 1.72 Ga the Rio Negro Block accreted in the west. The Grenvillian Orogeny caused shearing and mineral resetting between 1.3 and 1.1 Ga when Amazonia collided with Laurentia. Younger platform covers contain placer gold mineralisation. Several suits of dolerite dykes record short-lived periods of crustal extension. Bauxite plateaus cover various rock units.
Abstract: Mantle xenoliths were found in alkaline basalts of Tokinsky Stanovik (TSt) in the Dzhugdzhur-Stanovoy superterrane (DS) and Vitim plateau (VP) in the Barguzin-Vitim superterrane (BV) (Stanovoy suture area) at junction of the Central Asian Orogenic Belt (CAOB) and the Siberian craton (SC). Xenoliths from TSt basalts are represented by spinel lherzolites, harzburgites, wehrlites; while VP basalts frequently contain spinel-garnet and garnet peridotites lherzolites, and pyroxenites. Xenoliths in kimberlites of the Siberian craton are mainly represented by garnet-bearing lherzolites with abundant eclogite xenoliths (age of 2.7-3.1 Ga), which were not found in mantle of superterranes. The Re-Os determinations point to the Early Archean age of peridotites and eclogites from mantle beneath the Siberian craton. The major and trace (rare-earth and high-filed strength) elements and Nd-Sr-Os composition were analyzed in the peridotites (predominant rocks) of lithospheric mantle at junction of the Central Asian Orogenic Belt and Siberian Craton. The degree of rock depletion in CaO and Al2O3 and enrichment in MgO relative to the primitive mantle in the peridotites of the Dzhugdzhur-Stanovoy superterrane is close to that of the Siberian craton. The peridotites of the Barguzin-Vitim superterrane are characterized by much lower degree of depletion and have mainly a primitive composition. Mantle melting degree reaches up to 45-50% in the Siberian Craton and Dzhugdzhur-Stanovoy superterrane, and is less than 25% in the Barguzin-Vitim terrane. The mantle peridotites of the craton as compared to those of adjacent superterranes are enriched in Ba, Rb, Th, Nb, and Ta and depleted in Y and REE from Sm to Lu. However, all studied peridotites are characterized by mainly superchondritic values of Nb/Ta (>17.4), Zr/Hf (>36.1), Nb/Y (>0.158), and Zr/Y (>2.474). The Nb/Y ratio is predominantly >1.0 in SC peridotites and < 1.0 in the superterrane peridotites. The Nd and Sr isotopic compositions in the latter correspond to those of oceanic basalts. The 187Os/188Os ratio is low (0.108-0.115) in the peridotites of the Siberian Craton and > 0.115 but usually lower than 0.1296 (primitive upper mantle value) in the peridotites of the Dzhugdzhur-Stanovoy and Barguzin-Vitim superterranes. Thus, the geochemical and isotopic composition of peridotites indicates different compositions and types of mantle beneath the Siberian craton and adjacent superterranes of the Central Asian Orogenic Belt in the Early Archean, prior to the formation of 2.7-3.1 Ga eclogites in the cratonic mantle.
Abstract: Garnet chemistry provides a well-established tool in the discrimination and interpretation of sediment provenance. Current discrimination approaches, however, (i) suffer from using less variables than available, (ii) subjective determination of discrimination fields with strict boundaries suggesting clear separations where in fact probabilities are converging, and (iii) significant overlap of compositional fields of garnet from different host-rock groups. The new multivariate discrimination scheme is based on a large database, a hierarchical discrimination approach involving three steps, linear discriminant analysis at each step, and the five major host-rock groups to be discriminated: eclogite- (A), amphibolite- (B) and granulite- (C) facies metamorphic rocks as well as ultramafic (D) and igneous rocks (E). The successful application of statistical discrimination approaches requires consideration of the a priori knowledge of the respective geologic setting. This is accounted for by the use of prior probabilities. Three sets of prior probabilities (priors) are introduced and their advantages and disadvantages are discussed. The user is free to choose among these priors, which can be further modified according to the specific geologic problem and the level of a priori knowledge. The discrimination results are provided as integrated probabilities of belonging to the five major host-rock groups. For performing calculations and results a supplementary Excel® spreadsheet is provided. The discrimination scheme has been tested for a large variety of examples of crystalline rocks covering all of the five major groups and several subgroups from various geologic settings. In most cases, garnets are assigned correctly to the respective group. Exceptions typically reflect the peculiarities of the regional geologic situation. Evaluation of detrital garnets from modern and ancient sedimentary settings of the Western Gneiss Region (Norway), Eastern Alps (Austria) and Albertine Rift (Uganda) demonstrates the power to reflect the respective geologic situations and corroborates previous results. As most garnet is derived from metamorphic rocks and many provenance studies aim at reconstructing the tectonic and geodynamic evolution in the source area, the approach and the examples emphasize discrimination of metamorphic facies (i.e., temperature-pressure conditions) rather than protolith composition.
Khanna, T.C., Subba Rao, D.V., Bizimis, M., Satyanarayanan, M., Krishna, A.K., SeshaSai, V.V.
~2.1 Ga intraoceanic magmatism in the central India tectonic zone: constraints from the petrogenesis of ferropicrites in the Mahakoshal suprarcustal belt.
Society of Economic Geology Geoscience and Exploration of the Argyle, Bunder, Diavik, and Murowa Diamond Deposits, Special Publication no. 20, pp. 191-200.
Carbonatites of India: part 1. Field relations, petrology, mineralogy and economic aspects.
Carbonatite-alkaline rocks and associated mineral deposits , Dec. 8-11, abstract p. 1-2.
India
carbonatites
Abstract: Carbonatites of India have been reviewed by Krishnamurthy (1988; 2008) and Viladkar (2001). The present review in two parts incorporates all the developments in the field of carbonatites from India since 1963. Carbonatites of India occur in some well-defined geological environments and structural set-ups, and belong to four age groups namely, Palaeoproterozoic, Neoproterozoic, Cretaceous and Palaeocene. The Proterozoic ones are found in the three shield areas, namely southern (e.g., Hogenakal, Sevathur, Samalpatti, Pakkanadu, Khambammettu and Munnar), eastern (e.g. Beldi-Kutni and others) and north-western (e.g., Newania) India, often associated with deep faults and shear zones that may define terrain boundaries (e.g. carbonatites of Tamil Nadu between the Dharwar granite-greenstone schist belt and the southern Indian granulite zone). The Cretaceous and Palaeocene ones (e.g., Amba Dongar, Sirivasan, Sung Valley, Samchampi, Sarnu-Dandali-Kamthai and others) have been found to be related to the flood basalt provinces of Rajmahal, Sylhet (eastern and north-eastern India) and the Deccan (western India). Based on the field relations and associated rock types, the carbonatite-alkaline rock complexes can be grouped into four major types, namely: (a) syenite-dominated complexes with subordinate pyroxenites ± dunites (e.g. Sevathur, Samalpatti, Pakkanadu, and Samchampi); (b) pyroxenite/gabbro dominated ± dunite, ijolite, melteigite with minor syenite (e.g. Sung Valley, Swangre; Mer-Mundwara); (c) carbonatite dominated ringcomplexes or dykes with minor nephelinite and phonolite (e.g. Amba Dongar, Sarnu- Dandali, Kamthai); (d) Sheet-like, minor dykes and veins of carbonatites either alone or with syenites (e.g., Newania, Kunavaram, Eichuru, Munnar and others). Carbonatitekimberlite- lamproite-lamprophyre association has been clearly seen in the Precambrian Wajrakarur kimberlite field (e.g. Chelima dykes and Khaderpet cluster, Andhra Pradesh) and in the Jungal Valley (Mahakhoshal Group, Uttar Pradesh). Such an association from the Cretaceous Deccan basalt province has been shown to exist from Kutch, Gujarat and the Chhatishgargh-Odhisha areas. A wide variety of fenites, notably the syenitic types comprising sodic, sodic-potassic, and potassic variants have been noticed from several complexes, such as Amba Dongar, Newania, Sevattur, Samchampi, and Sung Valley. Fenitisation is attributed to both carbonatite and alkaline rocks as at Amba Dongar, Sevattur, Sung Valley, and Samchampi or to carbonatite alone (e.g. Newania and others).Among the carbonatite types, sovites (calcitic types) are the most common in most of the localities. Beforsitic (dolomitic) and ankeritic/sideritic types occur in complexes which manifest well developed differentiation trends that range from sovite to beforsite or to ankeritic and sideritic types, as exemplified by complexes such as Amba Dongar, Sevattur, Samalpatti, Newania and Sung Valley. Associated alkaline rocks, as mentioned above, enable the grouping of the complexes into four types. Heterogeneity in terms of structures, mineralogy, and chemistry is characteristic of many carbonatite bodies. Apart from the dominant carbonate-minerals such as calcite, dolomite, ankerite and siderite in the major carbonatite types, a variety of minor minerals have also been found in them. Early phase apatite-magnetite and silicate minerals (olivine, aegirineaugite, ritcherite, riebeckite, phlogopite and others) are well-developed in deep-seated plutonic complexes such as Sevattur, Newania, Sung Valley, Samalpatti, Pakkanadu, and Hogenekal. Some uncommon carbonatite types include those containing Fe-Nb rutile and benstonite from Samalpatti and eschynite, monazite, cerianite, celestite, and allanitebearing types from Pakkanadu, and magnesite from Newania. Minerals of economic importance, often in workable concentrations, occur in several complexes. These include: 1. REE minerals consisting of bastnaesite-(La) and daqingshanite-(Ce), bastnaesite-(Ce), ancylite and synchysite occur at Kamthai; bastnaesite and parasite from ankeritic carbonatites at Amba Dongar; bastnaesite-(Ce), ancylite-(Ce), belovite-(Ce), and britholite-(Ce) at Sung Valley. REE also occur as substituted elements in apatite in many complexes. 2. Pyrochlore - often uraniferous, occur at Sevathur, Sung Valley, Newania and Samchampi; 3. Apatite and/or phosphatic rocks (e.g. Beldih-Kutni, Samchampi, Sung, Sevathur and Newania). 4. Ti-magnetite/ hematite deposit at Samchampi. In addition a large fluorite deposit occurs at Amba Dongar and both vermiculite and apatite are mined from the fenitised-pyroxenite envelope to the north of the Sevathur carbonatite-complex. Evaluation of field association of pyroxenite-fenites in carbonatite-syenite association along with development of carbo-thermal and/or pegmatitic and skarn-rock facies in some complexes such as Samalpatti and Pakkanadu in Tamil Nadu suggests strong possibilities of Sc mineralization in some (e.g. 0.02% Sc from Pakkanadu pyroxenite) or Sc along with possible HREE associations.
Carbonatites of India: part 2. Geochemistry, stable and unstable isotopes and petrogenesis.
Carbonatite-alkaline rocks and associated mineral deposits , Dec. 8-11, abstract p. 26-28.
India
carbonatites
Abstract: Geochemically carbonatites and genetically associated alkaline rocks represent an anomalous association of both large-ion lithophile (LIL) elements including the highfield strength (HFS) elements group such as Sr, Ba, Zr, Nb, REE, Y, Sc, Th, and U (excluding Rb) often from trace (< 0.1%) to minor/major components (> 0.1-1%) besides Ca, Mg, Fe, Mn, Si, Ti, Al, P, Na, K and CO2 in major components. Extreme heterogeneity in terms of elemental abundances is in fact a characteristic feature, often at a single outcrop level, in many carbonatite complexes (e.g. Amba Dongar, Sevathur, Sung Valley). Such apparent chemical diversity is related to the mineralogical heterogeneity that is not uncommon in many carbonatite complexes, leading to diverse mineral prefixes in carbonatite types such as apatite-sovite, apatite-magnetite soviet, riebeckite beforsite, silico-carbonatite and numerous other types (e.g. Sevathur, Samalpatti and Pakkanadu). The most diagnostic geochemical character of carbonatites stem from their geochemical features, especially the higher abundances of LIL and HFS elements, often the highest among the diverse igneous rock types as also compared to the primitive mantle or sedimentary or metamorphosed limestone/or marble or calc-silicate rocks. This has been shown from several studies of Indian carbonatites (Krishnamurthy, 1988; Schleicher et. al. 1998 and others). Radiogenic and stable isotopic ratios have been used since the mid 1990’s on Indian carbonatites which range in age from mid Proterozoic to Cretaceous in both rift related settings and associated with large igneous provinces, apparently related to deep mantleplumes, to provide constraints on the evolution of the sub-continental mantle through time. Various mantle reservoirs like HIMU (A mantle source enriched in U and Th believed to be due to recycling of ancient altered oceanic crust into the mantle), DMM (Depleted MORB mantle), EM1 (Enriched Mantle 1, generated either by recycling of lower crustal material or enrichment by mantle metasomatism) and EM2 (Enriched Mantle 2, possibly formed by recycling of continentally derived sediment, or ocean island crust into the mantle by subduction processes) with distinct isotopic signatures in the Sr- Nd-Pb isotopic space have been invoked to explain the observed variations in isotopic ratios in carbonatites worldwide (Zindler and Hart, 1984 and others). Stable isotopes of Indian carbonatites have been comprehensively reviewed by Ray and Ramesh (2009). Based on d13C and d18O variations, carbonatites have been grouped by them into: 1. Primary, unaltered d18O values (5.3-7.5‰) which indicate mantle signatures that ensue from batch crystallization under plutonic conditions, as observed at Hogenakal, Sung Valley and Samchampi. d13C values, however, appear to be more enriched (-6 to - 3.1‰) than expected for the mantle. Such a feature of enrichment probably happened sometime around ~2.4 Ga, as a sequel to metasomatism by fluids derived from recycled oceanic crust through subduction that carried enriched carbon of lithospheric mantle. 2. Secondary, altered carbonatites’ (e.g. mainly Amba Dongar and others) showing wide variations in d13C and d18 O values apparently results from low temperature alteration by either meteoric water or CO2-bearing aqueous fluids. The values of ??Sr (+5.3 to +7.8), ??Nd ( +1.7 to + 2.3) and initial Pb ratios (19.02, 15.67 and 39.0) for the Sung Valley complex and ?Sr (+3.0 to + 9.3) and ?Nd (+0.45 to +2.3) and initial Pb ratios ( 206Pb/204Pb= 19.12, 207Pb/204Pb= 15.66 and 208Pb/204Pb= 39.56) for the Samchampi alkaline complex are well constrained and indicate that they have originated from isotopically similar source regions that are characterised by somewhat higher Rb/Sr ratio relative to bulk earth, minor LREE depletion with respect to CHUR and time integrated enhancement of the U/Pb ratio relative to bulk earth. However, carbonatites from Sirivasan and Amba Dongar (Srivatsava and Taylor, 1996, Simonetti et al., 1995, Ray and Ramesh, 2006) indicate higher values with ?Sr = +14.6 to +21.8, ?Nd = -0.6 to -1.84 and measured 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios of 19.0, 15.6 and 39.3 and indicate greater enrichment in terms of higher Rb/Sr ratios and LREE enrichment with respect to CHUR. Differences in the north eastern complexes and western complexes are also seen in the stable isotopic data wherein, data for both Sung Valley and Samchampi are constrained with average values of -3.1 ± 0.1‰ for ?13C and 6.33 ± 0.2‰ and -3.1 ± 0.2‰ for ?13C and 7.34 ± 0.7‰ for ?18O respectively whereas data from Amba Dongar and Sirivasan have ?13C of -2.6 to -8.6 ‰ and ?18O of 7.62 to 26.8 ‰. Heterogeneous mantle source has been proposed for the Hogenakal carbonatites with two groups one having high ??Nd and low ??Sr and the other having low ??Nd and high ??Sr. Carbonatites from Sevattur are more enriched with ??Sr (22 to 23), ??Nd ( -5.1 to -5.7) and ?13C ( -4.8 to -6.2‰) and ?18O (6.7 to 7.6 ‰) (Schleicher et.al., 1996, Pandit., et al. 2016). Petrogenetic models of the different carbonatite complexes are reviewed in the light of geochemical and isotopic characteristics. These include models that invoke mantle plumes of both the Kerguelen (e.g. Sung Valley and Samchampi) and Reunion (e.g. Amba Dongar, Sarnu-Dandali and others related to the Deccan volcanism) and their influence on the subcontinental lithosphere. Enriched mantle sources have been indicated for many of the Proterozoic complexes of Tamil Nadu. Evaluations of the different carbonatite complexes in terms of the three known genetic models, listed as follows, have also been elucidated. These include: (a) Direct partial melts from enriched, carbonatedperidotitic sources; (b. Immiscible carbonate and silicate magma after differentiation of the primary, carbonated peridotitic magma; (c) Extreme stage of differentiation of the ultra-alkaline, nephelinite magma. Such approaches also lead us to understand the temporal evolution of the mantle source regions of carbonatites of India since Palaeoproterozoic times. The petrogenetic link between carbonatite-kimberlite-lamproitelamprophyre in the Indian scenario is also briefly reviewed.
Journal of the Geological Society of India, extended abstract of Monthly Scientific Lecture March 12, 1p.
India
carbonatites
Abstract: Carbonatites, defined as carbonate-rich rocks of igneous origin, pose considerable challenges in understanding their genesis and evolution. These mantle-derived, rare, magmatic rocks are enigmatic in many facets compared to their associated co-magmatic rocks. These include: (a) The very-low viscous, water-soluble, Na- and K-carbonate (nyererieite and gregoryite respectively)-bearing lavas with low temperature (500-600°C) of eruption with only one active volcano as an example (e.g. Ol Doinyo Lengai, Tanzania) in contrast to the numerous acid and basic lava eruptive centres that are well-known around the world. (b). Carbonatites show very high solubilities of many elements considered rare in silicate magmas, and they have the highest known melt capacities for dissolving water and other volatile species like halogens at crustal pressures. With such ‘fluxing and fusing’ characters, carbonatite magma, actively reacts and ‘fenitises’ the country rocks through Na and K metasomatism when they get emplaced. Thus the carbonatite magma loses its Na and K, a feature rare to other magmatic rocks. (c) Primary mineralogy is highly variable from simple carbonate species to a variety of silicate, oxide, phosphate, niobates, rare-earth carbonates and others not found in more common igneous rocks. This feature, unlike other magmatic rocks, influences the variety and size of mineral deposits including the formation of ‘super-giant’ resources such as Nb (Araxa, Brazil) and rare-earths (Bayan Obo, China). (d) They can be direct partial melts or comagmatic with a variety of mantle-derived silicate magmas such as nephelinite, melilitite, kimberlite, phonolite, trachyte, basanite, alkali pyroxenite, ijolite and others from which they can form through liquidimmiscibility or through crystal-liquid differentiation. (e) Carbonatites can also be formed as low-temperature, carbo-thermal residual fluids rich in CO2, H2O and fluorine forming calcite-barite-fluorite veins which may lack the higher abundances of some trace elements. Carbonatites of India, found in some twenty four (24) localities, are associated with a variety of rocks as mentioned above and range in age from late Achaean (e.g. Hogenakal and Khambamettu, Tamil Nadu) to late Cretaceous (e.g. Amba Dongar, Gujarat). These are briefly reviewed with regard to their anomalous features.
Journal of the Geological Society of India, Vol. 94, 2, pp. 117-138.
India
carbonatite
Abstract: Based on the field relations, associated rock types and age, the carbonatite-alkaline rock complexes of India, that are spatially related to deep main faults, rifts and shear zones, have been classified in to two major groups, namely: 1. Middle — late Cretaceous, subvolcanic -volcanic complexes (Amba Dongar, Siriwasan, Swangkre, Mer-Mundwara, Sarnu-Dandali-Kamthai) and 2. Paleo-Neoproterozoic plutonic complexes (Newania, Sevathur, Samalpatti, Hogenakal, Kollegal, Pakkanadu, Udaiyapatti, Munnar, and Khambamettu). The middle Cretaceous Sung Valley and Samchampi complexes also belong to this plutonic group. Three minor associations, belonging to these two age groups include, the Neoproterzoic, late stage veins of carbonatites in peralkaline syenite complexes (e.g., Kunavaram, Elchuru), the diamond-bearing carbonatite and kimberlite at Khaderpet and the lamprophyre-lamproite association (e.g., Pachcham Is. Upper Cretaceous, Deccan Volcanic Province, and the Proterozoic Chitrangi Group). Petrological associations include carbonatite-nephelinite-phonolite (e.g. Amba Dongar, Sarnu-Dandali-Kamthai), dunite-peridotite-pyroxenite-ijolitemelilitite (e.g. Sung Valley), miaskitic syenite-pyroxenite ± dunite (e.g. Sevathur, Samalpatti, Pakkanadu), carbonatite alone with fenites (e.g. Newania), besides those minor associations mentioned above. Sovites (calico-carbonatites) occur as the most dominant type in some ten (10) complexes. Beforsite (magnesio-carbonatite) is the dominant type at Newania and ankeritic-sideritic types are mainly found at Amba Dongar, Siriwasan and Newania. The rare benstonite-bearing carbonatites are found at Jokkipatti and Udaiyapatti in Tamil Nadu. Mineralogically and chemically the carbonatites show considerable diversity. Fenitised zones and types of fenites (Na, K and mixed) vary widely since the carbonatites are emplaced in a variety of hostrocks ranging from granitic, mafic, ultramafic, charnockitic types besides basalts and sandstones. Stable (d13C and d18O) and radiogenic (Sr, Nd and Pb) isotopes clearly indicate their mantle origin and also the diverse types of sources (both depleted HIMU and enriched EM 1 and 2). Petrogenetic considerations reveal three types of carbonatites, namely direct partial melts from metasomatised mantle (e.g. Newania), liquid immiscibility from carbonatite-nephelinite association (e.g. Amba Dongar) and through fractionation of ultra-alkaline ultramafic and mafic association (e.g. Sung Valley). Carbonatites of India that host significant resources include Amba Dongar (Fluorite, REE, Nb, P, Ba, Sr), Kamthai (REE), Sevathur (Nb, P, vermiculite), Beldih (P, Fe), Sung Valley (P, Nb, REE, Fe) and Samchampi (P, Nb, Fe, REE).
Journal of the Geological Society of India, Vol. 95, pp. 464-474.
India, global
REE
Abstract: The RM (Li, Be, Ti, Zr, Nb, Ta, Th and U) and REE (Light Rare Earths and Heavy Rare Earths including Yttrium) are strategic and critical for sustaining a variety of industries such as nuclear, defence, information technology (IT) and green energy options (wind, solar, electric vehicles and others). The 2010 ‘Rare Earth’ crisis of the world, following China’s monopoly with over 80% share and export restrictions in the REE market, led to an exploration boom for REE all over the world including India. This led to a substantial increase in REE mineral resources (98 Mt of contained REO in 2015) outside China located in Canada (38 Mt), Greenland (39 Mt) and Africa (10.3 Mt) that represents a fivefold increase in resources (c.f. Paulick and Machacek, 2017). As per the 2019, USGS commodity survey, the world reserves of REE have been estimated at 120 Mt in countries such as China (44Mt), Brazil (22Mt), Vietnam (22 Mt), Russia (12 Mt), India (6.9 Mt) and others (13 Mt). At present world resources of RM and REE are adequate to cater the demands of the different industries. The constraints, however, appear to be not technical but mainly environmental and social issues.
Jelsma, H.,Krishnan, S.U., Perritt, S.,Kumar, M., Preston, R., Winter, F., Lemotlo, L., Costa, J., Van der Linde, G., Facatino, M., Posser, A., Wallace, C., Henning, A., Joy, S., Chinn, I., Armstrong, R., Phillips, D.
Kimberlites from central Angola: a case stidy of exploration findings.
10th. International Kimberlite Conference Feb. 6-11, Bangalore India, Abstract
Kimberlites from central Angola: a case study of exploration findings.
Proceedings of the 10th. International Kimberlite Conference, Vol. 2, Special Issue of the Journal of the Geological Society of India,, Vol. 2, pp. 173-190.
Jelsma, H., Krishnan, U., Perritt, S., Preston, R., Winter, F., Lemotlo, L., van der Linde, G., Armstrong, R., Phillips, D., Joy, S., Costa, J., Facatino, M., Posser, A., Kumar, M., Wallace, C., Chinn, I., Henning, A.
Kimberlites from central Angola: a case study of exploration findings.
Proceedings of the 10th. International Kimberlite Conference, Vol. 2, pp. 173-190.
Radhakrishna, T., Krishnendu, N.R., Balasubramonian, G.
Nd-Hf isotope systematics of megacrysts from the Mbuji-Mayi kimberlites, D.R. Congo: evidence for a metasomatic origin related to kimberlite interaction with the cratonic lithosphere mantle.
Geochemical, mineralogical and lithological analyses of glacial sediments for gold, base metals and kimberlite exploration Beardmore-Geraldton area, Thunder Bay Ont
Geological Survey of Canada Open File, No. 2266, 442p. $54.50 Geological Society of Canada (GSC) and (disk. from Ashley $ 25.00
Abstract: U-Pb and Lu-Hf data are routinely used to trace detrital zircon in clastic sediments to their original source in crystalline bedrock (the protosource), to map out paths of sediment transport, and characterize large-scale processes of crustal evolution. For such data to have a provenance significance, a simple transport route from the protosource in which the zircon formed to its final site of deposition is needed. However, detrital zircon data from Phanerozoic sedimentary cover sequences in South Africa suggest that this “source to sink” relationship has been obscured by repeated events of sedimentary recycling. Phanerozoic sandstones (Cape Supergroup, Karoo Supergroup, Natal Group, Msikaba Formation) and unconsolidated, Cenozoic sands in South Africa share major detrital zircon fractions of late Mesoproterozoic (940-1120 Ma, eHf ˜ 0 to + 15) and Neoproterozoic age (470-720 Ma, eHf ˜ - 10 to + 8). A Permian age fraction (240-280 Ma, eHf ˜ - 8 to + 5) is prominent in sandstones from the upper part of the Karoo Supergroup. All of these sequences are dominated by material derived by recycling of older sedimentary rocks, and only the youngest, late Palaeozoic fraction has a clear provenance significance (Gondwanide orogen). The virtual absence of Archaean zircon is a striking feature in nearly all suites of detrital zircon studied in the region. This indicates that significant events in the crustal evolution history of southern African and western Gondwana are not represented in the detrital zircon record. South Africa provides us with a record of recycling of cover sequences throughout the Phanerozoic, and probably back into the Neoproterozoic, in which the “sink” of one sedimentary cycle will act as the “source” in subsequent cycles. In such a setting, detrital zircon may give information on sedimentary processes rather than on provenance.
Geochimica et Cosmochimica Acta, Vol. 254, pp. 21-39.
New Zealand
metasomatism
Abstract: Megacrystic zircon grains from alkaline basaltic fields are rare but can provide fundamental insights into mantle metasomatic processes. Here, we report in-situ U-Pb ages, trace element concentrations and hafnium and oxygen isotopes for fourteen zircon megacrysts from two intraplate alkaline basalt locations in New Zealand. U-Pb ages indicate the zircons crystallised between 12.1 and 19.8 Ma. Zircon oxygen isotopic compositions range from low to mantle-like compositions (grain average d ¹8 O = 3.8-5.1‰). Hafnium isotopes (eHf (t) = +3.3 to +10.4) mostly overlap with intraplate mafic rocks and clinopyroxene in metasomatized peridotitic mantle xenoliths but show no correlation with most trace element parameters or oxygen isotopes. The zircons are interpreted to have formed by the reaction between low-degree melts derived from pre-existing mantle metasomes and the depleted mantle lithosphere prior to eruption and transport to the surface. The low Hf concentration, an absence of Eu anomalies, and elevated U/Yb compared to Nb/Yb in the megacrystic zircons are interpreted to show that the source metasomes comprised subduction- and carbonatite-metasomatised lithospheric mantle. As these trace element characteristics are common for megacrystic zircon in intra-plate basaltic fields globally, they suggest the prevalence of subduction- and carbonatite-metsasomatised mantle under these intraplate volcanic regions. The unusually low d ¹8 O was likely present prior to metasomatic enrichment and may have resulted from high-temperature hydrothermal alteration during initial mantle lithosphere formation at a mid ocean ridge or, possibly, during subduction-related processes associated with continent formation. The combination of proportionally varied contributions from carbonatite- and subduction-metasomatised lithospheric melts with asthenospheric melts may explain the variety of primitive intraplate basalt compositions, including low d ¹8 O reported for some local intraplate lavas.
Physics and Chemistry of Minerals, Vol. 47, 31 6p. Pdf
Russia
luminesence
Abstract: Natural diamond remains the source of many interesting effects and finds that are difficult to reproduce or detect in synthetic crystals. Herein, we investigate the photoluminescence (PL) of more than 2000 natural diamonds in the range 800-1050 nm. PL spectra were registered with excitation at 405, 450, 488 (Ar+), and 787 nm. The investigation revealed several systems that were not previously described. Some new dislocation-related systems were discovered in the spectra of crystals with signs of plastic deformation. They are four sets of doublets 890/900.3 nm, 918/930 nm, 946.5/961.5 nm, and 981/994 nm; four lines at 946, 961.5, 986, and 1020 nm. In low-nitrogen diamonds, they are accompanied by a line at 921 nm. Unreported vibronic systems with zero-phonon lines at 799.5, 819.6, 869.5, and 930 nm were revealed. In most cases, the systems were accompanied with doublet 883/885 of the simplest Ni-related center. We assigned these systems to Ni-related centers of different complexity. The results expand opportunities to restore growth conditions and thermal history of diamond crystals. The detection of new shallow centers expands the prospects of diamond as an optic and semiconductor material for applications in the NIR range.
Abstract: Melt/fluid inclusions in diamonds provide important evidence for mantle diamond-forming fluids or melts. By now, the major characteristics of the composition of microinclusions have been analyzed in diamonds from several kimberlite provinces and pipes worldwide [1-4]. Here we report the first data on the composition of parent diamondforming melts for diamonds from the Arkhangelsk kimberlite province. After the study of morphology, specialty of the internal structure, and distribution of microinclusions in diamonds, 10 single crystals were selected from the 31 diamonds of the representative collection. The studied crystals may be divided into two groups: cuboids and coated diamonds. The crystals have grayish yellow or dark gray colors and are almost nontransparent due to the high content of microinclusions. Polished slices of these diamonds were studied by IR-spectroscopy, which allowed us to calculate the content of nitrogen defects, as well as the content of water and carbonates in microinclusions. X-ray spectral analyses allowed to study the composition of fluid/melt microinclusions and showed that they were essentially carbonate-silicate with significant variations between these two end-members. All inclusions contain water, with the highest H2O/CO2 in highly siliceous inclusions. Unlike diamonds from Canada and South Africa [1, 2], the studied inclusions in diamionds from the Arkhangelsk province are almost free of chlorides. Comparison of the data obtained with the database on fliud/melt inclusions in diamonds worldwide shows similar of Arkhangelsk diamonds to some diamonds from Yakutia [3, 4], and the data obtained are the most similar to the composition of microinclusions in diamonds from the Internatsionalnaya pipe (Yakutia).
Abstract: Three groups of diamond crystals that differ in morphology, photoluminescence, infrared absorption, and thermal history were discovered in the Lomonosov deposit. The first group crystals are mostly octahedrons with minor signs of dissolution and a large share of nitrogen in the form of B defects. The crystals of the second type are strongly resorbed dodecahedroids with a small share of B defects. The third group consists of crystals with low-temperature ? defects; they are cuboids that are often without traces of resorption, and tetrahexahedroids. These patterns indicate the polygenicity of the diamond in the Lomonosov deposit.
Geochemistry International, Vol. 57, 9, pp. 963-980.
Russia
deposit - Lomonosov
Abstract: The data on the composition of microinclusions in diamonds from the Lomonosov deposits are reported for the first time. The studied diamonds include “coated” (n = 5) and cubic (n = 5) crystals. The estimated range of the degree of nitrogen aggregation in diamonds (4-39% B1) does not support their direct links with kimberlite magmatism; however, their short occurrence in the mantle at higher temperatures is probable as well. The composition of melt/fluid microinclusions in these samples varies from essentially carbonatitic to significantly silicate. It is shown that the contents of MgO, CaO, Na2O, Cl, and P2O5 decrease with increasing content of silicates and water. Different mechanisms of the generation and evolution of diamond-forming media are discussed to explain the observed variations.
Kampelite, Ba3Mg1.5,Sc4(PO4)6(OH)3.4H2O, a new very complex Ba-Sc phosphate mineral from the Kovdor phoscorite-carbonatite complex ( Kola Peninsula) Russia.
Abstract: HPHT synthesis of diamonds from hydrocarbons attracts great attention due to the opportunity to obtain luminescent nano- and microcrystals of high structure perfection. Systematic investigation of diamond synthesized from the mixture of hetero-hydrocarbons containing dopant elements Si or Ge (C24H20Si and C24H20Ge) with a pure hydrocarbon - adamantane (C10H16) at 8?GPa was performed. The photoluminescence of SiV- and GeV- centers in produced diamonds was found to be saturated when Si and Ge contents in precursors exceed some threshold values. The presence of SiC or Ge as second phases in diamond samples with saturated luminescence indicates that ultimate concentrations of the dopants were reached in diamond. It is shown that SiC inclusions can be captured by growing crystals and be a source of local stresses up to 2?GPa in diamond matrix. No formation of Ge-related inclusions in diamonds was detected, which makes Ge more promising as a dopant in the synthesis method. Surprisingly, the synthesis of diamonds from the C24H20Sn hetero-hydrocarbon was ineffective for SnV- formation: only fluorescence of N-and Si-related color centers was detected at room temperature. As an example of great potential for the synthesis method, mass synthesis of 50-nm diamonds with GeV- centers was realized at 9.4?GPa. Single GeV- production in individual nanodiamond was demonstrated.
Mineralogical Magazine, Vol. 82, no. 2, pp. 329-346.
Russia, Kola Peninsula
deposit - Kovdor
Abstract: Two quintinite polytypes, 3R and 2T, which are new for the Kovdor alkaline-ultrabasic complex, have been structurally characterized. The crystal structure of quintinite-2T was solved by direct methods and refined to R1 = 0.048 on the basis of 330 unique reflections. The structure is trigonal, P c1, a = 5.2720(6), c = 15.113(3) Å and V = 363.76(8) Å3. The crystal structure consists of [Mg2Al(OH)6]+ brucite-type layers with an ordered distribution of Mg2+ and Al3+ cations according to the × superstructure with the layers stacked according to a hexagonal type. The complete layer stacking sequence can be described as …=Ab1C = Cb1A=…. The crystal structure of quintinite-3R was solved by direct methods and refined to R1 = 0.022 on the basis of 140 unique reflections. It is trigonal, R m, a = 3.063(1), c = 22.674(9) Å and V = 184.2(1) Å3. The crystal structure is based upon double hydroxide layers [M2+,3+(OH)2] with disordered distribution of Mg, Al and Fe and with the layers stacked according to a rhombohedral type. The stacking sequence of layers can be expressed as …=?B = BC = CA=… The study of morphologically different quintinite generations grown on one another detected the following natural sequence of polytype formation: 2H ? 2T ? 1M that can be attributed to a decrease of temperature during crystallization. According to the information-based approach to structural complexity, this sequence corresponds to the increasing structural information per atom (IG): 1.522 ? 1.706 ? 2.440 bits, respectively. As the IG value contributes negatively to the configurational entropy of crystalline solids, the evolution of polytypic modifications during crystallization corresponds to the decreasing configurational entropy. This is in agreement with the general principle that decreasing temperature corresponds to the appearance of more complex structures.
European Journal of Mineralogy, Vol. 30, 2, pp. 231-236.
Mantle
geochemistry
Abstract: Correlations between chemical and structural complexities of minerals were analysed using a total of 4962 datasets on the chemical compositions and 3989 datasets on the crystal structures of minerals. The amounts of structural and chemical Shannon information per atom and per unit cell or formula unit were calculated using the approach proposed by Krivovichev with no Hcorrection for the minerals with unknown H positions. Statistical analysis shows that there are strong and positive correlations (R 2 > 0.95) between the chemical and structural complexities and the number of different chemical elements in a mineral. Analysis of relations between chemical and structural complexities provides strong evidence that there is an overall trend of increasing structural complexity with the increasing chemical complexity. Following Hazen, four groups of minerals were considered that represent four eras of mineral evolution: "ur-minerals", minerals from chondritic meteorites, Hadean minerals, and minerals of the post-Hadean era. The analysis of mean chemical and structural complexities for the four groups demonstrate that both are gradually increasing in the course of mineral evolution. The increasing complexity follows an overall passive trend: more complex minerals form with the passage of geological time, yet the simpler ones are not replaced. The observed correlations between the chemical and structural complexities understood in terms of Shannon information suggest that, at a first approximation, chemical differentiation is a major force driving the increase of complexity of minerals in the course of geological time. New levels of complexity and diversifcation observed in mineral evolution are achieved through the chemical differentiation, which favours local concentrations of particular rare elements and creation of new geochemical environments.
Crystal chemistry of natural layered double hydroxides from the Kovdor alkaline massif, Kola. Polytypes of quininite: cation ordering and superstructures.
Peralk-Carb 2011, workshop held Tubingen Germany June 16-18, Poster
Mineralogy and Petrology, Vol. 109, 2, pp. 143-152.
Russia, Urals
Mineralogy
Abstract: A new picromerite-group mineral, nickelpicromerite, K2Ni(SO4)2 - 6H2O (IMA 2012-053), was found at the Vein #169 of the Ufaley quartz deposit, near the town of Slyudorudnik, Kyshtym District, Chelyabinsk area, South Urals, Russia. It is a supergene mineral that occurs, with gypsum and goethite, in the fractures of slightly weathered actinolite-talc schist containing partially vermiculitized biotite and partially altered sulfides: pyrrhotite, pentlandite, millerite, pyrite and marcasite. Nickelpicromerite forms equant to short prismatic or tabular crystals up to 0.07 mm in size and anhedral grains up to 0.5 mm across, their clusters or crusts up to 1 mm. Nickelpicromerite is light greenish blue. Lustre is vitreous. Mohs hardness is 2-2½. Cleavage is distinct, parallel to {10-2}. Dmeas is 2.20(2), Dcalc is 2.22 g cm-3. Nickelpicromerite is optically biaxial (+), a = 1.486(2), ß = 1.489(2), ? = 1.494(2), 2Vmeas =75(10)°, 2Vcalc =76°. The chemical composition (wt.%, electron-microprobe data) is: K2O 20.93, MgO 0.38, FeO 0.07, NiO 16.76, SO3 37.20, H2O (calc.) 24.66, total 100.00. The empirical formula, calculated based on 14 O, is: K1.93Mg0.04Ni0.98S2.02O8.05(H2O)5.95. Nickelpicromerite is monoclinic, P21/c, a = 6.1310(7), b = 12.1863(14), c = 9.0076(10) Å, ß = 105.045(2)°, V = 649.9(1) Å3, Z = 2. Eight strongest reflections of the powder XRD pattern are [d,Å-I(hkl)]: 5.386--34(110); 4.312-46(002); 4.240-33(120); 4.085--100(012, 10-2); 3.685-85(031), 3.041-45(040, 112), 2.808-31(013, 20-2, 122), 2.368-34(13-3, 21-3, 033). Nickelpicromerite (single-crystal X-ray data, R = 0.028) is isostructural to other picromerite-group minerals and synthetic Tutton’s salts. Its crystal structure consists of [Ni(H2O)6]2+ octahedra linked to (SO4)2- tetrahedra via hydrogen bonds. K+ cations are coordinated by eight anions. Nickelpicromerite is the product of alteration of primary sulfide minerals and the reaction of the acid Ni-sulfate solutions with biotite.
Neues Jahrbuch fur Mineralogie, Vol. 194, 2, pp. 165-173.
Russia, Kola Peninsula
deposit - Kovdor
Abstract: Isolueshite, a cubic complex oxide with the formula NaNbO3, occurs as euhedral crystals 0.4 - 0.7 mm in size in calcite carbonatite, Kovdor ultrabasic-alkaline complex (Kola, Russia). Average composition of isolueshite, based on 40 analyses by wavelength-dispersive electron microprobe is (Na0.84Ca0.07Sr0.01La0.01Ce0.01)S0.95(Nb0.90Ti0.11)S1.01O3. Minor and trace elements are Ti (4.1- 6.8 wt.% TiO2), REEs (1.8 - 4.0 wt.% REE2O3), Ca (1.7- 3.3 wt.% CaO), Zr (0.1- 0.8 wt.% ZrO2), Sr (0.3 - 0.4 wt.% SrO), Th (0.1- 0.5 wt.% ThO2), Fe (0.1- 0.2 wt.% Fe2O3) and Ta (0.1 wt.% Ta2O5). The crystal structure of isolueshite was refined to an agreement index (R1) of 0.028 for 82 unique reflections with |F0| = 4 s(F). The mineral is cubic, Pm3-m, a = 3.9045(5) Å and V = 59.525(13) Å3. The diffraction pattern of the crystal contains only regular and strong Bragg reflections with no signs of diffuse scattering. There are two sites in the crystal structure: A is 12-coordinated (A-O = 2.556(3) Å) and located at the corners of the cubic primitive cell and B is situated in the center of the unit-cell and has an octahedral coordination. The crystal-chemical formula based on the structure refinement is (Na0.84(1)Ca0.16(1))(Nb0.88(1)Ti0.12(1))O3. We suggest that isolueshite is a quenched (kinetically favored) polymorph of lueshite that formed as a result of rapid crystallization due to the sudden drop in temperature and/or pressure.
Abstract: The crystal structure of a new structural variety of loparite (Na0.56Ce0.21La0.14Ca0.06Sr0.03Nd0.02Pr0.01)S=1.03(Ti0.83Nb0.15)S=0.98O3 from the Khibiny alkaline massif, Kola peninsula, Russia, was solved by direct methods and refined to R1 = 0.029 for 492 unique observed reflections with I > 2s(I). The mineral is orthorhombic, Ima2, a = 5.5129(2), b = 5.5129(2) and c = 7.7874(5) Å. Similarly to other perovskite-group minerals with the general formula ABO3, the crystal structure of loparite is based upon a three-dimensional framework of distorted corner-sharing BO6. The A cations are coordinated by 12 oxygen atoms and are situated in distorted cuboctahedral cavities. In contrast to the ideal perovskite-type structure (Pm3-m), the unit cell is doubled along the c axis and the a and b axes are rotated in the ab plane at 45o. The BO6 octahedron displays distortion characteristic for the d0 transition metal cations with the out-of-center shift of the B site. The symmetry reduction is also attributable to the distortion of the BO6 octahedra which are tilted and rotated with respect to the c axis. The occurrence of a new acentric variety of loparite can be explained by the pecularities of its chemical composition characterized by the increased content of Ti compared to the previously studied samples.
European Journal of Mineralogy, Vol. 30, 2, pp. 219-230.
Mantle
mineralogy
Abstract: The chemical diversity of minerals can be analysed in terms of the concept of mineral systems, defined by the set of chemical elements essential for the definition of a mineral species. Only species-defining elements are considered as essential. According to this approach, all minerals are classified into ten types of mineral systems with the number of essential components ranging from 1 to 10. For all the minerals known today, only 70 chemical elements act as essential species-defining constituents. The number of minerals of different chemical elements are calculated as follows (number of mineral species is given in parentheses): oxygen (4138), hydrogen (2814), silicon (1479), calcium (1182), sulfur (1064), aluminum (989), sodium (953), iron (953), copper (643), arsenic (601), phosphorus (599), and magnesium (576). The distribution of the majority of the species-defining elements among mineral systems submits to a normal distribution. Using the concept of mineral systems, different geological objects can be compared from the viewpoint of their mineral diversity as exemplified by alkaline massifs (Khibiny, Lovozero, Russia, and Mont Saint-Hilaire, Canada), evaporite deposits (Inder, Kazakhstan, and Searles Lake, USA) and fumaroles at active volcanoes (Tolbachik, Kamchatka, Russia, and Vulcano, Sicily, Italy). The concept of mineral systems can be applied to mineral evolution overall by calculating the mean number of elements for the first three stages in the evolution of minerals as proposed by R.M. Hazen and co-authors in 2008, plus a fourth period corresponding to Hazen's stages 4-10, as follows: 2.08?±?0.45 (I: ur-minerals); 2.68?±?0.13 (II: minerals of chondritic meteorites); 3.86?±?0.07 (III: Hadean minerals); 4.50?±?1.47 (IV: post-Hadean minerals).
Abstract: Hydroxynatropyrochlore, (Na,?a,Ce)2Nb2O6(OH), is a new Na-Nb-OH-dominant member of the pyrochlore supergroup from the Kovdor phoscorite-carbonatite pipe (Kola Peninsula, Russia). It is cubic, Fd-3m, a = 10.3211(3) Å, V = 1099.46 (8) Å3, Z = 8 (from powder diffraction data) or a = 10.3276(5) Å, V = 1101.5(2) Å3, Z = 8 (from single-crystal diffraction data). Hydroxynatropyrochlore is a characteristic accessory mineral of low-carbonate phoscorite of the contact zone of the phoscorite-carbonatite pipe with host foidolite as well as of carbonate-rich phoscorite and carbonatite of the pipe axial zone. It usually forms zonal cubic or cubooctahedral crystals (up to 0.5 mm in diameter) with irregularly shaped relics of amorphous U-Ta-rich hydroxykenopyrochlore inside. Characteristic associated minerals include rockforming calcite, dolomite, forsterite, hydroxylapatite, magnetite,and phlogopite, accessory baddeleyite, baryte, barytocalcite, chalcopyrite, chamosite-clinochlore, galena, gladiusite, juonniite, ilmenite, magnesite, pyrite, pyrrhotite, quintinite, spinel, strontianite, valleriite, and zirconolite. Hydroxynatropyrochlore is pale-brown, with an adamantine to greasy lustre and a white streak. The cleavage is average on {111}, the fracture is conchoidal. Mohs hardness is about 5. In transmitted light, the mineral is light brown, isotropic, n = 2.10(5) (??= 589 nm). The calculated and measured densities are 4.77 and 4.60(5) g•cm-3, respectively. The mean chemical composition determined by electron microprobe is: F 0.05, Na2O 7.97, CaO 10.38, TiO2 4.71, FeO 0.42, Nb2O5 56.44, Ce2O3 3.56, Ta2O5 4.73, ThO2 5.73, UO2 3.66, total 97.65 wt. %. The empirical formula calculated on the basis of Nb+Ta+Ti = 2 apfu is (Na1.02Ca0.73Ce0.09Th0.09 U0.05Fe2+0.02)?2.00 (Nb1.68Ti0.23Ta0.09)?2.00O6.03(OH1.04F0.01)?1.05. The simplified formula is (Na, Ca,Ce)2Nb2O6(OH). The mineral slowly dissolves in hot HCl. The strongest X-ray powderdiffraction lines [listed as (d in Å)(I)(hkl)] are as follows: 5.96(47)(111), 3.110(30)(311), 2.580(100)(222), 2.368(19)(400), 1.9875(6)(333), 1.8257(25)(440) and 1.5561(14)(622). The crystal structure of hydroxynatropyrochlore was refined to R1 = 0.026 on the basis of 1819 unique observed reflections. The mineral belongs to the pyrochlore structure type A2B2O6Y1 with octahedral framework of corner-sharing BO6 octahedra with A cations and OH groups in the interstices. The Raman spectrum of hydroxynatropyrochlore contains characteristic bands of the lattice, BO6, B-O and O-H vibrations and no characteristic bands of the H2O vibrations. Within the Kovdor phoscorite-carbonatite pipe, hydroxynatropyrochlore is the latest hydrothermal mineral of the pyrochlore supergroup, which forms external rims around grains of earlier U-rich hydroxykenopyrochlore and separated crystals in voids of dolomite carbonatite veins. The mineral is named in accordance with the pyrochlore supergroup nomenclature.
European Journal of Mineralogy, Vol. 30, 2, pp. 219-230.
Mantle
mineralogy
Abstract: The chemical diversity of minerals can be analysed in terms of the concept of mineral systems, defined by the set of chemical elements essential for the definition of a mineral species. Only species-defining elements are considered as essential. According to this approach, all minerals are classified into ten types of mineral systems with the number of essential components ranging from 1 to 10. For all the minerals known today, only 70 chemical elements act as essential species-defining constituents. The number of minerals of different chemical elements are calculated as follows (number of mineral species is given in parentheses): oxygen (4138), hydrogen (2814), silicon (1479), calcium (1182), sulfur (1064), aluminum (989), sodium (953), iron (953), copper (643), arsenic (601), phosphorus (599), and magnesium (576). The distribution of the majority of the species-defining elements among mineral systems submits to a normal distribution. Using the concept of mineral systems, different geological objects can be compared from the viewpoint of their mineral diversity as exemplified by alkaline massifs (Khibiny, Lovozero, Russia, and Mont Saint-Hilaire, Canada), evaporite deposits (Inder, Kazakhstan, and Searles Lake, USA) and fumaroles at active volcanoes (Tolbachik, Kamchatka, Russia, and Vulcano, Sicily, Italy). The concept of mineral systems can be applied to mineral evolution overall by calculating the mean number of elements for the first three stages in the evolution of minerals as proposed by R.M. Hazen and co-authors in 2008, plus a fourth period corresponding to Hazen's stages 4-10, as follows: 2.08?±?0.45 (I: ur-minerals); 2.68?±?0.13 (II: minerals of chondritic meteorites); 3.86?±?0.07 (III: Hadean minerals); 4.50?±?1.47 (IV: post-Hadean minerals).
Abstract: During convergence of Gondwana-derived microplates and Laurussia in the Palaeozoic, subduction of oceanic and continental crusts and their sedimentary cover introduced material of regionally contrasting chemical and isotopic compositions into the mantle. This slab material metasomatised the local mantle, producing a highly heterogeneous lithospheric mantle beneath the European Variscides. The eastern termination of the European Variscides (Moldanubian and Saxo-Thuringian zones of Austria, Czech Republic, Germany and Poland) is unusual in that the mantle was modified by material from several subduction zones within a small area. Orogenic lamproites sampled this lithospheric mantle, which has a chemical signature reflecting extreme depletion (low CaO and Al2O3 contents and high Mg-number) followed by strong metasomatic enrichment, giving rise to crust-like trace element patterns, variable radiogenic 87Sr/86Sr(330) (0.7062-0.7127) and non-radiogenic Nd isotopic compositions (eNd(330) = - 2.8 to - 7.8), crustal Pb isotopic compositions, and a wide range of d7Li values (- 5.1 to + 5.1). This metasomatic signature is variably expressed in the lamproites, depending on the extent of melting and the nature of the source of the metasomatic component. Preferential melting of the metasomatically enriched (veined) lithospheric mantle with K-rich amphibole resulted in lamproitic melts with very negative, crust-like d7Li values, which correlate positively with peralkalinity, HFSE contents and lower eNd. Both the higher degree of melting and progressive consumption of the metasomatic component reduce the chemical and isotopic imprints of the metasomatic end member. The very positive d7Li values of some lamproites indicate that the source of these lamproites may have been modified by subducted oceanic lithosphere. Fresh olivine from the Brloh (Moldanubian) lamproitic dyke shows very high Fo (up to 94%) and very high Li contents (up to 25 ppm), demonstrating that the extremely depleted and later enriched lithospheric mantle may have contributed significantly to the Li budget of the lamproites. The regional distribution of lamproites with contrasting chemical and isotopic fingerprints mimics the distribution of the different Variscan subduction zones.
Chemical Geology, doi: 10.1016/ j.chemgeo .2019.119290 46p. Pdf
Europe, Czech Republic, Germany, Poland, Austria
lamproites
Abstract: Orogenic lamproites represent a group of peralkaline, ultrapotassic and perpotassic mantle-derived igneous rocks that hold the potential to sample components with extreme compositions from highly heterogeneous orogenic mantle. In our pilot study, we present highly siderophile element (HSE) and ReOs isotope systematics of Variscan orogenic lamproites sampled in the territories of the Czech Republic, Austria and Poland, i.e., from the termination of the Moldanubian and Saxo-Thuringian zones of the Bohemian Massif. Orogenic lamproites of the Bohemian Massif are distinguished by variably high contents of SiO2, high Mg# and predominant mineral associations of K-rich amphibole and Fe-rich microcline. The HSE show (i) consistently very low contents in all investigated orogenic lamproites compared to the estimated concentrations in majority of mid-ocean ridge basalts, hotspot-related volcanic rocks (e.g., ocean island basalts, continental flood basalts, komatiites, some intraplate alkaline volcanic rocks such as kimberlites and anorogenic lamproites) and arc lavas, and (ii) marked differences in relative and absolute HSE abundances between the samples from the Moldanubian and Saxo-Thuringian Zone. Such a regional dependence in HSE from mantle-derived melts is exceptional. Orogenic lamproites have highly variable and high initial suprachondritic 187Os/188Os values (up to 0.631) compared with rather chondritic to subchondritic Os isotope values of the young lithospheric mantle below the Bohemian Massif. The highly radiogenic Os isotope component in orogenic lamproites may be derived from preferential melting of metasomatised vein assemblages sitting in depleted peridotite mantle. This process appears to be valid generally in the petrogenesis of orogenic lamproites both from the Bohemian Massif and from the Mediterranean area. As a specific feature of the orogenic lamproites from the Bohemian Massif, originally ultra-depleted mantle component correlative with remnants of the Rheic Ocean lithosphere in the Moldanubian Zone was metasomatised by a mixture of evolved and juvenile material, whereas the lithospheric mantle in the Saxo-Thuringian Zone was enriched through the subduction of evolved crustal material with highly radiogenic Sr isotope signature. As a result, this led to observed unique regionally dependent coupled HSE, RbSr and ReOs isotope systematics.
Geologica Carpathica *** In Eng, Vol. 70, pp. 9-11.
Europe
lamproite
Abstract: Orogenic (high-silica) lamproites represent a group of post-collisional mantle-derived igneous rocks that hold the potential to sample components with extreme compositions from highly heterogeneous mantle. In our pilot study, we explore highly siderophile element (HSE) and Re-Os isotope systematics of Variscan orogenic lamproites sampled from the termination of the Moldanubian and Saxo-Thuringian zones of the Bohemian Massif. Orogenic lamproites of the Bohemian Massif are distinguished by variably high contents of SiO2, high Mg# and predominant mineral associations of K-rich amphibole and Fe-rich microcline. The HSE show (i) consistently very low contents in all investigated orogenic lamproites compared to the estimated concentrations in majority of mid- ocean ridge basalts, hotspot-related volcanic rocks and arc lavas, and (ii) marked differences in relative and absolute HSE abundances between the samples from the Moldanubian and Saxo-Thuringian Zone. Such a regional dependence in HSE from mantle-derived melts is exceptional. Orogenic lamproites have highly variable and high initial suprachondritic 187Os/188Os values (up to 0.631) compared with rather chondritic to subchondritic Os isotope values of the young lithospheric mantle below the Bohemian Massif. The highly radiogenic Os isotope component in orogenic lamproites may be derived from preferential melting of metasomatised vein assemblages sitting in depleted peridotite mantle. This process appears to be valid generally in the petrogenesis of orogenic lamproites both from the Bohemian Massif (Variscan lamproites) and from the Mediterranean area (Alpine lamproites). As a specific feature of the orogenic lamproites from the Bohemian Massif, originally ultra-depleted mantle component correlative with remnants of the Rheic Ocean lithosphere in the Moldanubian Zone was metasomatised by a mixture of evolved and juvenile material, whereas the lithospheric mantle in the Saxo-Thuringian Zone was enriched through the subduction of evolved crustal material with highly radiogenic Sr isotope signature. As a result, this led to observed unique regionally dependent coupled HSE, Rb-Sr and Re-Os isotope systematics.
Abstract: The Pb isotope composition of the upper mantle beneath Central Europe is heterogeneous due to the subduction of regionally contrasting material during the Variscan and Alpine orogenies. Late Variscan to Cenozoic mantle-derived melts allow mapping this heterogeneity on a regional scale for the last ca. 340 Myr. Late Cretaceous and Cenozoic anorogenic magmatic rocks of the Bohemian Massif (lamprophyres, volcanic rocks of basanite/tephrite and trachyte/phonolite series) concentrate mostly in the Eger Rift. Cretaceous ultramafic lamprophyres yielded the most radiogenic Pb isotope signatures reflecting a maximum contribution from metasomatised lithospheric mantle, whereas Tertiary alkaline lamprophyres originated from mantle with less radiogenic 206Pb/204Pb ratios suggesting a more substantial modification of lithospheric source by interaction with asthenospheric-derived melts. Cenozoic volcanic rocks of the basanite/tephrite and trachyte/phonolite series define a linear mixing trend between these components, indicating dilution of the initial lithospheric mantle signature by upwelling asthenosphere during rifting. The Pb isotope composition of Late Cretaceous and Cenozoic magmatic rocks of the Bohemian Massif follows the same Pb growth curve as Variscan orogenic lamprophyres and lamproites that formed during the collision between Laurussia, Gondwana, and associated terranes. This implies that the crustal Pb signature in the post-Variscan mantle is repeatedly sampled by younger anorogenic melts. Most Cenozoic mantle-derived rocks of Central Europe show similar Pb isotope ranges as the Bohemian Massif.
Abstract: Orogenic lamproites represent a group of peralkaline, ultrapotassic and perpotassic mantle-derived igneous rocks that hold the potential to sample components with extreme compositions from highly heterogeneous orogenic mantle. In our pilot study, we present highly siderophile element (HSE) and ReOs isotope systematics of Variscan orogenic lamproites sampled in the territories of the Czech Republic, Austria and Poland, i.e., from the termination of the Moldanubian and Saxo-Thuringian zones of the Bohemian Massif. Orogenic lamproites of the Bohemian Massif are distinguished by variably high contents of SiO2, high Mg# and predominant mineral associations of K-rich amphibole and Fe-rich microcline. The HSE show (i) consistently very low contents in all investigated orogenic lamproites compared to the estimated concentrations in majority of mid-ocean ridge basalts, hotspot-related volcanic rocks (e.g., ocean island basalts, continental flood basalts, komatiites, some intraplate alkaline volcanic rocks such as kimberlites and anorogenic lamproites) and arc lavas, and (ii) marked differences in relative and absolute HSE abundances between the samples from the Moldanubian and Saxo-Thuringian Zone. Such a regional dependence in HSE from mantle-derived melts is exceptional. Orogenic lamproites have highly variable and high initial suprachondritic 187Os/188Os values (up to 0.631) compared with rather chondritic to subchondritic Os isotope values of the young lithospheric mantle below the Bohemian Massif. The highly radiogenic Os isotope component in orogenic lamproites may be derived from preferential melting of metasomatised vein assemblages sitting in depleted peridotite mantle. This process appears to be valid generally in the petrogenesis of orogenic lamproites both from the Bohemian Massif and from the Mediterranean area. As a specific feature of the orogenic lamproites from the Bohemian Massif, originally ultra-depleted mantle component correlative with remnants of the Rheic Ocean lithosphere in the Moldanubian Zone was metasomatised by a mixture of evolved and juvenile material, whereas the lithospheric mantle in the Saxo-Thuringian Zone was enriched through the subduction of evolved crustal material with highly radiogenic Sr isotope signature. As a result, this led to observed unique regionally dependent coupled HSE, RbSr and ReOs isotope systematics.
Abstract: Variscan orogenic lamproites in the Bohemian Massif predominantly occur as 1 to 2?m wide and petrographically uniform dykes along the eastern borders of the Moldanubian and Saxo-Thuringian zones. Variscan orogenic lamproites were derived by preferential melting of subduction-related olivine-free metasomatic vein assemblages stabilised in the lithospheric mantle. These lamproitic melts may subsequently undergo extensive differentiation. In this study, we present the first combined petrographic and Sr-Nd-Pb-Li isotope characteristics of a complex lamproite exposed at ca 100?m long profile near Horní Rokytnice (Czech Republic) in the Saxo-Thuringian Zone. This lamproite is characterised by the primary mineral assemblage of K-amphibole + K-feldspar ± aegirine and quartz that petrographically varies from relatively primitive (fine-grained, mafic) to more differentiated (medium- to coarse-grained, felsic) pegmatitic lamproite domains. These domains may represent the product of crystallisation of immiscible liquids that had separated from the mafic melt. The primitive lamproite zone is characterised by the typomorphic minerals - baotite, benitoite, and henrymeyerite. The more differentiated pegmatitic domains are free of aegirine and show replacement of primary red-luminescent (Fe3+-rich) K-feldspar by blue-luminescent (Fe-poor) K-feldspar. Residual fluids rich in Ca, Ti, and HFSE in combination with the decreasing peralkalinity of the lamproite system resulted in the local formation of secondary zircon, titanite and quartz at the expense of the primary Ti-Ba-Zr-K lamproitic mineral assemblages. Lamproites from the Moldanubian and Saxo-Thuringian zones fall on separate mixing trends in the 87Sr/86Sr(t) - eNd(t) diagram, which indicates that the mantle beneath these two zones had been metasomatised by different crustal material. The scatter in the peralkalinity index vs. d7Li diagram indicates that the Li isotope composition is not controlled by mixing of two end members metasome and ambient depleted mantle alone, but may also be affected by late-stage magmatic and hydrothermal processes. The compositionally zoned Horní Rokytnice dyke is special as the petrographically different types show a variation of about 4 d-units in d7Li due to dyke-internal processes, such as fractionation, which increases d7Li in late-stage lamproitic melts, and post-emplacement interaction with fluids that reduced d7Li in samples that have lost Li. Post-emplacement alteration also led to the disturbance in the Pb isotope systematics of the differentiated orogenic lamproite as indicated by variable over-correction of in situ radiogenic Pb ingrowth.
Journal of Petrology, Vol. 61, 7, doi.org/10.1093 /petrology/egaa072
Europe
magmatism
Abstract: The orogenic development after the continental collision between Laurussia and Gondwana, led to two contrasting associations of mantle-derived magmatic rocks on the territory of the Bohemian Massif: (i) a 340-310?Ma lamprophyre-lamproite orogenic association; and (ii) a 300-275?Ma lamprophyre association of anorogenic affinity. Major types of potassic mantle-derived magmatic rocks recognized in the orogenic and anorogenic associations include: (i) calc-alkaline to alkaline lamprophyres; (ii) alkaline ‘orthopyroxene minettes’ and geochemically related rocks grouped here under the new term lampyrite; and (iii) peralkaline lamproites. These three types significantly differ with respect to mineral, whole-rock and Sr-Nd-Pb-Li isotope composition and spatial distribution. The calc-alkaline lamprophyres occur throughout the entire Saxo-Thuringian and Moldanubian zones, whereas the different types of malte-derived potassic rocks are spatially restricted to particular zones. Rocks of the Carboniferous lamprophyre-lamproite orogenic association are characterized by variable negative eNd(i) and variably radiogenic Sr(i), whereas the rocks of the Permian lamprophyre association of anorogenic affinity are characterized by positive eNd(i) and relatively young depleted-mantle Nd-model ages reflecting increasing input from upwelling asthenospheric mantle. The small variation in the Pb isotopic composition of post-collisional potassic mantle-derived magmatic rocks (of both the orogenic and anorogenic series) implies that the Pb budget of the mantle beneath the Bohemian Massif is dominated by the same crust-derived material, which itself may include material derived from several sources. The source rocks of ‘orthopyroxene minettes’ are characterized by isotopically light (‘eclogitic’) Li and strongly radiogenic (crustal) Sr and may have been metasomatized by high-pressure fluids along the edge of a subduction zone. In contrast, the strongly Al2O3 and CaO depleted mantle source of the lamproites is characterized by isotopically heavy Li and high SiO2 and extreme K2O contents. This mantle source may have been metasomatized predominantly by melts. The mantle source of the lamprophyres may have undergone metasomatism by both fluids and melts.
Abstract: The Pb isotope composition of the upper mantle beneath Central Europe is heterogeneous due to the subduction of regionally contrasting material during the Variscan and Alpine orogenies. Late Variscan to Cenozoic mantle-derived melts allow mapping this heterogeneity on a regional scale for the last ca. 340 Myr. Late Cretaceous and Cenozoic anorogenic magmatic rocks of the Bohemian Massif (lamprophyres, volcanic rocks of basanite/tephrite and trachyte/phonolite series) concentrate mostly in the Eger Rift. Cretaceous ultramafic lamprophyres yielded the most radiogenic Pb isotope signatures reflecting a maximum contribution from metasomatised lithospheric mantle, whereas Tertiary alkaline lamprophyres originated from mantle with less radiogenic 206Pb/204Pb ratios suggesting a more substantial modification of lithospheric source by interaction with asthenospheric-derived melts. Cenozoic volcanic rocks of the basanite/tephrite and trachyte/phonolite series define a linear mixing trend between these components, indicating dilution of the initial lithospheric mantle signature by upwelling asthenosphere during rifting. The Pb isotope composition of Late Cretaceous and Cenozoic magmatic rocks of the Bohemian Massif follows the same Pb growth curve as Variscan orogenic lamprophyres and lamproites that formed during the collision between Laurussia, Gondwana, and associated terranes. This implies that the crustal Pb signature in the post-Variscan mantle is repeatedly sampled by younger anorogenic melts. Most Cenozoic mantle-derived rocks of Central Europe show similar Pb isotope ranges as the Bohemian Massif.
Abstract: Variscan orogenic lamproites in the Bohemian Massif predominantly occur as 1 to 2?m wide and petrographically uniform dykes along the eastern borders of the Moldanubian and Saxo-Thuringian zones. Variscan orogenic lamproites were derived by preferential melting of subduction-related olivine-free metasomatic vein assemblages stabilised in the lithospheric mantle. These lamproitic melts may subsequently undergo extensive differentiation. In this study, we present the first combined petrographic and Sr-Nd-Pb-Li isotope characteristics of a complex lamproite exposed at ca 100?m long profile near Horní Rokytnice (Czech Republic) in the Saxo-Thuringian Zone. This lamproite is characterised by the primary mineral assemblage of K-amphibole + K-feldspar ± aegirine and quartz that petrographically varies from relatively primitive (fine-grained, mafic) to more differentiated (medium- to coarse-grained, felsic) pegmatitic lamproite domains. These domains may represent the product of crystallisation of immiscible liquids that had separated from the mafic melt. The primitive lamproite zone is characterised by the typomorphic minerals - baotite, benitoite, and henrymeyerite. The more differentiated pegmatitic domains are free of aegirine and show replacement of primary red-luminescent (Fe3+-rich) K-feldspar by blue-luminescent (Fe-poor) K-feldspar. Residual fluids rich in Ca, Ti, and HFSE in combination with the decreasing peralkalinity of the lamproite system resulted in the local formation of secondary zircon, titanite and quartz at the expense of the primary Ti-Ba-Zr-K lamproitic mineral assemblages. Lamproites from the Moldanubian and Saxo-Thuringian zones fall on separate mixing trends in the 87Sr/86Sr(t) - eNd(t) diagram, which indicates that the mantle beneath these two zones had been metasomatised by different crustal material. The scatter in the peralkalinity index vs. d7Li diagram indicates that the Li isotope composition is not controlled by mixing of two end members metasome and ambient depleted mantle alone, but may also be affected by late-stage magmatic and hydrothermal processes. The compositionally zoned Horní Rokytnice dyke is special as the petrographically different types show a variation of about 4 d-units in d7Li due to dyke-internal processes, such as fractionation, which increases d7Li in late-stage lamproitic melts, and post-emplacement interaction with fluids that reduced d7Li in samples that have lost Li. Post-emplacement alteration also led to the disturbance in the Pb isotope systematics of the differentiated orogenic lamproite as indicated by variable over-correction of in situ radiogenic Pb ingrowth.
uranium-lead (U-Pb) (U-Pb) geochronology of basement gneisses in the Thompson Belt (Manitoba):evidence for pre-Kenoran and Pikwitonei type crust and early Proterozoicbasement
Canadian Journal of Earth Sciences, Vol. 27, No. 6, June pp. 794-802
high Pressure precision uranium-lead (U-Pb) (U-Pb) ages for granulite metamorphism and deformation in the Archean KSZ, Ontario: implications for structure and development of lower crust #2
Earth and Planetary Science Letters, Vol. 119, No. 1-2, August pp. 1-18
high Pressure precision uranium-lead (U-Pb) (U-Pb) ages for granulite metamorphism and deformation in the Archean Kapuskasing structural zone, Ontario: implications for structure and development #1
Earth and Planetary Science Letters, Vol. 199, No. 1-2, August pp. 1-18
Bijdrage Tot de Kennis Van Den Oorsprong En de Verspreidungder Diamant houdende Afzettingen in Zuidoost-borneo En Van De Opsporing En Winning Van Den Diamant.
Amsterdam: Jaarboek Van Het Mijnwezen In Nederlandsch Oost-i, Vol. 49, No. 1, PP. 250-304.
Elements of the Archean thermal history and apparent polar wander of the eastern Kaapvaal craton, Swaziland, from single grain dating andPaleomagnetism
Earth and Planetary Science Letters, Vol. 93, No. 1, May pp. 23-34
Sommer, H., Wan,Y., Kroner, A., Xie, H., Jacob, D.E.
Shrimp zircon ages and petrology of lower crustal granulite xenoliths from the Letseng-La-Terae kimberlite, Lesotho: further evidence for a Namaquanatal connection.
South Africa Journal of Geology, Vol. 116, 2, pp. 183-198.
Abstract: The question of whether high-grade metamorphism and crustal melting in the early Archaean were associated with modern-style plate tectonics is a major issue in unravelling early Earth crustal evolution, and the eastern Kaapvaal craton has featured prominently in this debate. We discuss a major ca. 3.2?Ga tectono-magmatic-metamorphic event in the Ancient Gneiss Complex (AGC) of Swaziland, a multiply deformed medium- to high-grade terrane in the eastern Kaapvaal craton consisting of 3.66-3.20?Ga granitoid gneisses and infolded greenstone remnants, metasedimentary assemblages and mafic dykes. We report on a 3.2?Ga granulite-facies assemblage in a metagabbro of the AGC of central Swaziland and relate this to a major thermo-magmatic event that not only affected the AGC but also the neighbouring Barberton granitoid-greenstone terrane. Some previous models have related the 3.2?Ga event in the eastern Kaapvaal craton to subduction processes, but we see no evidence for long, narrow belts and metamorphic facies changes reflecting lithospheric suture zones, and there is no unidirectional asymmetry in the thermal structure across the entire region from Swaziland to the southern Barberton granite-greenstone terrane as is typical of Phanerozoic and Proterozoic belts. Instead, we consider an underplating event at ca. 3.2?Ga, giving rise to melting in the lower crust and mixing with mantle-derived under- and intraplated mafic magma to generate the voluminous granitoid assemblages now observed in the AGC and the southern Barberton terrane. This is compatible with large-scale crustal reworking during a major thermo-magmatic event and the apparent lack of a mafic lower crust in the Kaapvaal craton as shown by seismic data.
Abstract: We addressed when plate-tectonic processes first started on Earth by examining the ca. 2.0 Ga Limpopo orogenic belt in southern Africa. We show through palinspastic reconstruction that the Limpopo orogen originated from >600 km of west-directed thrusting, and the thrust sheet was subsequently folded by north-south compression. The common 2.7-2.6 Ga felsic plutons in the Limpopo thrust sheet and the absence of an arc immediately predating the 2.0 Ga Limpopo thrusting require the Limpopo belt to be an intracontinental structure. The similar duration (~40 m.y.), slip magnitude (>600 km), slip rate (>15 mm/yr), tectonic setting (intracontinental), and widespread anatexis to those of the Himalayan orogen lead us to propose the Limpopo belt to have developed by continent-continent collision. Specifically, the combined Zimbabwe-Kaapvaal craton (ZKC, named in this study) in the west (present coordinates) was subducting eastward below an outboard craton (OC), which carried an arc equivalent to the Gangdese batholith in southern Tibet prior to the India-Asia collision. The ZKC-OC collision at ca. 2.0 Ga triggered a westward jump in the plate convergence boundary, from the initial suture zone to the Limpopo thrust within the ZKC. Subsequent thrusting accommodated >600 km of plate convergence, possibly driven by ridge push from the west side of the ZKC. As intracontinental plate convergence is a key modern plate-tectonic process, the development of the Limpopo belt implies that the operation of plate tectonics, at least at a local scale, was ongoing by ca. 2.0 Ga on Earth.
Abstract: We present a statistical approach to data mining and quantitatively evaluating detrital age spectra for sedimentary provenance analyses and palaeogeographic reconstructions. Multidimensional scaling coupled with density-based clustering allows the objective identification of provenance end-member populations and sedimentary mixing processes for a composite crust. We compiled 58 601 detrital zircon U-Pb ages from 770 Precambrian to Lower Palaeozoic shelf sedimentary rocks from 160 publications and applied statistical provenance analysis for the Peri-Gondwanan crust north of Africa and the adjacent areas. We have filtered the dataset to reduce the age spectra to the provenance signal, and compared the signal with age patterns of potential source regions. In terms of provenance, our results reveal three distinct areas, namely the Avalonian, West African and East African-Arabian zircon provinces. Except for the Rheic Ocean separating the Avalonian Zircon Province from Gondwana, the statistical analysis provides no evidence for the existence of additional oceanic lithosphere. This implies a vast and contiguous Peri-Gondwanan shelf south of the Rheic Ocean that is supplied by two contrasting super-fan systems, reflected in the zircon provinces of West Africa and East Africa-Arabia.
Abstract: Nickel is a strongly compatible element in olivine, and thus fractional crystallization of olivine typically results in a concave-up trend on a Fo-Ni diagram. "Ni-enriched" olivine compositions are considered those that fall above such a crystallization trend. To explain Ni-enriched olivine crystals, we develop a set of theoretical and computational models to describe how primitive olivine phenocrysts from a parent (high-Mg, high-Ni) basalt re-equilibrate with an evolved (low-Mg, low-Ni) melt through diffusion. These models describe the progressive loss of Fo and Ni in olivine cores during protracted diffusion for various crystal shapes and different relative diffusivities for Ni and Fe-Mg. In the case when the diffusivity of Ni is lower than that for Fe-Mg interdiffusion, then olivine phenocrysts affected by protracted diffusion form a concave-down trend that contrasts with the concave-up crystallization trend. Models for different simple geometries show that the concavity of the diffusion trend does not depend on the size of the crystals and only weakly depends on their shape. We also find that the effect of diffusion anisotropy on trend concavity is in the same magnitude as the effect of crystal shape. Thus, both diffusion anisotropy and crystal shape do not significantly change the concave-down diffusion trend. Three-dimensional numerical diffusion models using a range of more complex, realistic olivine morphologies with anisotropy corroborate this conclusion. Thus, the curvature of the concave-down diffusion trend is mainly determined by the ratio of Ni and Fe-Mg diffusion coefficients. The initial and final points of the diffusion trend are in turn determined by the compositional contrast between mafic and more evolved melts that have mixed to cause disequilibrium between olivine cores and surrounding melt. We present several examples of measurements on olivine from arc basalts from Kamchatka, and several published olivine datasets from mafic magmas from non-subduction settings (lamproites and kimberlites) that are consistent with diffusion-controlled Fo-Ni behaviour. In each case the ratio of Ni and Fe-Mg diffusion coefficients is indicated to be?
Geostandards and Geoanalytical Research, http://orchid.org/0000-0002-2701-4635 80p.
Asia, Sri Lanka
geochronology
Abstract: Here we document a detailed characterization of two zircon gemstones, GZ7 and GZ8. Both stones had the same mass at 19.2 carats (3.84 g) each; both came from placer deposits in the Ratnapura district, Sri Lanka. The U-Pb data are in both cases concordant within the uncertainties of decay constants and yield weighted mean ²°6Pb/²³8U ages (95% confidence uncertainty) of 530.26 Ma ± 0.05 Ma (GZ7) and 543.92 Ma ± 0.06 Ma (GZ8). Neither GZ7 nor GZ8 have been subjected to any gem enhancement by heating. Structure-related parameters correspond well with the calculated alpha doses of 1.48 × 10¹8 g?¹ (GZ7) and 2.53 × 10¹8 g?¹ (GZ8), respectively, and the (U-Th)/He ages of 438 Ma ± 3 Ma (2s) for GZ7 and 426 Ma ± 9 Ma (2s) for GZ8 are typical of unheated zircon from Sri Lanka. The mean U concentrations are 680 µg g?¹ (GZ7) and 1305 µg g?¹ (GZ8). The two zircon samples are proposed as reference materials for SIMS (secondary ion mass spectrometry) U-Pb geochronology. In addition, GZ7 (Ti concentration 25.08 µg g?¹ ± 0.18 µg g?¹; 95% confidence uncertainty) may prove useful as reference material for Ti-in-zircon temperature estimates.
SAXI-XI Inter Guiana Geological Conferene 2019: Paramaribo, Suriname, 6p. Pdf
South America, Brazil, Venezuela
Guiana shield
Abstract: The Guiana Shield records a long history that starts in the Archean, but culminates in the Trans-Amazonian Orogeny between 2.26-2.09 Ga as a result of an Amazonian-West-Africa collision. This event is responsible for the emplacement of a major part of its mineralisations, especially gold, iron and manganese. The diamondiferous Roraima Supergroup represents its molasse. Between 1.86 and 1.72 Ga the Rio Negro Block accreted in the west. The Grenvillian Orogeny caused shearing and mineral resetting between 1.3 and 1.1 Ga when Amazonia collided with Laurentia. Younger platform covers contain placer gold mineralisation. Several suits of dolerite dykes record short-lived periods of crustal extension. Bauxite plateaus cover various rock units.
SAXI-XI Inter Guiana Geological Conferene 2019: Paramaribo, Suriname, 5p. Pdf
South America, Suriname
Guiana shield
Abstract: The ultramafic rocks of the Marowijne Greenstone Belt in Suriname and elsewhere in the Guiana Shield comprise both intrusive dunite-gabbroic bodies and ultramafic lavas and volcaniclastic rocks. They were emplaced in the early stages of the Trans-Amazonian Orogeny (2.26-2.09 Ga), but their petrogenesis and geotectonic significance have still to be elaborated. They present several economically interesting mineralisations, including chromium, nickel, platinum, gold and diamonds. In Suriname diamonds are found since the 19 th century; possible source rocks show similarities with the diamondiferous komatiitic volcaniclastic rocks in Dachine, French Guiana and in Akwatia in the Birimian Greenstone Belt of Ghana. This might point to a regionally extensive diamond belt in the Guiana Shield and its predrift counterpart in the West-African Craton.
Netherlands Journal of Geolsciences, Vol. 95, 4, pp. 491-522.
South America, Suriname
Guiana shield
Abstract: The Proterozoic basement of Suriname consists of a greenstone-tonalite-trondhjemite-granodiorite belt in the northeast of the country, two high-grade belts in the northwest and southwest, respectively, and a large granitoid-felsic volcanic terrain in the central part of the country, punctuated by numerous gabbroic intrusions. The basement is overlain by the subhorizontal Proterozoic Roraima sandstone formation and transected by two Proterozoic and one Jurassic dolerite dyke swarms. Late Proterozoic mylonitisation affected large parts of the basement. Almost 50 new U-Pb and Pb-Pb zircon ages and geochemical data have been obtained in Suriname, and much new data are also available from the neighbouring countries. This has led to a considerable revision of the geological evolution of the basement. The main orogenic event is the Trans-Amazonian Orogeny, resulting from southwards subduction and later collision between the Guiana Shield and the West African Craton. The first phase, between 2.18 and 2.09 Ga, shows ocean floor magmatism, volcanic arc development, sedimentation, metamorphism, anatexis and plutonism in the Marowijne Greenstone Belt and the adjacent older granites and gneisses. The second phase encompasses the evolution of the Bakhuis Granulite Belt and Coeroeni Gneiss Belt through rift-type basin formation, volcanism, sedimentation and, between 2.07 and 2.05 Ga, high-grade metamorphism. The third phase, between 1.99 and 1.95 Ga, is characterised by renewed high-grade metamorphism in the Bakhuis and Coeroeni belts along an anticlockwise cooling path, and ignimbritic volcanism and extensive and varied intrusive magmatism in the western half of the country. An alternative scenario is also discussed, implying an origin of the Coeroeni Gneiss Belt as an active continental margin, recording northwards subduction and finally collision between a magmatic arc in the south and an older northern continent. The Grenvillian collision between Laurentia and Amazonia around 1.2-1.0 Ga caused widespread mylonitisation and mica age resetting in the basement.
SAXI-XI Inter Guiana Geological Conference, held Paramaribo, Suriname., 5p. Pdf
South America, Suriname
diamond
Abstract: The ultramafic rocks of the Marowijne Greenstone Belt in Suriname and elsewhere in the Guiana Shield comprise both intrusive dunite-gabbroic bodies and ultramafic lavas and volcaniclastic rocks. They were emplaced in the early stages of the Trans-Amazonian Orogeny (2.26-2.09 Ga), but their petrogenesis and geotectonic significance have still to be elaborated. They present several economically interesting mineralisations, including chromium, nickel, platinum, gold and diamonds. In Suriname diamonds are found since the 19 th century; possible source rocks show similarities with the diamondiferous komatiitic volcaniclastic rocks in Dachine, French Guiana and in Akwatia in the Birimian Greenstone Belt of Ghana. This might point to a regionally extensive diamond belt in the Guiana Shield and its predrift counterpart in the West-African Craton.
Journal of Gemmology, Vol. 37, 2, pp. 180-191. pdf
South America, Suriname
deposit - Paramaka Creek
Abstract: Alluvial diamonds have been found in Suriname since the late 19th century, but to date the details of their origin remain unclear. Here we describe diamonds from Paramaka Creek (Nassau Mountains area) in the Marowijne greenstone belt, Guiana Shield, north-eastern Suriname. Thirteen samples were studied, consisting mainly of euhedral crystals with dominant octahedral and dodecahe-dral habits. They had colourless to brown to slightly greenish body colours, and some showed green or (less commonly) brown irradiation spots. Surface features showed evidence of late-stage resorption that occurred during their transport to the earth’s surface. The studied diamonds were predominantly type IaAB, with nitrogen as both A and B aggregates. In the DiamondView most samples displayed blue and/or green luminescence and concentric growth patterns. Their mineral inclusion assemblages (forsterite and enstatite) indicate a peridotitic (possibly harzburgitic) paragenesis.
Geologica Carpathica ** Eng, Vol. 71, 4, pp. 343-360. pdf
Europe, Czech Republic
alkaline rocks
Abstract: Sills of hydrothermally altered alkaline magmatic rock (teschenite) of Lower Cretaceous age at the Certák and Repište sites in the Silesian Unit (Flysch Belt of the Outer Western Carpathians, Czech Republic) host leucocratic dykes and nests which contain accessory minerals enriched in Zr, Nb and REE: Zr-, Nb-rich titanite, zircon, gittinsite, pyrochlore, monazite, REE-rich apatite, epidote, and vesuvianite. Titanite forms wedge-shaped crystals or irregular aggregates enclosed in the analcime groundmass or overgrowths on Zr-rich ferropargasite and taramite or Zr-rich aegirine-augite to aegirine. Titanite crystals show oscillatory or irregular patchy to sector zoning and contain up to 17.7 wt. % ZrO2 and 19.6 wt. % Nb2O5, and =1.1 wt. % REE2O3. High-field-strength elements (HFSE) are incorporated into the structure of the studied titanite predominantly by substitutions: (i) [6]Ti4+???[6]Zr4+; (ii) [6]Ti4+?+?[6]Al3+???[6]Zr4+?+?[6]Fe3+; and (iii) [6]2Ti4+???[6]Nb5+?+?[6](Al, Fe)3+. Magmatic fractional crystallization, high-temperature hydrothermal autometasomatic overprint and low-temperature hydrothermal alterations resulted in the formation of the HFSE-rich mineral assemblages within the leucocratic teschenites. Autometamorphic processes caused by high-temperature hypersaline aqueous solutions (salinity ~50 wt. %, ~390-510 °C), which were released from the HFSE-enriched residual melt, played a major role in the crystallization of Zr-, Nb-, and REE-rich minerals. The mobilization of HFSE could have occurred either by their sequestration into a fluid phase exsolved from the crystallizing melt or by superimposed alteration processes. The distinctive positive Eu anomaly (EuCN/Eu*?=?1.85) of leucocratic dykes infers possible mixing of Eu2+-bearing magmatic fluids with more oxidized fluids.
Geologica Carpathica ** Eng, Vol. 65, 6, pp. 419-431. pdf doi: 10.15 /geoca-2015-0003
Europe, Czech Republic
alkaline rocks
Abstract: Hydrothermal mineralization hosted by the Lower Cretaceous igneous rock of the teschenite association at Jasenice (Silesian Unit, Flysch Belt, Outer Western Carpathians) occurs in two morphological types - irregular vein filled by granular calcite and regular composite vein formed by both fibrous and granular calcite and minor chlorite, quartz, and pyrite. Crosscutting evidence indicates that the granular veins are younger than the composite vein. The composite vein was formed by two mechanisms at different times. The arrangement of solid inclusions in the marginal fibrous zone suggests an episodic growth by the crack-seal mechanism during syntectonic deformation which was at least partially driven by tectonic suction pump during some stages of the Alpine Orogeny. Both the central part of the composite vein and monomineral veins developed in a brittle regime. In these cases, the textures of vein suggest the flow of fluids along an open fracture. The parent fluids of both types of vein are characterized by low temperatures (Th=66-163 °C), low salinities (0.4 to 3.4 wt. % NaCl eq.), low content of strong REE-complexing ligands, and d18O and d13C ranges of + 0.2/+12.5 %. SMOW and -11.8/-14.1 %. PDB, respectively. The parent fluids are interpreted as the results of mixing of residual seawater and diagenetic waters produced by dewatering of clay minerals in the associ-ated flysch sediments. The flow of fluids was controlled by tectonic deformation of the host rock.
Mesoproterozoic to Neoproterozoic evolution of the Siberian Craton and adjacent microcontinents: an overview with constraints for a Laurentian Connection.
Mesoproterozoic to Neoproterozoic evolution of the Siberian Craton and adjacent microcontinents: an overview with constraints for a Laurentian Connection.
Abstract: The high amount of Fe-rich ferropericlase inclusions found in diamonds of a potential super-deep origin questions the bulk chemical model of the Earth [e.g., 1]. Although this might be due to a biased sampling of the lower mantle, it is worth to further address this discrepancy. A limiting factor of the Fe-content of the Earth´s deep mantle (TZ and lower mantle) is a correlation of the depths of the observed main mantle discontinuities with the (Fe,Mg)SiO4 phase diagram. In particular, the 520 kmdiscontinuity is related to the phase transformation of wadsleyite (assuming Fa10) to ringwoodite. The existing phase diagrams suggest a stability limit of wadsleyite =Fa40 [e.g., 2,3], which limits the Fe-content of the Earth´s transition zone. Here we report on a discovery of Fe-rich wadsleyite grains (up to Fa56) in the high-pressure silicate melt droplets within Fe,Ni-metal in shock veins of the CB (Bencubbin-like) metal-rich carbonaceous chondrite QC 001 [4], which were identified using HR-EDX, nano-EBSD and TEM. Although the existence of such Fe-rich wadsleyite in shock veins may be due to the kinetic reasons, new theoretical and experimental studies of the stability of (Fe,Mg)SiO4 at high temperature (> 1800 K) are clearly needed. This may have significant impact on the temperature and chemical estimates of the Earth´s transition zone.
Diamond & Related Materials, Vol. 89, pp. 101-107.
Mantle
boron
Abstract: Influence of growth medium composition on the efficiency of boron doping of carbonado-like diamond at 8-9 GPa was studied by diluting the C-B growth system with metallic solvents of carbon, Co and Ni. Addition of these metals to the original system leads to a decrease in the synthesis temperature, degree of doping with boron and suppression of superconductivity in diamond. According to XPS analysis, content of substitutional boron is equal to 0.07, 0.16 and 0.39 at.% in diamonds obtained in Co-C-B, Ni-C-B and C-B growth systems, respectively. Metallic behavior at normal temperatures and superconductivity below 5 K in diamond, synthesized in C-B system, change to semiconducting character of conductivity down to 2 K in diamonds obtained in the diluted systems; a faint hint of superconducting transition at 2 K was detected in the case of diamond grown in Ni-C-B system. By comparing phase composition of the inclusions and the doping efficiency of the diamonds, we are able to suggest that high chemical affinity of boron to boride-forming metals hinders the boron doping of diamond. The heavily boron-doped carbonado-like diamond compacts demonstrate high electrochemical activity in aqueous solutions and can be used as miniature electrodes in electrosynthesis and electroanalysis.
PluS One, Vol. 13, 8, doi:10.1371/journal.pone.0200351
Asia, Thailand
garnets
Abstract: Garnets from disparate geographical environments and origins such as oxidized soils and river sediments in Thailand host intricate systems of microsized tunnels that significantly decrease the quality and value of the garnets as gems. The origin of such tunneling has previously been attributed to abiotic processes. Here we present physical and chemical remains of endolithic microorganisms within the tunnels and discuss a probable biological origin of the tunnels. Extensive investigations with synchrotron-radiation X-ray tomographic microscopy (SRXTM) reveal morphological indications of biogenicity that further support a euendolithic interpretation. We suggest that the production of the tunnels was initiated by a combination of abiotic and biological processes, and that at later stages biological processes came to dominate. In environments such as river sediments and oxidized soils garnets are among the few remaining sources of bio-available Fe2+, thus it is likely that microbially mediated boring of the garnets has trophic reasons. Whatever the reason for garnet boring, the tunnel system represents a new endolithic habitat in a hard silicate mineral otherwise known to be resistant to abrasion and chemical attack.
The 4th Colloquium on Diamonds - source to use held Gabarone March 1-3, 2010, 8p.
Africa, Botswana
Deposit - AK6
Abstract: The AK6 kimberlite is situated 25 km south of the Debswana Orapa Mine in Botswana and was discovered by De Beers geologists in 1969 during the follow-up of geophysical targets in the Orapa area. The kimberlite was not extensively pursued at the time as the initial bulk sampling indicated it to be of limited size and low grade, factors largely contributed to by the basalt breccia capping. Completion of high resolution integrated geophysical techniques and drill bulk sampling to depth recovered 97 tons of kimberlite during 2003 and 2004, which led to the increased size and grade estimates. Bulk sampling by Large Diameter Drilling (LDD, 23 inch diameter) commenced in 2005; 13 holes were drilled to a cumulative depth of 3,699 m and 689 carats of diamonds were recovered. In July 2006 the De Beers Mineral Resource Classification Committee classified these Phase I LOO results at a High Inferred level with an average grade of 24 carats per hundred tonnes (cpht) at a bottom cut-off of +1 mm, and a modeled average diamond value of 150 dollars per carat. A second phase of LDO drilling was initiated in 2006, and bulk sampling by trenching commenced in 2007 in order to deliver a resource estimate at indicated level. An Indicated Resource of 11.1 million carats at an average grade of 22 cpht was declared for the deposit mining lease application lodged in 2007.
Grantham, G.H., Manhica, A.D.S.T., Armstrong, R.A., Kruger, F.J., Loubser, M.
New SHRIMP, Rb/Sr and Sm/Nd isotope and whole rock chemical dat a from central Mozambique and western Dronning Maud Land: implications for eastern Kalahari
Journal of African Earth Sciences, Vol. 59, 1, pp.74-100.
Abstract: The article focuses on the study of composition of garnets of the lherzolitic and harzburgitic parageneses and the conditions of peridotite. As per the study, reconstruction of the conditions of metasomatism of peridotitic sources of kimberlite is possible in the evolution of garnet. It mentions the importance of dry and hydrous carbonatitic melt upon alteration of peridotitic sources of kimberlite as it acted as an another heat source.
Doklady Earth Sciences, Vol. 465, 2, pp. 1262-1267.
Russia
Deposit - Udachnaya
Abstract: Study of the mechanism of carbonation and wehrlitization of harzburgite upon metasomatism by carbonatitic melts of various genesis was carried out. Experiments with durations of 60-150 h were performed at 6.3 GPa and 1200°C. The data showed that carbonatite with MgO/CaO > 0.3 percolating into the peridotitic lithosphere may provide crystallization of magnesite in it. The influence of all studied carbonatites results in wehrlitization of peridotite. The compositions of melts formed by interaction with harzburgite (~2 wt % SiO2, Ca# = 36-47) practically do not depend on the composition of the initial carbonatite. Based on the data obtained, we conclude that the formation of magnesite-bearing and magnesite-free metasomatized peridotites may have a significant influence on the CO2 regime in the further generation of kimberlitic magmas of groups I and II.
Abstract: Interaction between carbonatite melt and peridotite is studied experimentally by melting samples of interlayered peridotite-carbonatite-peridotite in graphite containers at 1200-1350 °C and 5.5-7.0 GPa in a split-sphere multianvil apparatus. Starting compositions are lherzolite and harzburgite, as well as carbonatite which may form in the upper part of a slab or in a plume-related source. Most experimental runs were of 150 h duration in order for equilibrium to be achieved. The interaction produced carbonatitic melts with low SiO2 (= 7 wt.%) and high alkalis. At 1200 °C, melt-peridotite interaction occurs through Mg-Ca exchange, resulting in elimination of orthopyroxene and crystallization of magnesite and clinopyroxene. At 1350 °C hybridization of the carbonatite and magnesite-bearing peridotite melts occurred with consumption of clinopyroxene and magnesite, and crystallization of orthopyroxene at MgO/CaO = 4.3. The resulting peridotite-saturated melt has Ca# (37-50) depending on primary carbonatite composition. Compositions of silicate phases are similar to those of high-temperature peridotite but are different from megacrysts in kimberlites. CaO and Cr2O3 changes in garnet produced from the melt-harzburgite interaction at 1200 and 1350 °C perfectly match the observed trend in garnet from metasomatized peridotite of the Siberian subcontinental lithospheric mantle. K-rich carbonatite melts equilibrated with peridotite at 5.5-7.0 GPa and 1200-1350 °C correspond to high-Mg inclusions in fibrous diamond. Carbonatite melt is a weak solvent of entrained xenoliths and therefore cannot produce kimberlitic magma if temperatures are ~ 1350 °C on separation from the lithospheric peridotite source and ~ 1000 °C on eruption.
Abstract: Generation of ultra-alkaline melts by the interaction of lherzolite with cardonatites of various genesis was simulated at the P-T parameters typical of the base of the subcratonic lithosphere. Experiments with a duration of 150 h were performed at 5.5 and 6.3 GPa and 1350°C. The concentrations of CaO and MgO in melts are buffered by the phases of peridotite, and the concentrations of alkalis and FeO depend on the composition of the starting carbonatite. Melts are characterized by a low (<7 wt %) concentration of SiO2 and Ca# from 0.40 to 0.47. It is demonstrated that only high-Mg groups of carbonatitic inclusions in fibrous diamonds have a composition close to that of carbonatitic melts in equilibrium with lherzolite. Most likely, the formation of kimberlite-like melts relatively enriched in SiO2 requires an additional source of heat from mantle plumes and probably H2O fluid.
Contributions to Mineralogy and Petrology, in press available 22p.
Mantle
Metasomatism, magmatism, carbonatite
Abstract: Hydrous K-rich kimberlite-like systems are studied experimentally at 5.5-7.5 GPa and 1200-1450 °C in terms of phase relations and conditions for formation and stability of phlogopite. The starting samples are phlogopite-carbonatite-phlogopite sandwiches and harzburgite-carbonatite mixtures consisting of Ol + Grt + Cpx + L (±Opx), according to the previous experimental results obtained at the same P-T parameters but in water-free systems. Carbonatite is represented by a K- and Ca-rich composition that may form at the top of a slab. In the presence of carbonatitic melt, phlogopite can partly melt in a peritectic reaction at 5.5 GPa and 1200-1350 °C, as well as at 6.3-7.0 GPa and 1200 °C: 2Phl + CaCO3 (L)?Cpx + Ol + Grt + K2CO3 (L) + 2H2O (L). Synthesis of phlogopite at 5.5 GPa and 1200-1350 °C, with an initial mixture of H2O-bearing harzburgite and carbonatite, demonstrates experimentally that equilibrium in this reaction can be shifted from right to left. Therefore, phlogopite can equilibrate with ultrapotassic carbonate-silicate melts in a = 150 °C region between 1200 and 1350 °C at 5.5 GPa. On the other hand, it can exist but cannot nucleate spontaneously and crystallize in the presence of such melts in quite a large pressure range in experiments at 6.3-7.0 GPa and 1200 °C. Thus, phlogopite can result from metasomatism of peridotite at the base of continental lithospheric mantle (CLM) by ultrapotassic carbonatite agents at depths shallower than 180-195 km, which creates a mechanism of water retaining in CLM. Kimberlite formation can begin at 5.5 GPa and 1350 °C in a phlogopite-bearing peridotite source generating a hydrous carbonate-silicate melt with 10-15 wt% SiO2, Ca# from 45 to 60, and high K enrichment. Upon further heating to 1450 °C due to the effect of a mantle plume at the CLM base, phlogopite disappears and a kimberlite-like melt forms with SiO2 to 20 wt% and Ca# = 35-40.
Abstract: Phase relations are studied experimentally in the harzburgite-hydrous carbonate melt system, the bulk composition of which represents primary kimberlite. Experiments were carried out at 5.5 and 7.5 GPa, 1200-1350°?, and \({{X}_{{{\text{C}}{{{\text{O}}}_{2}}}}}\) = 0.39-0.57, and lasted 60 hours. It is established that olivine-orthopyroxene-garnet-magnesite-melt assemblage is stable within the entire range of the studied parameters. With increase of temperature and \({{X}_{{{\text{C}}{{{\text{O}}}_{2}}}}}\) in the system, Ca# in the melt and the olivine fraction in the peridotite matrix significantly decrease. The composition of silicate phases in run products is close to those of high-temperature mantle peridotite. Analysis of obtained data suggest that magnesite at the base of subcontinental lithosphere could be derived by metasomatic alteration of peridotite by asthenospheric hydrous carbonate melts. The process is possible in the temperature range typical of heat flux of 40-45 mW/m², which corresponds to the conditions of formation of the deepest peridotite xenoliths. Crystallization of magnesite during interaction with peridotite matrix can be considered as experimentally substantiated mechanism of CO2 accumulation in subcratonic lithosphere.
Russian Geology and Geophysics, Vol. 56, pp. 825-843.
Russia
Chuya Complex
Abstract: Small intrusions of lamprophyres and lamproites (Chuya complex) and K-monzonitoids (Tarkhata and Terandzhik complexes) are widespread in southeastern Gorny Altai. Geochronological (U-Pb and Ar-Ar) isotope studies show their formation in the Early-Middle Triassic (~ 234-250 Ma). Lamproites have been revealed within two magmatic areas and correspond in geochemical parameters to the classical Mediterranean and Tibet orogenic lamproites. According to isotope data ((87Sr/86Sr)T = 0.70850-0.70891, (143Nd/144Nd)T = 0.512157-0.512196, 206Pb/204Pb = 17.95-18.05) and Th/La and Sm/La values, the Chuya lamproites and lamprophyres melted out from the enriched lithospheric mantle with the participation of DM, EM1, EM2, and SALATHO. The monzonitoid series of the Tarkhata and Terandzhik complexes are similar in petrographic and geochemical compositions but differ significantly in Sr-Nd isotope composition: The Tarkhata monzonitoids are close to the Chuya lamproites, whereas the Terandzhik ones show a higher portion of DM ((87Sr/86Sr)T = 0.70434-0.70497, (143Nd/144Nd)T = 0.512463-0.512487) in their source, which suggests its shallower depth of occurrence and the higher degree of its partial melting as compared with the derivates of the Chuya and Tarkhata complexes. The studied rock associations tentatively formed in the postcollisional setting under the impact of the Siberian superplume.
Chronology of early Archean granite-greenstone evolution in the BarbertonMountainland, South Africa, based on precise dating by single zirconevaporation
Earth and Planetary Science Letters, Vol. 103, No. 1/4, April pp. 41-54
Russian Geology and Geophysics, Vol. 56, pp. 825-843.
Russia
Chuya Complex
Abstract: Small intrusions of lamprophyres and lamproites (Chuya complex) and K-monzonitoids (Tarkhata and Terandzhik complexes) are widespread in southeastern Gorny Altai. Geochronological (U-Pb and Ar-Ar) isotope studies show their formation in the Early-Middle Triassic (~ 234-250 Ma). Lamproites have been revealed within two magmatic areas and correspond in geochemical parameters to the classical Mediterranean and Tibet orogenic lamproites. According to isotope data ((87Sr/86Sr)T = 0.70850-0.70891, (143Nd/144Nd)T = 0.512157-0.512196, 206Pb/204Pb = 17.95-18.05) and Th/La and Sm/La values, the Chuya lamproites and lamprophyres melted out from the enriched lithospheric mantle with the participation of DM, EM1, EM2, and SALATHO. The monzonitoid series of the Tarkhata and Terandzhik complexes are similar in petrographic and geochemical compositions but differ significantly in Sr-Nd isotope composition: The Tarkhata monzonitoids are close to the Chuya lamproites, whereas the Terandzhik ones show a higher portion of DM ((87Sr/86Sr)T = 0.70434-0.70497, (143Nd/144Nd)T = 0.512463-0.512487) in their source, which suggests its shallower depth of occurrence and the higher degree of its partial melting as compared with the derivates of the Chuya and Tarkhata complexes. The studied rock associations tentatively formed in the postcollisional setting under the impact of the Siberian superplume.
Abstract: Detailed mapping of mineral phases at centimeter scale can be useful for geological investigation, including resource exploration. This work reviews case histories of ground-based close-range hyperspectral imaging for mining applications. Studies of various economic deposits are discussed, as well as techniques used for data correction, integration with other datasets, and validation of spectral mapping results using geochemical techniques. Machine learning algorithms suggested for automation of the mining workflow are reviewed, as well as systems for environmental monitoring such as gas leak detection. Three new case studies that use a ground-based hyperspectral scanning system with sensors collecting data in the Visible Near-Infrared and Short-Wave Infrared portions of the electromagnetic spectrum in active and abandoned mines are presented. Vertical exposures in a Carlin Style sediment-hosted gold deposit, an active Cu-Au-Mo mine, and an active asphalt quarry are studied to produce images that delineate the extent of alteration minerals at centimeter scale to demonstrate an efficient method of outcrop characterization, which increases understanding of petrogenesis for mining applications. In the Carlin-style gold deposit, clay, iron oxide, carbonate, and jarosite minerals were mapped. In the copper porphyry deposit, different phases of alteration are delineated, some of which correspond to greater occurrence of ore deposits. A limestone quarry was also imaged, which contains bitumen deposits used for road paving aggregate. Review of current literature suggests use of this technology for automation of mining activities, thus reducing physical risk for workers in evaluating vertical mine faces.
Abstract: Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and commercially-available HyMap hyperspectral data were used to study the occurrence and mineralogical characteristics of limberlite diatremes in the State-Line district of Colorado/Wyoming. A mosaic of five flightlines of AVIRIS data acquired during 1996 with 20-m resolution is being used to locate and characterize the kimberlite diatremes. Higher spatial resolution data (1.6 m AVIRIS and 4m HyMap acquired in 1998 and 1999, respectively) are being used to map additional detail. Poor exposures, vegetation cover, and weathering, however, make identification of characteristic kimberlite minerals difficult except where exposed by mining. Minerals identified in the district using the hyperspectral data include calcite, dolomite, illite/muscovite, and serpentine (principally antigorite), however, most spectral signatures are dominated by both green and dry vegetation. The goal of this work is to determine methods for characterizing subtle mineralogic changes associated with kimberlites as a guide to exploration in a variety of geologic terrains.
Physics and Chemistry of Minerals, Vol. 45, pp. 745-758.
Russia, Kola Peninsula
alkaline
Abstract: The new eudialyte-group mineral siudaite, ideally Na8(Mn2+2Na)Ca6Fe3+3Zr3NbSi25O74(OH)2Cl•5H2O, was discovered in a peralkaline pegmatite situated at the Eveslogchorr Mt., Khibiny alkaline massif, Kola Peninsula, Russia. The associated minerals are aegirine, albite, microcline, nepheline, astrophyllite, and loparite-(Ce). Siudaite forms yellow to brownish-yellow equant anhedral grains up to 1.5 cm across. Its lustre is vitreous, and the streak is white. Cleavage is none observed. The Mohs’ hardness is 4½. Density measured by hydrostatic weighing is 2.96(1) g/cm3. Density calculated using the empirical formula is equal to 2.973 g/cm3. Siudaite is nonpleochroic, optically uniaxial, negative, with ??=?1.635(1) and e?=?1.626(1) (??=?589 nm). The IR spectrum is given. The chemical composition of siudaite is (wt%; electron microprobe, H2O determined by HCN analysis): Na2O 8.40, K2O 0.62, CaO 9.81, La2O3 1.03, Ce2O3 1.62, Pr2O3 0.21, Nd2O3 0.29, MnO 6.45, Fe2O3 4.51. TiO2 0.54, ZrO2 11.67, HfO2 0.29, Nb2O5 2.76, SiO2 47.20, Cl 0.54, H2O 3.5, -O?=?Cl -?0.12, total 99.32. According to Mössbauer spectroscopy data, all iron is trivalent. The empirical formula (based on 24.5 Si atoms pfu, in accordance with structural data) is [Na7.57(H2O)1.43]S9(Mn1.11Na0.88Ce0.31La0.20Nd0.05Pr0.04K0.41)S3(H2O)1.8(C a5.46Mn0.54)S6(Fe3+1.76Mn2+1.19)S2.95Nb0.65(T i0.20Si0.50)S0.71(Zr2.95Hf0.04Ti0.01)S3Si24.00Cl0.47O70(OH)2Cl0.47•1.2H2O. The crystal structure was determined using single-crystal X-ray diffraction data. The new mineral is trigonal, space group R3m, with a?=?14.1885(26) Å, c?=?29.831(7) Å, V?=?5200.8(23) Å3 and Z?=?3. Siudaite is chemically related to georgbarsanovite and is its analogue with Fe3+-dominant M2 site. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 6.38 (60) (-114), 4.29 (55) (-225), 3.389 (47) (131), 3.191 (63) (-228). 2.963 (100) (4-15), 2.843 (99) (-444), 2.577 (49) (3-39). Siudaite is named after the Polish mineralogist and geochemist Rafal Siuda (b. 1975).
A Comparative Study of the Composition and Properties of Garnets from The alkali Basalt Pipes of the Minusinsk Basin And kimberlites of Yakutia.(russian)
Mineral. Zhurn., (Russian), Vol. 7, No. 4, pp. 18-29
Kryvoshlyk, 38ppt. Available ppt. Email ikryvoa481 @hotmail.com
Technology
Microdiamonds - responses
Abstract: Diamond grade is the most important parameter of a kimberlite rock. A few hundreds of microprobe analyses of garnets picked randomly from a kimberlite concentrate might be enough to calculate mathematically accurate diamond grade.
Abstract: This Tajno alkaline massif (together with the nearby Elk and Pisz intrusions) occurs beneath a thick Mesozoic- Cenozoic sedimentary cover. It has first been recognized by geophysical (magnetic and gravity) investigations, then directly by deep drilling (12 boreholes down to 1800 m). The main rock types identified as clinopyroxenites, syenites, carbonatites, have been cut by later multiphase volcanic /subvolcanic dykes. This massif was characterized as a differentiated ultramafic, alkaline and carbonatite complex, quite comparable to the numerous massifs of the Late Devonian Kola Province of NW Russia [1,2]. Recent geochronological data (U-Pb on zircon from an albitite and Re-Os on pyrrhotite from a carbonatite) indicate that the massif was emplaced at ca. 348 Ma (Early Carboniferous). All the rocks, but more specifically the carbonatites, are enriched in Sr, Ba and LREE, like many carbonatites worldwide but depleted in high field strength elements (Ti, Nb, Ta, Zr). The initial 87Sr/86Sr (0.70370 to 0.70380) and eNd(t) (+3.3 to +0.7) isotopic compositions of carbonatites plot in the depleted quadrant of the Nd-Sr diagram, close to “FOcal ZOne” (FOZO) deep mantle domain [1]. The Pb isotopic data (206Pb/204Pb <18.50) do not point to an HIMU (high U/Pb) source. The ranges of C and O stable isotopic compositions of the carbonatites are quite large; some data plot in (or close to) the “Primary Igneous Carbonatite” box while others extend to much higher, typically crustal d18O and d13C values.
Abstract: Dr. Laurent Cartier and Dr. Saleem Ali of the Knowledge Hub recently co-authored an overview article on traceability in the gem and jewellery industry. This paper was published in the Journal of Gemmology and is entitled 'Blockchain, Chain of Custody and Trace Elements: An Overview of Tracking and Traceability Opportunities in the Gem Industry'. Recent developments have brought due diligence, along with tracking and traceability, to the forefront of discussions and requirements in the diamond, coloured stone and pearl industries. This article provides an overview of current trends and developments in the tracking and traceability of gems, along with an explanation of the terms used in this context. Further, the article discusses current initiatives in the sector and provides an introduction blockchain concepts.
Abstract: In the present study, four samples of natural melilites were characterized using electron microprobe analysis, powder X-ray diffraction, FTIR, and Raman spectroscopy, and their thermodynamic properties were measured with a high-temperature heat-flux Tian-Calvet microcalorimeter. The enthalpies of formation from the elements were determined to be: -3796.3 ± 4.1 kJ/mol for Ca1.8Na0.2(Mg0.7Al0.2Fe2+0.1?)Si2O7, -3753.6 ± 5.2 kJ/mol for Ca1.6Na0.4(Mg0.5Al0.4Fe2+0.1?)Si2O7, -3736.4 ± 3.7 kJ/mol for Ca1.6Na0.4(Mg0.4Al0.4Fe2+0.2?)Si2O7, and -3929.2 ± 3.8 kJ/mol for Ca2(Mg0.4Al0.6)[Si1.4Al0.6O7]. Using the obtained formation enthalpies and estimated entropies, the standard Gibbs free energies of formation of these melilites were calculated. Finally, the enthalpies of the formation of the end-members of the isomorphic åkermanite-gehlenite and åkermanite-alumoåkermanite series were derived. The obtained thermodynamic properties of melilites of different compositions can be used for quantitative modeling of formation conditions of these minerals in related geological and industrial processes.
Mineralogy and Petrology, Vol. 113, 4, pp. 477-491.
Europe
minette
Abstract: One of the best-preserved dykes of olivine minette among the lamprophyre dyke swarm in the Moldanubian Zone of the Bohemian Massif (Czech Republic) was investigated. The minette, exposed at Horní Kožlí Village (near Prachatice town), has porphyric texture with phenocrysts of olivine, clinopyroxene, orthopyroxene and biotite in a fine-grained matrix consisting of K-feldspar, biotite, clinopyroxene and minor plagioclase and quartz. Accessory minerals are apatite, Cr-rich spinel and iron sulphides. Olivine is mostly replaced by talc and rimmed by two zones (coronas) - a talc-rich inner zone and a biotite-rich outer zone. Rarely, larger grains of quartz with a corona of clinopyroxene are present. The clinopyroxene grows mostly perpendicular to the quartz rim and radially penetrates the quartz crystal. Three stages of mineral crystallization were distinguished. The first stage with apatite, olivine, biotite, spinel, orthopyroxene and part of the clinopyroxene occurred in the mantle position. During the second stage, felsic phases (K-feldspar, plagioclase, quartz) in the matrix were crystallized. The enrichment of the residual melt by silica and Na occurred as the result of both fractionation and contamination during magma ascent through the granulite facies crust during post-collision orogeny in the Bohemian Massif. Minerals related to the third stage were formed during filling of the vesicles (quartz with reaction rims of clinopyroxene) and subsequent alteration (talc after olivine). The origin of quartz with clinopyroxene reaction rims (‘quartz ocelli’) is explained by filling of cavities formed by the escape of volatiles.
Sano, A., Ohtani, E., Litasov, K., Kubo, T., Hosoya, T., Funakoshi, K., Kikegawa, T.
In situ x-ray diffraction study of the effect of water on the garnet perovksite transformation in MORB and implications for the penetration of oceanic crust...
Physics of the Earth and Planetary Interiors, Vol. 159, 1-2, pp. 118-126.
Abstract: To study the kinetics of the spinel-to-garnet transformation in peridotite, we conducted reaction experiments in the garnet peridotite stability field (3.2 GPa, 1020-1220 °C, for 0.6-30 h) using a single spinel crystal embedded in monomineralic orthopyroxene powder or in a mixture of powdered orthopyroxene and clinopyroxene. The growth textures observed in the reaction rim between the spinel crystal and the polycrystalline pyroxenes show that the reaction rim grew in both the spinel and pyroxenes directions, suggesting mobility of both SiO2 and R2O3 components (where R is a trivalent cation). Olivine grains formed only in the presence of monomineralic orthopyroxene and were present in some domains without forming reaction rims. Based on a diffusion-controlled growth model, the growth kinetics of the garnet reaction rim can be described by [x(t)]2 = k0 exp(-H*/RT)t, where x(t) is the rim width at time t, R is the gas constant, T is the absolute temperature, and H* is the activation enthalpy of reaction; k0 and H* are, respectively, k0 = 10-19.8 ± 4.9 m2/s and H* = 171 ± 58 kJ/mol. The development of a garnet reaction rim around a spinel core has been observed in alpine-type peridotitic rocks and mantle xenoliths. The reaction rims experimentally produced in this study are characteristic of corona textures observed in natural rocks, and the experimentally measured growth rate of the rims places important constraints on dynamic transformation processes involving spinel and garnet in peridotite. However, to reconstruct the P-T-t history of the corona texture based on these elementary processes, additional detailed studies on the textural evolution and quantitative kinetics of the garnet-rim growth stage are required.
New high resolution aeromagnetic survey of Lake Superior- a contribution to the Great Lakes International multidisciplinary program on crustal evolutionGLIMPCE.
Geological Association of Canada (GAC)/Mineralogical Association of Canada (MAC) Vancouver 90 Program with Abstracts, Held May 16-18, Vol. 15, p. A129.. Abstract
Preliminary aeromagnetic, gravity and generalized geologic maps of the United States Geological Survey (USGS) Basin and Range-Colorado plateau transition zone study area in southwestUtah, Nevada
United States Geological Survey (USGS) Open File, No. 89-0432, 16p. 3 oversize sheets 1: 250, 000
Galimov, E., Kudin, A., Skorobogatskii, V., Plotnichenko, V., Bondarev, O., Zarubin, B., Strazdovskii, V., Aronin, A., Fisenko, A., Bykov, I., Barinov, A.
Experimental corrobation of the synthesis of diamond in the cavitation process.
Doklady Physical Chemistry, Vol. 49, 3, pp. 150-153.
Yamaguchi, H.,Kudo, Y., Masuzawa, T., Kudo, M., Yamada, Takakuwa, Okano
Combine x-ray photoelectron spectroscopy/ultraviolet photoelectron spectroscopy/field emission spectroscopy for characterization of electron emmision of diamond.
Journal of Vacuum Science and Technology B Microelectronics and Nanometer Structures, Vol. 26, 2, pp. 730-734. American Vacuum Society
Yamaguchi, H.,Kudo, Y., Masuzawa, T., Kudo, M., Yamada, Takakuwa, Okano
Combine x-ray photoelectron spectroscopy/ultraviolet photoelectron spectroscopy/field emission spectroscopy for characterization of electron emmision of diamond.
Journal of Vacuum Science and Technology B Microelectronics and Nanometer Structures, Vol. 26, 2, pp. 730-734. American Vacuum Society
Abstract: We have investigated a diamond crystal that consists of several misorientated subgrains. The main feature of the crystal is the dark in the cathodoluminescence core that has “estuary-like” boundaries extending along the subgrain interfaces. The core has more than 3100 ppm of nitrogen, and the share of the B form is more than 95%; the absorbance of the centre N3VH at 3107 cm -1 reaches 75 cm-1. The N3 centre’s absorbance, as well as N3 luminescence, is absent in the core. In the outer part of the crystal, the bright blue luminescence of the N3 centre is registered, and the N3 absorbance reaches 5.3 cm-1. These observations may be explained by the conversion of N3 centres to N3VH after attaching a hydrogen atom. After the full conversion of the N3 centres, the diamond becomes darker under CL. We hypothesize the dark core has a specific shape due to the post-growth diffusion of the hydrogen.