Hello Guest User, You are visiting this website from a computer with an IP address of 162.158.62.107 with the name of '?' since Tue Jan 19, 2021 at 11:24:17 PM PT for approx. 0 minutes now.
SDLRC - Scientific Articles all years by Author - K-Kg
The Sheahan Diamond Literature Reference Compilation
The Sheahan Diamond Literature Reference Compilation is compiled by Patricia Sheahan who publishes on a monthly basis a list of new scientific articles related to diamonds as well as media coverage and corporate announcementscalled the Sheahan Diamond Literature Service that is distributed as a free pdf to a list of followers. Pat has kindly agreed to allow her work to be made available as an online digital resource at Kaiser Research Online so that a broader community interested in diamonds and related geology can benefit. The references are for personal use information purposes only; when available a link is provided to an online location where the full article can be accessed or purchased directly. Reproduction of this compilation in part or in whole without permission from the Sheahan Diamond Literature Service is strictly prohibited. Return to Diamond Resource Center
Sheahan Diamond Literature Reference Compilation - Scientific Articles by Author for all years
The SDLRC provides 3 types of references identified in the reference code. DS for scientific article, DM for a media article, and DC for a corporate announcement. Consider DS0512-0001. The DS stands for "diamond scientific". 05 stands for 2005, the year the reference was posted. 12 represents the month the reference was posted. For all years prior to 2015 the default month is 12. -0001 is the reference's identifier and it does not mean anything. The number below the refence code, ie 2015, is the year the article was published. Note that the posted year may sometimes be later than the published year.
Sort Order
References are sorted by the "author" name and when the reference was posted to the compilation.
Most Recent
If the reference code is highlighted yellow, the reference was made available through the most recent monthly compilation of new literature. Use this to check out new references. When new references are posted, we make it our priority to track down an online link and obtain an abstract. With regard to older references, tracking down an abstract and an online link is a work in progress.
Link to external location of article:
If the title has a link, it means we have found a location online where you can either retrieve the full article free, or purchase access to it. The Sheahan Diamond Literature Service is not a technical article procurement service; if you want a restricted article, you must deal directly with the vendor who controls the copyright to the article.
Searching this page for a specific term or author
In your Firefox browser click Edit in the menu bar and then Find. In the Find box that shows up at the bottom of the web page enter your search term. Firefox will highlight all occurrences. This is particularly helpful when the author you are seeking was not the lead author by whom the compilation is sorted.
Sending or sharing a reference
The left column (Posted/Published) has an embedded hyperlink for each reference. In Firefox, if you right click on it, you can obtain the link url for that reference's location within the page, which you can copy and paste into an email or any other document. You can also use the "share this link" option to tweet, facebook etc the link.
Physics of the Earth and Planetary Interiors, in press available, 51p. Pdf
United States, Canada
geophysics - seismics
Abstract: We examined SKS-SKKS splitting intensity discrepancies for phases that sample the lowermost mantle beneath North America, which has previously been shown to exhibit seismic anisotropy using other analysis techniques. We examined data from 25 long-running seismic stations, along with 244 stations of the temporary USArray Transportable Array, located in the eastern, southeastern and western U.S. We identified 279 high-quality SKS-SKKS wave pairs that yielded well-constrained splitting intensity measurements for both phases. Of the 279 pairs, a relatively small number (15) exhibited discrepancies in splitting intensity of 0.4 s or greater, suggesting a contribution to the splitting of one or both phases from anisotropy in the lowermost mantle. Because only a small minority of SK(K)S phases examined in this study show evidence of being affected by lowermost mantle anisotropy, the traditional interpretation that splitting of these phases primarily reflects anisotropy in the upper mantle directly beneath the stations is appropriate. The discrepant pairs exhibited a striking geographic trend, sampling the lowermost mantle beneath the southern U.S. and northern Mexico, while other regions were dominated by non-discrepant pairs. We carried out ray theoretical modeling of simple anisotropy scenarios that have previously been suggested for the lowermost mantle beneath North America, invoking the alignment of post-perovskite due to flow induced by the impingement of the remnant Farallon slab on the core-mantle boundary. We found that our measurements are generally consistent with this model and with the idea of slab-driven flow, but relatively small-scale lateral variations in the strength and/or geometry of lowermost mantle anisotropy beneath North America are also likely present.
Abstract: In the Arabian-Northern African region, interaction of the Nubian, Arabian and Eurasian plates and many small tectonic units is conspicuous. In order to better understand this interaction, we use satellite derived gravity data (retracked to the Earth’s surface) recognized now as a powerful tool for tectono-geodynamic zonation. We applied the polynomial approximation to the gravity data which indicated the presence of a large, deep ring structure in the eastern Mediterranean centered below the Island of Cyprus. Quantitative analysis of residual gravity anomaly provides an estimate of the deep anomalous body’s upper edge at a depth of about 1700 km. Computations of the residual gravity anomalies for the lower mantle also indicate presence of anomalous sources. The GPS vector pattern coinciding with the gravity trend implies counter clockwise rotation of this structure. Independent analyses of the geoid isolines map and seismic tomography data support the existence of a deep anomaly. Paleomagnetic data analysis from the surrounding regions confirms a counter clockwise rotation. Numerous petrological, mineralogical, geodynamical and tectonic data suggest a relation between this deep structure and near-surface processes. This anomaly sheds light on a number of phenomena including the Cyprus gravity anomaly, counter clockwise rotation of the Mesozoic terrane belt and asymmetry of basins along continental transform faults.
Density, temperature and composition of the North American lithosphere - new insights from a joint analysis of seismic, gravity and mineral physics data: 1. density structure of the crust and upper mantle.
Geochemistry, Geophysics, Geosystems: G3, Vol. 15, 12, pp. 4781-4807.
Abstract: Stable continental cratons are the oldest geologic features on the planet. They have survived 3.8 to 2.5 billion years of Earth’s evolution1, 2. The key to the preservation of cratons lies in their strong and thick lithospheric roots, which are neutrally or positively buoyant with respect to surrounding mantle3, 4. Most of these Archaean-aged cratonic roots are thought to have remained stable since their formation and to be too viscous to be affected by mantle convection2, 3, 5. Here we use a combination of gravity, topography, crustal structure and seismic tomography data to show that the deepest part of the craton root beneath the North American Superior Province has shifted about 850?km to the west-southwest relative to the centre of the craton. We use numerical model simulations to show that this shift could have been caused by basal drag induced by mantle flow, implying that mantle flow can alter craton structure. Our observations contradict the conventional view of cratons as static, non-evolving geologic features. We conclude that there could be significant interaction between deep continental roots and the convecting mantle.
Abstract: The tectonic-geodynamic characteristics of the North African-Arabian region are complicated by interaction of numerous factors. To study this interaction, we primarily used the satellite gravity data (retracked to the Earth's surface), recognized as a powerful tool for tectonic-geodynamic zonation. The applied polynomial averaging of gravity data indicated the presence of a giant, deep quasi-ring structure in the Eastern Mediterranean, the center of which is located under the Island of Cyprus. Simultaneously, the geometrical center of the revealed structure coincides with the Earth's critical latitude of 35?. A quantitative analysis of the obtained gravitational anomaly made it possible to estimate the depth of the upper edge of the anomalous body as 1650?1700 km. The GPS vector map coinciding with the gravitational trend indicates counterclockwise rotation of this structure. Review of paleomagnetic data on the projection of the discovered structure into the earth's surface also confirms its counterclockwise rotation. The analysis of the geoid anomalies map and seismic tomography data commonly approve presence of this deep anomaly. The structural and geodynamic characteristics of the region and paleobiogeographic data are consistent with the proposed physical-geological model. Comprehensive analysis of petrological, mineralogical, and tectonic data suggests a relationship between the discovered deep structure and near-surface processes. The revealed geological deep structure sheds light on specific anomalous effects in the upper crustal layer, including the high-intensity Cyprus gravity anomaly, counterclockwise rotation of the Mesozoic terrane belt, configuration of the Sinai plate, and the asymmetry of sedimentary basins along the continental faults.
Aspects of the Geochemistry of Kimberlites from the Premier mine and Other Selected South African Occurrences with Particular Reference to the Rare Earth Elements.
Physics and Chemistry of the Earth., Vol. 9, PP. 687-707.
Materials Characterization, Vol. 142, pp. 154-161.
Global
synthetics
Abstract: Crystal defects are abundant in synthetic diamond produced by chemical vapor deposition (CVD). We present the first images of crystal defects in a bulk polycrystalline CVD diamond sample using general electron channeling contrast imaging (ECCI) in a field emission scanning electron microscope (FE-SEM). For enhancement of channeling contrast of this material, we introduce a novel protocol for diamond surface preparation that involves acid etching. Using this protocol, we imaged three types of crystal defects including twins, stacking faults and dislocations. Each defect was identified based on its appearance in electron channeling contrast (ECC) micrographs. We analyzed grains containing twins and dislocations using electron backscatter diffraction (EBSD) crystal orientation mapping. We found a large population of grains that contained S3 type twins on {111} planes with a 60°<111> angle-axis pair of misorientation for twin boundaries. In addition, we identified {111} stacking faults and {111} helical dislocations. These observations are in agreement with reports of crystal defects in CVD diamond thin foils studied by a transmission electron microscope (TEM).
Abstract: Oceanic lithospheric mantle is generally interpreted as depleted mantle residue after mid-ocean ridge basalt extraction. Several models have suggested that metasomatic processes can refertilize portions of the lithospheric mantle before subduction. Here, we report mantle xenocrysts and xenoliths in petit-spot lavas that provide direct evidence that the lower oceanic lithosphere is affected by metasomatic processes. We find a chemical similarity between clinopyroxene observed in petit-spot mantle xenoliths and clinopyroxene from melt-metasomatized garnet or spinel peridotites, which are sampled by kimberlites and intracontinental basalts respectively. We suggest that extensional stresses in oceanic lithosphere, such as plate bending in front of subduction zones, allow low-degree melts from the seismic low-velocity zone to percolate, interact and weaken the oceanic lithospheric mantle. Thus, metasomatism is not limited to mantle upwelling zones such as mid-ocean ridges or mantle plumes, but could be initiated by tectonic processes. Since plate flexure is a global mechanism in subduction zones, a significant portion of oceanic lithospheric mantle is likely to be metasomatized. Recycling of metasomatic domains into the convecting mantle is fundamental to understanding the generation of small-scale mantle isotopic and volatile heterogeneities sampled by oceanic island and mid-ocean ridge basalts.
Abstract: It is now accepted that significant volumes of pyroxenites are generated in the subduction factory and remain trapped in the mantle. In ophiolites and orogenic massifs the geometry of pyroxenite layers and their relationships with the host peridotite can be observed directly. Since a large part of what is known about the upper mantle structure is derived from the analysis of seismic waves, it is crucial to integrate pyroxenites in the interpretations. We modeled the seismic properties of a peridotitic mantle rich in pyroxenite layers in order to determine the impact of layering on the seimsic properties. To do so, EBSD data on deformed and undeformed pyroxenites from the Cabo Ortegal complex (Spain) and the Trinity ophiolite (California, USA) respectively are combined with either A or B-type olivine fabrics in order to model a realistic pyroxenite-rich upper mantle. Consideration of pyroxeniterich domains within the host mantle wall rock is incorporated in the calculations using the Schoenberg and Muir group theory [1]. This quantification reveals the complex dependence of the seismic signal on the deformational state and relative abundance of each mineral phase. The incorporation of pyroxenites properties into geophysical interpretations in understanding the lithospheric structure of subduction zones will lead to more geologically realistic models.
GPS constraints on continental deformation in the Africa Arabia Eurasia continental collision zone and implications for the dynamics of plate interactions.
Journal of Geophysical Research, Vol. 111,B5 B05411.
Earth and Planetary Science Letters, Vol. 456, pp. 134-145.
Mantle
Bridgemanite
Abstract: The lower mantle is estimated to be composed of mostly bridgmanite and a smaller percentage of ferropericlase, yet very little information exists for two-phase deformation of these minerals. To better understand the rheology and active deformation mechanisms of these lower mantle minerals, especially dislocation slip and the development of crystallographic preferred orientation (CPO), we deformed mineral analogs neighborite (NaMgF3, iso-structural with bridgmanite) and halite (NaCl, iso-structural with ferropericlase) together in the deformation-DIA at the Advanced Photon Source up to 51% axial shortening. Development of CPO was recorded in situ with X-ray diffraction, and information on microstructural evolution was collected using X-ray microtomography. Results show that when present in as little as 15% volume, the weak phase (NaCl) controls the deformation. Compared to single phase NaMgF3 samples, samples with just 15% volume NaCl show a reduction of CPO in NaMgF3 and weakening of the aggregate. Microtomography shows both NaMgF3 and NaCl form highly interconnected networks of grains. Polycrystal plasticity simulations were carried out to gain insight into slip activity, CPO evolution, and strain and stress partitioning between phases for different synthetic two-phase microstructures. The results suggest that ferropericlase may control deformation in the lower mantle and reduce CPO in bridgmanite, which implies a less viscous lower mantle and helps to explain why the lower mantle is fairly isotropic.
Kaeser, B., Olker, B., Kait, A., Altherr, R., Pettke, T.
Pyroxenite xenoliths from Marsabit ( northern Kenya): evidence for different magmatic events in the lithospheric mantle and interaction between peridotite
Contributions to Mineralogy and Petrology, Vol. 157, 4, pp. 453-472.
Development of a Built in scanning near field microscope head for an atomic force microscope system and its application to natural polycrystalline diamonds
International Mineralogical Association 19th. General Meeting, held Kobe, Japan July 23-28 2006, Abstract p. 114.
Zedgenizov, D.A., Kagi, H., Shatsky, V.S., Ragozin, A.
Local variations of carbon isotope composition in diamonds from Sao-Luis ( Brazil): evidence for heterogenous carbon reservoir in sublithospheric mantle.
The deep carbon cycle: new evidence from superdeep diamonds.
V.S. Sobolev Institute of Geology and Mineralogy Siberian Branch Russian Academy of Sciences International Symposium Advances in high pressure research: breaking scales and horizons ( Courtesy of N. Poikilenko), Held Sept. 22-26, 2p. Abstract
Physics and Chemistry of Minerals, In press available 16p.
South America, Brazil, Mato Grosso
Deposit - Juina area
Abstract: Photoluminescence (PL) spectroscopy and electron paramagnetic resonance (EPR) were used for the first time to characterize properties of superdeep diamonds from the São-Luis alluvial deposits (Brazil). The infrared measurements showed the low nitrogen content (>50 of 87 diamonds from this locality were nitrogen free and belonged to type IIa) and simultaneously the extremely high level of nitrogen aggregation (pure type IaB being predominant), which indicates that diamonds under study might have formed under high pressure and temperature conditions. In most cases, PL features excited at various wavelengths (313, 473, and 532 nm) were indicative of different growth and post-growth processes during which PL centers could be formed via interaction between vacancies and nitrogen atoms. The overall presence of the 490.7 nm, H3, and H4 centers in the luminescence spectra attests to strong plastic deformations in these diamonds. The neutral vacancy known as the GR1 center has probably occurred in a number of crystals due to radiation damage in the post-growth period. The 558.5 nm PL center is found to be one of the most common defects in type IIa samples which is accompanied by the EPR center with g-factor of 2.00285. The 536 and 576 nm vibronic systems totally dominated the PL spectra of superdeep diamonds, while none of "normal" diamonds from the Mir pipe (Yakutia) with similar nitrogen characteristics showed the latter three PL centers.
Physics and chemistry of Minerals, Vol. 42, 9, pp. 707-722.
South America, Brazil
Sao-Luis alluvials
Abstract: Photoluminescence (PL) spectroscopy and electron paramagnetic resonance (EPR) were used for the first time to characterize properties of superdeep diamonds from the São-Luis alluvial deposits (Brazil). The infrared measurements showed the low nitrogen content (>50 of 87 diamonds from this locality were nitrogen free and belonged to type IIa) and simultaneously the extremely high level of nitrogen aggregation (pure type IaB being predominant), which indicates that diamonds under study might have formed under high pressure and temperature conditions. In most cases, PL features excited at various wavelengths (313, 473, and 532 nm) were indicative of different growth and post-growth processes during which PL centers could be formed via interaction between vacancies and nitrogen atoms. The overall presence of the 490.7 nm, H3, and H4 centers in the luminescence spectra attests to strong plastic deformations in these diamonds. The neutral vacancy known as the GR1 center has probably occurred in a number of crystals due to radiation damage in the post-growth period. The 558.5 nm PL center is found to be one of the most common defects in type IIa samples which is accompanied by the EPR center with g-factor of 2.00285. The 536 and 576 nm vibronic systems totally dominated the PL spectra of superdeep diamonds, while none of "normal" diamonds from the Mir pipe (Yakutia) with similar nitrogen characteristics showed the latter three PL centers.
Physics and Chemistry of Minerals, Vol. 42, 9, pp. 707-722.
South America, Brazil
Deposit - Sao-Luis
Abstract: Photoluminescence (PL) spectroscopy and electron paramagnetic resonance (EPR) were used for the first time to characterize properties of superdeep diamonds from the São-Luis alluvial deposits (Brazil). The infrared measurements showed the low nitrogen content (>50 of 87 diamonds from this locality were nitrogen free and belonged to type IIa) and simultaneously the extremely high level of nitrogen aggregation (pure type IaB being predominant), which indicates that diamonds under study might have formed under high pressure and temperature conditions. In most cases, PL features excited at various wavelengths (313, 473, and 532 nm) were indicative of different growth and post-growth processes during which PL centers could be formed via interaction between vacancies and nitrogen atoms. The overall presence of the 490.7 nm, H3, and H4 centers in the luminescence spectra attests to strong plastic deformations in these diamonds. The neutral vacancy known as the GR1 center has probably occurred in a number of crystals due to radiation damage in the post-growth period. The 558.5 nm PL center is found to be one of the most common defects in type IIa samples which is accompanied by the EPR center with g-factor of 2.00285. The 536 and 576 nm vibronic systems totally dominated the PL spectra of superdeep diamonds, while none of “normal” diamonds from the Mir pipe (Yakutia) with similar nitrogen characteristics showed the latter three PL centers.
Geochemistry International, Vol. 54, 10, pp. 834-838.
South America, Brazil
Deposit - Sao Luiz
Abstract: We report cloudy micro- and nano-inclusions in a superdeep diamond from São-Luiz, Brazil which contains inclusions of ferropericlase (Mg, Fe)O and former bridgmanite (Mg, Fe)SiO3 and ringwoodite (Mg, Fe)2SiO4. Field emission-SEM and TEM observations showed that the cloudy inclusions were composed of euhedral micro-inclusions with grain sizes ranging from tens nanometers to submicrometers. Infrared absorption spectra of the cloudy inclusions showed that water, carbonate, and silicates were not major components of these micro- and nano-inclusions and suggested that the main constituent of the inclusions was infrared-inactive. Some inclusions were suggested to contain material with lower atomic numbers than that of carbon. Mineral phase of nano- and micro-inclusions is unclear at present. Microbeam X-ray fluorescence analysis clarified that the micro-inclusions contained transition metals (Cr, Mn, Fe, Co, Ni, Cu, Zn) possibly as metallic or sulfide phases. The cloudy inclusions provide an important information on the growth environment of superdeep diamonds in the transition zone or the lower mantle.
Abstract: Nitrogen occupies about 80% of the Earth 's atmosphere and had an impact on the climate in the early Earth. However, the behavior of nitrogen especially in the deep Earth is still unclear. Nitrogen is depleted compared to other volatile elements in deep mantle (Marty et al., 2012). "Missing" nitrogen is an important subject in earth science. In this study, we compared nitrogen incorporation into lower-mantle minerals (bridgmanite, periclase and stishovite) from high-temperature high-pressure experiment using multianvil apparatus installed at Geodynamics Research Center, Ehime University under the conditions of 27 GPa and 1600°C-1900°C. In these experiments, we used Fe-FeO buffer in order to reproduce the redox state of the lower mantle. Two types of starting materials: a powder mixture of SiO2 and MgO and a powder mixture of SiO2, MgO, Al2O3 and Mg(OH)2 were used for starting materials. Nitrogen in recovered samples was analyzed using NanoSIMS installed at Atmosphere and Ocean Research Institute. A series of experimental results revealed that stishovite and periclase can incorporate more nitrogen than bridgmanite. This suggests that periclase, the major mineral in the lower mantle, may be a nitrogen reservoir. Furthermore, the results suggest that stishovite, which is formed by the transition of the SiO2-rich oceanic crustal sedimentary rocks transported to the lower mantle via subducting slabs, can incorporate more nitrogen than bridgmanite (20 ppm nitrogen solubility reported by Yoshioka et al. (2018)). Our study suggests that nitrogen would continue to be supplied to the lower mantle via subducting slabs since approximate 4 billion years ago when the plate tectonics had begun, forming a "Hidden" nitrogen reservoir in the lower mantle.
Abstract: The enigmatic appearance of cuboctahedral diamonds in ophiolitic and arc volcanic rocks with morphology and infrared characteristics similar to synthetic diamonds that were grown from metal solvent requires a critical reappraisal. We have studied 15 diamond crystals and fragments from Tolbachik volcano lava flows, using Fourier transform infrared spectrometry (FTIR), transmission electron microscopy (TEM), synchrotron X-ray fluorescence (SRXRF) and laser ablation inductively coupled plasma mass-spectrometry (LA-ICP-MS). FTIR spectra of Tolbachik diamonds correspond to typical type Ib patterns of synthetic diamonds. In TEM films prepared using focused ion beam technique, we find Mn-Ni and Mn-Si inclusions in Tolbachik diamonds. SRXRF spectra indicate the presence of Fe-Ni and Fe-Ni-Mn inclusions with Cr, Ti, Cu, and Zn impurities. LA-ICP-MS data show variable but significantly elevated concentrations of Mn, Fe, Ni, and Cu reaching up to 70?ppm. These transition metal concentration levels are comparable with those determined by LA-ICP-MS for similar diamonds from Tibetan ophiolites. Mn-Ni (+Fe) solvent was widely used to produce industrial synthetic diamonds in the former USSR and Russia with very similar proportions of these metals. Hence, it appears highly probable that the cuboctahedral diamonds recovered from Kamchatka arc volcanic rocks represent contamination and are likely derived from drilling tools or other hard instruments. Kinetic data on diamond dissolution in basaltic magma or in fluid phase demonstrate that diamond does not form under the pressures and temperature conditions prevalent within the magmatic system beneath the modern-day Klyuchevskoy group of arc volcanoes. We also considered reference data for inclusions in ophiolitic diamonds and compared them with the composition of solvent used in industrial diamond synthesis in China. The similar inclusion chemistry close to Ni70Mn25Co5 for ophiolitic and synthetic Chinese diamonds scrutinized here suggests that most diamonds recovered from Tibetan and other ophiolites are not natural but instead have a synthetic origin. In order to mitigate further dubious reports of diamonds from unconventional tectonic settings and source rocks, we propose a set of discrimination criteria to better distinguish natural cuboctahedral diamonds from those produced synthetically in industrial environments and found as contaminants in mantle- and crust-derived rocks.
Abstract: Bridgmanite (Mg,Fe)SiO3, a high pressure silicate with a perovskite structure, is dominant material in the Lower Mantle and therefore is probably the most abundant mineral in the Earth. One single-phase and two composite inclusions of (Mg,Fe)SiO3 coexisting with jeffbenite ((Mg,Fe)3Al2Si3O12), and with jeffbenite and olivine ((Mg,Fe)2SiO4) have been analyzed to identify retrograde phases of former bridgmanite in diamonds from Juina (Brazil). XRD and Raman spectroscopy have revealed that (Mg,Fe)SiO3 inclusions are orthopyroxene at ambient conditions. XRD patterns of these inclusions indicate that they consist of polycrystals. This polycrystalline textures together with high lattice strain of host diamond around these inclusions observed from EBSD may be an evidence for the retrograde phase transition of former bridgmanite. Single-phase inclusions of (Mg,Fe)SiO3 in superdeep diamonds are suggested to represent a retrograde phase of bridgmanite and fully inherit its initial chemical composition, including a high Al and low Ni contents [1,2]. The composite inclusions of (Mg,Fe)SiO3 with jeffbenite and other silicate and oxide phases may be interpreted as exsolution products from originally homogeneous bridgmanite [3]. The bulk compositions of these inclusions are rich in Al, Ti, and Fe which are similar to bridgmanite produced in experiments on the MORB composition. However, the retrograde origin of composite inclusions due to decomposition of Al-rich bridgmanite may be doubtful because each of observed phases may represent single-phase inclusions, i.e. bridgmanite and high pressure garnet (majoritic garnet), with similar compositional features.
Geochemistry International, Vol. 57, 9, pp. 964-972.
Mantle
diamond inclusions
Abstract: The paper describes mineralogical characteristics of SiO2 inclusions in sublithospheric diamonds, which typically have complicated growth histories showing alternating episodes of growth, dissolution, and postgrowth deformation and crushing processes. Nitrogen contents in all of the crystals do not exceed 71 ppm, and nitrogen is detected exclusively as B-defects. The carbon isotope composition of the diamonds varies from d13? = -26.5 to -6.7‰. The SiO2 inclusions occur in association with omphacitic clinopyroxenes, majoritic garnets, CaSiO3, jeffbenite, and ferropericlase. All SiO2 inclusions are coesite, which is often associated with micro-blocks of kyanite in the same inclusions. It was suggested that these phases have been produced by the retrograde dissolution of primary Al-stishovite, which is also evidenced by the significant internal stresses in the inclusions and by deformations around them. The oxygen isotope composition of SiO2 inclusions in sublithospheric diamonds (d18O up to 12.9‰) indicates a crustal origin of the protoliths. The negative correlation between the d18O of the SiO2 inclusions and the d13C of their host diamonds reflects interaction processes between slab-derived melts and reduced mantle rocks at depths greater than 270 km.
Abstract: Much of our knowledge of the Earth’s deep interior comes from theoretical models, which are based on the results of experimental petrology and seismology. Diamonds in such models are the unique natural samples because they contain and preserve inclusions of mantle materials that have been entrapped during diamond growth and remained unchanged for long geologic time. In the present study for superdeep sublithospheric diamonds from Saõ-Luiz (Juina, Brazil) and northeastern Siberian Platform with mineral inclusions of the Transition Zone and Lower Mantle (majorite garnet, coesite (stishovite), ferropericlase and Mg-Si-, Ca-Si-, Ca-Ti, Ca-Si- Ti-perovskite), the diffraction of backscattered electrons technique (EBSD) revealed features of the internal structure. Superdeep diamonds are characterized by a defective and imperfect internal structure, which is associated with the processes of growth and post-growth plastic deformation. The deformation is manifested both in the form of stripes parallel to the (111) direction, and in the form of an unordered disorientation of crystal blocks up to 2°. In addition, for many crystals, a block structure was established with a greater disorientation of the sub-individuals, as well as the presence of “diamond-in-diamond” inclusions and microtwins. Additional stresses are often observed around inclusions associated with the high remaining internal pressure. It has previously been shown that the crystal structure of superdeep diamonds is significantly deformed around inclusions of perovskites, SiO2 (stishovite?), and Mg2SiO4 (ringwoodite?). The significant plastic deformations detected by the EBSD around inclusions testify to phase transitions in superdeep minerals (perovskites, stishovite, and ringwoodite) [1].
South America, Brazil, Africa, South Africa, Guinea, Canada, Northwest Territories
deposit - Sao Luis, Juina
Abstract: Bridgmanite (Mg,Fe)SiO3, a high pressure silicate with a perovskite structure, is dominant material in the lower mantle at the depths from 660 to 2700 km and therefore is probably the most abundant mineral in the Earth. Although synthetic analogues of this mineral have been well studied, no naturally occurring samples had ever been found in a rock on the planet’s surface except in some shocked meteorites. Due to its unstable nature under ambient conditions, this phase undergoes retrograde transformation to a pyroxene-type structure. The identification of the retrograde phase as ‘bridgmanite’ in so-called superdeep diamonds was based on the association with ferropericlase (Mg,Fe)O and other high-pressure (supposedly lower-mantle) minerals predicted from theoretical models and HP-HT experiments. In this study pyroxene inclusions in diamond grains from Juina (Brazil), one single-phase (Sample SL-14) and two composite inclusions of (Mg,Fe)SiO3 coexisting with (Mg,Fe)3Al2Si3O12 (Sample SL-13), and with (Mg,Fe)3Al2Si3O12 and (Mg,Fe)2SiO4 (Sample SL-80) have been analyzed to identify retrograde phases of former bridgmanite. XRD and Raman spectroscopy have revealed that these are orthopyroxene (Opx). (Mg,Fe)2SiO4 and (Mg,Fe)3Al2Si3O12 in these inclusions are identified as olivine and jeffbenite (TAPP). These inclusions are associated with inclusions of (Mg,Fe)O (SL-14), CaSiO3 (SL-80) and composite inclusion of CaSiO3+CaTiO3 (SL-13). XRD patterns of (Mg,Fe)SiO3 inclusions indicate that they consist of polycrystals. This polycrystalline textures together with high lattice strain of host diamond around these inclusions observed from EBSD may be an evidence for the retrograde phase transition of former bridgmanite. Single-phase inclusions of (Mg,Fe)SiO3 in superdeep diamonds are suggested to represent a retrograde phase of bridgmanite and fully inherit its initial chemical composition, including a high Al and low Ni contents [Harte, Hudson, 2013; Kaminsky, 2017]. The composite inclusions of (Mg,Fe)SiO3 with jeffbenite and other silicate and oxide phases may be interpreted as exolusion products from originally homogeneous bridgmanite [Walter et al., 2011]. The bulk compositions of these composite inclusions are rich in Al, Ti, and Fe which are similar to Al-rich bridgmanite produced in experiments on the MORB composition. However, the retrograde origin of composite inclusions due to decomposition of Al-rich bridgmanite may be doubtful because each of observed phases may represent single-phase inclusions, i.e. bridgmanite and high pressure garnet (majoritic garnet), with similar compositional features.
Africa, South Africa, Guinea, Australia,South America, Brazil, Canada, Northwest Territories
deposit - Koffiefontein, Kankan, Lac de Gras, Juina, Machado, Orroroo
Abstract: (Mg,Fe)SiO3 bridgmanite is the dominant phase in the lower mantle; however no naturally occurring samples had ever been found in terrestrial samples as it undergoes retrograde transformation to a pyroxene-type structure. To identify retrograde phases of former bridgmanite single-phase and composite inclusions of (Mg,Fe)SiO3 in a series of superdeep diamonds have been examined with electron microscopy, electron microprobe, Raman spectroscopy and X-ray diffraction techniques. Our study revealed that (Mg,Fe)SiO3 inclusions are represented by orthopyroxene. Orthopyroxenes in single-phase and composite inclusions inherit initial chemical composition of bridgmanites, including a high Al and low Ni contents. In composite inclusions they coexist with jeffbenite (ex-TAPP) and olivine. The bulk compositions of these composite inclusions are rich in Al, Ti, and Fe, which are similar but not fully resembling Al-rich bridgmanite produced in experiments on the MORB composition. The retrograde origin of composite inclusions due to decomposition of Al-rich bridgmanite may be doubtful because each of observed minerals may represent coexisting HP phases, i.e. bridgmanite or ringwoodite.
Abstract: Mantle flow can cause the Earth’s surface to uplift and subside, but the rates and durations of these motions are, in general, poorly resolved due to the difficulties in making measurements of relatively small vertical movements (hundreds of metres) over sufficiently large distances (about 1,000?km). Here we examine the effect of mantle upwelling through a study of Quaternary uplift along the coast of Angola. Using both optically stimulated luminescence on sediment grains, and radiocarbon dating of fossil shells, we date a 25?m coastal terrace at about 45 thousand years old, when sea level was about 75?m lower than today, indicating a rapid uplift rate of 1.8-2.6?mm?yr-1 that is an order of magnitude higher than previously obtained rates averaged over longer time periods. Automated extraction and correlation of coastal terrace remnants from digital topography uncovers a symmetrical uplift with diameter of more than 1,000?km. The wavelength and relatively short timescale of the uplift suggest that it is associated with a mantle process, possibly convective upwelling, and that the topography may be modulated by rapid short-lived pulses of mantle-derived uplift. Our study shows that stable continental regions far from the effects of glacial rebound may experience rapid vertical displacements of several millimetres per year.
Abstract: Mantle flow can cause the Earth’s surface to uplift and subside, but the rates and durations of these motions are, in general, poorly resolved due to the difficulties in making measurements of relatively small vertical movements (hundreds of metres) over sufficiently large distances (about 1,000?km). Here we examine the effect of mantle upwelling through a study of Quaternary uplift along the coast of Angola. Using both optically stimulated luminescence on sediment grains, and radiocarbon dating of fossil shells, we date a 25?m coastal terrace at about 45 thousand years old, when sea level was about 75?m lower than today, indicating a rapid uplift rate of 1.8-2.6?mm?yr-1 that is an order of magnitude higher than previously obtained rates averaged over longer time periods. Automated extraction and correlation of coastal terrace remnants from digital topography uncovers a symmetrical uplift with diameter of more than 1,000?km. The wavelength and relatively short timescale of the uplift suggest that it is associated with a mantle process, possibly convective upwelling, and that the topography may be modulated by rapid short-lived pulses of mantle-derived uplift. Our study shows that stable continental regions far from the effects of glacial rebound may experience rapid vertical displacements of several millimetres per year.
Vulic, P., Balic-Zunic, T., Belmonte, L.J., Kahlenberg, V.
Crystal chemistry of nephelines from ijolites and nepheline rich pegmatites: influence of composition and genesis on the crystal structure investigated by X-ray diffraction.
Mineralogy and Petrology, Vol. 101, 3-4, pp. 185-194.
Kahoui, M., Kemainsky, F.V., Griffin, W.L., Belousova, E., Mahdjoub, Y., Chabane, M.
Detrital pyrope garnets from the El Kseibat area, Algeria: a glimpse into the lithospheric mantle beneath the north-eastern edge of the West African Craton.
Journal of African Earth Sciences, In press available, 46p.
Kahoui, M., Kaminsky, F.V., Griffin, W.L., Belousova, E., Mahdjoub, Y., Chabane, M.
Detrital pyrope garnets from the El Kseibat area, Algeria: a glimpse into lithospheric mantle beneath the north eastern edge of the west African Craton.
Journal of African Earth Sciences, Vol. 63, Feb. pp. 1-11.
Kaminsky, F.V., Kahoui, M.,Mahdjoub, Y., Belousova, E., Griffin, W.L.,O'Reilly, S.Y.
Pyrope garnets from the Eglab Shield, Algeria: look inside the Earth's mantle in the West African Craton and suggestions about primary sources of diamond and indicator minerals.
Vladykin, N.V. ed. Deep seated magmatism, its sources and plumes, Russian Academy of Sciences, pp. 73-103.
Abstract: Yakutites are coarse (up to 15 mm or larger) aggregates dispersed for more than 500 km around the Popigai meteorite crater. They share many features of similarity with impact diamonds found inside the crater, in elemental and phase compositions, texture, and optical properties as revealed by X-ray photoelectron spectroscopy, X-ray diffraction, and optical spectroscopy (Raman, absorption, luminescence and microscopic) studies. The N3 vibronic system appearing in the luminescence spectra of Popigai impact diamonds (PIDs) indicates a presence of nitrogen impurity and a high-temperature annealing of diamonds that remained in the crater after solid-phase conversion from graphite. Yakutites lack nitrogen-vacancy centers as signatures of annealing, which may indicate quenching at the time of ejection. Thus, both PIDs and yakutites originated during the Popigai impact event and yakutites were ejected to large distances.
South African Journal of Geology, Vol. 121, pp. 271-286.
Africa, Mozambique
geodynamics
Abstract: Major, trace, radiogenic isotope and stable isotope data from lavas along the northeastern coast of Mozambique are described. The whole rock composition data demonstrate that the rocks are dominantly andesitic with compositions typical of calc-alkaline volcanic rocks from arc environments. SHRIMP U/Pb data from zircons indicate that the zircons are xenocrystic, having ages of between 500 Ma and 660 Ma, with the age of the lava constrained by Rb/Sr data at ~184 Ma. Strontium, Nd and Pb radiogenic isotope data support an interpretation of extensive mixing between a Karoo age basaltic magma (dolerite) from Antarctica and continental crust similar in composition to the Mozambique basement. Oxygen isotope data also imply a significant crustal contribution to the lavas. Possible tectonic settings for the lavas are at the margin of a plume or from a locally restricted compressional setting during Gondwana breakup processes.
Perraki, M., Proyer, A., Mposkos, E., Kaindl, R., Hoinkes, G.
Raman micro spectroscopy on diamond, graphite and other carbon polymorphs from the ultrahigh pressure metamorphic Kimi Complex of the Rhodope metamorphic province.
Earth and Planetary Science Letters, Vol. 241, 3-4, pp. 672-685.
Kaeser, B., Olker, B., Kait, A., Altherr, R., Pettke, T.
Pyroxenite xenoliths from Marsabit ( northern Kenya): evidence for different magmatic events in the lithospheric mantle and interaction between peridotite
Contributions to Mineralogy and Petrology, Vol. 157, 4, pp. 453-472.
Abstract: Geological mapping and zircon U-Pb/Hf isotope data from 35 samples from the central Tanzania Craton and surrounding orogenic belts to the south and east allow a revised model of Precambrian crustal evolution of this part of East Africa. The geochronology of two studied segments of the craton shows them to be essentially the same, suggesting that they form a contiguous crustal section dominated by granitoid plutons. The oldest orthogneisses are dated at ca. 2820 Ma (Dodoma Suite) and the youngest alkaline syenite plutons at ca. 2610 Ma (Singida Suite). Plutonism was interrupted by a period of deposition of volcano-sedimentary rocks metamorphosed to greenschist facies, directly dated by a pyroclastic metavolcanic rock which gave an age of ca. 2725 Ma. This is supported by detrital zircons from psammitic metasedimentary rocks, which indicate a maximum depositional age of ca. 2740 Ma, with additional detrital sources 2820 and 2940 Ma. Thus, 200 Ma of episodic magmatism in this part of the Tanzania Craton was punctuated by a period of uplift, exhumation, erosion and clastic sedimentation/volcanism, followed by burial and renewed granitic to syenitic magmatism. In eastern Tanzania (Handeni block), in the heart of the East African Orogen, all the dated orthogneisses and charnockites (apart from those of the overthrust Neoproterozoic granulite nappes), have Neoarchaean protolith ages within a narrow range between 2710 and 2630 Ma, identical to (but more restricted than) the ages of the Singida Suite. They show evidence of Ediacaran "Pan-African" isotopic disturbance, but this is poorly defined. In contrast, granulite samples from the Wami Complex nappe were dated at ca. 605 and ca. 675 Ma, coeval with previous dates of the "Eastern Granulites" of eastern Tanzania and granulite nappes of adjacent NE Mozambique. To the south of the Tanzania Craton, samples of orthogneiss from the northern part of the Lupa area were dated at ca. 2730 Ma and clearly belong to the Tanzania Craton. However, granitoid samples from the southern part of the Lupa "block" have Palaeoproterozoic (Ubendian) intrusive ages of ca. 1920 Ma. Outcrops further south, at the northern tip of Lake Malawi, mark the SE continuation of the Ubendian belt, albeit with slightly younger ages of igneous rocks (ca. 1870-1900 Ma) which provide a link with the Ponte Messuli Complex, along strike to the SE in northern Mozambique. In SW Tanzania, rocks from the Mgazini area gave Ubendian protolith ages of ca. 1980-1800 Ma, but these rocks underwent Late Mesoproterozoic high-grade metamorphism between 1015 and 1040 Ma. One granitoid gave a crystallisation age of ca. 1080 Ma correlating with known Mesoproterozoic crust to the east in SE Tanzania and NE Mozambique. However, while the crust in the Mgazini area was clearly one of original Ubendian age, reworked and intruded by granitoids at ca. 1 Ga, the crust of SE Tanzania is a mixed Mesoproterozoic terrane and a continuation from NE Mozambique. Hence the Mgazini area lies at the edge of the Ubendian belt which was re-worked during the Mesoproterozoic orogen (South Irumide belt), providing a further constraint on the distribution of ca. 1 Ga crust in SE Africa. Hf data from near-concordant analyses of detrital zircons from a sample from the Tanzania Craton lie along a Pb-loss trajectory (Lu/Hf = 0), extending back to ~3.9 Ga. This probably represents the initial depleted mantle extraction event of the cratonic core. Furthermore, the Hf data from all igneous samples, regardless of age, from the entire study area (including the Neoproterozoic granulite nappes) show a shallow evolution trend (Lu/Hf = 0.028) extending back to the same mantle extraction age. This implies the entire Tanzanian crust sampled in this study represents over 3.5 billion years of crustal reworking from a single crustal reservoir and that the innermost core of the Tanzanian Craton that was subsequently reworked was composed of a very depleted, mafic source with a very high Lu/Hf ratio. Our study helps to define the architecture of the Tanzanian Craton and its evolution from a single age-source in the early Eoarchaean.
Abstract: Nitrogen occupies about 80% of the Earth 's atmosphere and had an impact on the climate in the early Earth. However, the behavior of nitrogen especially in the deep Earth is still unclear. Nitrogen is depleted compared to other volatile elements in deep mantle (Marty et al., 2012). "Missing" nitrogen is an important subject in earth science. In this study, we compared nitrogen incorporation into lower-mantle minerals (bridgmanite, periclase and stishovite) from high-temperature high-pressure experiment using multianvil apparatus installed at Geodynamics Research Center, Ehime University under the conditions of 27 GPa and 1600°C-1900°C. In these experiments, we used Fe-FeO buffer in order to reproduce the redox state of the lower mantle. Two types of starting materials: a powder mixture of SiO2 and MgO and a powder mixture of SiO2, MgO, Al2O3 and Mg(OH)2 were used for starting materials. Nitrogen in recovered samples was analyzed using NanoSIMS installed at Atmosphere and Ocean Research Institute. A series of experimental results revealed that stishovite and periclase can incorporate more nitrogen than bridgmanite. This suggests that periclase, the major mineral in the lower mantle, may be a nitrogen reservoir. Furthermore, the results suggest that stishovite, which is formed by the transition of the SiO2-rich oceanic crustal sedimentary rocks transported to the lower mantle via subducting slabs, can incorporate more nitrogen than bridgmanite (20 ppm nitrogen solubility reported by Yoshioka et al. (2018)). Our study suggests that nitrogen would continue to be supplied to the lower mantle via subducting slabs since approximate 4 billion years ago when the plate tectonics had begun, forming a "Hidden" nitrogen reservoir in the lower mantle.
Abstract: The Kovdor baddeleyite-apatite-magnetite deposit in the Kovdor phoscorite-carbonatite pipe is situated in the western part of the zoned alkali-ultrabasic Kovdor intrusion (NW part of the Fennoscandinavian shield; Murmansk Region, Russia). We describe major intrusive and metasomatic rocks of the pipe and its surroundings using a new classification of phoscorite-carbonatite series rocks, consistent with the IUGS recommendation. The gradual zonation of the pipe corresponds to the sequence of mineral crystallization (forsterite-hydroxylapatite-magnetite-calcite). Crystal morphology, grain size, characteristic inclusions, and composition of the rock-forming and accessory minerals display the same spatial zonation pattern, as do the three minerals of economic interest, i.e. magnetite, hydroxylapatite, and baddeleyite. The content of Sr, rare earth elements (REEs), and Ba in hydroxylapatite tends to increase gradually at the expense of Si, Fe, and Mg from early apatite-forsterite phoscorite (margins of the pipe) through carbonate-free, magnetite-rich phoscorite to carbonate-rich phoscorite and phoscorite-related carbonatite (inner part). Magnetite displays a trend of increasing V and Ca and decreasing Ti, Mn, Si, Cr, Sc, and Zn from the margins to the central part of the pipe; its grain size initially increases from the wall rocks to the inner part and then decreases towards the central part; characteristic inclusions in magnetite are geikielite within the marginal zone of the phoscorite-carbonatite pipe, spinel within the intermediate zone, and ilmenite within the inner zone. The zoning pattern seems to have formed due to both cooling and rapid degassing (pressure drop) of a fluid-rich magmatic column and subsequent pneumatolytic and hydrothermal processes.
Abstract: The comprehensive petrographical, petrochemical and mineralogical study of the Kovdor magnetite-apatite-baddeleyite deposit in the phoscorite-carbonatite complex (Murmansk Region, Russia) revealed a spatial distribution of grain size and chemical composition of three economically extractable minerals — magnetite, apatite, and baddeleyite, showing that zonal distribution of mineral properties mimics both concentric and vertical zonation of the carbonatite-phoscorite pipe. The marginal zone of the pipe consists of (apatite)-forsterite phoscorite carrying fine grains of Ti-Mn-Si-rich magnetite with ilmenite exsolution lamellae, fine grains of Fe-Mg-rich apatite and finest grains of baddeleyite, enriched in Mg, Fe, Si and Mn. The intermediate zone accommodates carbonate-free magnetite-rich phoscorites that carry medium to coarse grains of Mg-Al-rich magnetite with exsolution inclusions of spinel, medium-grained pure apatite and baddeleyite. The axial zone hosts carbonate-rich phoscorites and phoscorite-related carbonatites bearing medium-grained Ti-V-Ca-rich magnetite with exsolution inclusions of geikielite-ilmenite, fine grains of Ba-Sr-Ln-rich apatite and comparatively large grains of baddeleyite, enriched in Hf, Ta, Nb and Sc. The collected data enable us to predict such important mineralogical characteristics of the multicomponent ore as chemical composition and grain size of economic and associated minerals, presence of contaminating inclusions, etc. We have identified potential areas of maximum concentration of such by-products as scandium, niobium and hafnium in baddeleyite and REEs in apatite.
Abstract: The comprehensive petrographical, petrochemical and mineralogical study of the Kovdor magnetite-apatite-baddeleyite deposit in the phoscorite-carbonatite complex (Murmansk Region, Russia) revealed a spatial distribution of grain size and chemical composition of three economically extractable minerals — magnetite, apatite, and baddeleyite, showing that zonal distribution of mineral properties mimics both concentric and vertical zonation of the carbonatite-phoscorite pipe. The marginal zone of the pipe consists of (apatite)-forsterite phoscorite carrying fine grains of Ti-Mn-Si-rich magnetite with ilmenite exsolution lamellae, fine grains of Fe-Mg-rich apatite and finest grains of baddeleyite, enriched in Mg, Fe, Si and Mn. The intermediate zone accommodates carbonate-free magnetite-rich phoscorites that carry medium to coarse grains of Mg-Al-rich magnetite with exsolution inclusions of spinel, medium-grained pure apatite and baddeleyite. The axial zone hosts carbonate-rich phoscorites and phoscorite-related carbonatites bearing medium-grained Ti-V-Ca-rich magnetite with exsolution inclusions of geikielite-ilmenite, fine grains of Ba-Sr-Ln-rich apatite and comparatively large grains of baddeleyite, enriched in Hf, Ta, Nb and Sc. The collected data enable us to predict such important mineralogical characteristics of the multicomponent ore as chemical composition and grain size of economic and associated minerals, presence of contaminating inclusions, etc. We have identified potential areas of maximum concentration of such by-products as scandium, niobium and hafnium in baddeleyite and REEs in apatite.
Abstract: The comprehensive petrographical, petrochemical and mineralogical study of the Kovdor magnetite-apatite-baddeleyite deposit in the phoscorite-carbonatite complex (Murmansk Region, Russia) revealed a spatial distribution of grain size and chemical composition of three economically extractable minerals — magnetite, apatite, and baddeleyite, showing that zonal distribution of mineral properties mimics both concentric and vertical zonation of the carbonatite-phoscorite pipe.The marginal zone of the pipe consists of (apatite)-forsterite phoscorite carrying fine grains of Ti-Mn-Si-rich magnetite with ilmenite exsolution lamellae, fine grains of Fe-Mg-rich apatite and finest grains of baddeleyite, enriched in Mg, Fe, Si and Mn. The intermediate zone accommodates carbonate-free magnetite-rich phoscorites that carry medium to coarse grains of Mg-Al-rich magnetite with exsolution inclusions of spinel, medium-grained pure apatite and baddeleyite. The axial zone hosts carbonate-rich phoscorites and phoscorite-related carbonatites bearing medium-grained Ti-V-Ca-rich magnetite with exsolution inclusions of geikielite-ilmenite, fine grains of Ba-Sr-Ln-rich apatite and comparatively large grains of baddeleyite, enriched in Hf, Ta, Nb and Sc. The collected data enable us to predict such important mineralogical characteristics of the multicomponent ore as chemical composition and grain size of economic and associated minerals, presence of contaminating inclusions, etc. We have identified potential areas of maximum concentration of such by-products as scandium, niobium and hafnium in baddeleyite and REEs in apatite.
Abstract: This paper reviews the available information on the geology, mineralogy, and resources of the significant rare earth element (REE) deposits and occurrences in the Murmansk Region, northwest Russia. The region has one of the largest endowments of REE in the world, primarily the light REE (LREE); however, most of the deposits are of potential economic interest for the REE, only as by-products of other mining activity, because of the relatively low REE grade. The measured and indicated REE2O3 resources of all deposits in the region total 22.4, and 36.2 million tonnes, respectively. The most important resources occur in (1) the currently mined Khibiny titanite-apatite deposits, and (2) the Lovozero loparite-eudialyte deposit. The Kovdor baddeleyite-apatite-magnetite deposit is a potentially important resource of scandium. These deposits all have polymetallic ores, i.e., REE would be a by-product of P, Ti, and Al mining at Khibiny, Fe, Zr, Ta, and Nb mining at Lovozero, and Fe and Ti mining at Afrikanda. The Keivy block has potential for heavy REE exploitation in the peralkaline granite-hosted Yumperuaiv and Large Pedestal Zr-REE deposits and the nepheline syenite-hosted Sakharyok Zr-REE deposit. With the exception of the Afrikanda perovskite-magnetite deposit (LREE in perovskite) and the Kovdor baddeleyite-apatite-magnetite deposit (scandium in baddelyite), carbonatite-bearing complexes of the Murmansk Region appear to have limited potential for REE by-products. The sound transport, energy, and mining infrastructure of the region are important factors that will help ensure future production of the REE.
Contributions to Mineralogy and Petrology, Vol. 175, 22p. Pdf.
Russia
deposit - Obnazhennaya
Abstract: The petrology, mineral major and trace-element concentrations, and garnet oxygen isotopic composition of low-MgO (11-16 wt%) eclogites from the Obnazhennaya kimberlite, Siberian craton, are used to infer their petrogenesis. These eclogites contain two types of compositionally distinct garnet: granular coarse garnet, and garnet exsolution (lamellae and fine-grained garnet) in clinopyroxene. The former record higher temperatures at lower pressures than the latter, which record the last stage of equilibrium at moderate pressure-temperature conditions 2.3-3.7 GPa and 855-1095 °C in the upper mantle at the time of entrainment. Although derived from the garnet stability field, these rocks have low-pressure cumulate protoliths containing plagioclase, olivine, and clinopyroxene as reflected by pronounced positive Eu and Sr anomalies in all eclogites, and low heavy rare earth element (HREE) contents in both minerals and reconstructed bulk rocks for a number of samples. Major elements, transition metals, and the HREE compositions of the reconstructed whole rocks are analogous to modern oceanic gabbro cumulates. Despite geochemical signatures supporting an oceanic crust origin, mantle-like d18O of the garnets (5.07-5.62‰) for most samples indicates that the protoliths either did not interact with seawater or have coincidently approximately normal igneous values. Some of the eclogite xenoliths have lower SiO2 contents and depleted light REE ((Nd/Yb)N?
Abstract: The petrology, mineral major and trace element concentrations, and garnet oxygen isotopic composition of low-MgO (11-16 wt.%) eclogites from the Obnazhennaya kimberlite, Siberian craton, are used to infer their petrogenesis. These eclogites equilibrated at moderate pressure-temperature conditions 2.3-3.7 GPa and 855- 1095?C at the time of entrainment. Although derived from the garnet stability field, these rocks have low-pressure cumulate protoliths containing plagioclase, olivine, and clinopyroxene as reflected by pronounced positive Eu and Sr anomalies in all eclogites, and low heavy rare earth element (HREE) contents in both minerals and reconstructed bulk rocks for a number of samples. Major elements, transition metals, and the HREE compositions of the reconstructed whole rocks are analogous to modern oceanic gabbro cumulates. Despite geochemical signatures supporting an oceanic crust origin, mantle-like d18O of the garnets (5.07-5.62 ‰ ) for most samples indicates that the protoliths either did not interact with seawater or have coincidently approximately normal igneous values. Some of the eclogite xenoliths have lower SiO2 contents and depleted light REE ((Nd/Yb)N < 1) compared to modern oceanic gabbros, suggesting that they experienced partial melting. Positively inclined middle to heavy-REE patterns ((Dy/Yb)N <1) of the reconstructed bulk rocks mostly result from repeated partial melting in the eclogite stability field, based on melting model calculations. We therefore suggest that the Obnazhennaya low-MgO eclogites may represent the gabbroic section of subducted or foundered basaltic crust that underwent continued partial melting processes at high pressures where garnet was the main residual phase.
Abstract: The article describes the petrography and mineralogy of xenoliths ilmenite-phlogopite containing deformed and granular peridotites from the Udachnaya-Eastern pipe. The age of pholopite porphyroclast from the studied deformed xenoliths matches with age of Phl megacryst and itself hosted kimberlites from Udachnaya pipe indicating the following processes closed in time: (1) crystallization of the low-Cr megacryst association; (2) deformation of rocks on the mantle lithosphere-asthenosphere border during the kimberlite-forming cycle; (3) formation of protokimberlite melts.
International Geology Review, in press available 24p. Pdf
Europe, Ukraine
deposit - Priazovie
Abstract:
Major, minor and trace element compositions of mantle xenocrysts from Devonian kimberlite pipes in the Priazovie give an insight into the mantle structure beneath the SE Ukranian Shield and its evolution. Garnets yield low temperature conditions as determined by monomineral thermobarometry. The mantle lithosphere is sharply divided at 4.2 GPa, marked by a high temperature Cpx-Ilm-Phl trend, eclogites and changes in pyrope geochemistry. Seven layers are detected: Ist layer at 2.5-1 GPa is enriched mantle (Fe#Ol ~ 0.11 - 0.14) with Gar- pyroxenites and Sp peridotites; IInd at 2.5-3.2 GPa - Gar-Sp (Fe#Ol 0.08 - 0.10) peridotite. IIId at 4.3-3.2 GPa is formed of Archaean- Proterozoic peridotites with Fe#Ol ~0.07 - 0.095. IVth at 3.2-5 GPa- contains pyroxenitic Gar with higher Ca, eclogites, Chr and Cpx (Fe#Ol ~0.10 - 0.125); Vth at 5.8 - 5 GPa is marked by sub-Ca garnets, Cr-rich chromites and Mg-Cr ilmenites; VIth layer at 5.8-6.8 GPa contains Fe-enriched pyropes, almandines and Cr-Mg ilmenites near the lithosphere base; VIIth layer > 6.8 GPa consists of ‘hot’ Fe-rich garnets. Garnets show increasing enrichment in LREE, LILE, Hf, Zr with decreasing pressure. Primitive garnets have round REE patterns; depleted ones have S-type patterns inflected at Nd. Garnets from 6.5 to 3 GPa show increasing La/Ybn, Zr-Hf, LILE. Peridotitic clinopyroxenes have inclined linear trace element patterns rounded from La to Pr with high LILE and HFSE levels. The Fe-rich group (reacted with eclogites) shows bell-shaped irregular patterns with LILE close to the LREE levels. A possible reason for LILE (HFSE and) enrichment of the upper part of the mantle is subduction metasomatsm in Archaean times (with participation of mature continental sediments) activated by plumes at 1.8 Ga and earlier which produced pervasive focused melt flow with remelting of mica-amphibole metasomatites giving continuous REE and LILE enrichment in mantle lithologies from 5.8 to 2.5 GPa.
Abstract: The modal metasomatic alteration for lithosphere mantle may be investigated using mantle xenoliths from kimberlite pipes. The mantle xenoliths from upper-Jurassic Obnajennaya kimberlite pipe (Kuoika field, Yakutia) were studied. Three main xenoliths groups in Obnajennaya pipe were distinguished based on the petrographic and geochemical features: 1. Sp, Sp-Grt, Grt harzburgites - lherzolites, Sp, Sp-Grt, Grt olivine websterites and Sp, Sp-Grt, Grt websterite (so-called magnesium group - about 80 % from xenoliths). The high magnesium mineral composition, high estimated temperature (1250 - 1500°?) for exsolution pyroxene megacrystals, presence of sulphide globules and distribution curves for rare earth elements in garnets (La-Yb increasing) are to assume the crystallisation from melt. The 10% magnesium mantle xenoliths are observed the secondary metasomatic phlogopite and amphibole (pargasite). The clinopyroxene distribution curves demonstrate the wide range of values and altered samples show higher content HFSE group elements that primary clinopyroxene. The increasing of HFSE and rare earth element concentrations can also be traced by the amphibole chemical composition. The 40Ar/39Ar dating of phlogopite from was result 1639 ± 5 Ma nearly corresponding to the time of Siberian craton accretion Thus during Siberian craton accretion (about 1.7 Ga) the melts-fluids enriching Nb + Ta and REE impacted on lithosphere mantle under Kuoika field. 2. Eclogites and Grt clinopyroxenites with similar mineral composition (about 10-15% xenoliths). The high dO18 for garnet and clinopyroxene (5.7–5.8‰) allows to assume subduction genesis. 3. Phl-Ilm rocks characterizing ferrous mineral composition (~ 10 % xenoliths). This group are charactetrized are ferrous mineral composition. The 40Ar/39Ar phlogopite dating resulted to 800-500 Ma, signed the potassium and titanium metasomatic fluide – melt influenced
Abstract: This study presents compositional data for a statistically significant number (n=180) of heated and quenched (recreated) carbonate melt inclusions trapped in magnetite and clinopyroxene in jacupirangite from Kerimasi volcano (Tanzania). On the basis of homogenization experiments for clinopyroxene-hosted melt inclusions and forsterite-monticellite-calcite phase relations, a range of 1000 to 900 °C is estimated for their crystallization temperatures. Petrographic observations and geochemical data show that during jacupirangite crystallization, a CaO-rich and alkali-"poor" carbonate melt (relative to Oldoinyo Lengai natrocarbonatite) existed and was entrapped in the precipitating magnetite, forming primary melt inclusions, and was also enclosed in previously crystallized clinopyroxene as secondary melt inclusions. The composition of the trapped carbonate melts in magnetite and clinopyroxene are very similar to the parental melt of Kerimasi calciocarbonatite; i.e., enriched in Na2O, K2O, F, Cl and S, but depleted in SiO2 and P2O5 relative to carbonate melts entrapped at an earlier stage and higher temperature (1050-1100 °C) during the formation of Kerimasi afrikandite. Significant compositional variation is shown by the major minerals of Kerimasi plutonic rocks (afrikandite, jacupirangite and calciocarbonatite). Magnetite and clinopyroxene in the jacupirangite are typically transitional in composition between those of afrikandite and calciocarbonatite. These data suggest that the jacupirangite represents an intermediate stage between the formation of afrikandite and calciocarbonatite. Jacupirangite most probably formed when immiscible silicate and carbonate melts separated from the afrikandite body, although the carbonate melt was not separated completely from the silicate melt fraction. In general, during the evolution of the carbonate melt at Kerimasi, concentrations of P2O5 and SiO2 decreased, whereas volatile content (alkalis, S, F, Cl and H2O) increased. Volatiles were incorporated principally in nyerereite, shortite, burbankite, nahcolite and sulfohalite as identified by Raman spectrometry. These extremely unstable minerals cannot be found in the bulk rock, because of alteration by secondary processes. On the basis of these data, an evolutionary model is developed for Kerimasi plutonic rocks.
Abstract: This study presents compositional data for a statistically significant number (n = 180) of heated and quenched (recreated) carbonate melt inclusions trapped in magnetite and clinopyroxene in jacupirangite from Kerimasi volcano (Tanzania). On the basis of homogenization experiments for clinopyroxene-hosted melt inclusions and forsterite-monticellite-calcite phase relations, a range of 1000 to 900 °C is estimated for their crystallization temperatures. Petrographic observations and geochemical data show that during jacupirangite crystallization, a CaO-rich and alkali-"poor" carbonate melt (relative to Oldoinyo Lengai natrocarbonatite) existed and was entrapped in the precipitating magnetite, forming primary melt inclusions, and was also enclosed in previously crystallized clinopyroxene as secondary melt inclusions. The composition of the trapped carbonate melts in magnetite and clinopyroxene is very similar to the parental melt of Kerimasi calciocarbonatite; i.e., enriched in Na2O, K2O, F, Cl and S, but depleted in SiO2 and P2O5 relative to carbonate melts entrapped at an earlier stage and higher temperature (1050-1100 °C) during the formation of Kerimasi afrikandite. Significant compositional variation is shown by the major minerals of Kerimasi plutonic rocks (afrikandite, jacupirangite and calciocarbonatite). Magnetite and clinopyroxene in the jacupirangite are typically transitional in composition between those of afrikandite and calciocarbonatite. These data suggest that the jacupirangite represents an intermediate stage between the formation of afrikandite and calciocarbonatite. Jacupirangite most probably formed when immiscible silicate and carbonate melts separated from the afrikandite body, although the carbonate melt was not separated completely from the silicate melt fraction. In general, during the evolution of the carbonate melt at Kerimasi, concentrations of P2O5 and SiO2 decreased, whereas volatile content (alkalis, S, F, Cl and H2O) increased. Volatiles were incorporated principally in nyerereite, shortite, burbankite, nahcolite and sulfohalite as identified by Raman spectrometry. These extremely unstable minerals cannot be found in the bulk rock, because of alteration by secondary processes. On the basis of these data, an evolutionary model is developed for Kerimasi plutonic rocks.
Abstract: This study presents compositional data for a statistically significant number (n = 180) of heated and quenched (recreated) carbonate melt inclusions trapped in magnetite and clinopyroxene in jacupirangite from Kerimasi volcano (Tanzania). On the basis of homogenization experiments for clinopyroxene-hosted melt inclusions and forsterite-monticellite-calcite phase relations, a range of 1000 to 900 °C is estimated for their crystallization temperatures. Petrographic observations and geochemical data show that during jacupirangite crystallization, a CaO-rich and alkali-"poor" carbonate melt (relative to Oldoinyo Lengai natrocarbonatite) existed and was entrapped in the precipitating magnetite, forming primary melt inclusions, and was also enclosed in previously crystallized clinopyroxene as secondary melt inclusions. The composition of the trapped carbonate melts in magnetite and clinopyroxene is very similar to the parental melt of Kerimasi calciocarbonatite; i.e., enriched in Na2O, K2O, F, Cl and S, but depleted in SiO2 and P2O5 relative to carbonate melts entrapped at an earlier stage and higher temperature (1050-1100 °C) during the formation of Kerimasi afrikandite. Significant compositional variation is shown by the major minerals of Kerimasi plutonic rocks (afrikandite, jacupirangite and calciocarbonatite). Magnetite and clinopyroxene in the jacupirangite are typically transitional in composition between those of afrikandite and calciocarbonatite. These data suggest that the jacupirangite represents an intermediate stage between the formation of afrikandite and calciocarbonatite. Jacupirangite most probably formed when immiscible silicate and carbonate melts separated from the afrikandite body, although the carbonate melt was not separated completely from the silicate melt fraction. In general, during the evolution of the carbonate melt at Kerimasi, concentrations of P2O5 and SiO2 decreased, whereas volatile content (alkalis, S, F, Cl and H2O) increased. Volatiles were incorporated principally in nyerereite, shortite, burbankite, nahcolite and sulfohalite as identified by Raman spectrometry. These extremely unstable minerals cannot be found in the bulk rock, because of alteration by secondary processes. On the basis of these data, an evolutionary model is developed for Kerimasi plutonic rocks.
Abstract: The use of confocal HR-Raman mapping opens new perspectives in studying melt inclusions. Our major goal is to show advantages of this powerful technique through case studies carried out on alkaline and carbonatite rocks of Kerimasi volcano (East African Rift). Raman spectrometry is one of the few methods that enable qualitative nondestructive analysis of both solid and fluid phases, therefore it is widely used for the identification of minerals and volatiles within melt and fluid inclusions. For better understanding of petrogenetic processes in carbonatite systems it is essential to find all mineral phases in the melt inclusions trapped in intrusive or volcanic rocks. Previous Raman spectroscopic point measurements in melt inclusions revealed the presence of daughter phases (e.g. alkali carbonates, hydrocarbonates) [1] but utilizing Raman mapping on them even provides information on their size, shape and distribution. Raman 3D mapping were applied on unheated multiphase melt inclusions of intrusive and volcanic rocks with high spatial resolution (XY plane < 1 micron) with a depth scan (Z step) as low as 0.5 micron at every XY point, parallel to the surface of the host minerals. Analysis below the surface of the host mineral is especially useful because we can avoid the loss of sensitive (e.g. water soluble) phases and contamination of the melt inclusions, moreover unexposed melt inclusions are suitable for further analytical measurements (e.g. EPMA, microthermometry). By scanning multiple layers 2D or 3D Raman images can be gained, thus we can get an insight into post entrapment crystallization processes that contribute to a more precise description of the evolution of alkaline and carbonatite rocks.
Dongre, A., Kamde, G., Chalapathi Rao, N.V., Kale, H.S.
Is megacrystic/xenocrystic ilmenite entrainment in the source magma responsible for the non-Diamondiferous nature of the Maddur-Kotakonda-Narayanpet kimberlites
Geological Society of India, Bangalore November Meeting Group Discussion on Kimberlites and Related Rocks India, Abstract p. 72.
Abstract: Yellow cuboid diamonds are commonly found in diamondiferous alluvial placers of the Northeastern Siberian platform. The internal structure of these diamonds have been studied by optical microscopy, X-Ray topography (XRT) and electron backscatter diffraction (EBSD) techniques. Most of these crystals have typical resorption features and do not preserve primary growth morphology. The resorption leads to an evolution from an originally cubic shape to a rounded tetrahexahedroid. Specific fibrous or columnar internal structure of yellow cuboid diamonds has been revealed. Most of them are strongly deformed. Misorientations of the crystal lattice, found in the samples, may be caused by strains from their fibrous growth or/and post-growth plastic deformation.
Doklady Earth Sciences, Vol. 470, 2, pp. 1059-1062.
Russia
Deposit - Internationalskaya
Abstract: The staged high-pressure annealing of natural cubic diamonds with numerous melt microinclusions from the Internatsional’naya kimberlite pipe was studied experimentally. The results mainly show that the carbonate phases, the daughter phases in partially crystallized microinclusions in diamonds, may undergo phase transformations under the mantle P-T conditions. Most likely, partial melting and further dissolution of dolomite in the carbonate-silicate melt (homogenization of inclusions) occur in inclusions. The experimental data on the staged high-pressure annealing of diamonds with melt microinclusions allow us to estimate the temperature of their homogenization as 1400-1500°C. Thus, cubic diamonds from the Internatsional’naya pipe could have been formed under quite high temperatures corresponding to the lithosphere/asthenosphere boundary. However, it should be noted that the effect of selective capture of inclusions with partial loss of volatiles in relation to the composition of the crystallization medium is not excluded during the growth. This may increase the temperature of their homogenization significantly between 1400 and 1500°C.
Physics and Chemistry of Minerals, Vol. 47, 4, 7p. Pdf
Russia, Siberia
deposit - Khololmolokh
Abstract: In recent years, despite significant progress in the development of new methods for the synthesis of diamond crystals and in their post-growth treatment, many questions remain unclear about the conditions for the formation and degradation of aggregate impurity nitrogen forms. Meanwhile, they are very important for understanding (evaluating) the origin, age, and post-growth conditions of natural diamonds. In the present work, an attempt was made to analyze the causes of the formation of high concentrations of N3V centers in natural IaB-type diamonds from the Kholomolokh placer (the Northeast Siberian craton). The possibility of decay of B centers during the plastic deformation of diamonds is analyzed and experiments on the high-temperature annealing of diamonds containing B centers are reported. The formation of N3V centers during the destruction of the B centers at high-pressure annealing of crystals has been established by experiment. It is assumed that, in the post-growth period, diamond crystals were exposed to tectono-thermal stages of raising the superplumes of the Earth's crust of the Siberian craton.
Zedgenizov, D., Rubatto, D., Shatsky, V., Ragozin, A., Kalinina, V.
Eclogitic diamonds from variable crustal protoliths in the northeastern Siberian Craton: trace elements and coupled Delta13C-delta 180 signatures in diamonds and garnet inclusions.
Abstract: New findings of silicate-melt inclusions in two alluvial diamonds (from the Kholomolokh placer, northeastern Siberian Platform) are reported. Both diamonds exhibit a high degree of N aggregation state (60-70% B) suggesting their long residence in the mantle. Raman spectral analysis revealed that the composite inclusions consist of clinopyroxene and silicate glass. Hopper crystals of clinopyroxene were observed using scanning electron microscopy and energy-dispersive spectroscopic analyses; these are different in composition from the omphacite inclusions that co-exist in the same diamonds. The glasses in these inclusions contain relatively high SiO2, Al2O3, Na2O and, K2O. These composite inclusions are primary melt that partially crystallised at the cooling stage. Hopper crystals of clinopyroxene imply rapid cooling rates, likely related to the uplift of crystals in the kimberlite melt. The reconstructed composition of such primary melts suggests that they were formed as the product of metasomatised mantle. One of the most likely source of melts/fluids metasomatising the mantle could be a subducted slab.
Abstract: The variety of morphology and properties of natural diamonds reflects variations in the conditions of their formation in different mantle environments. This study presents new data on the distribution of impurity centers in diamond type Ib-IaA from xenolith of bimineral eclogite from the Udachnaya kimberlite pipe. The high content of non-aggregated nitrogen C defects in the studied diamonds indicates their formation shortly before the stage of transportation to the surface by the kimberlite melt. The observed sectorial heterogeneity of the distribution of C- and A-defects indicates that aggregation of nitrogen in the octahedral sectors occurs faster than in the cuboid sectors.
Diamondiferous subcontinental lithospheric mantle of the northeastern Siberian Craton: evidence from mineral inclusions in alluvial diamonds. Kapchan Fold Belt Olenek Province
Abstract: Alluvial placers of the northeastern Siberian Platform are characterized by a specific diamond population: regular cuboids, forming a continuous color series from yellowish-green to yellow and dark orange. This is the first comprehensive study of a large number of cuboid diamonds focusing on their morphology, N content and aggregation state, photoluminescence, C isotopic composition and inclusions. The cuboids are cubic (i.e. nearly flat faced) to subrounded crystals; most of them are resorbed. The cathodolominescence images and the birefringence patterns show that many cuboid diamonds record deformation. The cuboid diamonds are characterized by unusual FTIR spectra with the presence of C- (single nitrogen atom) and A- (pair of neighbour nitrogen atoms) centers, and two centers of unknown origin, termed X and Y. The presence of single substitutional nitrogen defects (C centers) in all cuboid diamonds testifies either storage in the mantle at relatively cool conditions or formation just prior to eruption of their host kimberlites. The studied diamonds are also characterized by the presence of specific set of luminescence centers: N3, H3, S1, NVo and NV-, some of which are suggested to have formed during deformation subsequent to diamond growth. The cuboid diamonds show a wide range of carbon isotope compositions from mantle-like values towards strongly 13C depleted compositions (- 6.1 to - 20.2‰ d13C). Combined with the finding of an eclogitic sulfide inclusion, the light carbon isotope compositions link the formation of the studied cuboids to deeply subducted basic protoliths, i.e. former oceanic crust.
Physics and Chemistry of Minerals, Vol. 47, 20 doi.org/10/1007/ s00269-020-01088-5 19p. Pdf
Russia
deposit - International
Abstract: New spectroscopic data were obtained to distinguish the specific features of brown and pink diamonds from Internatsionalnaya kimberlite pipe (Siberian craton). It is shown that pink and brown samples differ markedly in the content and degree of aggregation of nitrogen defects. Pink diamonds generally have higher nitrogen content and a lower aggregation state compared to brown samples, which often show significant variations in nitrogen content and aggregation state between different growth zones. The 491 and 576 nm luminescent centres, which are signs of deformed brown diamonds, are absent or of low intensity in pink diamonds implying that high nitrogen content predominantly in A form in the pink diamonds had stiffened the diamonds against natural plastic deformation. The GR1 centre, formed by a neutrally charged vacancy, was observed only in pink diamonds, which may be due to their formation and storage in the mantle at lower-temperature conditions. Mineral inclusions indicate peridotitic and eclogitic paragenesis for studied brown and pink diamonds, respectively. It is suggested that brown diamonds have been formed in a primitive mantle at higher temperatures and/or stored there much longer.
Contributions to Mineralogy and Petrology, Vol. 175, 98 10.1007/s00410-020-01741-w 11p. Pdf
Russia, Yakutia
diamond crystallography
Abstract: The 35 paired diamond intergrowths of rounded colorless transparent and gray opaque crystals from the placers of northeastern Siberian Platform were investigated. Mineral inclusions (KFsp, Coe, E-Grt, Po) detected in studied samples belong to eclogitic paragenesis. The majority of studied samples have uniform ranges of nitrogen content (1126-1982 at. ppm) and carbon isotope composition (-?16.8 to -?23.2 ‰). These characteristics pointing towards subducted material are possible sources for their genesis. Two samples consist of a gray opaque crystal with the subduction-related characteristics (d13C ca. -?21‰ and N ca. 1300 at. ppm) and a transparent crystal with low nitrogen content (412 and 29 at. ppm) and a heavy carbon isotopic composition (d13C -?4.2 and -?4.6‰) common for primary mantle range. The higher degree of nitrogen aggregation in the crystals with mantle-like characteristics testifies their longer storage in the mantle conditions. These samples reflect multistage diamond growth history and directly indicate the mixing of mantle and subduction carbon sources at the basement of subcontinental lithospheric mantle of northeastern Siberian Platform.
Contributions to Mineralogy and Petrology, Vol. 175, 106, 21p. Pdf
Russia
deposit - Nyurbinskaya
Abstract: We present a new dataset on the composition of high-density fluids (HDFs) in cloudy (n?=?25), coated (n?=?10) and cuboid (n?=?10) diamonds from the Nyurbinskaya kimberlite pipe. These diamonds represent different populations each showing distinct growth histories. The cores of coated diamonds display multiple growth stages and contrasting sources of carbon. Fibrous coats and cuboid diamonds have similar carbon isotopes and nitrogen systematics, suggesting their formation in the last metasomatic events related to kimberlite magmatism, as is common for most such diamonds worldwide. The HDFs in most of these diamonds span a wide range from low-Mg carbonatitic to hydrous silicic compositions. The major- and trace-element variations suggest that the sources for such HDFs range in composition between the depleted mantle and more fertile mantle reservoirs. Hydrous-silicic HDFs could originate from a 13C-enriched source, which originates through subduction of crustal metasedimentary material. Percolation of such HDFs through carbonated eclogites and peridotites facilitates the formation of cuboid diamonds and fibrous coats in the mantle section beneath the corresponding area of the Siberian craton. Cloudy diamonds represent an apparently older population, reflecting continuous diamond formation predominantly from high-Mg carbonatitic HDFs that caused discrete episodes of diamond precipitation. Their high Mg# and enrichment in incompatible elements support a metasomatized peridotitic source for these HDFs.
Buikin, A.I., Trieloff, M., Korochantseeva, E.V., Hopp, J., Kaliwood, M., Meyer, H-P.,Altherr, R.
Distribution of mantle and atmospheric argon in mantle xenoliths from western Arabian Peninsula: constraints on timing and composition of metasomatizing agents....
The diamonds and kimberlitic indicative minerals within the context of stratigraphy and source in Shefa Yamim drill SY-15, Pliocene-Pleistcene Qishon River Valley.
Geochemistry, Geophysics, Geosystems: G3, Vol. 17, 2, pp. 5036-5055.
Africa, Madagascar
Tectonics
Abstract: Accurate reconstructions of the dispersal of supercontinent blocks are essential for testing continental breakup models. Here, we provide a new plate tectonic reconstruction of the opening of the Western Somali Basin during the breakup of East and West Gondwana. The model is constrained by a new comprehensive set of spreading lineaments, detected in this heavily sedimented basin using a novel technique based on directional derivatives of free-air gravity anomalies. Vertical gravity gradient and free-air gravity anomaly maps also enable the detection of extinct mid-ocean ridge segments, which can be directly compared to several previous ocean magnetic anomaly interpretations of the Western Somali Basin. The best matching interpretations have basin symmetry around the M0 anomaly; these are then used to temporally constrain our plate tectonic reconstruction. The reconstruction supports a tight fit for Gondwana fragments prior to breakup, and predicts that the continent-ocean transform margin lies along the Rovuma Basin, not along the Davie Fracture Zone (DFZ) as commonly thought. According to our reconstruction, the DFZ represents a major ocean-ocean fracture zone formed by the coalescence of several smaller fracture zones during evolving plate motions as Madagascar drifted southwards, and offshore Tanzania is an obliquely rifted, rather than transform, margin. New seismic reflection evidence for oceanic crust inboard of the DFZ strongly supports these conclusions. Our results provide important new constraints on the still enigmatic driving mechanism of continental rifting, the nature of the lithosphere in the Western Somali Basin, and its resource potential.
Minerals MDPI, Vol. 10, 1084, doi:10.3390/ min10121084 10p. Pdf
Mantle
spectroscopy
Abstract: The composition of clinopyroxenes is indicative for chemical and physical properties of mantle substrates. In this study, we present the results of Raman spectroscopy examination of clinopyroxene inclusions in natural diamonds (n = 51) and clinopyroxenes from mantle xenoliths of peridotites and eclogites from kimberlites (n = 28). The chemical composition of studied clinopyroxenes shows wide variations indicating their origin in different mantle lithologies. All clinopyroxenes have intense Raman modes corresponding to metal-oxygen translation (~300-500 cm-1), stretching vibrations of bridging O-Si-Obr (?11~670 cm-1), and nonbridging atoms O-Si-Onbr (?16~1000 cm-1). The peak position of the stretching vibration mode (?11) for the studied clinopyroxenes varies in a wide range (23 cm-1) and generally correlates with their chemical composition and reflects the diopside-jadeite heterovalent isomorphism. These correlations may be used for rough estimation of these compounds using the non-destructive Raman spectroscopy technique.
Abstract: Metamorphic petrology observations on rubies found in-situ in their host-rock are combined with geochemical measurements and optical microscopy observations on the same rubies, with the aim of connecting the ruby-forming metamorphic reaction to a unique fingerprint for these minerals. The Fiskenæsset complex in Greenland is used as an area of this case study. Isochemical pressure-temperature sections were calculated based on electron microprobe and whole-rock geochemistry analyses, and compared to field observations. Rubies formed from reaction between olivine/serpentine and anorthite, triggered by the intrusion of a 2.71 Ga pegmatite. Al is sourced from the anorthite reacting to calcic amphibole, silica from the pegmatite reacts with olivine/serpentine to anthophyllite, Cr3+ is mobile in the pegmatitic fluid, giving colour to the rubies. The ruby-forming reaction occurs at about 640 °C and 7 kbar. In order to establish the unique fingerprint for this ruby-bearing ultramafic complex, laser-ablation inductively-coupled-plasma mass-spectrometry trace-element measurements, oxygen isotope compositions, optical microscopy and scanning electron microscopy were applied. Due to the setting in an ultramafic rock-anorthosite-leucogabbro complex, the fingerprint of the rubies from the Fiskenæsset complex is rather unique. Compared to rubies from other localities, Fiskenæsset complex rubies contain high Cr, intermediate Fe, and low V, Ga, and Ti concentrations, low oxygen isotope values (1.6-4.2‰) and a rarely-observed combination of optical growth features and mineral inclusions like anthophyllite+biotite. Results for other Greenland localities are presented and discussed as well. Even though these are derived from ultramafic rock settings too, they record different trace-element ratios and oxygen isotope values, resulting from variations in the Archaean ruby-forming reaction.
Maeda, F., Ohtani, E., Kamada, S., Sakamaki, T., Ohishi, Y., Hirao, N.
The reactions in the MgCO3-SiO2 system in the slabs subducted into the lower mantle and formation of deep diamond.
V.S. Sobolev Institute of Geology and Mineralogy Siberian Branch Russian Academy of Sciences International Symposium Advances in high pressure research: breaking scales and horizons ( Courtesy of N. Poikilenko), Held Sept. 22-26, 1p. Abstract
Abstract: Diamond is an evidence for carbon existing in the deep Earth. Some diamonds are considered to have originated at various depth ranges from the mantle transition zone to the lower mantle. These diamonds are expected to carry significant information about the deep Earth. Here, we determined the phase relations in the MgCO3-SiO2 system up to 152?GPa and 3,100?K using a double sided laser-heated diamond anvil cell combined with in situ synchrotron X-ray diffraction. MgCO3 transforms from magnesite to the high-pressure polymorph of MgCO3, phase II, above 80?GPa. A reaction between MgCO3 phase II and SiO2 (CaCl2-type SiO2 or seifertite) to form diamond and MgSiO3 (bridgmanite or post-perovsktite) was identified in the deep lower mantle conditions. These observations suggested that the reaction of the MgCO3 phase II with SiO2 causes formation of super-deep diamond in cold slabs descending into the deep lower mantle.
Progress in Earth and Planetary Science, Vol. 7, 23, 7p. Pdf
Mantle
wustite
Abstract: The longitudinal sound velocity (VP) and the density (?) of wüstite, FeO, were measured at pressures of up to 112.3?GPa and temperatures of up to 1700?K using both inelastic X-ray scattering and X-ray diffraction combined with a laser-heated diamond-anvil cell. The linear relationship between VP and ?, Birch’s law, for wüstite can be expressed as VP = 1.55 (1) × ? [g/cm3] - 2.03 (8) [km/s] at 300?K and VP = 1.61 (1) × ? [kg/m3] - 2.82 (10) [km/s] at 1700?K. The sound velocity of wüstite is significantly lower than that of bridgmanite and ferropericlase under lower mantle conditions. In other words, the existence of wüstite in the lower mantle can efficiently decrease the seismic velocity. Considering its slow velocity and several mechanisms for the formation of FeO-rich regions at the core-mantle boundary, we confirm earlier suggestions indicating that wüstite enrichment at the bottom of the Earth’s mantle may contribute to the formation of denser ultra-low velocity zones.
Abstract: The abundance and distribution of halogens (F, Cl) are rarely recorded in kimberlites and therefore their petrogenetic significance is poorly constrained. Halogens are usually present in kimberlite rocks in the structure of phlogopite and apatite, but their original concentrations are never fully retained due to the effects of alteration. To provide new constraints on the origin and evolution of halogens in kimberlites and their melts, we present a detailed study of the petrography and geochemistry of the late-Cretaceous Group-I (or archetypal) Roger kimberlite (Ekati cluster, Canada). The studied samples contain abundant anhedral-to-euhedral olivine which is set in a crystalline groundmass of monticellite, phlogopite, apatite, spinel (i.e. magnesian ulvöspinel-magnetite (MUM), Mg-magnetite, pleonaste, Cr-spinel), and perovskite along with abundant secondary alteration phases (i.e. serpentine, garnet (andradite-schlorlomite), amakinite ((Fe2 +, Mg, Mn)(OH)2), calcite). The Roger kimberlite is characterised by the highest recorded F-content (up to 2688 ppm) of the Ekati cluster kimberlites, which is reflected by the preservation of F-rich phases, where bultfonteinite (Ca4(Si2O7)(F, OH)2) and fluorite commonly replace olivine. In order to examine the composition and evolution of the kimberlite melt prior to post-magmatic processes, we studied melt inclusions in olivine, Cr-spinel, monticellite and apatite. Primary multiphase melt inclusions in Cr-spinel, monticellite and apatite and secondary inclusions in olivine are shown to contain a diversity of daughter phases and compositions that are dominated by alkali/alkali-earth (Na, K, Ba, Sr)-enriched Ca-Mg-carbonates ± F, Na-K-chlorides and sulphates, phosphates ± REE, spinel, silicates (e.g. olivine, phlogopite, (clino)humite), and sulphides. Although alkali/alkali-earth- and halogen-bearing phases are abundant in melt inclusions, they are generally absent from the kimberlite groundmass, most likely due to ubiquitous effects of syn- and/or post-magmatic alteration (i.e. serpentinisation). Comparisons between halogens and other trace elements of similar compatibility (i.e. F/Nd and Cl/U) in the Roger kimberlite and their respective estimated primitive mantle abundances show that halogens should be a more significant component in kimberlites than typically measured. We propose that fluorine in the Roger kimberlite was magmatic and was redistributed during hydrothermal alteration by Ca-bearing serpentinising fluids to produce the observed bultfonteinite/fluorite assemblages. Based the compositions and daughter mineral assemblages in primary melt inclusions and reconstructed halogen abundances, we suggest that Cr-spinel, monticellite and apatite crystallised from a variably differentiated Si-P-Cl-F-bearing carbonate melt that was enriched in alkalis/alkali-earths and highly incompatible trace elements
Abstract: Monticellite is a magmatic and/or deuteric mineral that is often present, but widely varying in concentrations in Group-I (or archetypal) kimberlites. To provide new constraints on the petrogenesis of monticellite and its potential significance to kimberlite melt evolution, we examine the petrography and geochemistry of the minimally altered hypabyssal monticellite-rich Leslie (Canada) and Pipe 1 (Finland) kimberlites. In these kimberlites, monticellite (Mtc) is abundant (25–45 vol%) and can be classified into two distinct morphological types: discrete and intergrown groundmass grains (Mtc-I), and replacement of olivine (Mtc-II).
Monticellite in group-I kimberlites: Implications for evolution of parental melts and post-emplacement CO 2 degassing (PDF Download Available).
Abstract: It is now well established that the cratonic sub-continental lithospheric mantle (SCLM) represents a residue of extensively melted fertile peridotite. The widespread occurrence of garnet in the Archaean SCLM remains a paradox because many experiments agree that garnet is exhausted beyond c. 20% melting. It has been suggested that garnet may have formed by exsolution from Al-rich orthopyroxene [1,2,3]. However, the few examples of putative garnet exsolution in cratonic samples remain exotic and have not afforded a link to garnet that occurs as distinct grains in granular harzburgite. We present crystallographic (EBSD), petrographic and chemical (SEM-EDS and LA-ICP-MS) data for an exceptionally well-preserved orthopyroxene megacryst juxtaposed against granular harzburgite. Garnet lamellae within the megacryst show crystallographic continuity and have a strong fabric relative to the host orthopyroxene, strongly indicating that the megacryst formed by exsolution. Garnet lamellae are sub-calcic Cr-pyropes with sinusoidal rare earth element patterns, while the orthopyroxene host is high-Mg enstatite; the reconstructed precursor is clinoestatite. The megacryst shows evidence for disintegrating into granular peridotite, and garnet and orthopyroxene within the granular peridotite are texturally and chemically identical to equivalent phases in the megacryst. Collectively, this evidence supports a common origin for the granular and exsolved portions of the sample. The compositions of the exsolved Cr pyrope and enstatite are typical of harzburgites and depleted lherzolites from the SCLM. Furthermore, garnet inclusions within orthopyroxene in several granular peridotites exhibit the same fabric as those in the exsolved megacryst. We hypothesise that clinoenstatite was a common phase in cratonic SCLM and that exsolution is the likely origin of many sub-calcic garnets in depleted peridotites.
Majoritic garnet: a new approach to pressure estimation of shock events in meteorites and the encapsulation of sub-lithospheric inclusions in diamonds.
Geochimica et Cosmochimica Acta, Vol. 74, 20, pp. 5939-5937.
Abstract: Constraining the origin and history of very ancient detrital zircons has unique potential for furthering our knowledge of Earth's very early crust and Hadean geodynamics. Previous applications of the Ti-in-zircon thermometer to >4 Ga zircons have identified a population with relatively low crystallization temperatures (Tzirxtln) of ~685 °C. This could possibly indicate wet minimum-melting conditions producing granitic melts, implying very different Hadean terrestrial geology from that of other rocky planets. Here we report the first comprehensive ion microprobe study of zircons from a transect through the differentiated Sudbury impact melt sheet (Ontario, Canada). The new zircon Ti results and corresponding Tzirxtln fully overlap with those of the Hadean zircon population. Previous studies that measured Ti in impact melt sheet zircons did not find this wide range because they analyzed samples only from a restricted portion of the melt sheet and because they used laser ablation analyses that can overestimate true Ti content. It is important to note that internal differentiation of the impact melt is likely a prerequisite for the observed low Tzirxtln in zircons from the most evolved rocks. On Earth, melt sheet differentiation is strongest in subaqueous impact basins. Thus, not all Hadean detrital zircon with low Ti necessarily formed during melting at plate boundaries, but at least some could also have crystallized in melt sheets caused by intense meteorite bombardment of the early, hydrosphere-covered protocrust.
Geostandards and Geoanalytical Research, in press available
Technology
REE mass fractions
Abstract: Olivine offers huge, largely untapped, potential for improving our understanding of magmatic and metasomatic processes. In particular, a wealth of information is contained in rare earth element (REE) mass fractions, which are well studied in other minerals. However, REE data for olivine are scarce, reflecting the difficulty associated with determining mass fractions in the low ng g-1 range and with controlling the effects of LREE contamination. We report an analytical procedure for measuring REEs in olivine using laser ablation quadrupole-ICP-MS that achieved limits of determination (LOD) at sub-ng g-1 levels and biases of ~ 5-10%. Empirical partition coefficients (D values) calculated using the new olivine compositions agree with experimental values, indicating that the measured REEs are structurally bound in the olivine crystal lattice, rather than residing in micro-inclusions. We conducted an initial survey of REE contents of olivine from mantle, metamorphic, magmatic and meteorite samples. REE mass fractions vary from 0.1 to double-digit ng g-1 levels. Heavy REEs vary from low mass fractions in meteoritic samples, through variably enriched peridotitic olivine to high mass fractions in magmatic olivines, with fayalitic olivines showing the highest levels. The variable enrichment in HREEs demonstrates that olivine REE patterns have petrological utility.
Abstract: The most outstanding features of Archaean cratons are their extraordinary thickness and enduring longevity. Seismically, Archaean cratonic fragments are sharplybounded deep roots of buoyant cold lithospheric mantle, clearly distinguishable from non-cratonic lithosphere. The age of diamond inclusions and the Os-isotope composition of deep cratonic xenoliths support a model of coeval formation of the crustal and residual mantle portions. Archaean and post-Archaean crust also differ, not in bulk composition, but in crustal architecture. Key drivers of crustal rearrangment were the radioactive heat-producers U, Th and K. In the early Earth, high radioactive heat production led to self-organisation into evolved, potassic upper and refractory lower crust. The lag time between crust formation and reorganisation was much shorter than today. An additional factor contributing to cratonic restructuring was the emplacement of dense supracrustal rocks in ensialic greenstone belts, leading to gravitational inversion. The dome and keel architecture of Archaean cratons was thus driven by crustal radioactive heat and high temperature mantle melting, yielding dense, low viscosity lavas piling up at surface. A pleasing complementary observation from cratonic mantle roots is that refractory mantle nodules also suggest very high degrees of melting and extraction. Thus, the most logical conclusion seems that the komatiite mantle source was up to 500ºC hotter than modern asthenosphere. With higher degree and depth of melting, a thicker and severely depleted bouyant cratonic residue was formed, perfectly equipped to preserve the Archaean crustal record. However, there are significant inconsistencies in this otherwise convincing line of reasoning. They include: Archaean crust is not especially thick, the dunites expected after very high degree melting are rare, many cratonic harzburgites are much richer in orthopyroxene than predicted [1], and cratonic harzburgites often contain garnet. Finding a solution to these issues has important ramifications for secular evolution of the continents and thermal evolution of the mantle. In this presentation, I will contrast the various proposed solutions, including purging of surprisingly carbonated ancient mantle [e.g. 2], onset of plate tectonics, a Neoarchaean superplume event and collapse of Hadean cumulate barriers.
Geochimica et Cosmochinica Acta, Vol. 215, pp. 432-446.
Africa, Zimbabwe
craton
Abstract: Hafnium and oxygen isotopic compositions measured in-situ on U-Pb dated zircon from Archaean sedimentary successions belonging to the 2.9–2.8 Ga Belingwean/Bulawayan groups and previously undated Sebakwian Group are used to characterize the crustal evolution of the Zimbabwe Craton prior to 3.0 Ga. Microstructural and compositional criteria were used to minimize effects arising from Pb loss due to metamorphic overprinting and interaction with low-temperature fluids. 207Pb/206Pb age spectra (concordance >90%) reveal prominent peaks at 3.8, 3.6, 3.5, and 3.35 Ga, corresponding to documented geological events, both globally and within the Zimbabwe Craton. Zircon d18O values from +4 to +10‰ point to both derivation from magmas in equilibrium with mantle oxygen and the incorporation of material that had previously interacted with water in near-surface environments. In eHf-time space, 3.8–3.6 Ga grains define an array consistent with reworking of a mafic reservoir (176Lu/177Hf ~0.015) that separated from chondritic mantle at ~3.9 Ga. Crustal domains formed after 3.6 Ga depict a more complex evolution, involving contribution from chondritic mantle sources and, to a lesser extent, reworking of pre-existing crust. Protracted remelting was not accompanied by significant mantle depletion prior to 3.35 Ga. This implies that early crust production in the Zimbabwe Craton did not cause complementary enriched and depleted reservoirs that were tapped by later magmas, possibly because the volume of crust extracted and stabilised was too small to influence (asthenospheric) mantle isotopic evolution. Growth of continental crust through pulsed emplacement of juvenile (chondritic mantle-derived) melts, into and onto the existing cratonic nucleus, however, involved formation of complementary depleted subcontinental lithospheric mantle since the early Archaean, indicative of strongly coupled evolutionary histories of both reservoirs, with limited evidence for recycling and lateral accretion of arc-related crustal blocks until 3.35 Ga.
Abstract: It is well established that the cratonic subcontinental lithospheric mantle (C-SCLM) represents a residue of extensively melted peridotite. The widespread occurrence of garnet in C-SCLM remains a paradox because experiments show that it should be exhausted beyond ~20% melting. It has been suggested that garnet may have formed by exsolution from Al-rich orthopyroxene; however, the few documented examples of garnet exsolution in cratonic samples are exotic and do not afford a direct link to garnet in granular harzburgite. We report crystallographic, petrographic, and chemical data for an exceptionally well preserved orthopyroxene megacryst containing garnet lamellae, juxtaposed against granular harzburgite. Garnet lamellae are homogeneously distributed within the host orthopyroxene and occur at an orientation that is unrelated to orthopyroxene cleavage, strongly indicating that they formed by exsolution. Garnet lamellae are subcalcic Cr-pyrope, and the orthopyroxene host is high-Mg enstatite; these phases equilibrated at 4.4 GPa and 975 °C. The reconstructed precursor is a high-Al enstatite that formed at higher pressure and temperature conditions of ~6 GPa and 1750 °C. The megacryst shows evidence for disintegrating into granular peridotite, and garnet and orthopyroxene within the granular peridotite are texturally and chemically identical to equivalent phases in the megacryst. Collectively, this evidence supports a common origin for the granular and exsolved portions of the sample. We hypothesize that high-Al enstatite was a common phase in the C-SCLM and that exsolution during cooling and stabilization of the C-SCLM could be the origin of most subcalcic garnets in depleted peridotites.
Abstract: The most outstanding features of Archaean cratons are their extraordinary thickness and enduring longevity. Seismically, Archaean cratonic fragments are sharply-bounded deep roots of mechanically strong, cold lithospheric mantle, clearly distinguishable from non-cratonic lithosphere. Rhenium-depletion of deep cratonic xenolith whole rocks and sulphide inclusions in diamond indicate that melting was broadly coeval with formation of the overlying proto-cratonic crust, which was of limited mechanical strength. A very important process of proto-cratonic development was vertical crustal reorganisation that eventually yielded a thermally stable, cratonised crust with a highly K-U-Th-rich uppermost crust and much more depleted deeper crust. Clastic sedimentary rocks available for geochemical study are predominantly found in the youngest parts of supracrustal stratigraphies and over-represent the highly evolved rocks that appeared during cratonisation. Vertical crustal reorganisation was driven by crustal radiogenic heat and emplacement of proto-craton-wide, incubating and dense supracrustal mafic and ultramafic volcanic rocks. Statistical analysis of these cover sequences shows a preponderance of basalt and a high abundance of ultramafic lavas with a dearth of picrite. The ultramafic lavas can be grouped into Ti-enriched and Ti-depleted types and high pressure and temperature experimental data indicate that the latter formed from previously depleted mantle at temperatures in excess of 1700?°C. Most mantle harzburgite xenoliths from cratonic roots are highly refractory, containing very magnesian olivine and many have a high modal abundance of orthopyroxene. High orthopyroxene mode is commonly attributed to metasomatic silica-enrichment or a non-pyrolitic mantle source but much of the excess silica requirement disappears if melting occurred at high pressures of 4-6?GPa. Analysis of experimental data demonstrates that melting of previously depleted harzburgite can yield liquids with highly variable Si/Mg ratios and low Al2O3 and FeO contents, as found in komatiites, and complementary high Cr/Al residues. In many harzburgites, there is an intimate spatial association of garnet and spinel with orthopyroxene, which indicates formation of the Al-phase by exsolution upon cooling and decompression. New and published rare earth element (REE) data for garnet and orthopyroxene show that garnet has inherited its sinusoidal REE pattern from the orthopyroxene. The lack of middle-REE depletion in these refractory residues is consistent with the lack of middle- over heavy-REE fractionation in most komatiites. This suggests that such pyroxene or garnet (or precursor phases) were present during komatiite melting. In the Kaapvaal craton, garnet exsolution upon significant cooling occurred as early as 3.2?Ga and geobarometry of diamond inclusions from ancient kimberlites also supports cool Archaean cratonic geotherms. This requires that some mantle roots have extended to 300 to possibly 400?km and that early cratons must have been much larger than 500?km in diameter. We maintain that the Archaean-Proterozoic boundary continues to be of geological significance, despite the recognition that upper crustal chemistry, as sampled by sedimentary rocks, became more evolved from ca. 3?Ga onwards. The boundary coincides with the disappearance of widespread komatiite and marks the end of formation of typical refractory cratonic lithosphere. This may signify a fundamental change in the thermal structure of the mantle after which upwellings no longer resulted in very high temperature perturbations. One school of thought is that the thermal re-ordering occurred at the core-mantle boundary whereas others envisage Archaean plumes to have originated at the base of the upper mantle. Here we speculate that Archaean cratonic roots may contain remnants of older domains of non-convecting mantle. These domains are potential carriers of isotope anomalies and their base could have constituted a mechanical and thermal boundary layer. Above laterally extensive barriers, emerging proto-cratons were protected from the main mantle heat loss. The eventual collapse of these mechanical barriers terminated very high temperature upwellings and dismembered portions of the barrier were incorporated into the cratonic mantle during the final Neoarchaean ‘superplume’ event. The surviving cratons may therefore preserve biased evidence of geological processes that operated during the Archaean.
Abstract: Human society's rapid release of vast quantities of CO2 into the atmosphere is a significant planetary experiment. An obvious natural process capable of similar emissions over geologically short time spans are very large bolide impacts. When striking a carbon-rich target, bolides significantly, and potentially catastrophically, disrupt the global biogeochemical carbon cycle. Independent factors, such as sulfur-rich targets, redox state of the oceans or encountering ecosystems already close to a tipping point, dictated the magnitude of further consequences and determined which large bolide strikes shaped Earth's evolution. On the early Earth, where carbon-rich sedimentary targets were rare, impacts may not have been purely destructive. Instead, enclosed subaqueous impact structures may have contributed to initiating Earth's unique carbon cycle.
Brazil Journal of Geology, Vol. 44, 1, pp. 91-103.
South America, Brazil
Coromandel district
Abstract: The diamond bearing district of Coromandel is located in the northwestern part of Minas Gerais, within the Alto Paranaíba Arch, famous for the discovery of most of Brazil's large diamonds above 100 ct. Detailed mapping, aimed at characterizing the Mata da Corda Group of Upper Cretaceous age of Coromandel, has been carried out. This Group was divided into the Patos Formation, composed of kimberlitic and kamafugitic rocks, and the Capacete Formation, presented by conglomerates, pyroclastic rocks, arenite and tuffs. Exposures of the latter Formation have been studied in detail at the small abandoned mine called Canastrel, as well as in the headwater of Santo Antônio do Bonito River. The results have been compared to studies of the kimberlite bodies in the nearby Douradinho River. Kimberlite indicator minerals from these localities show the same compositional trend. Moreover, in the basal conglomerate of the Garimpo Canastrel two diamonds diamonds have been recovered and described. The Garimpo Wilson, situated in the headwater of the river Santo Antônio do Bonito in paleo-alluvium, is composed of material exclusively derived from the erosion of the Capacete Formation and Precambrian (sterile) Canastra quartzites and schists. These detailed investigations suggest that the basal conglomerates of the Capacete Formation represent the main source rock of the alluvial diamond deposits in the Coromandel region.
Brazil Journal of Geology, Vol. 44, 2, pp. 325-338.
South America, Brazil, Minas Gerais
Deposit - Coromandel
Abstract: Important diamond deposits southeast of Coromandel and the local geology have been studied in an attempt to understand what surface source provided the stones. River gravels of Pleistocene to Recent age from this region have supplied most of Brazil’s large diamonds over 100 ct. The upper cretaceous Capacete Formation of the Mata da Corda Group, composed of mafic volcanoclastic, pyroclastic and epiclastic material, has been worked locally for diamonds, nevertheless considered non-economic. The authors present results of their study of a deactivated small mine, representing the first report with description and analyses of two gem diamonds washed from this material. Hundreds of kimberlites, discovered in the last half century in the region, are sterile or non-economic. We propose that the surface source of the diamonds is the Capacete “conglomerado”. The volume of this material is enormous representing a potential resource for large-scale mining. The authors suggest detailed studies of the volcanic facies of this unit focusing on the genesis, distribution and diamond content. As to the question concerning the origin of these diamondiferous pyroclastic rocks, the authors exclude the kimberlites and point towards the large Serra Negra and Salitre alkaline complexes which are considered the primary source for the pyroclastic units of the Mata da Corda Group. They propose that early eruptive phases of this alkaline complex brought diamonds from a mantle source to the surface, much as happens with traditional kimberlites, to explain the association of such huge carbonatite complexes and diamonds.
Dongre, A., Kamde, G., Chalapathi Rao, N.V., Kale, H.S.
Is megacrystic/xenocrystic ilmenite entrainment in the source magma responsible for the non-Diamondiferous nature of the Maddur-Kotakonda-Narayanpet kimberlites
Geological Society of India, Bangalore November Meeting Group Discussion on Kimberlites and Related Rocks India, Abstract p. 72.
Abstract: The abundance and distribution of halogens (F, Cl) are rarely recorded in kimberlites and therefore their petrogenetic significance is poorly constrained. Halogens are usually present in kimberlite rocks in the structure of phlogopite and apatite, but their original concentrations are never fully retained due to the effects of alteration. To provide new constraints on the origin and evolution of halogens in kimberlites and their melts, we present a detailed study of the petrography and geochemistry of the late-Cretaceous Group-I (or archetypal) Roger kimberlite (Ekati cluster, Canada). The studied samples contain abundant anhedral-to-euhedral olivine which is set in a crystalline groundmass of monticellite, phlogopite, apatite, spinel (i.e. magnesian ulvöspinel-magnetite (MUM), Mg-magnetite, pleonaste, Cr-spinel), and perovskite along with abundant secondary alteration phases (i.e. serpentine, garnet (andradite-schlorlomite), amakinite ((Fe2 +, Mg, Mn)(OH)2), calcite). The Roger kimberlite is characterised by the highest recorded F-content (up to 2688 ppm) of the Ekati cluster kimberlites, which is reflected by the preservation of F-rich phases, where bultfonteinite (Ca4(Si2O7)(F, OH)2) and fluorite commonly replace olivine. In order to examine the composition and evolution of the kimberlite melt prior to post-magmatic processes, we studied melt inclusions in olivine, Cr-spinel, monticellite and apatite. Primary multiphase melt inclusions in Cr-spinel, monticellite and apatite and secondary inclusions in olivine are shown to contain a diversity of daughter phases and compositions that are dominated by alkali/alkali-earth (Na, K, Ba, Sr)-enriched Ca-Mg-carbonates ± F, Na-K-chlorides and sulphates, phosphates ± REE, spinel, silicates (e.g. olivine, phlogopite, (clino)humite), and sulphides. Although alkali/alkali-earth- and halogen-bearing phases are abundant in melt inclusions, they are generally absent from the kimberlite groundmass, most likely due to ubiquitous effects of syn- and/or post-magmatic alteration (i.e. serpentinisation). Comparisons between halogens and other trace elements of similar compatibility (i.e. F/Nd and Cl/U) in the Roger kimberlite and their respective estimated primitive mantle abundances show that halogens should be a more significant component in kimberlites than typically measured. We propose that fluorine in the Roger kimberlite was magmatic and was redistributed during hydrothermal alteration by Ca-bearing serpentinising fluids to produce the observed bultfonteinite/fluorite assemblages. Based the compositions and daughter mineral assemblages in primary melt inclusions and reconstructed halogen abundances, we suggest that Cr-spinel, monticellite and apatite crystallised from a variably differentiated Si-P-Cl-F-bearing carbonate melt that was enriched in alkalis/alkali-earths and highly incompatible trace elements
Abstract: Monticellite is a magmatic and/or deuteric mineral that is often present, but widely varying in concentrations in Group-I (or archetypal) kimberlites. To provide new constraints on the petrogenesis of monticellite and its potential significance to kimberlite melt evolution, we examine the petrography and geochemistry of the minimally altered hypabyssal monticellite-rich Leslie (Canada) and Pipe 1 (Finland) kimberlites. In these kimberlites, monticellite (Mtc) is abundant (25–45 vol%) and can be classified into two distinct morphological types: discrete and intergrown groundmass grains (Mtc-I), and replacement of olivine (Mtc-II).
Monticellite in group-I kimberlites: Implications for evolution of parental melts and post-emplacement CO 2 degassing (PDF Download Available).
Abstract: The abundance and distribution of halogens (F, Cl) are rarely recorded in kimberlites and therefore their petrogenetic significance is poorly constrained. Halogens are usually present in kimberlite rocks in the structure of phlogopite and apatite, but their original concentrations are never fully retained due to the effects of alteration. To provide new constraints on the origin and evolution of halogens in kimberlites and their melts, we present a detailed study of the petrography and geochemistry of the late-Cretaceous Group-I (or archetypal) Roger kimberlite (Ekati cluster, Canada). The studied samples contain abundant anhedral-to-euhedral olivine which is set in a crystalline groundmass of monticellite, phlogopite, apatite, spinel (i.e. magnesian ulvöspinel-magnetite (MUM), Mg-magnetite, pleonaste, Cr-spinel), and perovskite along with abundant secondary alteration phases (i.e. serpentine, garnet (andradite-schlorlomite), amakinite ((Fe2 +, Mg, Mn)(OH)2), calcite). The Roger kimberlite is characterised by the highest recorded F-content (up to 2688 ppm) of the Ekati cluster kimberlites, which is reflected by the preservation of F-rich phases, where bultfonteinite (Ca4(Si2O7)(F, OH)2) and fluorite commonly replace olivine. In order to examine the composition and evolution of the kimberlite melt prior to post-magmatic processes, we studied melt inclusions in olivine, Cr-spinel, monticellite and apatite. Primary multiphase melt inclusions in Cr-spinel, monticellite and apatite and secondary inclusions in olivine are shown to contain a diversity of daughter phases and compositions that are dominated by alkali/alkali-earth (Na, K, Ba, Sr)-enriched Ca-Mg-carbonates ± F, Na-K-chlorides and sulphates, phosphates ± REE, spinel, silicates (e.g. olivine, phlogopite, (clino)humite), and sulphides. Although alkali/alkali-earth- and halogen-bearing phases are abundant in melt inclusions, they are generally absent from the kimberlite groundmass, most likely due to ubiquitous effects of syn- and/or post-magmatic alteration (i.e. serpentinisation). Comparisons between halogens and other trace elements of similar compatibility (i.e. F/Nd and Cl/U) in the Roger kimberlite and their respective estimated primitive mantle abundances show that halogens should be a more significant component in kimberlites than typically measured. We propose that fluorine in the Roger kimberlite was magmatic and was redistributed during hydrothermal alteration by Ca-bearing serpentinising fluids to produce the observed bultfonteinite/fluorite assemblages. Based the compositions and daughter mineral assemblages in primary melt inclusions and reconstructed halogen abundances, we suggest that Cr-spinel, monticellite and apatite crystallised from a variably differentiated Si-P-Cl-F-bearing carbonate melt that was enriched in alkalis/alkali-earths and highly incompatible trace elements.
Abstract: Monticellite is a magmatic and/or deuteric mineral that is often present, but widely varying in concentrations in Group-I (or archetypal) kimberlites. To provide new constraints on the petrogenesis of monticellite and its potential significance to kimberlite melt evolution, we examine the petrography and geochemistry of the minimally altered hypabyssal monticellite-rich Leslie (Canada) and Pipe 1 (Finland) kimberlites. In these kimberlites, monticellite (Mtc) is abundant (25-45 vol%) and can be classified into two distinct morphological types: discrete and intergrown groundmass grains (Mtc-I), and replacement of olivine (Mtc-II). Primary multiphase melt inclusions in monticellite, perovskite and Mg-magnetite contain assemblages dominated by alkali (Na, K, Ba, Sr)-enriched Ca-Mg-carbonates, chlorides, phosphates, spinel, silicates (e.g. olivine, phlogopite) and sulphides. These melt inclusions probably represent snapshots of a variably differentiated kimberlite melt that evolved in-situ towards carbonatitic and silica-poor compositions. Although unconstrained in their concentration, the presence of alkali-carbonates and chlorides in melt inclusions suggests they are a more significant component of the kimberlite melt than commonly recorded by whole-rock analyses. We present petrographic and textural evidence showing that pseudomorphic Mtc-II resulted from an in-situ reaction between olivine and the carbonate component of the kimberlite melt in the decarbonation reactio. This reaction is supported by the preservation of abundant primary inclusions of periclase and to a lesser extent Fe-Mg-oxides in monticellite, perovskite and Mg-magnetite. Based on the preservation of primary periclase inclusions, we infer that periclase also existed in the groundmass, but was subsequently altered to brucite. We suggest that CO2 degassing in the latter stages of kimberlite emplacement into the crust is largely driven by the observed reaction between olivine and the carbonate melt. For this reaction to proceed, CO2 should be removed (i.e. degassed), which will cause further reaction and additional degassing in response to this chemical system change (Le Chatelier's principle). Our study demonstrates that these proposed decarbonation reactions may be a commonly overlooked process in the crystallisation of monticellite and exsolution of CO2, which may in turn contribute to the explosive eruption and brecciation processes that occur during kimberlite magma emplacement and pipe formation.
Abstract: The petrologically unique Udachnaya-East kimberlite (Siberia, Russia) is characterised by unserpentinised and H2O-poor volcaniclastic and coherent units that contain fresh olivine, along with abundant alkali-rich carbonates, chlorides, sulphides and sulphates in the groundmass. These mineralogical and geochemical characteristics have led to two divergent models that advocate different origins. It has been suggested that the unserpentinised units from Udachnaya-East are representative of pristine unaltered kimberlite. Conversely, the alkali-chlorine-sulphur enrichment has been attributed to interactions with crustal materials and/or post-emplacement contamination by brines. The mineralogical and geochemical features and the compositions of melt inclusions in unserpentinised and serpentinised Udachnaya-East kimberlite varieties are compared in this study. Both varieties of kimberlite have similar major, compatible and incompatible trace element concentrations and primitive mantle normalised trace element patterns, groundmass textures and silicate, oxide and sulphide mineral compositions. However, these two kimberlite varieties are distinguished by: (i) the presence of unaltered olivine, abundant Na-K-Cl-S-rich minerals (i.e. chlorides, S-bearing alkali-carbonates, sodalite) and the absence of H2O-rich phases (i.e. serpentine, iowaite (Mg4Fe3+(OH)8OCl•3(H2O)) in unserpentinised samples, and (ii) the absence of alkali- and chlorine-enriched phases in the groundmass and characteristic olivine alteration (i.e. replacement by serpentine and/or iowaite) in serpentinised samples. In addition, melt inclusions hosted in olivine, monticellite, spinel and perovskite from unserpentinised and serpentinised kimberlite contain identical daughter phase assemblages that are dominated by alkali-carbonates, chlorides and sulphates/sulphides. This enrichment in alkalis, chlorine and sulphur in melt inclusions demonstrates that these elements were an intrinsic part of the parental magma. The paucity of alkali-carbonates and chlorides in the groundmass of serpentinised Udachnaya-East kimberlite is attributed to their instability and removal during post-emplacement alteration. All evidence previously used in support of crustal and brine contamination of the Udachnaya-East kimberlite is thoroughly evaluated. We demonstrate that ‘contamination models’ are inconsistent with petrographic, geochemical and melt inclusion data. Our combined data suggest that the Udachnaya-East kimberlite crystallised from an essentially H2O-poor, Si-Na-K-Cl-S-bearing carbonate-rich melt.
Abstract: The Benfontein kimberlite is a renowned example of a sill complex and provides an excellent opportunity to examine the emplacement and evolution of intrusive kimberlite magmas. We have undertaken a detailed petrographic and melt inclusion study of the Benfontein Upper, Middle and Lower sills. These sills range in thickness from 0.25 to 5?m. New perovskite and baddeleyite U/Pb dating produced ages of 85.7?±?4.4?Ma and 86.5?±?2.6?Ma, respectively, which are consistent with previous age determinations and indicate emplacement coeval with other kimberlites of the Kimberley cluster. The Benfontein sills are characterised by large variations in texture (e.g., layering) and mineral modal abundance between different sill levels and within individual samples. The Lower Sill is characterised by carbonate-rich diapirs, which intrude into oxide-rich layers from underlying carbonate-rich levels. The general paucity of xenogenic mantle material in the Benfontein sills is attributed to its separation from the host magma during flow differentiation during lateral spreading. The low viscosity is likely responsible for non-explosive emplacement of the Benfontein sills, while the rhythmic layering is attributed to multiple magma injections. The Benfontein sills are marked by the excellent preservation of olivine and groundmass mineralogy, which is composed of monticellite, spinel, perovskite, baddeleyite, ilmenite, apatite, calcite, dolomite along with secondary serpentine and glagolevite [NaMg6[Si3AlO10](OH,O)8•H2O]. This is the first time glagolevite is reported in kimberlites. Groundmass spinel exhibits atoll-textures and is composed of a magnesian ulvöspinel magnetite (MUM) or chromite core, surrounded by occasional pleonaste and a rim of Mg-Al-magnetite. We suggest that pleonaste crystallised as a magmatic phase, but was resorbed back into the residual host melt and/or removed by alteration. Analyses of secondary inclusions in olivine and primary inclusions in monticellite, spinel, perovskite, apatite and interstitial calcite are largely composed of Ca-Mg carbonates and, to a lesser extent, alkali-carbonates and other phases. These inclusions probably represent the entrapment of variably differentiated parental kimberlite melts, which became progressively more enriched in carbonate, alkalis, halogens and sulphur during crystal fractionation. Carbonate-rich diapirs from the Lower Sill contain more exotic phase assemblages (e.g., Ba-Fe titanate, barite, ancylite, pyrochlore), which probably result from the extreme differentiation of residual kimberlite melts followed by physical separation and isolation from the parental carbonate-rich magma. It is likely that any alkali or halogen rich minerals crystallising in the groundmass were removed from the groundmass during syn-/post-magmatic alteration, or in the case of Na, remobilised to form secondary glagolevite. The Benfontein sill complex therefore provides a unique example of how the composition of kimberlites may be modified after magma emplacement in the upper crust.
Abstract: The Benfontein kimberlite is a renowned example of a sill complex and provides an excellent opportunity to examine the emplacement and evolution of intrusive kimberlite magmas. We have undertaken a detailed petrographic and melt inclusion study of the Benfontein Upper, Middle and Lower sills. These sills range in thickness from 0.25 to 5?m. New perovskite and baddeleyite U/Pb dating produced ages of 85.7?±?4.4?Ma and 86.5?±?2.6?Ma, respectively, which are consistent with previous age determinations and indicate emplacement coeval with other kimberlites of the Kimberley cluster. The Benfontein sills are characterised by large variations in texture (e.g., layering) and mineral modal abundance between different sill levels and within individual samples. The Lower Sill is characterised by carbonate-rich diapirs, which intrude into oxide-rich layers from underlying carbonate-rich levels. The general paucity of xenogenic mantle material in the Benfontein sills is attributed to its separation from the host magma during flow differentiation during lateral spreading. The low viscosity is likely responsible for non-explosive emplacement of the Benfontein sills, while the rhythmic layering is attributed to multiple magma injections. The Benfontein sills are marked by the excellent preservation of olivine and groundmass mineralogy, which is composed of monticellite, spinel, perovskite, baddeleyite, ilmenite, apatite, calcite, dolomite along with secondary serpentine and glagolevite [NaMg6[Si3AlO10](OH,O)8•H2O]. This is the first time glagolevite is reported in kimberlites. Groundmass spinel exhibits atoll-textures and is composed of a magnesian ulvöspinel - magnetite (MUM) or chromite core, surrounded by occasional pleonaste and a rim of Mg-Al-magnetite. We suggest that pleonaste crystallised as a magmatic phase, but was resorbed back into the residual host melt and/or removed by alteration. Analyses of secondary inclusions in olivine and primary inclusions in monticellite, spinel, perovskite, apatite and interstitial calcite are largely composed of Ca-Mg carbonates and, to a lesser extent, alkali-carbonates and other phases. These inclusions probably represent the entrapment of variably differentiated parental kimberlite melts, which became progressively more enriched in carbonate, alkalis, halogens and sulphur during crystal fractionation. Carbonate-rich diapirs from the Lower Sill contain more exotic phase assemblages (e.g., Ba-Fe titanate, barite, ancylite, pyrochlore), which probably result from the extreme differentiation of residual kimberlite melts followed by physical separation and isolation from the parental carbonate-rich magma. It is likely that any alkali or halogen rich minerals crystallising in the groundmass were removed from the groundmass during syn-/post-magmatic alteration, or in the case of Na, remobilised to form secondary glagolevite. The Benfontein sill complex therefore provides a unique example of how the composition of kimberlites may be modified after magma emplacement in the upper crust.
Contributions to Mineralogy and Petrology, Vol. 174, 8 22p.
Africa, South Africa, Russia, Canada, Northwest Territories
deposit - Bultfontein, Roberts Victor, Udachnaya-East, Obnazhennaya, Vtorogodnitsa, Koala, Leslie
Abstract: Djerfisherite (K6(Fe,Ni,Cu)25S26Cl) occurs as an accessory phase in the groundmass of many kimberlites, kimberlite-hosted mantle xenoliths, and as a daughter inclusion phase in diamonds and kimberlitic minerals. Djerfisherite typically occurs as replacement of pre-existing Fe-Ni-Cu sulphides (i.e. pyrrhotite, pentlandite and chalcopyrite), but can also occur as individual grains, or as poikilitic phase in the groundmass of kimberlites. In this study, we present new constraints on the origin and genesis of djerfisherite in kimberlites and their entrained xenoliths. Djerfisherite has extremely heterogeneous compositions in terms of Fe, Ni and Cu ratios. However, there appears to be no distinct compositional range of djerfisherite indicative of a particular setting (i.e. kimberlites, xenoliths or diamonds), rather this compositional diversity reflects the composition of the host kimberlite melt and/or interacting metasomatic medium. In addition, djerfisherite may contain K and Cl contents less than the ideal formula unit. Raman spectroscopy and electron backscatter diffraction (EBSD) revealed that these K-Cl poor sulphides still maintain the same djerfisherite crystal structure. Two potential mechanisms for djerfisherite formation are considered: (1) replacement of pre-existing Fe-Ni-Cu sulphides by djerfisherite, which is attributed to precursor sulphides reacting with metasomatic K-Cl bearing melts/fluids in the mantle or the transporting kimberlite melt; (2) direct crystallisation of djerfisherite from the kimberlite melt in groundmass or due to kimberlite melt infiltration into xenoliths. The occurrence of djerfisherite in kimberlites and its mantle cargo from localities worldwide provides strong evidence that the metasomatising/infiltrating kimberlite melt/fluid was enriched in K and Cl. We suggest that kimberlites originated from melts that were more enriched in alkalis and halogens relative to their whole-rock compositions.
Abstract: Kimberlites are the surface manifestation of deeply-derived (>150 km) and rapidly ascended magmas. Fresh kimberlite rocks are exceptionally rare, as most of them are invariably modified by pervasive deuteric and/or post-magmatic fluids that overprint the original mineralogy. In this study, we examined fresh archetypal kimberlite from the Mark pipe (Lac de Gras, Canada), which is characterised by well-preserved olivine and groundmass minerals. The sequence of crystallisation of the parental melt and its major compositional features, including oxygen fugacity, were reconstructed using textural relationships between magmatic minerals, their zoning patterns and crystal/melt/fluid inclusions. Crystal and multiphase primary, pseudosecondary and secondary melt/fluid inclusions in olivine, Cr-diopside, spinel, perovskite, phlogopite/kinoshitalite, apatite and calcite preserve a record of different stages of kimberlite melt evolution. Melt/fluid inclusions are generally more depleted in silica and more enriched in alkalis (K, Na), alkali-earth (Ba, Sr) and halogens (Cl, F) relative to the whole-rock composition of the Mark kimberlite. These melt/fluid inclusion compositions, in combination with presence of elevated CaO (up to 1.73 wt%), in Mg-rich olivine rinds, crystallisation of groundmass kinoshitalite, carbonates (calcite, Sr-Ba-bearing) and alkali-enriched rims around apatite suggest that there was progressive enrichment in CO2, alkalis and halogens in the evolving parental melt. The Mark kimberlite groundmass is characterised by the following stages of in-situ crystallisation: (1) olivine rims around xenocrystic cores + Cr-spinel/TIMAC. (2) Mg-rich olivine rinds around olivine rims/cores + MUM-spinel (followed by pleonaste and Mg-magnetite) + monticellite (+ partial resorption of olivine, along with the formation of ferropericlase and CO2 as a result of decarbonation reactions) + perovskite + apatite. (3) Olivine outmost rinds, which are coeval with phlogopite/kinoshitalite + apatite + sulphides + carbonate (calcite, Ba-Sr-Na-bearing varieties). In addition, oxygen fugacity of the Mark kimberlite was constrained by olivine-chromite, perovskite and monticellite oxygen barometry and showed that the parental melt became progressively more oxidised in response to fractional crystallisation. (4) Deuteric (i.e. late-stage magmatic) and/or post-magmatic (i.e. external fluids) alteration of magmatic minerals (e.g., olivine, monticellite, ferropericlase) and crystallisation of mesostasis serpentine, K-bearing chlorite and brucite (i.e. replacement of ferropericlase). The absence of any alkali (Na, K) and halogen (F, Cl) rich groundmass minerals in the Mark kimberlite may be attributed to these elements becoming concentrated in the late-stage melt where they potentially formed unstable, water-soluble carbonates (such as those observed in melt inclusions). Consequently, these minerals were most likely removed from the groundmass by deuteric and/or post-magmatic alteration.
Abstract: A set of small volcanic edifices with tuff ring and maar morphologies occur in the Catanda area, which is the only locality with extrusive carbonatites reported in Angola. Four outcrops of carbonatite lavas have been identified in this region and considering the mineralogical, textural and compositional features, we classify them as: silicocarbonatites (1), calciocarbonatites (2) and secondary calciocarbonatites produced by the alteration of primary natrocarbonatites (3). Even with their differences, we interpret these lava types as having been a single carbonatite suite related to the same parental magma. We have also estimated the composition of the parental magma from a study of melt inclusions hosted in magnetite microphenocrysts from all of these lavas. Melt inclusions revealed the presence of 13 different alkali-rich phases (e.g., nyerereite, shortite, halite and sylvite) that argues for an alkaline composition of the Catanda parental melts. Mineralogical, textural, compositional and isotopic features of some Catanda lavas are also similar to those described in altered natrocarbonatite localities worldwide such as Tinderet or Kerimasi, leading to our conclusion that the formation of some Catanda calciocarbonatite lavas was related to the occurrence of natrocarbonatite volcanism in this area. On the other hand, silicocarbonatite lavas, which are enriched in periclase, present very different mineralogical, compositional and isotopic features in comparison to the rest of Catanda lavas. We conclude that its formation was probably related to the decarbonation of primary dolomite bearing carbonatites.
Abstract: The formation of platinum-group minerals (PGM) during magma differentiation has been suggested to be an important process in primitive magma evolution, but decisive textural evidence is difficult to obtain because PGM tend to be very small and very rare. We have investigated Cr-spinel phenocrysts from two oxidized magmas (Siberian meimechite and Vanuatu [Ambae Island] arc picrite) and one reduced magma (Uralian [Russia] ankaramite) for PGM inclusions and their platinum-group element (PGE) contents. We observed Os-Ir and Pt-Fe alloys entrapped as inclusions in Cr-spinel in all three suites of lava. The alloys may occur in association with PGE-bearing sulfides and co-trapped silicate melt. Cr-spinel crystals also contain measurable amounts of Os, Ir, Ru, and Rh, which are at concentrations 2×–100× higher than mantle values. Thermodynamic models indicate that the arc picrite and ankaramite melts were probably both saturated with the observed PGM phases, whereas the Os-Ir alloy grain observed in the meimechite is not in equilibrium with the “bulk” melt. Our results demonstrate that PGM (alloys and sulfides) occur as liquidus phases in primitive (unfractionated) melts at high temperature and at a variety of redox conditions, and that Cr-spinel is a significant host of PGE, either in the crystal structure or as PGM inclusions.
Abstract: Magmas forming large igneous provinces (LIP) on continents are generated by extensive melting in the deep crust and underlying mantle and associated with break-up of ancient supercontinents, followed by formation of a new basaltic crust in the mid-oceanic rifts. A lack of the unifying model in understanding the sources of LIP magmatism is justified by lithological and geochemical complexity of erupted magmas on local (e.g. a cross-section) and regional (a single and different LIP) scales. Moreover, the majority of LIP rocks do not fit general criteria for recognizing primary/primitive melts (i.e. < 8 wt% MgO and absence of high-Fo olivine phenocrysts). This study presents the mineralogical (olivine, Cr-spinel, orthopyroxene), geochemical (trace elements and Sr-Nd-Hf-Pb isotopes) and olivine-hosted melt inclusion compositional characteristics of a single primitive (16 wt% MgO), high-Ti (2.5 wt% TiO2) picrite with high-Mg olivine (up to 91 mol% Fo) from the Letaba Formation in the ~ 180 Ma Karoo LIP (south Africa). The olivine compositions (unusually high d18O (6.17‰), high NiO (0.36-0.56 wt%) and low MnO and CaO (0.12-0.20 and 0.12-0.22 wt%, respectively)) are used to argue for a non-peridotitic mantle source. This is supported by the enrichment of the rock and melts in most incompatible trace elements and depletion in heavy rare earth elements (e.g. high Gd/Yb) that reflects residual garnet in the source of melting. The radiogenic isotopes resemble those of the model enriched mantle (EM-1) and further argue for a long-term enrichment of the source in incompatible trace elements. The enriched high-Ti compositions, strongly fractionated incompatible trace elements, presence of primitive olivine and high-Cr spinel in the Letaba picrites are closely matched by olivine-phyric rocks from the ~ 260 Ma Emeishan (Yongsheng area, SW China) and ~ 250 Ma Siberian (Maimecha-Kotuy region, N Siberia) LIPs. However, many other compositional parameters (e.g. trace element and d18O compositions of olivine phenocrysts, Fe2 +/Fe3 + in Cr-spinel, Sr-Nd-Hf isotope ratios) only partially overlap or even diverge. We thus imply that parental melts of enriched picritic rocks with forsteritic olivine from three major continental igneous provinces - Karoo, Emeishan and Siberia cannot be assigned to a common mantle source and similar melting conditions. The Karoo picrites also exhibit some mineralogical and geochemical similarities with rocks and glasses in the south Atlantic Ridge and adjacent fracture zones. The geodynamic reconstructions of the continental plate motions since break-up of the Gondwanaland in the Jurassic support the current position of the source of the Karoo magmatism in the southernmost Atlantic. Co-occurrence of modern and recent anomalous rocks with normal mid-ocean ridge basalts in this region can be related to blocks/rafts of the ancient lithosphere, stranded in the ambient upper mantle and occasionally sampled by rifting-related decompressional melting.
Abstract: Magmas forming large igneous provinces (LIP) on continents are generated by extensive melting in the deep crust and underlying mantle and associated with break-up of ancient supercontinents, followed by formation of a new basaltic crust in the mid-oceanic rifts. A lack of the unifying model in understanding the sources of LIP magmatism is justified by lithological and geochemical complexity of erupted magmas on local (e.g. a cross-section) and regional (a single and different LIP) scales. Moreover, the majority of LIP rocks do not fit general criteria for recognizing primary/primitive melts (i.e. < 8 wt% MgO and absence of high-Fo olivine phenocrysts). This study presents the mineralogical (olivine, Cr-spinel, orthopyroxene), geochemical (trace elements and Sr-Nd-Hf-Pb isotopes) and olivine-hosted melt inclusion compositional characteristics of a single primitive (16 wt% MgO), high-Ti (2.5 wt% TiO2) picrite with high-Mg olivine (up to 91 mol% Fo) from the Letaba Formation in the ~ 180 Ma Karoo LIP (south Africa). The olivine compositions (unusually high d18O (6.17‰), high NiO (0.36–0.56 wt%) and low MnO and CaO (0.12–0.20 and 0.12–0.22 wt%, respectively)) are used to argue for a non-peridotitic mantle source. This is supported by the enrichment of the rock and melts in most incompatible trace elements and depletion in heavy rare earth elements (e.g. high Gd/Yb) that reflects residual garnet in the source of melting. The radiogenic isotopes resemble those of the model enriched mantle (EM-1) and further argue for a long-term enrichment of the source in incompatible trace elements. The enriched high-Ti compositions, strongly fractionated incompatible trace elements, presence of primitive olivine and high-Cr spinel in the Letaba picrites are closely matched by olivine-phyric rocks from the ~ 260 Ma Emeishan (Yongsheng area, SW China) and ~ 250 Ma Siberian (Maimecha-Kotuy region, N Siberia) LIPs. However, many other compositional parameters (e.g. trace element and d18O compositions of olivine phenocrysts, Fe2 +/Fe3 + in Cr-spinel, Sr-Nd-Hf isotope ratios) only partially overlap or even diverge. We thus imply that parental melts of enriched picritic rocks with forsteritic olivine from three major continental igneous provinces – Karoo, Emeishan and Siberia cannot be assigned to a common mantle source and similar melting conditions. The Karoo picrites also exhibit some mineralogical and geochemical similarities with rocks and glasses in the south Atlantic Ridge and adjacent fracture zones. The geodynamic reconstructions of the continental plate motions since break-up of the Gondwanaland in the Jurassic support the current position of the source of the Karoo magmatism in the southernmost Atlantic. Co-occurrence of modern and recent anomalous rocks with normal mid-ocean ridge basalts in this region can be related to blocks/rafts of the ancient lithosphere, stranded in the ambient upper mantle and occasionally sampled by rifting-related decompressional melting.
Contributions to Mineralogy and Petrology, Vol. 175, 13p. Pdf
Russia
perovskite
Abstract: The exceptional accumulation of perovskite in the alkaline-ultramafic Afrikanda complex (Kola Peninsula, Russia) led to the study of polymineralic inclusions hosted in perovskite and magnetite to understand the development of the perovskite-rich zones in the olivinites, clinopyroxenites and silicocarbonatites. The abundance of inclusions varies across the three perovskite textures, with numerous inclusions hosted in the fine-grained equigranular perovskite, fewer inclusions in the coarse-grained interlocked perovskite and rare inclusions in the massive perovskite. A variety of silicate, carbonate, sulphide, phosphate and oxide phases are assembled randomly and in variable proportions in the inclusions. Our observations reveal that the inclusions are not bona fide melt inclusions. We propose that the inclusions represent material trapped during subsolidus sintering of magmatic perovskite. The continuation of the sintering process resulted in the coarsening of inclusion-rich subhedral perovskite into inclusion-poor anhedral and massive perovskite. These findings advocate the importance of inclusion studies for interpreting the origin of oxide minerals and their associated economic deposits and suggest that the formation of large scale accumulations of minerals in other oxide deposits may be a result of annealing of individual disseminated grains.
Abstract: Sulfide liquids that immiscibly separate from silicate melts in different magmatic processes accumulate chalcophile metals and may represent important sources of the metals in Earth's crust for the formation of ore deposits. Sulfide phases commonly found in some primitive mid-ocean ridge basalts (MORB) may support the occurrence of sulfide immiscibility in the crust without requiring magma contamination and/or extensive fractionation. However, the records of incipient sulfide melts in equilibrium with primitive high-Mg olivine and Cr-spinel are scarce. Sulfide globules in olivine phenocrysts in picritic rocks of MORB-affinity at Kamchatsky Mys (Eastern Kamchatka, Russia) represent a well-documented example of natural immiscibility in primitive oceanic magmas. Our study examines the conditions of silicate-sulfide immiscibility in these magmas by reporting high precision data on the compositions of Cr-spinel and silicate melt inclusions, hosted in Mg-rich olivine (86.9-90 mol% Fo), which also contain globules of magmatic sulfide melt. Major and trace element contents of reconstructed parental silicate melts, redox conditions (?QFM = +0.1 ± 0.16 (1s) log. units) and crystallization temperature (1200-1285 °C), as well as mantle potential temperatures (~1350 °C), correspond to typical MORB values. We show that nearly 50% of sulfur could be captured in daughter sulfide globules even in reheated melt inclusions, which could lead to a significant underestimation of sulfur content in reconstructed silicate melts. The saturation of these melts in sulfur appears to be unrelated to the effects of melt crystallization and crustal assimilation, so we discuss the reasons for the S variations in reconstructed melts and the influence of pressure and other parameters on the SCSS (Sulfur Content at Sulfide Saturation).
Trace element geochemistry of myerereite and gregoyryite phenocrysts from natrocarbonatite lava, Oldoinyo-Lengai, Tanzania: implications for magma mixing.
An oxygen fugacity profile through the Siberian craton - Fe K-edge XANES determinations of Fe3 Fe in garnets in peridotite xenoliths from the Udachnaya East kimberlite.
Giuliani, A., Kamenetsky, V.S., Kendrick, M.A., Phillips, D., Wyatt, B.A., Maas, R.
Oxide, sulphide and carbonate minerals in a mantle polymict breccia: metasomatism by proto-kimberlite magmas, and relationship to the kimberlite megacrystic suite.
Chrome spinel hosted melt inclusions in Paleoproterozoic primitive volcanic rocks, northern Finland: evidence for coexistence and mixing of komatiitic and picritic magmas.
Relationships between oxygen fugacity and metasomatism in the Kaapvaal subcratonic mantle, represented by garnet peridotite xenoliths in the Wesselton kimberlite, South Africa.
Abstract: A set of small volcanic edifices with tuff ring and maar morphologies occur in the Catanda area, which is the only locality with extrusive carbonatites reported in Angola. Four outcrops of carbonatite lavas have been identified in this region and considering the mineralogical, textural and compositional features, we classify them as: silicocarbonatites (1), calciocarbonatites (2) and secondary calciocarbonatites produced by the alteration of primary natrocarbonatites (3). Even with their differences, we interpret these lava types as having been a single carbonatite suite related to the same parental magma. We have also estimated the composition of the parental magma from a study of melt inclusions hosted in magnetite microphenocrysts from all of these lavas. Melt inclusions revealed the presence of 13 different alkali-rich phases (e.g., nyerereite, shortite, halite and sylvite) that argues for an alkaline composition of the Catanda parental melts. Mineralogical, textural, compositional and isotopic features of some Catanda lavas are also similar to those described in altered natrocarbonatite localities worldwide such as Tinderet or Kerimasi, leading to our conclusion that the formation of some Catanda calciocarbonatite lavas was related to the occurrence of natrocarbonatite volcanism in this area. On the other hand, silicocarbonatite lavas, which are enriched in periclase, present very different mineralogical, compositional and isotopic features in comparison to the rest of Catanda lavas. We conclude that its formation was probably related to the decarbonation of primary dolomite bearing carbonatites.
Abstract: Mantle-derived carbonatites are igneous rocks dominated by carbonate minerals. Intrusive carbonatites typically contain calcite and, less commonly, dolomite and siderite as the only carbonate minerals. In contrast, lavas erupted by the only active carbonatite volcano on Earth, Oldoinyo Lengai, Tanzania, are enriched in Na-rich carbonate phenocrysts (nyerereite and gregoryite) and Na-K halides in the groundmass. The apparent paradox between the compositions of intrusive and extrusive carbonatites has not been satisfactorily resolved. This study records the fortuitous preservation of halite in the intrusive dolomitic carbonatite of the St.-Honoré carbonatite complex (Québec, Canada), more than 490 m below the present surface. Halite occurs intergrown with, and included in, magmatic minerals typical of intrusive carbonatites; i.e., dolomite, calcite, apatite, rare earth element fluorocarbonates, pyrochlore, fluorite, and phlogopite. Halite is also a major daughter phase of melt inclusions hosted in early magmatic minerals, apatite and pyrochlore. The carbon isotope composition of dolomite (d13C = –5.2‰) and Sr-Nd isotope compositions of individual minerals (87Sr/86Sri = 0.70287 in apatite, to 0.70443 in halite; eNd = +3.2 to +4.0) indicate a mantle origin for the St.-Honoré carbonatite parental melt. More radiogenic Sr compositions of dolomite and dolomite-hosted halite and heavy oxygen isotope composition of dolomite (d18O = +23‰) suggest their formation at some time after magma emplacement by recrystallization of original magmatic components in the presence of ambient fluids. Our observations indicate that water-soluble chloride minerals, common in the modern natrocarbonatite lavas, can be significant but ephemeral components of intrusive carbonatite complexes. We therefore infer that the parental magmas that produce primary carbonatite melts might be enriched in Na and Cl. This conclusion affects existing models for mantle source compositions, melting scenarios, temperature, rheological properties, and crystallization path of carbonatite melts.
Abstract: The formation of platinum-group minerals (PGM) during magma differentiation has been suggested to be an important process in primitive magma evolution, but decisive textural evidence is difficult to obtain because PGM tend to be very small and very rare. We have investigated Cr-spinel phenocrysts from two oxidized magmas (Siberian meimechite and Vanuatu [Ambae Island] arc picrite) and one reduced magma (Uralian [Russia] ankaramite) for PGM inclusions and their platinum-group element (PGE) contents. We observed Os-Ir and Pt-Fe alloys entrapped as inclusions in Cr-spinel in all three suites of lava. The alloys may occur in association with PGE-bearing sulfides and co-trapped silicate melt. Cr-spinel crystals also contain measurable amounts of Os, Ir, Ru, and Rh, which are at concentrations 2×–100× higher than mantle values. Thermodynamic models indicate that the arc picrite and ankaramite melts were probably both saturated with the observed PGM phases, whereas the Os-Ir alloy grain observed in the meimechite is not in equilibrium with the “bulk” melt. Our results demonstrate that PGM (alloys and sulfides) occur as liquidus phases in primitive (unfractionated) melts at high temperature and at a variety of redox conditions, and that Cr-spinel is a significant host of PGE, either in the crystal structure or as PGM inclusions.
Abstract: Kimberlite magmas are of economic and scientific importance because they represent the major host to diamonds and are probably the deepest magmas from continental regions. In addition, kimberlite magmas transport abundant mantle and crustal xenoliths, thus providing fundamental information on the composition of the sub-continental lithosphere. Despite their importance, the composition and ascent mechanism(s) of kimberlite melts remain poorly constrained. Phlogopite is one of the few minerals that preserves a history of fluid migration and magmatism in the mantle and crust and is therefore an invaluable petrogenetic indicator of kimberlite magma evolution. Here we present major and trace element compositional data for phlogopite from the Bultfontein kimberlite (Kimberley, South Africa; i.e. the kimberlite type-locality) and from entrained mantle xenoliths. Phlogopite macrocrysts (~ > 0.3-0.5 mm) and microcrysts (between ~ 0.1 and 0.3 mm) in the Bultfontein kimberlite display concentric compositional zoning patterns. The cores of these phlogopite grains exhibit compositions typical of phlogopite contained in peridotite mantle xenoliths. However, the rims of some grains show compositions analogous to kimberlite groundmass phlogopite (i.e. high Ti, Al and Ba; low Cr), whereas other rims and intermediate zones (between cores and rims) exhibit unusually elevated Cr and lower Al and Ba concentrations. The latter compositions are indistinguishable from matrix phlogopite in polymict breccia xenoliths (considered to represent failed kimberlite intrusions) and from Ti-rich overgrowth rims on phlogopite in other mantle xenoliths. Consequently, it is likely that these phlogopite grains crystallized from kimberlite melts and that the high Ti-Cr zones originated from earlier kimberlite melts at mantle depths. We postulate that successive pulses of ascending kimberlite magma progressively metasomatised the conduit along which later kimberlite pulses ascended, producing progressively decreasing interaction with the surrounding mantle rocks. In our view, these processes represent the fundamental mechanism of kimberlite magma ascent. Our study also indicates that, in addition to xenoliths/xenocrysts and magmatic phases, kimberlite rocks incorporate material crystallized at various mantle depths by previous kimberlite intrusions (mantle-derived ‘antecrysts’).
Abstract: The lack of consensus on the possible range of initial kimberlite melt compositions and their evolution as they ascend through and interact with mantle and crustal wall rocks, hampers a complete understanding of kimberlite petrogenesis. Attempts to resolve these issues are complicated by the fact that kimberlite rocks are mixtures of magmatic, xenocrystic and antecrystic components and, hence, are not directly representative of their parental melt composition. Furthermore, there is a lack of direct evidence of the assimilation processes that may characterise kimberlitic melts during ascent, which makes understanding their melt evolution difficult. In this contribution we provide novel constraints on the interaction between precursor kimberlite melts and lithospheric mantle wall rocks. We present detailed textural and geochemical data for a carbonate-rich vein assemblage that traverses a garnet wehrlite xenolith [equilibrated at ~ 1060 °C and 43 kbar (~ 140-145 km)] from the Bultfontein kimberlite (Kimberley, South Africa). This vein assemblage is dominated by Ca-Mg carbonates, with subordinate oxide minerals, olivine, sulphides, and apatite. Vein phases have highly variable compositions indicating formation under disequilibrium conditions. Primary inclusions in the vein minerals and secondary inclusion trails in host wehrlite minerals contain abundant alkali-bearing phases (e.g., Na-K bearing carbonates, Mg-freudenbergite, Na-bearing apatite and phlogopite). The Sr-isotope composition of vein carbonates overlaps those of groundmass calcite from the Bultfontein kimberlite, as well as perovskite from the other kimberlites in the Kimberley area. Clinopyroxene and garnet in the host wehrlite are resorbed and have Si-rich reaction mantles where in contact with the carbonate-rich veins. Within some veins, the carbonates occur as droplet-like, globular segregations, separated from a similarly shaped Si-rich phase by a thin meniscus of Mg-magnetite. These textures are interpreted to represent immiscibility between carbonate and silicate melts. The preservation of reaction mantles, immiscibility textures and disequilibrium in the vein assemblage, suggests quenching, probably triggered by entrainment and rapid transport toward the Earth's surface in the host kimberlite magma. Based on the Sr-isotope systematics of vein carbonate minerals, and the close temporal relationship between carbonate-rich metasomatism and kimberlite magmatism, we suggest that the carbonate-rich vein assemblage was produced by the interaction between a melt genetically related to the Bultfontein kimberlite and wehrlitic mantle wall rock. If correct, this unique xenolith sample provides a rare snapshot of the assimilation processes that might characterise parental kimberlite melts during their ascent through the lithospheric mantle.
Abstract: A dike -vein complex of potassic type of alkalinity recently discovered in the Baikal ledge, western Baikal area, southern Siberian craton, includes calcite and dolomite -ankerite carbonatites, silicate-bearing carbonatite, phlogopite metapicrite, and phoscorite. The most reliable 40Ar -39Ar dating of the rocks on magnesioriebeckite from alkaline metasomatite at contact with carbonatite yields a statistically significant plateau age of 1017.4 ± 3.2 Ma. The carbonatite is characterized by elevated SiO2 concentrations and is rich in K2O (K2O/Na2O ratio is 21 on average for the calcite carbonatite and 2.5 for the dolomite -ankerite carbonatite), TiO2, P2O5 (up to 9 wt %), REE (up to 3300 ppm), Nb (up to 400 ppm), Zr (up to 800 ppm), Fe, Cr, V, Ni, and Co at relatively low Sr concentrations. Both the metapicrite and the carbonatite are hundreds of times or even more enriched in Ta, Nb, K, and LREE relative to the mantle and are tens of times richer in Rb, Ba, Zr, Hf, and Ti. The high (Gd/Yb)CN ratios of the metapicrite (4.5 -11) and carbonatite (4.5 -17) testify that their source contained residual garnet, and the high K2O/Na2O ratios of the metapicrite (9 -15) and carbonatite suggest that the source also contained phlogopite. The Nd isotopic ratios of the carbonatite suggest that the mantle source of the carbonatite was mildly depleted and similar to an average OIB source. The carbonatites of various mineral composition are believed to be formed via the crystallization differentiation of ferrocarbonatite melt, which segregated from ultramafic alkaline melt.
Abstract: Kimberlitic magmaclasts are discrete ovoid magmatic fragments that formed prior to emplacement from disrupted kimberlite magma. To provide new constraints on the origin and evolution of the kimberlite melts, we document the mineralogy and petrography of a magmaclast recovered from one of the ca. 520 Ma Venetia kimberlites, South Africa. The sample (BI9883) has a sub-spherical shape and consists of a ~ 10 mm diameter central olivine macrocryst, surrounded by porphyritic kimberlite. The kimberlitic material consists of concentrically aligned, altered olivine phenocrysts, set in a crystalline groundmass of calcite, chromite, perovskite, phlogopite, apatite, ilmenite, titanite, sulphides, rutile and magnetite along with abundant alteration phases (i.e. serpentine, talc and secondary calcite). These features are typical of archetypal hypabyssal kimberlites. We examined primary fluid/melt inclusions in chromite, perovskite and apatite containing a diversity of daughter phases. Chromite and perovskite host polycrystalline inclusions containing abundant alkali-carbonates (i.e. enriched in K, Na, Ba, Sr), phosphates, Na-K chlorides, sulphides and equal to lesser quantities of olivine, phlogopite and pleonaste. In contrast, apatite hosts polycrystalline assemblages with abundant alkali-carbonates and Na-K chlorides and lesser amounts of olivine, monticellite and phlogopite. Numerous solid inclusions of shortite (Na2Ca2(CO3)3), Na-Sr-carbonates and apatite occur in groundmass calcite along with fluid inclusions containing daughter crystals of Na-carbonates and Na-chlorides. The primary inclusions in chromite, perovskite and apatite are considered to represent remnants of fluid(s)/melt(s) trapped during crystallisation of the host minerals, whereas the fluid inclusions in calcite are probably secondary in origin. The component proportions of these primary fluid/melt inclusions were estimated in an effort to constrain the composition of the evolving kimberlite melt. These estimates suggest melt evolution from a silicate-carbonate kimberlite melt that became increasingly enriched in carbonates, phosphates, alkalis and chlorides, in response to the fractional crystallisation of constituent minerals (i.e. olivine to apatite). The concentric alignment of crystals around the olivine kernel and ovoid shape of the magmaclast can be ascribed to the low viscosity of the kimberlite melt and rapid rotation whilst in a liquid or partial crystalline state, or to progressive layer-by-layer growth of the magmaclast. Although the mineralogy of our sample is similar to hypabyssal kimberlites worldwide, it differs from hypabyssal kimberlite units in the main Venetia pipes, which contain monticellite-phlogopite rich assemblages and segregationary matrix textures. Therefore magmaclast BI9883 probably originated from a batch of magma distinct from those that produced known hypabyssal units within the Venetia kimberlite cluster.-
Abstract: Magmas forming large igneous provinces (LIP) on continents are generated by extensive melting in the deep crust and underlying mantle and associated with break-up of ancient supercontinents, followed by formation of a new basaltic crust in the mid-oceanic rifts. A lack of the unifying model in understanding the sources of LIP magmatism is justified by lithological and geochemical complexity of erupted magmas on local (e.g. a cross-section) and regional (a single and different LIP) scales. Moreover, the majority of LIP rocks do not fit general criteria for recognizing primary/primitive melts (i.e. < 8 wt% MgO and absence of high-Fo olivine phenocrysts). This study presents the mineralogical (olivine, Cr-spinel, orthopyroxene), geochemical (trace elements and Sr-Nd-Hf-Pb isotopes) and olivine-hosted melt inclusion compositional characteristics of a single primitive (16 wt% MgO), high-Ti (2.5 wt% TiO2) picrite with high-Mg olivine (up to 91 mol% Fo) from the Letaba Formation in the ~ 180 Ma Karoo LIP (south Africa). The olivine compositions (unusually high d18O (6.17‰), high NiO (0.36-0.56 wt%) and low MnO and CaO (0.12-0.20 and 0.12-0.22 wt%, respectively)) are used to argue for a non-peridotitic mantle source. This is supported by the enrichment of the rock and melts in most incompatible trace elements and depletion in heavy rare earth elements (e.g. high Gd/Yb) that reflects residual garnet in the source of melting. The radiogenic isotopes resemble those of the model enriched mantle (EM-1) and further argue for a long-term enrichment of the source in incompatible trace elements. The enriched high-Ti compositions, strongly fractionated incompatible trace elements, presence of primitive olivine and high-Cr spinel in the Letaba picrites are closely matched by olivine-phyric rocks from the ~ 260 Ma Emeishan (Yongsheng area, SW China) and ~ 250 Ma Siberian (Maimecha-Kotuy region, N Siberia) LIPs. However, many other compositional parameters (e.g. trace element and d18O compositions of olivine phenocrysts, Fe2 +/Fe3 + in Cr-spinel, Sr-Nd-Hf isotope ratios) only partially overlap or even diverge. We thus imply that parental melts of enriched picritic rocks with forsteritic olivine from three major continental igneous provinces - Karoo, Emeishan and Siberia cannot be assigned to a common mantle source and similar melting conditions. The Karoo picrites also exhibit some mineralogical and geochemical similarities with rocks and glasses in the south Atlantic Ridge and adjacent fracture zones. The geodynamic reconstructions of the continental plate motions since break-up of the Gondwanaland in the Jurassic support the current position of the source of the Karoo magmatism in the southernmost Atlantic. Co-occurrence of modern and recent anomalous rocks with normal mid-ocean ridge basalts in this region can be related to blocks/rafts of the ancient lithosphere, stranded in the ambient upper mantle and occasionally sampled by rifting-related decompressional melting.
Abstract: Oldoinyo Lengai is situated within the Gregory Rift Valley (northern Tanzania) and is the only active volcano erupting natrocarbonatite lava. This study investigates the texture and mineralogy of the June 1993 lava at Oldoinyo Lengai, and presents petrographic evidence of liquid immiscibility between silicate, carbonate, chloride, and fluoride melt phases. The 1993 lava is a porphyritic natrocarbonatite consisting of abundant phenocrysts of alkali carbonates, nyerereite and gregoryite, set in a quenched groundmass, composed of sodium carbonate, khanneshite, Na-sylvite and K-halite, and a calcium fluoride phase. Dispersed in the lava are silicate spheroids (< 2 mm) with a cryptocrystalline silicate mineral assemblage wrapped around a core mineral. We have identified several textural features preserved in the silicate spheroids, melt inclusions, and carbonatite groundmass that exhibit evidence of silicate-carbonate, carbonate-carbonate and carbonate-halide immiscibility. Rapid quenching of the lava facilitated the preservation of the end products of these liquid immiscibility processes within the groundmass. Textural evidence (at both macro- and micro-scales) indicates that the silicate, carbonate, chloride and fluoride phases of the lava unmixed at different stages of evolution in the magmatic system.
Doklady Earth Sciences, Vol. 471, 1, pp. 1140-1143.
Russia
Carbonatite
Abstract: Apatite and biotite from dolomite?ankerite and calcite?dolomite carbonatite dikes emplaced into the Paleoproterozoic metamorphic rock complex in the southern part of the Siberian Craton are dated by the U-Pb (LA-ICP-MS) and 40Ar-39Ar methods, respectively. Proceeding from the lower intercept of discordia with concordia, the age of apatite from calcite?dolomite carbonatite is estimated to be 972 ± 21 Ma and that for apatite from dolomite?ankerite carbonatite, as 929 ± 37 Ma. Values derived from their upper intercept have no geological sense. The ages obtained for biotite by the 40Ar-39Ar method are 965 ± 9 and 975 ± 14 Ma. It means that the formation of carbonatites reflects the earliest phases of the Neoproterozoic stage in extension of the continental lithosphere.
Abstract: The extent to which water and halogens in Earth’s mantle have primordial origins, or are dominated by seawater-derived components introduced by subduction is debated. About 90% of non-radiogenic xenon in the Earth’s mantle has a subducted atmospheric origin, but the degree to which atmospheric gases and other seawater components are coupled during subduction is unclear. Here we present the concentrations of water and halogens in samples of magmatic glasses collected from mid-ocean ridges and ocean islands globally. We show that water and halogen enrichment is unexpectedly associated with trace element signatures characteristic of dehydrated oceanic crust, and that the most incompatible halogens have relatively uniform abundance ratios that are different from primitive mantle values. Taken together, these results imply that Earth’s mantle is highly processed and that most of its water and halogens were introduced by the subduction of serpentinized lithospheric mantle associated with dehydrated oceanic crust.
Abstract: Kimberlitic magmaclasts are discrete ovoid magmatic fragments that formed prior to emplacement from disrupted kimberlite magma. To provide new constraints on the origin and evolution of the kimberlite melts, we document the mineralogy and petrography of a magmaclast recovered from one of the ca. 520 Ma Venetia kimberlites, South Africa. The sample (BI9883) has a sub-spherical shape and consists of a ~ 10 mm diameter central olivine macrocryst, surrounded by porphyritic kimberlite. The kimberlitic material consists of concentrically aligned, altered olivine phenocrysts, set in a crystalline groundmass of calcite, chromite, perovskite, phlogopite, apatite, ilmenite, titanite, sulphides, rutile and magnetite along with abundant alteration phases (i.e. serpentine, talc and secondary calcite). These features are typical of archetypal hypabyssal kimberlites. We examined primary fluid/melt inclusions in chromite, perovskite and apatite containing a diversity of daughter phases. Chromite and perovskite host polycrystalline inclusions containing abundant alkali-carbonates (i.e. enriched in K, Na, Ba, Sr), phosphates, Na-K chlorides, sulphides and equal to lesser quantities of olivine, phlogopite and pleonaste. In contrast, apatite hosts polycrystalline assemblages with abundant alkali-carbonates and Na-K chlorides and lesser amounts of olivine, monticellite and phlogopite. Numerous solid inclusions of shortite (Na2Ca2(CO3)3), Na-Sr-carbonates and apatite occur in groundmass calcite along with fluid inclusions containing daughter crystals of Na-carbonates and Na-chlorides. The primary inclusions in chromite, perovskite and apatite are considered to represent remnants of fluid(s)/melt(s) trapped during crystallisation of the host minerals, whereas the fluid inclusions in calcite are probably secondary in origin. The component proportions of these primary fluid/melt inclusions were estimated in an effort to constrain the composition of the evolving kimberlite melt. These estimates suggest melt evolution from a silicate-carbonate kimberlite melt that became increasingly enriched in carbonates, phosphates, alkalis and chlorides, in response to the fractional crystallisation of constituent minerals (i.e. olivine to apatite). The concentric alignment of crystals around the olivine kernel and ovoid shape of the magmaclast can be ascribed to the low viscosity of the kimberlite melt and rapid rotation whilst in a liquid or partial crystalline state, or to progressive layer-by-layer growth of the magmaclast. Although the mineralogy of our sample is similar to hypabyssal kimberlites worldwide, it differs from hypabyssal kimberlite units in the main Venetia pipes, which contain monticellite-phlogopite rich assemblages and segregationary matrix textures. Therefore magmaclast BI9883 probably originated from a batch of magma distinct from those that produced known hypabyssal units within the Venetia kimberlite cluster.
Abstract: The petrogenesis of kimberlites is commonly obscured by interaction with hydrothermal fluids, including deuteric (late-magmatic) and/or groundwater components. To provide new constraints on the modification of kimberlite rocks during fluid interaction and the fractionation of kimberlite magmas during crystallisation, we have undertaken a detailed petrographic and geochemical study of a hypabyssal sample (BK) from the Bultfontein kimberlite (Kimberley, South Africa). Sample BK consists of abundant macrocrysts (> 1 mm) and (micro-) phenocrysts of olivine and lesser phlogopite, smaller grains of apatite, serpentinised monticellite, spinel, perovskite, phlogopite and ilmenite in a matrix of calcite, serpentine and dolomite. As in kimberlites worldwide, BK olivine grains consist of cores with variable Mg/Fe ratios, overgrown by rims that host inclusions of groundmass phases (spinel, perovskite, phlogopite) and have constant Mg/Fe, but variable Ni, Mn and Ca concentrations. Primary multiphase inclusions in the outer rims of olivine and in Fe-Ti-rich (‘MUM’) spinel are dominated by dolomite, calcite and alkali carbonates with lesser silicate and oxide minerals. Secondary inclusions in olivine host an assemblage of Na-K carbonates and chlorides. The primary inclusions are interpreted as crystallised alkali-Si-bearing Ca-Mg-rich carbonate melts, whereas secondary inclusions host Na-K-rich C-O-H-Cl fluids. In situ Sr-isotope analyses of groundmass calcite and perovskite reveal similar 87Sr/86Sr ratios to perovskite in the Bultfontein and the other Kimberley kimberlites, i.e. magmatic values. The d18O composition of the BK bulk carbonate fraction is above the mantle range, whereas the d13C values are similar to those of mantle-derived magmas. The occurrence of different generations of serpentine and occasional groundmass calcite with high 87Sr/86Sr, and elevated bulk carbonate d18O values indicate that the kimberlite was overprinted by hydrothermal fluids, which probably included a significant groundwater component. Before this alteration the groundmass included calcite, monticellite, apatite and minor dolomite, phlogopite, spinel, perovskite and ilmenite. Inclusions of groundmass minerals in olivine rims and phlogopite phenocrysts show that olivine and phlogopite also belong to the magmatic assemblage. We therefore suggest that the crystallised kimberlite was produced by an alkali-bearing, phosphorus-rich, silica-dolomitic melt. The alkali-Si-bearing Ca-Mg-rich carbonate compositions of primary melt inclusions in the outer rims of olivine and in spinel grains with evolved compositions (MUM spinel) support formation of these melts after fractionation of abundant olivine, and probably other phases (e.g., ilmenite and chromite). Finally, the similarity between secondary inclusions in kimberlite olivine of this and other worldwide kimberlites and secondary inclusions in minerals of carbonatitic, mafic and felsic magmatic rocks, suggests trapping of residual Na-K-rich C-O-H-Cl fluids after groundmass crystallisation. These residual fluids may have persisted in pore spaces within the largely crystalline BK groundmass and subsequently mixed with larger volumes of external fluids, which triggered serpentine formation and localised carbonate recrystallisation.
Abstract: Magmas forming large igneous provinces (LIP) on continents are generated by extensive melting in the deep crust and underlying mantle and associated with break-up of ancient supercontinents, followed by formation of a new basaltic crust in the mid-oceanic rifts. A lack of the unifying model in understanding the sources of LIP magmatism is justified by lithological and geochemical complexity of erupted magmas on local (e.g. a cross-section) and regional (a single and different LIP) scales. Moreover, the majority of LIP rocks do not fit general criteria for recognizing primary/primitive melts (i.e. < 8 wt% MgO and absence of high-Fo olivine phenocrysts). This study presents the mineralogical (olivine, Cr-spinel, orthopyroxene), geochemical (trace elements and Sr-Nd-Hf-Pb isotopes) and olivine-hosted melt inclusion compositional characteristics of a single primitive (16 wt% MgO), high-Ti (2.5 wt% TiO2) picrite with high-Mg olivine (up to 91 mol% Fo) from the Letaba Formation in the ~ 180 Ma Karoo LIP (south Africa). The olivine compositions (unusually high d18O (6.17‰), high NiO (0.36–0.56 wt%) and low MnO and CaO (0.12–0.20 and 0.12–0.22 wt%, respectively)) are used to argue for a non-peridotitic mantle source. This is supported by the enrichment of the rock and melts in most incompatible trace elements and depletion in heavy rare earth elements (e.g. high Gd/Yb) that reflects residual garnet in the source of melting. The radiogenic isotopes resemble those of the model enriched mantle (EM-1) and further argue for a long-term enrichment of the source in incompatible trace elements. The enriched high-Ti compositions, strongly fractionated incompatible trace elements, presence of primitive olivine and high-Cr spinel in the Letaba picrites are closely matched by olivine-phyric rocks from the ~ 260 Ma Emeishan (Yongsheng area, SW China) and ~ 250 Ma Siberian (Maimecha-Kotuy region, N Siberia) LIPs. However, many other compositional parameters (e.g. trace element and d18O compositions of olivine phenocrysts, Fe2 +/Fe3 + in Cr-spinel, Sr-Nd-Hf isotope ratios) only partially overlap or even diverge. We thus imply that parental melts of enriched picritic rocks with forsteritic olivine from three major continental igneous provinces – Karoo, Emeishan and Siberia cannot be assigned to a common mantle source and similar melting conditions. The Karoo picrites also exhibit some mineralogical and geochemical similarities with rocks and glasses in the south Atlantic Ridge and adjacent fracture zones. The geodynamic reconstructions of the continental plate motions since break-up of the Gondwanaland in the Jurassic support the current position of the source of the Karoo magmatism in the southernmost Atlantic. Co-occurrence of modern and recent anomalous rocks with normal mid-ocean ridge basalts in this region can be related to blocks/rafts of the ancient lithosphere, stranded in the ambient upper mantle and occasionally sampled by rifting-related decompressional melting.
Abstract: Most eclogitic mantle xenoliths brought to the surface exhibit a certain degree of enrichment with incompatible elements, usually attributed to the effect of mantle metasomatism by a putative metasomatic fluid. The metasomatic overprint is represented mainly by enrichments in Na, K, Ba, Ti and LREE and the original source of this fluid remains unknown. In this paper, we present a detailed petrological study of a typical eclogitic mantle xenolith from the Roberts Victor kimberlite mine in South Africa. We find that its textural and mineralogical features present strong evidence for incipient melting. The melting assemblage we observe did not necessarily require introduction of additional components, that is: in-situ melting alone could produce highly incompatible element enriched melt without involvement of a hypothetical and speculative “metasomatic event”. Due to the higher abundance in incompatible elements and lower solidus temperature than peridotites, mantle eclogites, some of which represent previously subducted oceanic crust, are much more plausible sources of mantle metasomatism, but on the other hand, they can be considered as highly metasomatised themselves. This brings us to the “chicken or egg” dilemma – was the secondary mineral assemblage in mantle lithologies a result or a source of mantle metasomatism?
Abstract: Oldoinyo Lengai is situated within the Gregory Rift Valley (northern Tanzania) and is the only active volcano erupting natrocarbonatite lava. This study investigates the texture and mineralogy of the June 1993 lava at Oldoinyo Lengai, and presents petrographic evidence of liquid immiscibility between silicate, carbonate, chloride, and fluoride melt phases. The 1993 lava is a porphyritic natrocarbonatite consisting of abundant phenocrysts of alkali carbonates, nyerereite and gregoryite, set in a quenched groundmass, composed of sodium carbonate, khanneshite, Na-sylvite and K-halite, and a calcium fluoride phase. Dispersed in the lava are silicate spheroids (< 2 mm) with a cryptocrystalline silicate mineral assemblage wrapped around a core mineral. We have identified several textural features preserved in the silicate spheroids, melt inclusions, and carbonatite groundmass that exhibit evidence of silicate-carbonate, carbonate-carbonate and carbonate-halide immiscibility. Rapid quenching of the lava facilitated the preservation of the end products of these liquid immiscibility processes within the groundmass. Textural evidence (at both macro- and micro-scales) indicates that the silicate, carbonate, chloride and fluoride phases of the lava unmixed at different stages of evolution in the magmatic system.
Abstract: The origin of intraplate carbonatitic to alkaline volcanism in Africa is controversial. A tectonic control, i.e., decompression melting associated with far-field stress, is suggested by correlation with lithospheric sutures, repeated magmatic cycles in the same areas over several million years, synchronicity across the plate, and lack of clear age progression patterns. Conversely, a dominant role for mantle convection is supported by the coincidence of Cenozoic volcanism with regions of lithospheric uplift, positive free-air gravity anomalies, and slow seismic velocities. To improve constraints on the genesis of African volcanism, here we report the first radiometric and isotopic results for the Catanda complex, which hosts the only extrusive carbonatites in Angola. Apatite (U-Th-Sm)/He and phlogopite 40Ar/39Ar ages of Catanda aillikite lavas indicate eruption at ca. 500-800 ka, more than 100 m.y. after emplacement of abundant kimberlites and carbonatites in this region. The lavas share similar high-µ (HIMU)-like Sr-Nd-Pb-Hf isotope compositions with other young mantle-derived volcanics from Africa (e.g., Northern Kenya Rift; Cameroon Line). The position of the Catanda complex in the Lucapa corridor, a long-lived extensional structure, suggests a possible tectonic control for the volcanism. The complex is also located on the Bié Dome, a broad region of fast Pleistocene uplift attributed to mantle upwelling. Seismic tomography models indicate convection of deep hot material beneath regions of active volcanism in Africa, including a large area encompassing Angola and northern Namibia. This is strong evidence that intraplate late Cenozoic volcanism, including the Catanda complex, resulted from the interplay between mantle convection and preexisting lithospheric heterogeneities.
Abstract: The abundance and distribution of halogens (F, Cl) are rarely recorded in kimberlites and therefore their petrogenetic significance is poorly constrained. Halogens are usually present in kimberlite rocks in the structure of phlogopite and apatite, but their original concentrations are never fully retained due to the effects of alteration. To provide new constraints on the origin and evolution of halogens in kimberlites and their melts, we present a detailed study of the petrography and geochemistry of the late-Cretaceous Group-I (or archetypal) Roger kimberlite (Ekati cluster, Canada). The studied samples contain abundant anhedral-to-euhedral olivine which is set in a crystalline groundmass of monticellite, phlogopite, apatite, spinel (i.e. magnesian ulvöspinel-magnetite (MUM), Mg-magnetite, pleonaste, Cr-spinel), and perovskite along with abundant secondary alteration phases (i.e. serpentine, garnet (andradite-schlorlomite), amakinite ((Fe2 +, Mg, Mn)(OH)2), calcite). The Roger kimberlite is characterised by the highest recorded F-content (up to 2688 ppm) of the Ekati cluster kimberlites, which is reflected by the preservation of F-rich phases, where bultfonteinite (Ca4(Si2O7)(F, OH)2) and fluorite commonly replace olivine. In order to examine the composition and evolution of the kimberlite melt prior to post-magmatic processes, we studied melt inclusions in olivine, Cr-spinel, monticellite and apatite. Primary multiphase melt inclusions in Cr-spinel, monticellite and apatite and secondary inclusions in olivine are shown to contain a diversity of daughter phases and compositions that are dominated by alkali/alkali-earth (Na, K, Ba, Sr)-enriched Ca-Mg-carbonates ± F, Na-K-chlorides and sulphates, phosphates ± REE, spinel, silicates (e.g. olivine, phlogopite, (clino)humite), and sulphides. Although alkali/alkali-earth- and halogen-bearing phases are abundant in melt inclusions, they are generally absent from the kimberlite groundmass, most likely due to ubiquitous effects of syn- and/or post-magmatic alteration (i.e. serpentinisation). Comparisons between halogens and other trace elements of similar compatibility (i.e. F/Nd and Cl/U) in the Roger kimberlite and their respective estimated primitive mantle abundances show that halogens should be a more significant component in kimberlites than typically measured. We propose that fluorine in the Roger kimberlite was magmatic and was redistributed during hydrothermal alteration by Ca-bearing serpentinising fluids to produce the observed bultfonteinite/fluorite assemblages. Based the compositions and daughter mineral assemblages in primary melt inclusions and reconstructed halogen abundances, we suggest that Cr-spinel, monticellite and apatite crystallised from a variably differentiated Si-P-Cl-F-bearing carbonate melt that was enriched in alkalis/alkali-earths and highly incompatible trace elements.
Abstract: Monticellite is a magmatic and/or deuteric mineral that is often present, but widely varying in concentrations in Group-I (or archetypal) kimberlites. To provide new constraints on the petrogenesis of monticellite and its potential significance to kimberlite melt evolution, we examine the petrography and geochemistry of the minimally altered hypabyssal monticellite-rich Leslie (Canada) and Pipe 1 (Finland) kimberlites. In these kimberlites, monticellite (Mtc) is abundant (25-45 vol%) and can be classified into two distinct morphological types: discrete and intergrown groundmass grains (Mtc-I), and replacement of olivine (Mtc-II). Primary multiphase melt inclusions in monticellite, perovskite and Mg-magnetite contain assemblages dominated by alkali (Na, K, Ba, Sr)-enriched Ca-Mg-carbonates, chlorides, phosphates, spinel, silicates (e.g. olivine, phlogopite) and sulphides. These melt inclusions probably represent snapshots of a variably differentiated kimberlite melt that evolved in-situ towards carbonatitic and silica-poor compositions. Although unconstrained in their concentration, the presence of alkali-carbonates and chlorides in melt inclusions suggests they are a more significant component of the kimberlite melt than commonly recorded by whole-rock analyses. We present petrographic and textural evidence showing that pseudomorphic Mtc-II resulted from an in-situ reaction between olivine and the carbonate component of the kimberlite melt in the decarbonation reactio. This reaction is supported by the preservation of abundant primary inclusions of periclase and to a lesser extent Fe-Mg-oxides in monticellite, perovskite and Mg-magnetite. Based on the preservation of primary periclase inclusions, we infer that periclase also existed in the groundmass, but was subsequently altered to brucite. We suggest that CO2 degassing in the latter stages of kimberlite emplacement into the crust is largely driven by the observed reaction between olivine and the carbonate melt. For this reaction to proceed, CO2 should be removed (i.e. degassed), which will cause further reaction and additional degassing in response to this chemical system change (Le Chatelier's principle). Our study demonstrates that these proposed decarbonation reactions may be a commonly overlooked process in the crystallisation of monticellite and exsolution of CO2, which may in turn contribute to the explosive eruption and brecciation processes that occur during kimberlite magma emplacement and pipe formation.
Earth and Planetary Science Letters, Vol. 401, pp. 132-147.
Africa, South Africa
metasomatism
Abstract: The Karoo igneous rocks (174-185 Ma) of southern Africa represent one of the largest continental flood basalt provinces on Earth. Available evidence indicates that Karoo magmas either originated in the asthenosphere and were extensively modified by interaction with the lithospheric mantle prior to emplacement in the upper crust; or were produced by partial melting of enriched mantle lithosphere. However, no direct evidence of interaction by Karoo melts (or their precursors) with lithospheric mantle rocks has yet been identified in the suites of mantle xenoliths sampled by post-Karoo kimberlites in southern Africa. Here we report U-Pb ages for lindsleyite-mathiasite (LIMA) titanate minerals (crichtonite series) from three metasomatised, phlogopite and clinopyroxene-rich peridotite xenoliths from the ~84 Ma Bultfontein kimberlite (Kimberley, South Africa), located in the southern part of the Karoo magmatic province. The LIMA minerals appear to have formed during metasomatism of the lithospheric mantle by fluids enriched in HFSE (Ti, Zr, Hf, Nb), LILE (K, Ba, Ca, Sr) and LREE. LIMA U-Pb elemental and isotopic compositions were measured in situ by LA-ICP-MS methods, and potential matrix effects were evaluated by solution-mode analysis of mineral separates. LIMA minerals from the three samples yielded apparent U-Pb ages of , and (). A single zircon grain extracted from the ~190 Ma LIMA-bearing sample produced a similar U-Pb age of , within uncertainty of the LIMA ages. These data provide the first robust evidence of fluid enrichment in the lithospheric mantle beneath the Kimberley region at ~180-190 Ma, and suggest causation of mantle metasomatism by Karoo melts or their precursor(s). The results further indicate that U-Pb dating of LIMA minerals provides a new, accurate tool for dating metasomatic events in the lithospheric mantle.
Abstract: Identification of the primary compositions of mantle-derived melts is crucial for understanding mantle compositions and physical conditions of mantle melting. However, these melts rarely reach the Earth's surface unmodified because of contamination, crystal fractionation and degassing, processes that occur almost ubiquitously after melt generation. Here we report snapshots of the melts preserved in sheared peridotite xenoliths from the Udachnaya-East kimberlite pipe, in the central part of the Siberian craton. These xenoliths are among the deepest mantle samples and were delivered by kimberlite magma from 180-230?km depth interval, i.e. from the base of the cratonic lithosphere. The olivine grains of the sheared peridotites contain secondary inclusions of the crystallized melt with bulk molar (Na?+?K)/Ca?~?3.4. Various Na-K-Ca-, Na-Ca-, Na-Mg-, Ca-Mg- and Ca-carbonates, Na-Mg-carbonates with additional anions, alkali sulphates and halides are predominant among the daughter minerals in secondary melt inclusions, whereas silicates, oxides, sulphides and phosphates are subordinate. These inclusions can be considered as Cl-S-bearing alkali-carbonate melts. The presence of aragonite, a high-pressure polymorph of CaCO3, among the daughter minerals suggests a mantle origin for these melt inclusions. The secondary melt inclusions in olivine from the sheared peridotite xenoliths and the melt inclusions in phenocrystic olivines from the host kimberlites demonstrate similarities, in daughter minerals assemblages and trace-element compositions. Moreover, alkali-rich minerals (carbonates, halides, sulphates and sulphides) identified in the studied melt inclusions are also present in the groundmass of the host kimberlites. These data suggests a genetic link between melt enclosed in olivine from the sheared peridotites and melt parental to the Udachnaya-East kimberlites. We suggest that the melt inclusions in olivine from mantle xenoliths may represent near primary, kimberlite melts. These results are new evidence in support of the alkali-carbonate composition of kimberlite melts in their source regions, prior to the kimberlite emplacement into the crust, and are in stark contrast to the generally accepted ultramafic silicate nature of parental kimberlite liquids.
Abstract: The petrologically unique Udachnaya-East kimberlite (Siberia, Russia) is characterised by unserpentinised and H2O-poor volcaniclastic and coherent units that contain fresh olivine, along with abundant alkali-rich carbonates, chlorides, sulphides and sulphates in the groundmass. These mineralogical and geochemical characteristics have led to two divergent models that advocate different origins. It has been suggested that the unserpentinised units from Udachnaya-East are representative of pristine unaltered kimberlite. Conversely, the alkali-chlorine-sulphur enrichment has been attributed to interactions with crustal materials and/or post-emplacement contamination by brines. The mineralogical and geochemical features and the compositions of melt inclusions in unserpentinised and serpentinised Udachnaya-East kimberlite varieties are compared in this study. Both varieties of kimberlite have similar major, compatible and incompatible trace element concentrations and primitive mantle normalised trace element patterns, groundmass textures and silicate, oxide and sulphide mineral compositions. However, these two kimberlite varieties are distinguished by: (i) the presence of unaltered olivine, abundant Na-K-Cl-S-rich minerals (i.e. chlorides, S-bearing alkali-carbonates, sodalite) and the absence of H2O-rich phases (i.e. serpentine, iowaite (Mg4Fe3+(OH)8OCl•3(H2O)) in unserpentinised samples, and (ii) the absence of alkali- and chlorine-enriched phases in the groundmass and characteristic olivine alteration (i.e. replacement by serpentine and/or iowaite) in serpentinised samples. In addition, melt inclusions hosted in olivine, monticellite, spinel and perovskite from unserpentinised and serpentinised kimberlite contain identical daughter phase assemblages that are dominated by alkali-carbonates, chlorides and sulphates/sulphides. This enrichment in alkalis, chlorine and sulphur in melt inclusions demonstrates that these elements were an intrinsic part of the parental magma. The paucity of alkali-carbonates and chlorides in the groundmass of serpentinised Udachnaya-East kimberlite is attributed to their instability and removal during post-emplacement alteration. All evidence previously used in support of crustal and brine contamination of the Udachnaya-East kimberlite is thoroughly evaluated. We demonstrate that ‘contamination models’ are inconsistent with petrographic, geochemical and melt inclusion data. Our combined data suggest that the Udachnaya-East kimberlite crystallised from an essentially H2O-poor, Si-Na-K-Cl-S-bearing carbonate-rich melt.
Abstract: The Benfontein kimberlite is a renowned example of a sill complex and provides an excellent opportunity to examine the emplacement and evolution of intrusive kimberlite magmas. We have undertaken a detailed petrographic and melt inclusion study of the Benfontein Upper, Middle and Lower sills. These sills range in thickness from 0.25 to 5?m. New perovskite and baddeleyite U/Pb dating produced ages of 85.7?±?4.4?Ma and 86.5?±?2.6?Ma, respectively, which are consistent with previous age determinations and indicate emplacement coeval with other kimberlites of the Kimberley cluster. The Benfontein sills are characterised by large variations in texture (e.g., layering) and mineral modal abundance between different sill levels and within individual samples. The Lower Sill is characterised by carbonate-rich diapirs, which intrude into oxide-rich layers from underlying carbonate-rich levels. The general paucity of xenogenic mantle material in the Benfontein sills is attributed to its separation from the host magma during flow differentiation during lateral spreading. The low viscosity is likely responsible for non-explosive emplacement of the Benfontein sills, while the rhythmic layering is attributed to multiple magma injections. The Benfontein sills are marked by the excellent preservation of olivine and groundmass mineralogy, which is composed of monticellite, spinel, perovskite, baddeleyite, ilmenite, apatite, calcite, dolomite along with secondary serpentine and glagolevite [NaMg6[Si3AlO10](OH,O)8•H2O]. This is the first time glagolevite is reported in kimberlites. Groundmass spinel exhibits atoll-textures and is composed of a magnesian ulvöspinel magnetite (MUM) or chromite core, surrounded by occasional pleonaste and a rim of Mg-Al-magnetite. We suggest that pleonaste crystallised as a magmatic phase, but was resorbed back into the residual host melt and/or removed by alteration. Analyses of secondary inclusions in olivine and primary inclusions in monticellite, spinel, perovskite, apatite and interstitial calcite are largely composed of Ca-Mg carbonates and, to a lesser extent, alkali-carbonates and other phases. These inclusions probably represent the entrapment of variably differentiated parental kimberlite melts, which became progressively more enriched in carbonate, alkalis, halogens and sulphur during crystal fractionation. Carbonate-rich diapirs from the Lower Sill contain more exotic phase assemblages (e.g., Ba-Fe titanate, barite, ancylite, pyrochlore), which probably result from the extreme differentiation of residual kimberlite melts followed by physical separation and isolation from the parental carbonate-rich magma. It is likely that any alkali or halogen rich minerals crystallising in the groundmass were removed from the groundmass during syn-/post-magmatic alteration, or in the case of Na, remobilised to form secondary glagolevite. The Benfontein sill complex therefore provides a unique example of how the composition of kimberlites may be modified after magma emplacement in the upper crust.
Contributions to Mineralogy and Petrology, Vol. 173, 12, pp. 106-
Russia, Kola Peninsula
deposit - Afrikanda
Abstract: Perovskite is a common accessory mineral in a variety of mafic and ultramafic rocks, but perovskite deposits are rare and studies of perovskite ore deposits are correspondingly scarce. Perovskite is a key rock-forming mineral and reaches exceptionally high concentrations in olivinites, diverse clinopyroxenites and silicocarbonatites in the Afrikanda alkaline-ultramafic complex (Kola Peninsula, NW Russia). Across these lithologies, we classify perovskite into three types (T1-T3) based on crystal morphology, inclusion abundance, composition, and zonation. Perovskite in olivinites and some clinopyroxenites is represented by fine-grained, equigranular, monomineralic clusters and networks (T1). In contrast, perovskite in other clinopyroxenites and some silicocarbonatites has fine- to coarse-grained interlocked (T2) and massive (T3) textures. Electron backscatter diffraction reveals that some T1 and T2 perovskite grains in the olivinites and clinopyroxenites are composed of multiple subgrains and may represent stages of crystal rotation, coalescence and amalgamation. We propose that in the olivinites and clinopyroxenites, these processes result in the transformation of clusters and networks of fine-grained perovskite crystals (T1) to mosaics of more coarse-grained (T2) and massive perovskite (T3). This interpretation suggests that sub-solidus processes can lead to the development of coarse-grained and massive perovskite. A combination of characteristic features identified in the Afrikanda perovskite (equigranular crystal mosaics, interlocked irregular-shaped grains, and massive zones) is observed in other oxide ore deposits, particularly in layered intrusions of chromitites and intrusion-hosted magnetite deposits and suggests that the same amalgamation processes may be responsible for some of the coarse-grained and massive textures observed in oxide deposits worldwide.
Abstract: The Benfontein kimberlite is a renowned example of a sill complex and provides an excellent opportunity to examine the emplacement and evolution of intrusive kimberlite magmas. We have undertaken a detailed petrographic and melt inclusion study of the Benfontein Upper, Middle and Lower sills. These sills range in thickness from 0.25 to 5?m. New perovskite and baddeleyite U/Pb dating produced ages of 85.7?±?4.4?Ma and 86.5?±?2.6?Ma, respectively, which are consistent with previous age determinations and indicate emplacement coeval with other kimberlites of the Kimberley cluster. The Benfontein sills are characterised by large variations in texture (e.g., layering) and mineral modal abundance between different sill levels and within individual samples. The Lower Sill is characterised by carbonate-rich diapirs, which intrude into oxide-rich layers from underlying carbonate-rich levels. The general paucity of xenogenic mantle material in the Benfontein sills is attributed to its separation from the host magma during flow differentiation during lateral spreading. The low viscosity is likely responsible for non-explosive emplacement of the Benfontein sills, while the rhythmic layering is attributed to multiple magma injections. The Benfontein sills are marked by the excellent preservation of olivine and groundmass mineralogy, which is composed of monticellite, spinel, perovskite, baddeleyite, ilmenite, apatite, calcite, dolomite along with secondary serpentine and glagolevite [NaMg6[Si3AlO10](OH,O)8•H2O]. This is the first time glagolevite is reported in kimberlites. Groundmass spinel exhibits atoll-textures and is composed of a magnesian ulvöspinel - magnetite (MUM) or chromite core, surrounded by occasional pleonaste and a rim of Mg-Al-magnetite. We suggest that pleonaste crystallised as a magmatic phase, but was resorbed back into the residual host melt and/or removed by alteration. Analyses of secondary inclusions in olivine and primary inclusions in monticellite, spinel, perovskite, apatite and interstitial calcite are largely composed of Ca-Mg carbonates and, to a lesser extent, alkali-carbonates and other phases. These inclusions probably represent the entrapment of variably differentiated parental kimberlite melts, which became progressively more enriched in carbonate, alkalis, halogens and sulphur during crystal fractionation. Carbonate-rich diapirs from the Lower Sill contain more exotic phase assemblages (e.g., Ba-Fe titanate, barite, ancylite, pyrochlore), which probably result from the extreme differentiation of residual kimberlite melts followed by physical separation and isolation from the parental carbonate-rich magma. It is likely that any alkali or halogen rich minerals crystallising in the groundmass were removed from the groundmass during syn-/post-magmatic alteration, or in the case of Na, remobilised to form secondary glagolevite. The Benfontein sill complex therefore provides a unique example of how the composition of kimberlites may be modified after magma emplacement in the upper crust.
Contributions to Mineralogy and Petrology, Vol. 174, 8 22p.
Africa, South Africa, Russia, Canada, Northwest Territories
deposit - Bultfontein, Roberts Victor, Udachnaya-East, Obnazhennaya, Vtorogodnitsa, Koala, Leslie
Abstract: Djerfisherite (K6(Fe,Ni,Cu)25S26Cl) occurs as an accessory phase in the groundmass of many kimberlites, kimberlite-hosted mantle xenoliths, and as a daughter inclusion phase in diamonds and kimberlitic minerals. Djerfisherite typically occurs as replacement of pre-existing Fe-Ni-Cu sulphides (i.e. pyrrhotite, pentlandite and chalcopyrite), but can also occur as individual grains, or as poikilitic phase in the groundmass of kimberlites. In this study, we present new constraints on the origin and genesis of djerfisherite in kimberlites and their entrained xenoliths. Djerfisherite has extremely heterogeneous compositions in terms of Fe, Ni and Cu ratios. However, there appears to be no distinct compositional range of djerfisherite indicative of a particular setting (i.e. kimberlites, xenoliths or diamonds), rather this compositional diversity reflects the composition of the host kimberlite melt and/or interacting metasomatic medium. In addition, djerfisherite may contain K and Cl contents less than the ideal formula unit. Raman spectroscopy and electron backscatter diffraction (EBSD) revealed that these K-Cl poor sulphides still maintain the same djerfisherite crystal structure. Two potential mechanisms for djerfisherite formation are considered: (1) replacement of pre-existing Fe-Ni-Cu sulphides by djerfisherite, which is attributed to precursor sulphides reacting with metasomatic K-Cl bearing melts/fluids in the mantle or the transporting kimberlite melt; (2) direct crystallisation of djerfisherite from the kimberlite melt in groundmass or due to kimberlite melt infiltration into xenoliths. The occurrence of djerfisherite in kimberlites and its mantle cargo from localities worldwide provides strong evidence that the metasomatising/infiltrating kimberlite melt/fluid was enriched in K and Cl. We suggest that kimberlites originated from melts that were more enriched in alkalis and halogens relative to their whole-rock compositions.
Abstract: The emplacement age of the Great Udzha Dyke (northern Siberian Craton) was determined by the U-Pb dating of apatite using laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). This produced an age of 1386 ± 30 Ma. This dyke along with two other adjacent intrusions, which cross-cut the sedimentary units of the Udzha paleo-rift, were subjected to paleomagnetic investigation. The paleomagnetic poles for the Udzha paleo-rift intrusions are consistent with previous results published for the Chieress dyke in the Anabar shield of the Siberian Craton (1384 ± 2 Ma). Our results suggest that there was a period of intense volcanism in the northern Siberian Craton, as well as allow us to reconstruct the apparent migration of the Siberian Craton during the Mesoproterozoic.
Abstract: The Siberian Craton was assembled in a Paleoproterozoic episode at about 1.88?Ga by the collision of older blocks, followed at about 1.86?Ga by post-collisional felsic magmatism. We have found a set of extremely fresh mica-bearing lamprophyre-looking rocks within the Sharyzhalgay metamorphic complex of the south-western Siberian Craton. Zircon from these rocks yields a UPb TIMS age of 1864.7?±?1.8?Ma, which coincides perfectly with the peak of the post-collisional granite ages and postdates by ~15?Ma the peak of ages obtained for metamorphism. The same ages were reported earlier for a mafic dyke with ocean island basalt (OIB) geochemical signatures and a Pt-bearing mafic-ultramafic intrusion found in the same region. Mineralogy, major and trace element geochemistry and Sr-Nd-Pb isotopes show that the studied rocks (1) have shoshonitic affinity, (2) are hybrid rocks with mineral assemblages which could not be in equilibrium, (3) where derived by recycling of an Archean crustal source and (4) resemble post-collision Tibetan shoshonitic series. The genesis of these rocks is considered to be due to melting of crustal lithologies and metasomatized lithospheric mantle within a subducted slab. Some of the resulting melts ascended through the lithospheric column and fractionated to low-Mg absarokites, whereas other melts were contaminated by orthopyroxenitic mantle material and attained unusual high-Mg mafic compositions. According to our model, the post-collisional magmatism (shoshonite- and OIB-type) occurred due to upwelling of hot asthenosphere through a slab window, when the active collision ceased as a result of the slab break off and loss of the slab pull force. Overall, our study shows that in the Paleoproterozoic shoshonitic melts were emplaced within a similar tectonic setting as seen today in modern orogenic systems.
Abstract: Megacrysts are large (cm to >20?cm in size) mantle-derived crystals, which are commonly entrained by kimberlite magmas, comprising of olivine, orthopyroxene, clinopyroxene, phlogopite, garnet, ilmenite and zircon as common phases. Numerous studies have shown megacrysts to contain polymineralic inclusions, which have been interpreted to represent entrapped kimberlite melt. To constrain the origin of these inclusions in megacrysts and their relationship to kimberlite magmatism, we present a detailed petrographic and geochemical study of clinopyroxene and olivine megacrysts and their hosted inclusions from the Diavik, Jericho, Leslie (Slave Craton, Canada) and Udachnaya-East (Siberian Craton, Russia) kimberlites. The studied megacrysts are between 1 and 3?cm in size and representative of both the Cr-rich and Cr-poor suites. Megacrysts contain two types of inclusions: i. Large (<0.5-5?mm in size) round-to-irregular shaped polymineralic inclusions, which are composed of minerals similar to the host kimberlite groundmass, and consist of olivine, calcite, spinel, perovskite, phlogopite and apatite (± serpentine, alkali-carbonates, alkali-chlorides, barite). ii. Swarms/trails of ‘micro melt inclusions’ (MMI; <1-5?µm in size), which surround polymineralic inclusions, veins and fractures, thereby forming a ‘spongy’ texture. MMIs generally contain multiphase assemblages similar to polymineralic inclusions as well as various additional phases, such as alkali-carbonates or alkali-chlorides, which are typically absent in polymineralic inclusions and the surrounding kimberlite groundmass. Textural and geochemical evidence suggests that polymineralic inclusions in megacrysts crystallised from kimberlite melt, which infiltrated along fracture/vein networks. The polymineralic inclusion assemblages resulted from disequilibria reactions between the host megacryst and infiltrating kimberlite melt, which was likely enhanced by rapidly changing conditions during magmatic ascent. The connectivity of polymineralic inclusions to the kimberlite groundmass via network veins/fractures suggests that they are susceptible to infiltrating post-emplacement fluids. Therefore, the vast majority of polymineralic inclusions are unlikely to represent ‘pristine’ entrapped kimberlite melt. In contrast, MMIs are isolated within megacrysts (i.e. not connected to fractures/veins and therefore shielded from post-magmatic fluids) and probably represent entrapped remnants of the variably differentiated kimberlite melt, which was more enriched in alkalis-Cl-S-CO2 than serpentinised polymineralic inclusions and the host rocks exposed at Earth's surface as kimberlites.
Abstract: Identification of the primary compositions of mantle-derived melts is crucial for understanding mantle compositions and physical conditions of mantle melting. However, these melts rarely reach the Earth's surface unmodified because of contamination, crystal fractionation and degassing, processes that occur almost ubiquitously after melt generation. Here we report snapshots of the melts preserved in sheared peridotite xenoliths from the Udachnaya-East kimberlite pipe, in the central part of the Siberian craton. These xenoliths are among the deepest mantle samples and were delivered by kimberlite magma from 180-230?km depth interval, i.e. from the base of the cratonic lithosphere. The olivine grains of the sheared peridotites contain secondary inclusions of the crystallized melt with bulk molar (Na?+?K)/Ca?~?3.4. Various Na-K-Ca-, Na-Ca-, Na-Mg-, Ca-Mg- and Ca-carbonates, Na-Mg-carbonates with additional anions, alkali sulphates and halides are predominant among the daughter minerals in secondary melt inclusions, whereas silicates, oxides, sulphides and phosphates are subordinate. These inclusions can be considered as Cl-S-bearing alkali-carbonate melts. The presence of aragonite, a high-pressure polymorph of CaCO3, among the daughter minerals suggests a mantle origin for these melt inclusions. The secondary melt inclusions in olivine from the sheared peridotite xenoliths and the melt inclusions in phenocrystic olivines from the host kimberlites demonstrate similarities, in daughter minerals assemblages and trace-element compositions. Moreover, alkali-rich minerals (carbonates, halides, sulphates and sulphides) identified in the studied melt inclusions are also present in the groundmass of the host kimberlites. These data suggests a genetic link between melt enclosed in olivine from the sheared peridotites and melt parental to the Udachnaya-East kimberlites. We suggest that the melt inclusions in olivine from mantle xenoliths may represent near primary, kimberlite melts. These results are new evidence in support of the alkali-carbonate composition of kimberlite melts in their source regions, prior to the kimberlite emplacement into the crust, and are in stark contrast to the generally accepted ultramafic silicate nature of parental kimberlite liquids.
Ivanov, A.V., Mukasa, S.B., Kamenetsky, V.S., Ackerson, M., Zedgenizov, D.A.
Volatile concentrations in olivine hosted melt inclusions from meimechite and melanephenelinite lavas of the Siberian Trap Large Igneous Province: evidence for flux related high Ti, high Mg magmatism.
Journal of Raman Spectroscopy, in press available, 19p. Pdf
Russia
deposit - Udachnaya
Abstract: The study of kimberlite rocks is important as they provide critical information regarding the composition and dynamics of the continental mantle and are the principal source of diamonds. Despite many decades of research, the original compositions of kimberlite melts, which are thought to be derived from depths > 150 km, remain highly debatable due to processes that can significantly modify their composition during ascent and emplacement. Snapshots of the kimberlite-related melts were entrapped as secondary melt inclusions hosted in olivine from sheared peridotite xenoliths from the Udachnaya-East pipe (Siberian craton). These xenoliths originated from 180- to 220-km depth and are among the deepest derived samples of mantle rocks exposed at the surface. The crystallised melt inclusions contain diverse daughter mineral assemblages (>30 mineral species), which are dominated by alkali-rich carbonates, sulfates, and chlorides. The presence of aragonite as a daughter mineral suggests a high-pressure origin for these inclusions. Raman-mapping studies of unexposed inclusions show that they are dominated by carbonates (>65 vol.%), whereas silicates are subordinate (<13 vol.%). This indicates that the parental melt for the inclusions was carbonatitic. The key chemical features of this melt are very high contents of alkalis, carbon dioxide, chlorine, and sulfur and extremely low silica and water. Alkali-carbonate melts entrapped in xenolith minerals likely represent snapshots of the primitive kimberlite melt. This composition is in contrast with the generally accepted notion that kimberlites originated as ultramafic silicate water-rich melts. Experimental studies revealed that alkali-carbonate melts are a very suitable diamond-forming media. Therefore, our findings support the idea that some diamonds and kimberlite magmatism may be genetically related.
Abstract: Elucidating the composition of primary kimberlite melts is essential to understanding the nature of their source, petrogenesis, rheology, transport and ultimately the origin of diamonds. Kimberlite rocks are typically comprised of abundant olivine (~2560 vol%), which occurs as individual grains of variable size and morphology, and includes xenocrysts and zoned phenocrysts. Zoning patterns and inclusions in olivine can be used to decipher the petrogenetic history of kimberlites, starting from their generation in the mantle through to emplacement in the crust. This study examines well-preserved, euhedral, zoned olivine crystals from the Mark kimberlite (Lac de Gras, Canada). Olivine typically consists of xenocrystic cores, which are homogeneous in composition but vary widely between grains (Fo88.193.6). These cores are in turn surrounded by (in order of crystallisation) magmatic rims and Mg-rich rinds (Fo95.398.1). In addition, we document a new type of olivine zone (‘outmost rind’) that overgrows Mg-rich rinds. Crystal and melt/fluid inclusions are abundant in olivine and preserve a record of kimberlite melt evolution. For the first time in the studies of kimberlite olivine, we report primary melt inclusions hosted in Mg-rich olivine rinds. In addition, we observe that pseudosecondary melt/fluid inclusions are restricted to interior olivine zones (cores, rims) and are considered to have formed prior to rind formation. Pseudosecondary melt/fluid inclusions are inferred to have been entrapped at depth, as evidenced by measured densities in thermometric experiments of CO2 and decrepitation haloes, indicating a minimum entrapment pressure of ~200450 MPa (or ~615 km). Both primary and pseudosecondary melt inclusions in olivine have daughter minerals dominated by CaMg and K-Na-Ba-Sr-bearing carbonates, K-Na-chlorides along with subordinate silicates (e.g., phlogopite, monticellite), Fe-Mg-Al-Ti-spinel, perovskite, phosphates and sulphates/sulphides and periclase. In addition to phases reported in primary melt inclusions, pseudosecondary melt inclusions contain more diverse and exotic daughter mineral assemblages, where they contain phases such as tetraferriphlogopite Ba- or K-sulphates, kalsilite and Na-phosphates. The daughter mineral assemblages are consistent with a silica-poor, alkali dolomitic carbonatite melt. We demonstrate that the different types of inclusions in olivine can assist in constraining the timing of multi-stage olivine growth and the composition of the crystallising melt. The large variance in olivine zoning patterns, morphologies and Ni distribution (i.e. both coupling with and decoupling from Fo) indicates that olivine in the studied Mark kimberlite samples represent an accumulation of olivine, where olivine was derived from successive stages of the ascending magma and/or from multiple, but related pulses of magma. Primary and pseudosecondary melt/fluid inclusions in olivine indicate that a variably differentiated silica-poor, halogen-bearing, alkali-dolomitic melt crystallised and transported olivine in the Mark kimberlite.
Contributions to Mineralogy and Petrology, Vol. 175, 13p. Pdf
Russia
perovskite
Abstract: The exceptional accumulation of perovskite in the alkaline-ultramafic Afrikanda complex (Kola Peninsula, Russia) led to the study of polymineralic inclusions hosted in perovskite and magnetite to understand the development of the perovskite-rich zones in the olivinites, clinopyroxenites and silicocarbonatites. The abundance of inclusions varies across the three perovskite textures, with numerous inclusions hosted in the fine-grained equigranular perovskite, fewer inclusions in the coarse-grained interlocked perovskite and rare inclusions in the massive perovskite. A variety of silicate, carbonate, sulphide, phosphate and oxide phases are assembled randomly and in variable proportions in the inclusions. Our observations reveal that the inclusions are not bona fide melt inclusions. We propose that the inclusions represent material trapped during subsolidus sintering of magmatic perovskite. The continuation of the sintering process resulted in the coarsening of inclusion-rich subhedral perovskite into inclusion-poor anhedral and massive perovskite. These findings advocate the importance of inclusion studies for interpreting the origin of oxide minerals and their associated economic deposits and suggest that the formation of large scale accumulations of minerals in other oxide deposits may be a result of annealing of individual disseminated grains.
Journal of Petrology, 10.1093/petrology /egaa062/5857610 90p. Pdf
Africa, South Africa
deposit - Kimberley
Abstract: Olivine is the most abundant phase in kimberlites and is stable throughout most of the crystallisation sequence, thus providing an extensive record of kimberlite petrogenesis. To better constrain the composition, evolution, and source of kimberlites we present a detailed petrographic and geochemical study of olivine from multiple dyke, sill, and root zone kimberlites in the Kimberley cluster (South Africa). Olivine grains in these kimberlites are zoned, with a central core, a rim overgrowth, and occasionally an external rind. Additional ‘internal’ and ‘transitional’ zones may occur between the core and rim, and some samples of root zone kimberlites contain a late generation of high-Mg olivine in cross-cutting veins. Olivine records widespread pre-ascent (proto-)kimberlite metasomatism in the mantle including: (a) Relatively Fe-rich (Mg# <89) olivine cores interpreted to derive from the disaggregation of kimberlite-related megacrysts (20% of cores); (b) Mg-Ca-rich olivine cores (Mg# >89; >0.05?wt.% CaO) suggested to be sourced from neoblasts in sheared peridotites (25% of cores); (c) transitional zones between cores and rims probably formed by partial re-equilibration of xenocrysts (now cores) with a previous pulse of kimberlite melt (i.e., compositionally heterogeneous xenocrysts); and (d) olivine from the Wesselton water tunnel sills, internal zones (I), and low-Mg# rims, that crystallised from a kimberlite melt that underwent olivine fractionation within the shallow lithospheric mantle. Magmatic crystallisation begins with internal olivine zones (II), which are common but not ubiquitous in the Kimberley olivine. These zones are euhedral, contain rare inclusions of chromite, and have a higher Mg# (90.0 ± 0.5), NiO, and Cr2O3 contents, but are depleted in CaO compared to the rims. Internal olivine zones (II) are interpreted to crystallise from a primitive kimberlite melt during its ascent and transport of olivine toward the surface. Their compositions suggest assimilation of peridotitic material (particularly orthopyroxene) and potentially sulfides prior to or during crystallisation. Comparison of internal zones (II) with liquidus olivine from other mantle-derived carbonate-bearing magmas (i.e., orangeites, ultramafic lamprophyres, melilitites) show that low (100×) Mn/Fe (~1.2), very low Ca/Fe (~0.6), and moderate Ni/Mg ratios (~1.1) appear to be the hallmarks of olivine in melts derived from carbonate-bearing garnet-peridotite sources. Olivine rims display features indicative of magmatic crystallisation, which are typical of olivine rims in kimberlites worldwide - i.e. primary inclusions of chromite, Mg-ilmenite and rutile, homogeneous Mg# (88.8 ± 0.3), decreasing Ni and Cr, increasing Ca and Mn. Rinds and high-Mg olivine are characterised by extreme Mg-Ca-Mn enrichment and Ni depletion, and textural relationships indicate these zones represent replacement of pre-existing olivine, with some new crystallisation of rinds. These zones likely precipitated from evolved, oxidised, and relatively low-temperature kimberlite fluids after crustal emplacement. In summary, this study demonstrates the utility of combined petrography and olivine geochemistry to trace the evolution of kimberlite magmatic systems from early metasomatism of the lithospheric mantle by (proto-)kimberlite melts, to crystallisation at different depths en route to surface, and finally late-stage deuteric/hydrothermal fluid alteration processes after crustal emplacement.
Abstract: Kimberlites are the surface manifestation of deeply-derived (>150 km) and rapidly ascended magmas. Fresh kimberlite rocks are exceptionally rare, as most of them are invariably modified by pervasive deuteric and/or post-magmatic fluids that overprint the original mineralogy. In this study, we examined fresh archetypal kimberlite from the Mark pipe (Lac de Gras, Canada), which is characterised by well-preserved olivine and groundmass minerals. The sequence of crystallisation of the parental melt and its major compositional features, including oxygen fugacity, were reconstructed using textural relationships between magmatic minerals, their zoning patterns and crystal/melt/fluid inclusions. Crystal and multiphase primary, pseudosecondary and secondary melt/fluid inclusions in olivine, Cr-diopside, spinel, perovskite, phlogopite/kinoshitalite, apatite and calcite preserve a record of different stages of kimberlite melt evolution. Melt/fluid inclusions are generally more depleted in silica and more enriched in alkalis (K, Na), alkali-earth (Ba, Sr) and halogens (Cl, F) relative to the whole-rock composition of the Mark kimberlite. These melt/fluid inclusion compositions, in combination with presence of elevated CaO (up to 1.73 wt%), in Mg-rich olivine rinds, crystallisation of groundmass kinoshitalite, carbonates (calcite, Sr-Ba-bearing) and alkali-enriched rims around apatite suggest that there was progressive enrichment in CO2, alkalis and halogens in the evolving parental melt. The Mark kimberlite groundmass is characterised by the following stages of in-situ crystallisation: (1) olivine rims around xenocrystic cores + Cr-spinel/TIMAC. (2) Mg-rich olivine rinds around olivine rims/cores + MUM-spinel (followed by pleonaste and Mg-magnetite) + monticellite (+ partial resorption of olivine, along with the formation of ferropericlase and CO2 as a result of decarbonation reactions) + perovskite + apatite. (3) Olivine outmost rinds, which are coeval with phlogopite/kinoshitalite + apatite + sulphides + carbonate (calcite, Ba-Sr-Na-bearing varieties). In addition, oxygen fugacity of the Mark kimberlite was constrained by olivine-chromite, perovskite and monticellite oxygen barometry and showed that the parental melt became progressively more oxidised in response to fractional crystallisation. (4) Deuteric (i.e. late-stage magmatic) and/or post-magmatic (i.e. external fluids) alteration of magmatic minerals (e.g., olivine, monticellite, ferropericlase) and crystallisation of mesostasis serpentine, K-bearing chlorite and brucite (i.e. replacement of ferropericlase). The absence of any alkali (Na, K) and halogen (F, Cl) rich groundmass minerals in the Mark kimberlite may be attributed to these elements becoming concentrated in the late-stage melt where they potentially formed unstable, water-soluble carbonates (such as those observed in melt inclusions). Consequently, these minerals were most likely removed from the groundmass by deuteric and/or post-magmatic alteration.
Abstract: To provide new constraints on the evolution of ultramafic lamprophyre melts and relation to kimberlites, we examined monomineralic and primary multiphase melt inclusions in rock-forming minerals within damtjernite from Viktoria pipe, Anabar region, Siberia craton, Russia. The studied samples are relatively unaltered nepheline-bearing, carbonate-poor damtjernite with a significant amount of monticellite in the groundmass and as a replacement of olivine. Studied inclusions hosted by groundmass monticellite, magnesian ulvöspinel-magnetite and perovskite. Monomineralic inclusions sized up to 10 µm are round-toeuhedral in shape and are comprised of monticellite, spinel, perovskite and nepheline. Multiphase melt inclusions sized up to 10-15 µm have rounded to elongate and amoeboid shapes. These inclusions are heterogeneous in composition and consist of perovskite, spinel group minerals, apatite (including F- and Sr-apatite), feldspathoids, multiphase alkali (Na, K) carbonate and chloride (sylvite/halite), rare K-Naand Ba-sulfates, phlogopite and baddeleyite. Despite the lack of carbonate phases in studied rocks, the composition of multiphase inclusions indicates that lamprophyre melts contained carbonate or carbonate/chlorite components. The CO2 degassing is consistent with the reaction between olivine and carbonate-bearing melt led to decarbonation reaction and generation of montichellite, as described in [1]. The composition of multiphase inclusions within minerals from lamprophyres is close to the composition of multiphase inclusions within olivine, spinel, monticellite, perovskite from kimberlites, thus indicating possible genetic links between parental melts of ultramafic lamprophyre and kimberlite.
Abstract: Sulfide liquids that immiscibly separate from silicate melts in different magmatic processes accumulate chalcophile metals and may represent important sources of the metals in Earth's crust for the formation of ore deposits. Sulfide phases commonly found in some primitive mid-ocean ridge basalts (MORB) may support the occurrence of sulfide immiscibility in the crust without requiring magma contamination and/or extensive fractionation. However, the records of incipient sulfide melts in equilibrium with primitive high-Mg olivine and Cr-spinel are scarce. Sulfide globules in olivine phenocrysts in picritic rocks of MORB-affinity at Kamchatsky Mys (Eastern Kamchatka, Russia) represent a well-documented example of natural immiscibility in primitive oceanic magmas. Our study examines the conditions of silicate-sulfide immiscibility in these magmas by reporting high precision data on the compositions of Cr-spinel and silicate melt inclusions, hosted in Mg-rich olivine (86.9-90 mol% Fo), which also contain globules of magmatic sulfide melt. Major and trace element contents of reconstructed parental silicate melts, redox conditions (?QFM = +0.1 ± 0.16 (1s) log. units) and crystallization temperature (1200-1285 °C), as well as mantle potential temperatures (~1350 °C), correspond to typical MORB values. We show that nearly 50% of sulfur could be captured in daughter sulfide globules even in reheated melt inclusions, which could lead to a significant underestimation of sulfur content in reconstructed silicate melts. The saturation of these melts in sulfur appears to be unrelated to the effects of melt crystallization and crustal assimilation, so we discuss the reasons for the S variations in reconstructed melts and the influence of pressure and other parameters on the SCSS (Sulfur Content at Sulfide Saturation).
Journal of Petrology, in press available, 90p. Pdf
Africa, South Africa
deposit - Kimberley
Abstract: Olivine is the most abundant phase in kimberlites and is stable throughout most of the crystallization sequence, thus providing an extensive record of kimberlite petrogenesis. To better constrain the composition, evolution, and source of kimberlites we present a detailed petrographic and geochemical study of olivine from multiple dyke, sill, and root zone kimberlites in the Kimberley cluster (South Africa). Olivine grains in these kimberlites are zoned, with a central core, a rim overgrowth, and occasionally an external rind. Additional ‘internal’ and ‘transitional’ zones may occur between the core and rim, and some samples of root zone kimberlites contain a late generation of high-Mg olivine in cross-cutting veins. Olivine records widespread pre-ascent (proto-)kimberlite metasomatism in the mantle including the following features: (1) relatively Fe-rich (Mg# <89) olivine cores interpreted to derive from the disaggregation of kimberlite-related megacrysts (20?% of cores); (2) Mg-Ca-rich olivine cores (Mg# >89; >0•05?wt% CaO) suggested to be sourced from neoblasts in sheared peridotites (25?% of cores); (3) transitional zones between cores and rims probably formed by partial re-equilibration of xenocrysts (now cores) with a previous pulse of kimberlite melt (i.e. compositionally heterogeneous xenocrysts); (4) olivine from the Wesselton water tunnel sills, internal zones (I), and low-Mg# rims, which crystallized from a kimberlite melt that underwent olivine fractionation and stalled within the shallow lithospheric mantle. Magmatic crystallization begins with internal olivine zones (II), which are common but not ubiquitous in the Kimberley olivine. These zones are euhedral, contain rare inclusions of chromite, and have a higher Mg# (90•0 ± 0•5), NiO, and Cr2O3 contents, but are depleted in CaO compared with the rims. Internal olivine zones (II) are interpreted to crystallize from a primitive kimberlite melt during its ascent and transport of olivine toward the surface. Their compositions suggest assimilation of peridotitic material (particularly orthopyroxene) and potentially sulfides prior to or during crystallization. Comparison of internal zones (II) with liquidus olivine from other mantle-derived carbonate-bearing magmas (i.e. orangeites, ultramafic lamprophyres, melilitites) shows that low (100×) Mn/Fe (~1•2), very low Ca/Fe (~0•6), and moderate Ni/Mg ratios (~1•1) appear to be the hallmarks of olivine in melts derived from carbonate-bearing garnet-peridotite sources. Olivine rims display features indicative of magmatic crystallization, which are typical of olivine rims in kimberlites worldwide; that is, primary inclusions of chromite, Mg-ilmenite and rutile, homogeneous Mg# (88•8 ± 0•3), decreasing Ni and Cr, and increasing Ca and Mn. Rinds and high-Mg olivine are characterized by extreme Mg-Ca-Mn enrichment and Ni depletion, and textural relationships indicate that these zones represent replacement of pre-existing olivine, with some new crystallization of rinds. These zones probably precipitated from evolved, oxidized, and relatively low-temperature kimberlite fluids after crustal emplacement. In summary, this study demonstrates the utility of combined petrography and olivine geochemistry to trace the evolution of kimberlite magmatic systems from early metasomatism of the lithospheric mantle by (proto-)kimberlite melts, to crystallization at different depths en route to surface, and finally late-stage deuteric or hydrothermal fluid alteration after crustal emplacement.
Lithos, doi.org/10.1016/ j.lithos.2020.105918 67p. Pdf
Africa, South Africa
deposit - Roberts Victor
Abstract: Platinum-group elements (PGE) display a chalcophile behaviour and are largely hosted by base metal sulphide (BMS) minerals in the mantle. During partial melting of the mantle, BMS release their metal budget into the magma generated. The fertility of magma sources is a key component of the mineralisation potential of large igneous provinces (LIP) and the origin of orthomagmatic sulphide deposits hosted in cratonic mafic magmatic systems. Fertility of mantle-derived magma is therefore predicated on our understanding of the abundance of metals, such as the PGE, in the asthenospheric and lithospheric mantle. Estimations of the abundance of chalcophile elements in the upper mantle are based on observations from mantle xenoliths and BMS inclusions in diamonds. Whilst previous assessments exist for the BMS composition and chalcophile element budget of peridotitic mantle, relatively few analyses have been published for eclogitic mantle. Here, we present sulphide petrography and an extensive in situ dataset of BMS trace element compositions from Roberts Victor eclogite xenoliths (Kaapvaal Craton, South Africa). The BMS are dominated by pyrite-chalcopyrite-pentlandite (± pyrrhotite) assemblages with S/Se ratios ranging 1200 to 36,840 (with 87% of analyses having S/Se this editing is incorrect. This should read "(with 87% of analyses having S/Se < 10,000)" Please note the <<10,000). Total PGE abundance in BMS range from 0.17 to 223 ppm. We recognise four end-member compositions (types i to iv), distinguished by total PGE abundance and Pt/Pd and Au/Pd ratios. The majority of BMS have low PGE abundances (< 10 ppm) but Type iv BMS have the highest concentration of PGE recorded in eclogites so far (> 100 ppm) and are characteristically enriched in Os, Ir, Ru and Rh. Nano- and micron-scale Pd-Pt antimonide, telluride and arsenide platinum-group minerals (PGM) are observed spatially associated with BMS. We suggest that the predominance of pyrite in the xenoliths reflects the process of eclogitisation and that the trace element composition of the eclogite BMS was inherited from oceanic crustal protoliths of the eclogites, introduced into the SCLM via ancient subduction during formation of the Colesberg Magnetic Lineament c. 2.9 Ga and the cratonisation of the Kaapvaal Craton. Crucially, we demonstrate that the PGE budget of eclogitic SCLM may be substantially higher than previously reported, akin to peridotitic compositions, with significant implications for the PGE fertility of cratonic mafic magmatism and metallogenesis. We quantitatively assess these implications by modelling the chalcophile geochemistry of an eclogitic melt component in parental magmas of the mafic Rustenburg Layered Suite of the Bushveld Complex.
Abstract: The petrogenesis of kimberlites commonly is obscured by interaction with hydrothermal fluids, including deuteric (late-magmatic) and/or groundwater components. To provide new constraints on the modification of kimberlite rocks during overprinting by such fluids and on the fractionation of kimberlite magmas during crystallisation, we have undertaken a detailed petrographic and geochemical study of a hypabyssal sample (BK) from the Bultfontein kimberlite (Kimberley, South Africa).
India's changing place in global Proterozoic reconstructions: a review of geochronologic constraints and paleomagnetic poles from the Dharwar Bundelk hand and Marwar
Journal of Geodynamics, Vol. 50, 3-4, pp. 224-242.
Paleomagnetic and geochronological studies of the mafic dyke swarms of Bundelk hand craton, central India: implications for the tectonic evolution and paleogeographic reconstructions.
On the stability of thermal stratification of highly compressible fluids with depth dependent physical properties: implications for the mantle convection.
Geophysical Journal International, Vol. 195, 3, pp. 1443-1454.
Journal of Geophysical Research, Vol. 123, 7, pp. 5644-5660.
Africa, east Africa
geophysics - seismic
Abstract: Although the East African rift system formed in cratonic lithosphere above a large-scale mantle upwelling, some sectors have voluminous magmatism, while others have isolated, small-volume eruptive centers. We conduct teleseismic shear wave splitting analyses on data from 5 lake-bottom seismometers and 67 land stations in the Tanganyika-Rukwa-Malawi rift zone, including the Rungwe Volcanic Province (RVP), and from 5 seismometers in the Kivu rift and Virunga Volcanic Province, to evaluate rift-perpendicular strain, rift-parallel melt intrusion, and regional flow models for seismic anisotropy patterns beneath the largely amagmatic Western rift. Observations from 684 SKS and 305 SKKS phases reveal consistent patterns. Within the Malawi rift south of the RVP, fast splitting directions are oriented northeast with average delays of ~1 s. Directions rotate to N-S and NNW north of the volcanic province within the reactivated Mesozoic Rukwa and southern Tanganyika rifts. Delay times are largest (~1.25 s) within the Virunga Volcanic Province. Our work combined with earlier studies shows that SKS-splitting is rift parallel within Western rift magmatic provinces, with a larger percentage of null measurements than in amagmatic areas. The spatial variations in direction and amount of splitting from our results and those of earlier Western rift studies suggest that mantle flow is deflected by the deeply rooted cratons. The resulting flow complexity, and likely stagnation beneath the Rungwe province, may explain the ca. 17 Myr of localized magmatism in the weakly stretched RVP, and it argues against interpretations of a uniform anisotropic layer caused by large-scale asthenospheric flow or passive rifting.
Effects of differential reactivity of minerals on the development of brittle to semi-brittle structures in granitic rocks: textural and oxygen isotope evidence
Abstract: Geological mapping and zircon U-Pb/Hf isotope data from 35 samples from the central Tanzania Craton and surrounding orogenic belts to the south and east allow a revised model of Precambrian crustal evolution of this part of East Africa. The geochronology of two studied segments of the craton shows them to be essentially the same, suggesting that they form a contiguous crustal section dominated by granitoid plutons. The oldest orthogneisses are dated at ca. 2820 Ma (Dodoma Suite) and the youngest alkaline syenite plutons at ca. 2610 Ma (Singida Suite). Plutonism was interrupted by a period of deposition of volcano-sedimentary rocks metamorphosed to greenschist facies, directly dated by a pyroclastic metavolcanic rock which gave an age of ca. 2725 Ma. This is supported by detrital zircons from psammitic metasedimentary rocks, which indicate a maximum depositional age of ca. 2740 Ma, with additional detrital sources 2820 and 2940 Ma. Thus, 200 Ma of episodic magmatism in this part of the Tanzania Craton was punctuated by a period of uplift, exhumation, erosion and clastic sedimentation/volcanism, followed by burial and renewed granitic to syenitic magmatism. In eastern Tanzania (Handeni block), in the heart of the East African Orogen, all the dated orthogneisses and charnockites (apart from those of the overthrust Neoproterozoic granulite nappes), have Neoarchaean protolith ages within a narrow range between 2710 and 2630 Ma, identical to (but more restricted than) the ages of the Singida Suite. They show evidence of Ediacaran "Pan-African" isotopic disturbance, but this is poorly defined. In contrast, granulite samples from the Wami Complex nappe were dated at ca. 605 and ca. 675 Ma, coeval with previous dates of the "Eastern Granulites" of eastern Tanzania and granulite nappes of adjacent NE Mozambique. To the south of the Tanzania Craton, samples of orthogneiss from the northern part of the Lupa area were dated at ca. 2730 Ma and clearly belong to the Tanzania Craton. However, granitoid samples from the southern part of the Lupa "block" have Palaeoproterozoic (Ubendian) intrusive ages of ca. 1920 Ma. Outcrops further south, at the northern tip of Lake Malawi, mark the SE continuation of the Ubendian belt, albeit with slightly younger ages of igneous rocks (ca. 1870-1900 Ma) which provide a link with the Ponte Messuli Complex, along strike to the SE in northern Mozambique. In SW Tanzania, rocks from the Mgazini area gave Ubendian protolith ages of ca. 1980-1800 Ma, but these rocks underwent Late Mesoproterozoic high-grade metamorphism between 1015 and 1040 Ma. One granitoid gave a crystallisation age of ca. 1080 Ma correlating with known Mesoproterozoic crust to the east in SE Tanzania and NE Mozambique. However, while the crust in the Mgazini area was clearly one of original Ubendian age, reworked and intruded by granitoids at ca. 1 Ga, the crust of SE Tanzania is a mixed Mesoproterozoic terrane and a continuation from NE Mozambique. Hence the Mgazini area lies at the edge of the Ubendian belt which was re-worked during the Mesoproterozoic orogen (South Irumide belt), providing a further constraint on the distribution of ca. 1 Ga crust in SE Africa. Hf data from near-concordant analyses of detrital zircons from a sample from the Tanzania Craton lie along a Pb-loss trajectory (Lu/Hf = 0), extending back to ~3.9 Ga. This probably represents the initial depleted mantle extraction event of the cratonic core. Furthermore, the Hf data from all igneous samples, regardless of age, from the entire study area (including the Neoproterozoic granulite nappes) show a shallow evolution trend (Lu/Hf = 0.028) extending back to the same mantle extraction age. This implies the entire Tanzanian crust sampled in this study represents over 3.5 billion years of crustal reworking from a single crustal reservoir and that the innermost core of the Tanzanian Craton that was subsequently reworked was composed of a very depleted, mafic source with a very high Lu/Hf ratio. Our study helps to define the architecture of the Tanzanian Craton and its evolution from a single age-source in the early Eoarchaean.
Geochemistry, Geophysics, Geosystems: G3, Vol. 16, 10, pp. 3436-3455.
Mantle
Geophysics - seismics
Abstract: Relating seismic anisotropy to mantle flow requires detailed understanding of the development and evolution of olivine crystallographic preferred orientation (CPO). Recent experimental and field studies have shown that olivine CPO evolution depends strongly on the integrated deformation history, which may lead to differences in how the corresponding seismic anisotropy should be interpreted. In this study, two widely used numerical models for CPO evolution—D-Rex and VPSC—are evaluated to further examine the effect of deformation history on olivine texture and seismic anisotropy. Building on previous experimental work, models are initiated with several different CPOs to simulate unique deformation histories. Significantly, models initiated with a preexisting CPO evolve differently than the CPOs generated without preexisting texture. Moreover, the CPO in each model evolves differently as a function of strain. Numerical simulations are compared to laboratory experiments by Boneh and Skemer (2014). In general, the D-Rex and VPSC models are able to reproduce the experimentally observed CPOs, although the models significantly over-estimate the strength of the CPO and in some instances produce different CPO from what is observed experimentally. Based on comparison with experiments, recommended parameters for D-Rex are: M*?=?10, ?*?=?5, and ??=?0.3, and for VPSC: a?=?10-100. Numerical modeling confirms that CPO evolution in olivine is highly sensitive to the details of the initial CPO, even at strains greater than 2. These observations imply that there is a long transient interval of CPO realignment which must be considered carefully in the modeling or interpretation of seismic anisotropy in complex tectonic settings.
Abstract: In addition to a series of finds of diamond in mafic volcanic and ultramafic massive rocks in Kamchatka, Russia, a carbonado-like diamond aggregate was identified in recent lavas of the active Avacha volcano. This aggregate differs from ‘classic carbonado’ by its location within an active volcanic arc, well-formed diamond crystallites, and cementing by Si-containing aggregates rather than sintering. The carbonado-like aggregate contains inclusions of Mn-Ni-Si-Fe alloys, native ß-Mn, tungsten and boron carbides, which are uncommon for both carbonado and monocrystalline diamonds. Mn-Ni-Si-Fe alloys, trigonal W2C and trigonal B4C are new mineral species that were not previously found in the natural environment. The formation of the carbonado-like diamond aggregate started with formation at ~ 850-1000 °C of tungsten and boron carbides, Mn-Ni-Si-Fe alloys and native ß-Mn, which were used as seeds for the subsequent crystallization of micro-sized diamond aggregate. In the final stage, the diamond aggregate was cemented by amorphous silica, tridymite, ß-SiC, and native silicon. The carbonado-like aggregate was most likely formed at near-atmospheric pressure conditions via the CVD mechanism during the course or shortly after one of the volcanic eruption pulses of the Avacha volcano. Volcanic gases played a great role in the formation of the carbonado-like aggregate.
Geochemistry International, Vol. 57, 9, pp. 1015-1023.
South America, Brazil, Africa, Central African Republic, Russia
carbonado
Abstract: Structural peculiarities of several types of cryptocrystalline diamond varieties: carbonado, impact-related yakutite and cryptocrystalline diamond aggregates from kimberlite were studied using Infrared spectroscopy, X-ray diffraction contrast (DCT—Diffraction Contrast Tomography) and phase contrast tomography (PCT). It is shown that the porosity of the carbonado and kimberlitic cryptocrystalline aggregates is similar being in range of 5-10 vol %, possibly indicating similar formation mechanism(s), whereas that of yakutite is essentially zero. Crystallographic texture is observed for some carbonado samples. It is suggested that at least partially the texture is explained by deformation-related bands. Infrared spectroscopy reveals presence of hydrous and, probably, of hydrocarbon species in carbonado.
Geophysical Research Letters, Vol. 45, 24, pp. 13,298-13,305.
Mantle
subduction
Abstract: A subduction zone's mantle wedge can have a complex pattern of seismic anisotropy where the fast direction often rotates from trench-parallel close to the trench to trench-normal in the backarc. This pattern can be interpreted as induced by either 3-D trench-parallel flow or by the presence of water close to the trench. Almost all models so far favored the trench-parallel flow hypothesis, usually based on indirect or complementary indicators such as the evolution of geochemical signatures of volcanoes along the arc. Here we examine a seismic anisotropy observational signature that can be used to discriminate between the two explanations. The concept is defined using an interdisciplinary approach linking a direct modeling of the flow in the subduction wedge and a computation of seismic wave propagation in anisotropic media. We define a unique water-induced signature that is the presence of a “morph zone” characterized by a weak anisotropy and a decrease of seismic velocities. We apply the model to the Lau Basin where we find this predicted signature, demonstrating for the first time that water rather than trench-parallel flow is responsible for the observed anisotropy pattern there.
Exploration Geophysics , http://dx.doi.org/10.1071/EG16015 10p. Available
Russia
Deposit Amakinskaya, Geophysics
Abstract: There have been multiple occurrences in the literature in the past several years of what has been referred to as the induced polarisation (IP) effect in airborne time domain electromagnetic (TDEM) data. This phenomenon is known to be responsible for incorrect inversion modelling of electrical resistivity, lower interpreted depth of investigation (DOI) and lost information about chargeability of the subsurface and other valuable parameters. Historically, there have been many suggestions to account for the IP effect using the Cole-Cole model. It has been previously demonstrated that the Cole-Cole model can be effective in modelling synthetic TDEM transients. In the current paper we show the possibility of extracting IP information from airborne TDEM data using this same concept, including inverse modelling of chargeability from TDEM data collected by VTEM, with field examples from Canada (Mt Milligan deposit) and Russia (Amakinskaya kimberlite pipe).
Abstract: A VTEM survey was flown over the Drybones kimberlite in 2005, followed by a ZTEM survey in 2009. These data sets were inverted on multiple previous occasions using various 1D, 2D, 3D and plate modelling algorithms. VTEM data showed AIP effects, manifested as negative voltages and otherwise skewed transients. This created artefacts in conventional inversions of VTEM data, which showed some inconsistencies with ZTEM inversions, as well as with the known geology. In 2015 the VTEM data were transferred to Aarhus Geophysics, reprocessed and reinverted using the modified "AarhusINV" code with Cole-Cole modelling. The results are presented in current abstract, they appear to be more interpretable and provide better data fit, than previous inversion attempts.
Abstract: Induced polarization (IP) effects are becoming more evident in time-domain helicopter airborne electromagnetic (AEM) data thanks to advances in instrumentation, mainly due to improvements in the signal-to-noise ratio and hence better data quality. Although the IP effects are often manifested as negative receiver voltage values, which are easy to detect, in some cases, IP effects can distort recovered transients in other ways so they may be less obvious and require careful data analysis and processing. These effects represent a challenge for modeling and inversion of the AEM data. For proper modeling of electromagnetic transients, the chargeability of the subsurface and other parameters describing the dispersion also need to be taken into consideration. We use the Cole-Cole model to characterize the dispersion and for modeling of the IP effects in field AEM data, collected by different airborne systems over different geologies and exploration targets, including examples from diamond, gold, and base metal exploration.
Abstract: We present the joint interpretation of airborne electromagnetic and aeromagnetic data, acquired to study kimberlite pipes. We analyse the data surveyed in 2005 over Drybones Bay, Archean Slave Province of the Northwest Territories, northern Canada. This area hosts a recently discovered kimberlite province with >150 kimberlite pipes. Magnetic and electromagnetic data were each one modelled by 1D inversion. For magnetic data we inverted vertical soundings built through upward continuations of the measured data at various altitudes. The validity of the method was prior verified by tests on synthetic data. Electromagnetic data were processed and inverted using the modified AarhusINV code, with Cole-Cole modelling, in order to take into account induced polarization effects, consisting in negative voltages and otherwise skewed transients. The integrated study of the two kinds of data has led to a better understanding of the structures at depth, even though the comparison between the magnetic and the electromagnetic models shows the different sensitivity of the two methods with respect to the geological structure at Drybones Bay.
Abstract: We have developed a synthetic multiparametric modeling and inversion exercise undertaken to study the robustness of inverting airborne time-domain electromagnetic (TDEM) data to extract Cole-Cole parameters. The following issues were addressed: nonuniqueness, ill posedness, dependency on manual processing and the effect of constraints, and a priori information. We have used a 1D layered earth model approximation and lateral constraints. Synthetic simulations were performed for several models and the corresponding Cole-Cole parameters. The possibility to recover these models by means of laterally constrained multiparametric inversion was evaluated, including recovery of chargeability distributions from shallow and deep targets based on analysis of induced polarization (IP) effects, simulated in airborne TDEM data. Different scenarios were studied, including chargeable targets associated with the conductive and resistive environments. In particular, four generic models were considered for the exercise: a sulfide model, a kimberlite model, and two generic models focusing on the depth of investigation.