Kaiser Bottom Fish OnlineFree trialNew StuffHow It WorksContact UsTerms of UseHome
Specializing in Canadian Stocks
SearchAdvanced Search
Welcome Guest User   (more...)
Home / Education
Education
 

SDLRC - Region: Algeria - All


The Sheahan Diamond Literature Reference Compilation - Technical, Media and Corporate Articles based on Major Region - Algeria
The Sheahan Diamond Literature Reference Compilation is compiled by Patricia Sheahan who publishes on a monthly basis a list of new scientific articles related to diamonds as well as media coverage and corporate announcements called the Sheahan Diamond Literature Service that is distributed as a free pdf to a list of followers. Pat has kindly agreed to allow her work to be made available as an online digital resource at Kaiser Research Online so that a broader community interested in diamonds and related geology can benefit. The references are for personal use information purposes only; when available a link is provided to an online location where the full article can be accessed or purchased directly. Reproduction of this compilation in part or in whole without permission from the Sheahan Diamond Literature Service is strictly prohibited. Return to Diamond Region Index
Sheahan Diamond Literature Reference Compilation - Scientific Articles by Author for all years
A-An Ao+ B-Bd Be-Bk Bl-Bq Br+ C-Cg Ch-Ck Cl+ D-Dd De-Dn Do+ E F-Fn Fo+ G-Gh Gi-Gq Gr+ H-Hd He-Hn Ho+ I J K-Kg Kh-Kn Ko-Kq Kr+ L-Lh
Li+ M-Maq Mar-Mc Md-Mn Mo+ N O P-Pd Pe-Pn Po+ Q R-Rh Ri-Rn Ro+ S-Sd Se-Sh Si-Sm Sn-Ss St+ T-Th Ti+ U V W-Wg Wh+ X Y Z
Sheahan Diamond Literature Reference Compilation - Media/Corporate References by Name for all years
A B C D-Diam Diamonds Diamr+ E F G H I J K L M N O P Q R S T U V W X Y Z
Each article reference in the SDLRC is tagged with one or more key words assigned by Pat Sheahan to highlight the main topics of the article. In addition most references have been tagged with one or more region words. In an effort to make it easier for users to track down articles related to a specific region, KRO has extracted these region words and developed a list of major region words presented in the Major Region Index to which individual region words used in the article reference have been assigned. Each individual Region Report contains in chronological order all the references with a region word associated with the Major Region word. Depending on the total for each reference type - technical, media and corporate - the references will be either in their own technical, media or corporate Region Report, or combined in a single report. Where there is a significant number of technical references there will be a technical report dedicated to the technical articles while the media and corporate references are combined in a separate region report. References that were added in the most recent monthly update are highlighted in yellow within the Region Report. The Major Region words have been defined by a scale system of "general", "continent", "country", "state or province" and "regional". Major Region words at the smaller scales have been created only when there are enough references to make isolating them worthwhile. References not tagged with a Region are excluded, and articles with a region word not matched with a Major Region show up in the "Unknown" report.
Kimberlite - diamondiferous Lamproite - diamondiferous Lamprophyre - diamondiferous Other - diamondiferous
Kimberlite - non diamondiferous Lamproite - non diamondiferous Lamprophyre - non diamondiferous Other - non diamondiferous
Kimberlite - unknown Lamproite - unknown Lamprophyre - unknown Other - unknown
Future Mine Current Mine Former Mine Click on icon for details about each occurrence. Works best with Google Chrome.
CITATION: Faure, S, 2010, World Kimberlites CONSOREM Database (Version 3), Consortium de Recherche en Exploration Minérale CONSOREM, Université du Québec à Montréal, Numerical Database on consorem.ca. NOTE: This publicly available database results of a compilation of other public databases, scientific and governmental publications and maps, and various data from exploration companies reports or Web sites, If you notice errors, have additional kimberlite localizations that should be included in this database, or have any comments and suggestions, please contact the author specifying the ID of the kimberlite: [email protected]
Algeria - Technical, Media and Corporate
Posted/
Published
AuthorTitleSourceRegionKeywords
DS1860-0946
1896
Lacroix, A.Diamant, 1896Mineralogie de la France et des Colonies, pp. 354-6.Africa, AlgeriaDiamond Synthesis
DS1986-0504
1986
Loureiro, D., Delano, J.W.Oxidation states of magnesium ilmenites from South Africa, Algeria and MalaitaEos, Vol. 67, No. 16, April 22, p. 394. (abstract.)South Africa, Algeria, Solomon IslandsBlank
DS1988-0054
1988
Bernard-Griffiths, J., Peucat, J.J., Fourcade, S., Kienast, J.R.Origin and evolution of 2 Ga old carbonatite complex(lhouhaouene, Ahaggar, Algeria:) neodymium and Sr isotopicevidenceContributions to Mineralogy and Petrology, Vol. 100, No. 3, pp. 339-348AlgeriaGeochronology, Carbonatite
DS1988-0530
1988
Ouzegane, K., Fourcade, S., Kienast, J.R., Javoy, M.New carbonatite complexes in the Archean In ouzzal nucleus(Ahaggar, Algeria)- mineralogical and geochemical dataContributions to Mineralogy and Petrology, Vol. 52, pp. 247-275AlgeriaCarbonatite
DS1990-0797
1990
Kaminsky, F.B., Konyukhov, Yu.I., Verzhak, V.V., Khamai, M., KhenniDiamonds from the Algerian Sahara.(Russian)Mineral. Zhurn., (Russian), Vol. 12, No. 5, October, pp. 76-80AlgeriaDiamond morphology, Occurrences
DS1990-0919
1990
Lesquer, A., Takheris, D., Dauteria, J.M.Geophysical and petrological evidence for the presence of an anomalous upper mantle beneath the Sahara BasinsEarth Planetary Sci. Letters, Vol. 96, No. 3-4, January pp. 407-418AlgeriaGeophysics, Mantle
DS1992-0198
1992
Butt, C.R.M., Zeegers, H.Regolith exploration geochemistry in tropical and subtropical terrainsElsevier, 600pAustralia, Africa, Algeria, Burkina Faso, Sudan, MaliGeochemistry -laterites, Book -table of contents
DS1992-0820
1992
Kaminsky, F.V., Kolesnikov, S.K., Petelina, N.A., Khamani, M., et al.Minerals associated with diamond in the Algerian Sahara.(Russian)Mineralogischeskiy Zhurnal, (Russian), Vol. 14, No. 3, pp. 15-25AlgeriaMineralogy, Silet
DS1992-1446
1992
Sobolev, N.V., Afanasev, V.P., Pokhilenko, N.P., Kaminsky, F.V.Pyropes and diamonds of the Algerian Sahara.(Russian)Doklady Academy of Sciences Akademy Nauk SSSR, (Russian), Vol. 325, No. 2, pp. 367-373.AlgeriaIndicator minerals, Pyropes, diamonds
DS1993-0774
1993
Kaminsky, F.V., Roamnko, Ye.F., Kolesnikov, S.K., Salkhi, M.Lamproites of northern AlgeriaInternational Geology Review, Vol. 35, No. 3, March pp. 235-252AlgeriaLamproites, Review
DS1993-0775
1993
Kaminsky, F.V., Verzhak, V.V., Dauev, Yu.M., Buima, T., BoukhalfaThe North-African Diamondiferous provinceRussian Geology and Geophysics, Vol. 33, No. 7, pp. 91-95.AlgeriaBled-el-Mas, Alluvial placers
DS1994-1654
1994
Sobolev, N.V., Afanasyev, V.P., Pokhilenko, N., Kaminsky, F.Pyropes and diamonds from the Algerian SaharaDoklady Academy of Sciences USSR, Vol. 326, Oct. pp. 151-157.AlgeriaAlluvials, Geochemistry -garnets
DS1996-0007
1996
Afanasyev. V.P., et al.Relative abrasion resistance of pyrope and picroilmenite, two indicator minerals in kimberlite.Doklady Academy of Sciences, Vol. 342 No. 4, May, pp. 93-97.Russia, AlgeriaGeochemistry, Deposit - Malaya Botuobaya, Kyutyungda, Dyukunnakh
DS1996-0045
1996
Arregros, M.Selected bibliography on diamonds in AfricaAfrica Geoscience Review, Vol. 3, No. 2, pp. 331-342.Africa, South Africa, Angola, Algeria, Botswana, Sierra LeoneBibliography, CAR, Congo, Ivory Coast, Ghana, Guinea, Liberia, Mali
DS1996-0464
1996
Fourcade, S., Kienast, J.R., Ouzegane, K.Metasomatic effects related to channelled fluid streaming through deepcrust: fenites and carbonatitesJournal of Metamorphic Geology, Vol. 14, pp. 763-781.AlgeriaHoggar, Proterozoic granuiltes, Carbonatite
DS2001-0929
2001
Pique, A.Geology of Northwest AfricaGebruder Borntraeger, 310p.Morocco, Algeria, Tunisia, MauritaniaBook - table of contents, Structure, stratigraphy, tectonics
DS2001-0930
2001
Pique, A., Carpenter, M.S.N.Geology of Northwest AfricaGebruder Borntragaeger, www.schweizerbart.de, 310p. approx. $ 80.USMorocco, Algeria, Tunisia, MauritaniaBook - geology
DS2002-0123
2002
Bayou, B., Derder, M.E., Henry, B., Djellit, H.,AmennaPremier pole paleomagnetique d'age Mosvien constraint par un test du pli, obtenu dans le bassin d'Illizi.Comptes Rendus Geosciences, Vol.334,2,pp. 81-7.AlgeriaCraton - Sahara, Paleomagnetism
DS2002-0331
2002
Coulon, C., Megartsi, M., Fourcade, S., Maury, R.C., Bellon, H., Louni Hacini, A.Post collisional transition from calc-alkaline to alkaline volcanism during the Neogene inLithos, Vol.62,3-4,pp. 87-110.AlgeriaSubduction - slab
DS2002-0393
2002
Dostal, J., Caby, R., Keppie, J.D., Maza, M.Neoproterozoic magmatism in southwestern Algeria ( Sebkha el Melah Inlier): a northerly extension of the Trans Saharan orogen.Journal of African Earth Sciences, Vol. 35, 2, Aug. pp. 213-25.AlgeriaShoshonite, West African Craton
DS200612-0590
2006
Hoepffner, C., Houari, M.R., Bouabdelli, M.Tectonics of the North African Variscides ( Morocco, western Algeria): an outline.Comptes Rendus Geoscience, Vol. 338, 1-2, pp. 25-40.Africa, Morocco, AlgeriaTectonics
DS200712-0061
2007
Beccaluva, L., Azzouni Sekkal, A., Benhallou, A., Bianchini, G., Ellam, R.M., Marzola, M., Siena, StuartIntracratonic asthenosphere upwelling and lithosphere rejuvenation beneath the Hoggar swell (Algeria): evidence from HIMU metasomatized lherzolite mantle.Earth and Planetary Science Letters, Vol. 260, 3-4, pp. 482-494.Africa, AlgeriaMetasomatism
DS200712-0829
2007
Peoples Democratic Republic of Algeria.Diamond - new province south of Algeria.Democratic Republic of Algeria, Handout at Mines & Money Conference 11p. refs.Africa, AlgeriaDiamond history
DS200812-0021
2008
Allek, K., Hamoudi, M.Regional scale aeromagnetic survey of the south-west of Algeria: a tool for area selection for diamond exploration.Journal of African Earth Sciences, Vol. 50, no. 2, Feb. pp. 67-78.Africa, AlgeriaGeophysics - magnetics
DS200812-0534
2008
Kahoui, M., Mahdjoub, Y., Kaminsky, F.V.Possible primary sources of diamond in the North African Diamondiferous province.Geological Society of London, Ennih and Ligeois eds. The Boundaries of the West African Craton., Special Publication SP297, pp. 77-108.Africa, AlgeriaDiamond genesis
DS201201-0851
2011
Kahoui, M., Kemainsky, F.V., Griffin, W.L., Belousova, E., Mahdjoub, Y., Chabane, M.Detrital pyrope garnets from the El Kseibat area, Algeria: a glimpse into the lithospheric mantle beneath the north-eastern edge of the West African Craton.Journal of African Earth Sciences, In press available, 46p.Africa, AlgeriaGeochemistry - El Kseibat
DS201312-0454
2012
Kaminsky, F.V., Kahoui, M.,Mahdjoub, Y., Belousova, E., Griffin, W.L.,O'Reilly, S.Y.Pyrope garnets from the Eglab Shield, Algeria: look inside the Earth's mantle in the West African Craton and suggestions about primary sources of diamond and indicator minerals.Vladykin, N.V. ed. Deep seated magmatism, its sources and plumes, Russian Academy of Sciences, pp. 73-103.Africa, AlgeriaMineralogy
DS201412-0088
2014
Caby, R., Bruguier, O., Fernandez, L., Hammor, D., Bosch, D., Mechati, M., Laouar, R., Ouabadi, A., Abdallah, N., Douchet, C.Metamorphic diamonds in a garnet megacryst from the Edough Massif (northeastern Algeria)… Recognition and geodynamic consequences.Tectonophysics, Vol. 637, pp. 341-353.Africa, AlgeriaEdough Massif
DS201412-0300
2014
Godard, G., Chabou, M.C., Adjerid, Z.First African diamonds discovered in Algeria by the ancient Arabo-Berbers: history and insight into the source rocks.Comptes Rendus Geoscience, Vol. 346, 7-8, pp. 179-189.Africa, AlgeriaHistory, lamproite
DS201412-0478
2014
Kourim, F., Bodinier, J-L., Alard, O., Bendaoud, A., Vauchez, A., Dautria, J-M.Nature and evolution of the lithospheric mantle beneath the Hoggar Swell ( Algeria): a record from mantle xenoliths.Journal of Petrology, Vol. 55, pp. 2249-2280.Africa, AlgeriaXenoliths
DS201612-2318
2016
Lustrino, M., Agostini, S., Chalal, Y., Fedele, L., Stagno, V., Colombi, F., Bouguerra, A.Exotic lamproites or normal ultrapotassic rocks? The Late Miocene volcanic rocks from Kef Hahouner, NE Algeria, in the frame of the circum-Mediterranean lamproites.Journal of Volcanology and Geothermal Research, in press available 15p.Africa, AlgeriaLamproite

Abstract: The late Miocene (11-9 Ma) volcanic rocks of Kef Hahouner, ~ 40 km NE of Constantine (NE Algeria), are commonly classified as lamproites in literature. However, these rocks are characterized by an anhydrous paragenesis with plagioclase and Mg-rich olivine phenocrysts, set in a groundmass made up of feldspars, pyroxenes and opaque minerals. Thus, we classify the Kef Hahouner rocks as ultrapotassic shoshonites and latites, having K2O > 3 wt.%, K2O/Na2O > 2.5, MgO > 3-4 wt.%, SiO2 < 55-57 wt.% and SiO2/K2O < 15. All the investigated samples show primitive mantle-normalized multi-element patterns typical of orogenic (arc-type) magmas, i.e. enriched in LILE (e.g. Cs, Rb and Ba) and LREE (e.g. La/Yb = 37-59) with respect to the HFSE, peaks at Pb and troughs at Nb and Ta. Initial isotopic ratios are in the range of 87Sr/86Sr = 0.70874-0.70961, 143Nd/144Nd = 0.51222-0.51223, 206Pb/204Pb = 18.54-18.60, 207Pb/204Pb = 15.62-15.70 and 208Pb/204Pb = 38.88-39.16. The Kef Hahouner volcanic rocks show multi-element patterns similar to the other circum-Mediterranean lamproites and extreme Sr, Nd and Pb isotopic compositions. Nevertheless, the abundant plagioclase, the presence of Al-rich augite coupled with high Al2O3 whole rock compositions (9.6-21.4 wt.%), and the absence of phlogopite are all at inconsistent with the definition of lamproite. We reviewed the rocks classified as lamproites worldwide, and found that many of these rocks, as for the Kef Hahouner samples, should be actually defined as "normal" potassic to ultrapotassic volcanic rocks. Even the grouping of lamproites into "orogenic" and "anorogenic" types appears questionable.
DS201709-1965
2017
Bruguier, O., Bosch, D., Caby, R., Vitale-Brovarone, A., Fernadez, L., Hammor, D., Laouar, R., Ouabadi, A., Abdallah, N., Mechanti, M.Age of UHP metamorphism in the Western Mediterranean: insight from rutile and minute zircon inclusions in a diamond bearing garnet megacryst ( Edough Massif, NE Algeria).Earth and Planetary Science Letters, Vol. 474, pp. 215-225.Africa, Algeriadiamond inclusions

Abstract: Diamond-bearing UHP metamorphic rocks witness for subduction of lithospheric slabs into the mantle and their return to shallow levels. In this study we present U-Pb and trace elements analyses of zircon and rutile inclusions from a diamond-bearing garnet megacryst collected in a mélange unit exposed on the northern margin of Africa (Edough Massif, NE Algeria). Large rutile crystals (up to 300 ?m in size) analyzed in situ provide a U-Pb age of 32.4 ± 3.3 Ma interpreted as dating the prograde to peak subduction stage of the mafic protolith. Trace element analyses of minute zircons (?30 ?m) indicate that they formed in equilibrium with the garnet megacryst at a temperature of 740-810 °C, most likely during HP retrograde metamorphism. U-Pb analyses provide a significantly younger age of 20.7 ± 2.3 Ma attributed to exhumation of the UHP units. This study allows bracketing the age of UHP metamorphism in the Western Mediterranean Orogen to the Oligocene/early Miocene, thus unambiguously relating UHP metamorphism to the Alpine history. Exhumation of these UHP units is coeval with the counterclockwise rotation of the Corsica-Sardinia block and most likely resulted from subduction rollback that was driven by slab pull.
DS201709-1979
2017
Djeddi, A., Parat, F., Ouzegane, K., Bodinier, J.L.Ree enrichment in apatite Britholite exsolutions in carbonatite in Quezal terrane, Hoggar, South Algeria.Goldschmidt Conference, abstract 1p.Africa, Algeriacarbonatite, Ouzzal

Abstract: Ihouhaouene area in In Ouzzal terrane (Hoggar, South Algeria) is exceptional by numerous carbonatite complexes systematically associated to syenites. They constitute one of the oldest carbonatite emplaced at 2 Ga. Various types of carbonatites are distinguished by their successive placement and pegmatitic to brecciated appearance. The first-generation of carbonatites are always brecciated with elements of syenite and carbonate cement with calcite, apatite, alkali feldspar, wollastonite, clinopyroxene +/- sphene, allanite, quartz and garnet. Late carbonatite intrusions appear in small pegmatitic veins rich in apatite (3-50 mm). All carbonatites are calciocarbonatites (38-50 wt% CaO) with silica content ranging from 5 to 21 wt% SiO2. The high silica content is interpreted as assimilation of syenite material during emplacement. Carbonatites have high Rare Earth Element (REE) concentrations with high Ligh REE/Heavy REE fractionation (e.g. 1088 ppm La, La/Yb= 144-198) and variable concentrations in Th (26.5-197 ppm). The REE concentrations are mainly controlled by apatite phenocrysts (30-40 vol.%) with 4-9 wt% REE. In late pegmatitic carbonatite, REE-rich apatites are green-yellow phenocrysts with britholite exsolution (up to 40 vol.%, Ca4(REE)6 (SiO4,PO4)6 (OH,F,Cl)2). Britholites are hexagonal and occur as fine lamellar exsolutions (<10 um) in the same crystallographic axis (001) than apatites or as irregularshaped grains (10-200 um). All britholites contain 8-16 wt% La, 21-43 wt% Ce and 7-12 wt% Nd. The apatite-britholite exsolutions correspond to a substitution of the trivalent rareearth elements (REE3+) and Si4+ for Ca2+ and P5+. The REE substitution is accompanied by a change in volatile composition with F-rich apatite and Cl-rich britholite indicating that Si and Cl-rich hydrothermal fluids are present at the late stage of carbonatite evolution leading to REEenrichment and the crystallization of REE minerals.
DS201809-2000
2018
Brahimi, S., Ligeois, J-P., Ghienne, J-F., Munschy, M., Bourmatte, A.The Tuareg shield terranes revisited and extended towards the northern Gondwana margin: magnetic and gravimetric constraints.Earth Science Reviews, Vol. 185, Doi: 10.1016/j.earscirev. 2018.07.002Africa, AlgeriaGondwanaland

Abstract: Kimberlite is the host rock of diamonds and varies widely in geological and mineralogical features as well as color, processing capability, and dewatering characteristics. This study investigated the dewatering behavior of problematic Angolan kimberlites. The presence of clay minerals in kimberlite causes difficulties in dewatering due to high flocculant demand, poor supernatant clarity, and low settling rates. Identifying critical parameters governing the settling behavior will assist in managing the settling behavior of different kimberlite slurries. The influence of particle size, pH of the kimberlite slurry, cation exchange capacity, exchangeable sodium percentage, and smectite content of the kimberlite on the settling rate were investigated for 18 different African kimberlite samples. The settling rate and slurry bed compaction during natural settling were also measured for the kimberlite slurries. Seventeen different Angolan clay-rich kimberlites and one South African clay-rich kimberlite were tested, and, except for two kimberlites, colloidal stability was experienced during natural settling. The pH values of the kimberlite slurries ranged between 9 and 11, which is similar to the pH band where colloidal stability was found during earlier research. The results indicate that colloidal stable slurries were experienced with kimberlites that had exchangeable sodium percentages as low as 0.7%. The cation exchange capacity of the various kimberlites differentiated more distinctly between colloidal stability and instability. A new model is proposed whereby clay-rich kimberlites with a cation exchange capacity of more than 10cmol/kg will experience colloidal stability if the pH of the solvent solution is within the prescribed pH range of 9-11.The Trans-Saharan Belt is one of the most important orogenic systems constitutive of the Pan-African cycle, which, at the end of the Neoproterozoic, led to the formation of the Gondwana Supercontinent. It is marked by the opening and closing of oceanic domains, collision of continental blocks and the deformation of thick synorogenic sedimentary basins. It extends from north to south over a distance of 3000?km in Africa, including the Nigerian Shield and the Tuareg Shield as well as their counterparts beneath the Phanerozoic oil-rich North- and South-Saharan sedimentary basins. In this study, we take advantage of potential field methods (magnetism and gravity) to analyze the crustal-scale structures of the Tuareg Shield terranes and to track these Pan-African structures below the sedimentary basins, offering a new, >1000?km extent. The map interpretations are based on the classical potential field transforms and two-dimensional forward modeling. We have identified geophysical units and first-order bounding lineaments essentially defined owing to magnetic and gravimetric anomaly signatures. In particular, we are able to highlight curved terminations, which in the Trans-Saharan context have been still poorly documented. We provide for the first time a rheological map showing a categorization of contrasted basement units from the south of the Tuareg Shield up to the Atlas Belt. These units highlight the contrasted rheological behavior of the Tuareg tectonostratigraphic terranes during (i) the northerly Pan-African tectonic escape characteristic of the Trans-Saharan Belt and (ii) the North Sahara basin development, especially during intraplate reworking tied to the Variscan event. The discovery of a relatively rigid E-W oriented unit to the south of the Atlas system, and on which the escaping Pan-African terranes were blocked, offers a new perspective on the structural framework of the north-Gondwana margin. It will help to understand how occurred the rendezvous of the N-S oriented Pan-African terranes and the E-W oriented Cadomian peri-Gondwanan terranes.
DS201904-0744
2019
Hidas, K., Garrido, C.J., Booth-Rea, G., Marchesi, C., Bodinier, J-L., Dautria, J-M., Louni-Hacini, A., Azzouni-Sekkal, A.Lithosphere tearing along STEP faults and synkenetic formation of lherzolite and wehrlite in the shallow subcontinental mantle. OranSolid Earth, https://doi.org/10.5194 /se-2019-32 36p.Mantle, Africa, Algeriasubduction

Abstract: Subduction-Transform Edge Propagator (STEP) faults are the locus of continual lithospheric tearing at slab edges, resulting in sharp changes in the lithospheric and crustal thickness and triggering lateral and/or near-vertical mantle flow. However, the mechanisms at the lithospheric mantle scale are still poorly understood. Here, we present the microstructural study of olivine-rich lherzolite, harzburgite and wehrlite mantle xenoliths from the Oran volcanic field (Tell Atlas, NW Algeria). This alkali volcanic field occurs along a major STEP fault responsible for the Miocene westward slab retreat in the westernmost Mediterranean. Mantle xenoliths provide a unique opportunity to investigate the microstructures in the mantle section of a STEP fault system. The microstructures of mantle xenoliths show a variable grain size ranging from coarse granular to fine-grained equigranular textures uncorrelated with modal variations. The major element composition of the mantle peridotites provides temperature estimates in a wide range (790-1165?°C) but in general, the coarse-grained and fine-grained peridotites suggest deeper and shallower provenance depth, respectively. Olivine grain size in the fine-grained peridotites depends on the size and volume fraction of the pyroxene grains, which is consistent with pinning of olivine grain growth by pyroxenes as second phase particles. In the coarse-grained peridotites, well-developed olivine crystal preferred orientation (CPO) is characterized by orthorhombic and [100]-fiber symmetries, and orthopyroxene has a coherent CPO with that of olivine, suggesting their coeval deformation by dislocation creep at high-temperature. In the fine-grained microstructures, along with the weakening of the fabric strength, olivine CPO symmetry exhibits a shift towards [010]-fiber and the [010]- and [001]-axes of orthopyroxene are generally distributed subparallel to those of olivine. These data are consistent with deformation of olivine in the presence of low amounts of melts and the precipitation of orthopyroxenes from a melt phase. The bulk CPO of clinopyroxene mimics that of orthopyroxene via a topotaxial relationship of the two pyroxenes. This observation points to a melt-related origin of most clinopyroxenes in the Oran mantle xenoliths. The textural and geochemical record of the peridotites are consistent with interaction of a refractory harzburgite protolith with a high-Mg# melt at depth (resulting in the formation of coarse-grained clinopyroxene-rich lherzolite and wehrlite), and with a low-Mg# evolved melt in the shallow subcontinental lithospheric mantle (forming fine-grained harzburgite). We propose that pervasive melt-peridotite reaction - promoted by lateral and/or near-vertical mantle flow associated with lithospheric tearing - resulted in the synkinematic crystallization of secondary lherzolite and wehrlite and played a key effect on grain size reduction during the operation of the Rif-Tell STEP fault. Melt-rock reaction and secondary formation of lherzolite and wehrlite may be widespread in other STEP fault systems worldwide.
DS201909-2034
2019
Djeddi, A., Parat, F., Bodinier, J-L., Ouzegane, K. Immiscibility and hybridization during progressive cooling of carbonatite and alkaline magmas ( in Oussal Terrane, western Hoggar).Goldschmidt2019, 1p. AbstractAfrica, Algeriacarbonatite

Abstract: Carbonatites and syenites from Ihouhaouene (2 Ga; In Ouzzal terrane, Hoggar, South of Algeria) have close spatial relationships. Their analogous mineral assemblages with diopside/hedenbergite (cpx), apatite, wollastonite +/- calcite and alkali-feldspar suggest that they were emplaced from a common igneous parental event. Carbonatites from In Ouzzal terrane are calciocarbonatites and form a continuous range of whole-rock major and trace element composition from Sipoor carbonatite (<20 wt.% SiO2; 24-36 wt.% CO2) to Si-rich carbonatite (20-35 wt.% SiO2; 11-24 wt.% CO2) then white syenite (52-58 wt.% SiO2; 0.1-6.5 wt.% CO2) and red syenite (57-65 wt.% SiO2; 0.1-0.4 wt.% CO2). Equilibrium calculations reveal that apatite (Ce/Lu= 1690-6182; Nb/Ta >50) and cpx (Ce/Lu= 49-234; Nb/Ta<10) from Si-rich carbonatites and white syenites crystallized from a REEenriched carbonate melt and an evolved silicate melt, respectively. Likewise, Si-poor carbonatites have a higher REE contents in calculated apatite equilibrium melts than in their cpx and a wide range of Nb/Ta ratios with a majority of subchondritic value (<10) that reflects the segregation of the carbonate fraction from an evolved parental melt. Otherwise, red syenites have similar REE contents in apatite and clinopyroxene equilibrium melts (Nb/Ta>10) suggesting an origin from homogeneous evolved melt batches. Both mineralogical and geochemical features reveal the intimate link between carbonatites and syenites and their cogenetic signature. Immiscibility and fractional crystallization processes modelling explain the trace element contents and low Nb/Ta ratio in minerals. These processes were partly counterbalanced by intermingling of partially crystallized melt fractions and hybridization of segregated minerals during the progressive cooling of a silico-carbonated mantle melt.
DS202104-0569
2021
Buccione, R., Kechiched, R., Mongelli, G., Sinisi, R.REEs in the North Africa P-bearing deposits, paleoenvironments, and economic perspectives: a review.MDPI Minerals, Vol. 11, 27p. PdfAfrica, Algeria, Tunisia, MoroccoREE

Abstract: A review of the compositional features of Tunisia, Algeria, and Morocco phosphorites is proposed in order to assess and compare the paleoenvironmental conditions that promoted the deposit formation as well as provide information about their economic perspective in light of growing worldwide demand. Since these deposits share a very similar chemical and mineralogical composition, the attention was focused on the geochemistry of rare earth elements (REEs) and mostly on ?REEs, Ce and Eu anomalies, and (La/Yb) and (La/Gd) normalized ratios. The REEs distributions reveal several differences between deposits from different locations, suggesting mostly that the Tunisian and Algerian phosphorites probably were part of the same depositional system. There, sub-reducing to sub-oxic conditions and a major REEs adsorption by early diagenesis were recorded. Conversely, in the Moroccan basins, sub-oxic to oxic environments and a minor diagenetic alteration occurred, which was likely due to a different seawater supply. Moreover, the drastic environmental changes associated to the Paleocene-Eocene Thermal Maximum event probably influenced the composition of Northern African phosphorites that accumulated the highest REEs amounts during that span of time. Based on the REEs concentrations, and considering the outlook coefficient of REE composition (Koutl) and the percentage of critical elements in ?REEs (REEdef), the studied deposits can be considered as promising to highly promising REE ores and could represent a profitable alternative source for critical REEs.
 
 

You can return to the Top of this page


Copyright © 2024 Kaiser Research Online, All Rights Reserved