Kaiser Bottom Fish OnlineFree trialNew StuffHow It WorksContact UsTerms of UseHome
Specializing in Canadian Stocks
SearchAdvanced Search
Welcome Guest User   (more...)
Home / Education
Education
 

SDLRC - UHP


The Sheahan Diamond Literature Reference Compilation - Scientific and Media Articles based on Major Keyword - UHP
The Sheahan Diamond Literature Reference Compilation is compiled by Patricia Sheahan who publishes on a monthly basis a list of new scientific articles related to diamonds as well as media coverage and corporate announcements called the Sheahan Diamond Literature Service that is distributed as a free pdf to a list of followers. Pat has kindly agreed to allow her work to be made available as an online digital resource at Kaiser Research Online so that a broader community interested in diamonds and related geology can benefit. The references are for personal use information purposes only; when available a link is provided to an online location where the full article can be accessed or purchased directly. Reproduction of this compilation in part or in whole without permission from the Sheahan Diamond Literature Service is strictly prohibited. Return to Diamond Keyword Index
Sheahan Diamond Literature Reference Compilation - Scientific Articles by Author for all years
A-An Ao+ B-Bd Be-Bk Bl-Bq Br+ C-Cg Ch-Ck Cl+ D-Dd De-Dn Do+ E F-Fn Fo+ G-Gh Gi-Gq Gr+ H-Hd He-Hn Ho+ I J K-Kg Kh-Kn Ko-Kq Kr+ L-Lh
Li+ M-Maq Mar-Mc Md-Mn Mo+ N O P-Pd Pe-Pn Po+ Q R-Rh Ri-Rn Ro+ S-Sd Se-Sh Si-Sm Sn-Ss St+ T-Th Ti+ U V W-Wg Wh+ X Y Z
Sheahan Diamond Literature Reference Compilation - Media/Corporate References by Name for all years
A B C D-Diam Diamonds Diamr+ E F G H I J K L M N O P Q R S T U V W X Y Z
Each article reference in the SDLRC is tagged with one or more key words assigned by Pat Sheahan to highlight the main topics of the article. In an effort to make it easier for users to track down articles related to a specific topic, KRO has extracted these key words and developed a list of major key words presented in this Key Word Index to which individual key words used in the article reference have been assigned. In most of the individual Key Word Reports the references are in crhonological order, though in some such as Deposits the order is first by key word and then chronological. Only articles classified as "technical" (mainly scientific journal articles) and "media" (independent media articles) are included in the Key Word Index. References that were added in the most recent monthly update are highlighted in yellow.

UHP refers to ultra high pressure metamorphism of rocks within the crust involving pressures that theoretically exist deeper than the 80-90 km thickness of crustal rocks. Ultra high pressure conditions emerge in subduction settings, which is relevant to diamonds because eclogite, a major source rock for diamonds, originated as an oceanic slab.

UHP
Posted/
Published
AuthorTitleSourceRegionKeywords
DS1992-0749
1992
Ijewliw, O.J.Petrology of the Golden cluster lamprophyres in southeastern BritishColumbiaBritish Columbia Geological Survey, Paper 1992-1, pp. 37-45British ColumbiaHP, MOns Creek, Golden, Petrology
DS2000-0087
2000
Bespaev, Kh.A., Bugaets, S.N.Comparative petrochemistry of ultrahigh pressure metamorphic rocksRussian Geology and Geophysics, Vol.41,12,pp.1654-61., Vol.41,12,pp.1654-61.GlobalUHP, Geochemistry
DS2000-0088
2000
Bespaev, Kh.A., Bugaets, S.N.Comparative petrochemistry of ultrahigh pressure metamorphic rocksRussian Geology and Geophysics, Vol.41,12,pp.1654-61., Vol.41,12,pp.1654-61.GlobalUHP, Geochemistry
DS2001-0073
2001
Bai, W., Yang, J., Fang, Yan, ZhangExplosion of ultrahigh pressure minerals in the mantleActa Geologica Sinica, Vol. 22, No. 5, pp. 385-90.MantleUHP
DS2001-0151
2001
Burov, E., Jolivet, L., LePourhiet, L., Poliakov, A.A thermomechanical model of exhumation of high pressure HP and ultra high pressure UHP metamorphic rocks...Tectonophysics, Vol. 342, No. 2, pp. 113-36.GlobalAlpine type collision belts, UHP
DS2001-0180
2001
Chemenda, A.I., Hurpin, D., Tang, Stephan, BuffetImpact of arc continent collision on the conditions of burial and exhumation of UHP LT rocks.... experimentalTectonophysics, Vol. 342, No. 2, pp. 137-61.GlobalUHP, Tectonics
DS2001-0577
2001
Karki, B., Stixrude, L., Wentzcovitch, R.High pressure elastic properties of major materials of Earth's mantle from first principles.Reviews of Geophysics, Vol. 39, No. 4, Nov. pp.507-34.MantleGeophysics, UHP
DS2001-1310
2001
Zhao, Z., Christensen, N.I., Zhou, W.Elastic wave velocity in rocks form Dabie Shan and its constraints for lithospheric composition and recycling.Progress in Natural Science, Vol. 11, 2, pp. 115-22.ChinaGeophysics - seismics, Crust - mantle, UHP
DS2002-0041
2002
Anderson, O.L.The power balance at the core mantle boundaryEarth and Planetary Science Letters, Vol.131, 1, pp. 1-17.MantleUHP
DS2002-0087
2002
Ayers, J.C., Dunkle, S., Gao, S., Miller, C.F.Constraints on timing of peak and retrograde metamorphism in the Dabie Shan ultrahigh pressure metamorphic belt, east central China, using U Th PbChemical Geology, Vol.186,2-3, pp.315-31.ChinaUHP, Geochronology - dating of zircon and monazite
DS2002-0114
2002
Bass, J.D.Mineralogy and chemical composition of the Earth's mantle18th. International Mineralogical Association Sept. 1-6, Edinburgh, abstract p.77.MantleUHP mineralogy, Tomography - seismics
DS2002-0137
2002
Belousova, E.A., Griffin, W.L., O'Reilly, S.Y., Fisher, N.I.Igneous zircon: trace element composition as an indicator of source rock typeContributions to Mineralogy and Petrology, Vol. 143, 5, pp.587-601.MantleUHP, Geochemistry - indicator minerals
DS2002-0193
2002
Bouhild, M.A., Jephcoat, A.P.Metal silicate interactions at high pressure and temperature in the diamond anvil cell18th. International Mineralogical Association Sept. 1-6, Edinburgh, abstract p.77.MantleUHP mineralogy, Redox conditions
DS2002-0202
2002
Brenker, F.E., Kaminsky, F., Joswig, W.Polytypes of CaSiO3 walstromite in diamonds from Juina: an indicator of retrograde reaction from CaSIO3 perovskite.18th. International Mineralogical Association Sept. 1-6, Edinburgh, abstract p.78. (poster)BrazilUHP mineralogy
DS2002-0282
2002
Chen, B., Jahn, B-M., Wei, C.Petrogenesis of Mesozoic granitoids in the Dabie UHP Complex, Central China: trace element and Nd Sr isotopeLithos, Vol. 60, No. 1-2, Jan. pp. 67-88.ChinaUltra high pressure, UHP, Geochronology
DS2002-0345
2002
Dachs, E., Proyer, D.Constraints on the duration of high pressure metamorphism in the Tauarn Window from diffusion modelling of discontinuous zones in eclogite garnet.Journal of Metamorphic Geology, Vol. 20, 8, pp. 769-80.GlobalUHP - eclogite
DS2002-0360
2002
Dawer, M., Xiuling, W., Yujing, H., Xin, M.Ultra structure of coesite - retrogressive metamorphic quartz and their interface transition belt from ultra high pressure metamorphic rocks.18th. International Mineralogical Association Sept. 1-6, Edinburgh, abstract p.72.MantleUHP, mineralogy, coesite
DS2002-0381
2002
Digonskii, S.V., Shatagin, N.N.Modeling natural diamond generation in high pressure chambersMoscow University Geology Bulletin, Vol. 57, 1, pp. 49-53.GlobalDiamond genesis, UHP
DS2002-0491
2002
Fu, B., Zheng, Y.F., Touret, J.L.Petrological, isotopic and fluid inclusion studies of eclogites from Sujiahe NW Dabie Shan, China.Chemical Geology, Vol. 187, No. 1-2, pp. 107-28.ChinaUHP, Eclogites
DS2002-0556
2002
Gerya, T.V., Perchuk, L.L., Maresch, W.V., Willner, A.P., Van ReenenThermal regime and gravitational instability of multi layered continental crust:European Journal of Mineralogy, Vol. 14,4,pp. 687-700.MantleUHP - not specific to diamonds
DS2002-0561
2002
Ghiribelli, B., Frzzotti, M-L., Palmeri, R.Coesite in eclogites of the Lanterman Range (Antartica): evidence from textural and Raman studies.European Journal of Mineralogy, Vol. 14,pp.355-60., Vol. 14,pp.355-60.AntarcticaUHP - coesite, metamorphism
DS2002-0562
2002
Ghiribelli, B., Frzzotti, M-L., Palmeri, R.Coesite in eclogites of the Lanterman Range (Antartica): evidence from textural and Raman studies.European Journal of Mineralogy, Vol. 14,pp.355-60., Vol. 14,pp.355-60.AntarcticaUHP - coesite, metamorphism
DS2002-0575
2002
Gilotti, J.A., Krogh Ravna, E.J.First evidence for ultrahigh pressure metamorphism in the north east Greenland Caledonides.Geology, Vol. 30,6, June,pp. 551-4.GreenlandEclogite, coesite, pseudomorph, UHP
DS2002-0628
2002
Hacker, B.R., Grove, M.Was UHP tectonism in Norway caused by ophiolite emplacement?Geological Society of America Annual Meeting Oct. 27-30, Abstract p. 511.NorwayUHP - not specific to diamonds
DS2002-0656
2002
Harris, L.B., Koyi, H.A., Fossen, H.Mechanisms for folding of high grade rocks in extensional tectonic settingsEarth Science Reviews, Vol. 59, 1-4, Nov. pp. 163-210.GlobalUHP, Tectonics
DS2002-0721
2002
Hirose, K.The role of phase transitions in dynamics of the Earth's interiors18th. International Mineralogical Association Sept. 1-6, Edinburgh, abstract p.75,6.MantleUHP mineralogy, Boundary - core mantle
DS2002-0783
2002
Johnson, C.L., Buseck, P.R.Transmission electron microscopy of dislocation structures in olivine18th. International Mineralogical Association Sept. 1-6, Edinburgh, abstract p.78. (poster)MantleUHP mineralogy, Tectonic processes
DS2002-0862
2002
Klemd, R., Schroter, F.C., Will, T.M., Gao, J.P-T evolution of glauco phaneomphacite bearing HP - LT rocks in the eastern Tien Shan Orogen: Alpine type ..Journal of Metamorphic Geology, Vol. 20, No. 2, pp. 239-54.China, northwestTectonics - evidence, Ultrahigh pressure, UHP
DS2002-0879
2002
Konopasek, J., Schulmann, K., Johan, V.Eclogite facies metamorphism at the eastern margin of the Bohemian Massif - subduction prior to continental underthrusting?European Journal of Mineralogy, Vol. 14,4,pp. 701-14.EuropeUHP - not specific to diamonds
DS2002-0914
2002
Langenhorst, F., Poirier, J.P.Transmission electron microscopy of coesite inclusions in the Dora Maira high pressure metamorphic pyrope quartzite.Earth and Planetary Science Letters, Vol. 203, 3-4, pp. 793-803.EuropeCoesite - inclusions, UHP, ultra high pressure
DS2002-0955
2002
Litvin, Y.A., Butvina, V.G., Spivak, A.V.Formation of natural diamonds in carbonate silicate and sulphide melts: the evidence from high pressure experiments.18th. International Mineralogical Association Sept. 1-6, Edinburgh, abstract p.75.Russia, ChinaUHP - mineralogy, Kokchetav, Dabie Shan
DS2002-0957
2002
Liu, F., Xu, Z., Liu, J.G., Katayama, Masago, Maruyama, YangUltra high pressure mineral inclusions in zircons from gneissic core samples of the Chinese continental drilling site in eastern China.European Journal of Mineralogy, No. 3, pp. 499-512.China, easternUHP, Mineral inclusions
DS2002-0977
2002
Mackwell, S.J., Paterson, M.S.New developments in deformation studies: high strain deformationPlastic Deformation of Minerals and Rocks, Geological Society of America, No. 51, Chapter 1, pp. 1-17.MantleUHP
DS2002-1168
2002
Oberhansli, R., Matinotti, G., Schmid, R., Liu, X.Preservation of primary volcanic textures in the ultrahigh pressure terrain of Dabie ShanGeology, Vol.30,8,Aug.pp.699-702.ChinaUHP, Deposit - Dabie Shan area
DS2002-1171
2002
Oganov, A.R., Price, G.D., Brodholt, J.P.Theory of MgSiO3 perovskite: towards a thermal and mineralogical model of the Earth's mantle.18th. International Mineralogical Association Sept. 1-6, Edinburgh, abstract p.70.MantleUHP - mineralogy
DS2002-1178
2002
Ohtani, E., Litasov, K.D.Phase and melting relations of peridotite H2O and basalt H2O systems to the top of the lower mantle and implications for slab subduction and hot mantle plume.18th. International Mineralogical Association Sept. 1-6, Edinburgh, abstract p.75.MantleUHP - mineralogy
DS2002-1206
2002
Palyanov, Y.N., Sokol, A.G., Borzdov, KhokhryakovFluid bearing alkaline carbonate melts as the medium for the formation of diamonds in Earth's mantle:Lithos, Vol.60, pp. 145-59.MantleDiamond - crystallization, melting, UHP, Petrology - experimental
DS2002-1329
2002
Reverdatto, V.High/ultrahigh pressure peridotites and pyroxenites from the Kokchetav collision zone, Kazakhstan.18th. International Mineralogical Association Sept. 1-6, Edinburgh, abstract p.226.RussiaUHP mineralogy
DS2002-1346
2002
Rivers, T., Ketchum, J., Indares, A., Hynes, A.The high pressure belt in the Grenville Province: architecture, timing and exhumationCanadian Journal of Earth Science, Vol.39,5, May, pp.867-93.Quebec, LabradorUHP - eclogite
DS2002-1379
2002
Safonov, O.G., Malveev, Yu.A., Litvin, Y.A., Perchuk, L.L., Bindi, L., MenchettiUltrahigh pressure study of potassium bearing clinopyroxene equilibria18th. International Mineralogical Association Sept. 1-6, Edinburgh, abstract p.74.Russia, YakutiaUHP, mineralogy, Kokchteav Complex, kimberlites
DS2002-1408
2002
Sato, H., Ito, K.Olivine pyroxene H2O system as a practical analogy for estimating the elastic properties of fluid bearing mantle rocks at high pressures and temperatures.Geophysical Research Letters, Vol. 29,9,May 1, p. 39-ChinaUHP
DS2002-1537
2002
Stachel, T., Harris, J.W., McCammon, C.Inclusions in ultra deep diamonds - tracers of ancient slabs?18th. International Mineralogical Association Sept. 1-6, Edinburgh, abstract p.74.MantleUHP mineralogy
DS2002-1569
2002
Sun, W., Williams, I.S., Li, S.Carboniferous and Triassic eclogites in the Western Dabie Mountains east central Chin a: evidence for protracted convergence of the North and South Chin a Blocks.Journal of Metamorphic Geology, Vol. 20, 9, pp. 873-886.ChinaEclogites, UHP
DS2002-1584
2002
Terabayashi, M., Ota, T., Yamamoto, H., Kaneko, Y.Contact metamorphism of the Daulet Suite by solid state emplacement of the Kokchetav UHP HP metamorphic slab.International Geology Review, Vol. 44, 9, pp. 819-30.RussiaUHP
DS2002-1616
2002
Tropper, P., manning, C.E., Essene, E.J.The substitution of Al and F in titanite at high pressure and temperature experimental constraints on phase relations and solid solution properties.Journal of Petrology, Vol. 43, No. 10, Oct.pp. 1787-1814.GlobalUltra high pressure, UHP
DS2002-1683
2002
Wang, J.H., Sun, M., Deng, S.X.Geochronological constraints on the timing of migmatization in the Dabie Shan east central China.European Journal of Mineralogy, No. 3, pp. 513-24.China, easternUHP, Dabie Shan area
DS2002-1746
2002
Xiao, Y., Hoefs, J., Van den Kerkof, A.M., Simon, K., Fiebig, J., Zheng, Y.F.Fluid evolution in the Baia Mare epithermal gold/polymetallic district, Inner Carpathians, RomaniaJournal of Petrology, Vol. 43, No. 8, pp. 1505-28.ChinaGeochemistry, UHP
DS2002-1761
2002
Ye, K., Liu, J-B., Cong, B-L., Ye, D-N., Xu, P., Omori, S., Maruyama, S.Ultrahigh pressure (UHP) low Al titanites from carbonate bearing rocks in the Dabie shan Sulu UHP terrane, eastern China.American Mineralogist, Vol. 87, pp. 875-881.ChinaUHP - mineralogy, Dabie Shan area
DS2002-1773
2002
Zhang, H., Gao, S., Zhong, Z., Zhang, B., Zhang, L., Hu, S.Geochemical and Sr Nd Pb isotopic compositions of Cretaceous granitoids: constraintsChemical Geology, Vol. 186, 2-4, pp. 281-99.China, easternUHP, Dabie Shan area
DS2002-1777
2002
Zhang, L., Ellis, D.J., Jiang, W.Ultra high pressure metamorphism in western Tianshan, China: part I. Evidence from inclusions of coesite pseudomorphs in garnet and from quartz exsolution lamellae iAmerican Mineralogist, Vol. 87, pp. 853-60.ChinaUHP - mineralogy, Eclogites
DS2002-1778
2002
Zhang, L., Ellis, D.J., Williams, S., Jiang, W.Ultra high pressure metamorphism in western Tianshan, China: part II. Evidence from magnesite in eclogite.American Mineralogist, Vol. 87, pp. 861-66.ChinaUHP - mineralogy, Eclogites
DS2002-1782
2002
Zhang, R.Y., Shau, Y.H., Liou, J.G., Lo, C.H.Discovery of clinoenstatite in garnet pyroxenites from the Dabie Sulu ultrahigh pressure terrane, east central China.American Mineralogist, Vol. 87, pp. 867-74.ChinaUHP - mineralogy, Dabie Shan area
DS2002-1795
2002
Zhu, Y., Ogasawara, Y.Carbon recycled into deep earth: evidence from dolomite association in subduction zone arc.Geology, Vol. 30, 10, Oct. pp. 947-50.RussiaUHP, texture, subduction, diamond, Kochetav Massif
DS2003-0065
2003
Baldwin, J.A., Bowring, S.A., Williams, M.L.Petrological and geochronological constraints on high pressure, high temperatureJournal of Metamorphic Geology, Vol. 21, 1, pp. 81-98.Alberta, SaskatchewanGeochronology, UHP
DS2003-0080
2003
Bassett, W.A.High pressure temperature aqueous systems in the hydrothermal diamond anvil cellEuropean Journal of Mineralogy, Vol. 15, 5, pp. 773-80.GlobalUHP - experimental
DS2003-0092
2003
Bejina, F., Jaoul, O., Liebermann, R.C.Diffusion in minerals at high pressure: a reviewPhysics of the Earth and Planetary Interiors, Vol. 139, 1-2, Sept. 30, pp. 3-20.GlobalPetrology, experimental, UHP
DS2003-0106
2003
Beyssac, O., Chopin, C., Mposkos, E.D., Kostopoulos, D.K.Comment and reply ' diamond, former coesite and supersilicic garnet inEarth and Planetary Science Letters, Vol. 214, No. 3-4, pp. 669-678.GreeceUHP
DS2003-0172
2003
Brown, M., Baldwin, J., Morales, J., Fuck, R.Modelling ultra hot beauties from Brazil: peak temperature and P-T evolutionGeological Society of America, Annual Meeting Nov. 2-5, Abstracts p.222.BrazilUHP
DS2003-0220
2003
Carswell, D.A., Brueckner, H.K., Cuthbert, S.J., Mehta, K., O'Brien, P.J.The timing of stabilization and the exhumation rate for ultra high pressure rocks in theJournal of Metamorphic Geology, Vol. 21, 6, pp. 601-612.NorwayUHP
DS2003-0222
2003
Carswell, D.A., Tucker, R.D., O'Brien, P.J., Krogh, T.E.Coesite micro-inclusions and the U Pb age of zircons from the Hareidland eclogite inLithos, Vol.67, 3-4, April, pp. 181-190.NorwayGeochronology, UHP
DS2003-0245
2003
Chen, F., Siebel, W., Guo, J., Cong, B., Satir, M.Late Proterozoic magmatism and metamorphism in gneisses from the Dabie highPrecambrian Research, Vol. 120, 1-2, pp.131-148.ChinaMagmatism, UHP
DS2003-0250
2003
Cheng, Y.X., Klemperer, S.L., Wen-bang, L.L.X., Chetwin, E.Crustal structure and exhumation of the Dabie Shan ultrahigh pressure orogen easternGeology, Vol. 31, 5, pp. 435-8.ChinaUHP
DS2003-0395
2003
Faure, M., Lin, W., Monie, P., Le Breton, N., Pouissineau, S., Panis, D., Deloule, E.Exhumation tectonics of the ultrahigh pressure metamorphic rocks in the Qinling orogenTectonics, Vol. 22, 3, 10.1029/2002TC001450China, ShandongUHP
DS2003-0396
2003
Faure, M., Lin, W., Scharer, U., Shu, L., Sun, Y., Arnaud, N.Continental subduction and exhumation of UHP rocks. Structural and geochronologicalLithos, Vol. 70, 3-4, pp. 213-41.ChinaUHP, geochronology
DS2003-0406
2003
Ferrando, S.Fluid rock interaction in the UHP KY-EP-PHE eclogite from Donghai area, SuluGeological Society of America, Annual Meeting Nov. 2-5, Abstracts p.225.ChinaUHP
DS2003-0427
2003
Fu, B., Touret, J.L., Zheng, Y.F., Jahn, B.Fluid inclusions in granulites, granulitized eclogites and garnet pyroxenites from theLithos, Vol. 70, 3-4, pp. 293-319.ChinaUHP, eclogites
DS2003-0428
2003
Fu, B., Touret, J.L.R., Zheng, Y.F.Remnants of premetamorphic fluid and oxygen isotopic signatures in eclogites andJournal of Metamorphic Geology, Vol. 21, 6, pp. 561-78.ChinaUHP, eclogites, geochronology
DS2003-0496
2003
Green, H.W.Psychology of a changing paradigm: ultra high pressure metamorphismGeological Society of America, Annual Meeting Nov. 2-5, Abstracts p.95.MantleUHP
DS2003-0506
2003
Grimmer, J.C., Ratschbacher, L., McWilliams, M., Franz, L., Gaitzsch, I., et al.When did the ultrahigh-pressure rocks reach the surface? A 207Pb 206 Pb zircon 40Chemical Geology, Vol. 197, 1-4, pp. 87-110.ChinaDabie Shan synorogenic foreland sediments, UHP
DS2003-0527
2003
Hacker, B.R., Anderson, T.B., Root, D.B., Mehl, L., Mattinson, J.M., WoodenExhumation of high pressure rocks beneath the Solund Basin, Western gneiss regionJournal of Metamorphic Geology, Vol. 21, 6, pp. 613-30.NorwayUHP
DS2003-0528
2003
Hacker, B.R., Calvert, A., Zhang, R.Y., Ernst, W.G., Liou, J.G.Ultrarapid exhumation of ultrahigh pressure diamond bearing metasedimentary rocks ofLithos, Vol. 70, 3-4, pp. 61-75.Russia, KazakhstanUHP
DS2003-0545
2003
Hammouda, T.High pressure melting of carbonated eclogite and experimental constraints on carbonEarth and Planetary Science Letters, Vol. 214, 1-2, pp.357-68.MantleUHP, carbon
DS2003-0641
2003
Jahn, B., Fan, Q., Yang, J.J., Henin, O.Petrogenesis of the Maowu pyroxenite eclogite body from the UHP metamorphicLithos, Vol. 70, 3-4, pp. 243-67.ChinaUHP, geochronology
DS2003-0656
2003
Ji, S., Saruwateri, K., Mainproce, D., Wirth, R., Xu, Z., Xia, B.Microstructures, petrofabrics and seismic properties of ultra high pressure eclogitesTectonophysics, Vol. 370, 1-4, pp. 49-76.ChinaGeophysics - seismics, UHP, subduction
DS2003-0754
2003
Kuang, S., Zhang, B.Crust mantle interaction in Dabie Orogenic belt, central China: geochemical evidenceChinese Journal of Geochemistry, Vol. 22, 3, pp. 231-43.ChinaUHP
DS2003-0799
2003
Lesher, C.E, Pickering Witter, J., Baxterm G., Walter, M.Melting of garnet peridotite: effects of capsules and thermocouples, and implications forAmerican Mineralogist, Vol. 88, 8-9, pp. 1181-89.MantleGeothermometry, UHP
DS2003-0810
2003
Li, Q., Li, S., Zheng, Y.F., Li, H., Massone, H.J., Wang, Q.A high precision U Pb age of metamorphic rutile in coesite bearing eclogite from theChemical Geology, Vol. 200, 3-4, pp. 255-65.ChinaUHP, geochronology
DS2003-0829
2003
Litvin, Yu.A.Alkaline chloride components in processes of diamond growth in the mantle and highDoklady Earth Sciences, Vol. 389A, 3, March-April, pp. 388-391.MantleUHP
DS2003-0833
2003
Liu, S., Heller, P.L., Zhang, G.Mesozoic basin development and tectonic evolution of the Dabie Shan orogenic beltTectonics, Vol. 22, 4, August, 10.1029/2002TC001390ChinaTectonics, UHP
DS2003-0881
2003
Maruyama, S.Significance of UHP mineralogy in collisional belt: insight from the Kokchetav MassifGeological Society of America, Annual Meeting Nov. 2-5, Abstracts p.227.Russia, KazakhstanUHP
DS2003-0951
2003
Mingbao, P., Qinglong, Z., Huafu, L., Huogen, C., Shouju, C., Shipeng, Z.The discovery of diamond from the Zhimafang pyrope peridotite of the Sulu UHPActa Geologica Sinica, Vol. 77, 3, pp. 332-7.ChinaUHP- deposit Sulu
DS2003-1067
2003
Perrilat, J.P., Daniel, I., Lardeaux, J.M., Cardon, H.Kinetics of the coesite quartz transition: application to the exhumation of ultrahighJournal of Petrology, Vol. 44, 4, pp. 773-88.GlobalUHP
DS2003-1116
2003
Proyer, A.Metamorphism of pelites in NKFMASH - a new petrogenetic grid with implications forJournal of Metamorphic Geology, Vol. 21, 5, June pp. 493-510.GlobalUHP - not specific to diamonds
DS2003-1121
2003
Qian, Q., Chu, M.-F., Chung, S.L., Tung, Y.L., Xiong, X.M.Was Triassic continental subduction soley responsible for the generation of MesozoicInternational Geology Review, Vol. 45, 7, July pp. 659-ChinaMagmatism, UHP
DS2003-1138
2003
Ray, L., Kumar, P.S., Reddy, G.K., Roy, S., Rao, G.V., Srinivasan, R., RaoHigh mantle heat flow in a Precambrian granite province: evidence from southern IndiaJournal of Geophysical Research, Vol. 108, B2, 10.1029/2001JB000688IndiaUHP
DS2003-1139
2003
Ray, L., Kumar, P.S., Reddy, G.K., Roy, S., Rao, G.V., Srinivasan, R., RaoHigh mantle heat flow in a Precambrian granulite province: evidence from southernJournal of Geophysical Research, Vol. 108, 2, ETG 6IndiaUHP, Geothermometry
DS2003-1155
2003
Reiners, P.W., Zhou, Z., Ehlers, T.A., Xu, C., Brandon, M.T., Donelick, R.A.Post orogenic evolution of the Dabie Shan, eastern Chin a ( U Th) He and fission trackAmerican Journal of Science, Vol. 303, 6, pp. 489-518.ChinaGeothermometry, UHP
DS2003-1185
2003
Romer, R.L., Wawrzenitz, N., Oberhansli, R.Anomalous unradiogenic 87 Sr 86 Sr ratios in ultrahigh pressure crustal carbonates -Terra Nova, Vol. 15, pp. 330-36.ChinaUHP, subduction, Dabie Shan
DS2003-1218
2003
Scharer, U., Labrousse, L.Dating the exhumation of UHP rocks and associated crustal melting in the NorwegianContributions to Mineralogy and Petrology, Vol. 144, 6, pp. 758-70.NorwayGeochronology, UHP
DS2003-1225
2003
Schmid, R., Romer, R.L., Franz, L., Oberhansli, R., Martinotti, G.Basement cover sequences within the UHP unit of the Dabie ShanJournal of Metamorphic Geology, Vol. 21, 6, pp. 531-38.ChinaUHP
DS2003-1313
2003
Song, S., Yang, J., Liou, J.G., Wu, C., Shi, R., Xu, Z.Petrology, geochemistry and isotopic ages of eclogites from the Dulan UHPM terraneLithos, Vol. 70, 3-4, pp. 195-211.ChinaUHP, geochronology
DS2003-1314
2003
Song, S.G., Yang, J.S., Xu, ZQ, Shi, R.D.Metamorphic evolution of the coesite bearing ultrahigh pressure terrane in the NorthJournal of Metamorphic Geology, Vol. 21, 6, pp. 631-44.ChinaUHP
DS2003-1449
2003
Wang, Q., Li, R., Wang, D., Li, S.Eclogites preserved as pebbles in Jurassic conglomerate, Dabie Mountains, ChinaLithos, Vol. 70, 3-4, pp. 345-57.ChinaUHP, eclogites
DS2003-1511
2003
Xu, S., Liu, Y., Chen, G., Compagnoni, R., Rolfo, F., He, M., Liu, H.New finding of microdiamonds in eclogites from Dabie Sulu region in central easternChinese Science Bulletin, Science Press, Vol. 48, 10, May, pp. 988-994.ChinaUHP, Deposit - Dabie Shan area
DS2003-1516
2003
Yang, J.Two ultrahigh pressure metamorphic events recognized in the central orogenic belt ofGeological Society of America, Annual Meeting Nov. 2-5, Abstracts p.226.ChinaUHP, geochronology
DS2003-1518
2003
Yang, J.J.Titanium clinohumite garnet pyroxene rock from the Su Lu UHP metamorphic terraneLithos, Vol. 70, 3-4, pp. 359-79.ChinaUHP, eclogites, metamorphism
DS2003-1520
2003
Yang, J-J., Enami, M.Chromian dissakisite (Ce) in a garnet lherzolite from the Chinese Su-Lu UHPAmerican Mineralogist, Vol. 88, pp. 604-10.ChinaUHP, Su-Lu Zhimafang
DS2003-1524
2003
Yang, Y.S., Wooden, J.L., Wu. C.L., Liu, F.L., Xu. ZQ, Shi, R.D., Katayama, I.SHRIMP U Pb dating of coesite bearing zircon from the ultrahigh pressureJournal of Metamorphic Geology, Vol. 21, 6, pp. 551-60.ChinaUHP
DS2003-1530
2003
Yong, X., De Lian Liu, Dai, Jin-XingExtremely h2 rich fluid inclusions in eclogite from the Dabie Shan orogenic belt, EasternJournal of the Geological Society of India, Vol. 61, 1, Jan., pp. 101-102.ChinaUHP
DS2003-1546
2003
Zhang, L., Ellis, D.J., Arculus, R.J., Jiang, W., Wei, C.Forbidden zone subduction of sediments to 150 km depth - the reaction of dolomite toJournal of Metamorphic Geology, Vol. 21, 6, pp. 523-30.ChinaSubduction, UHP
DS2003-1547
2003
Zhang, R.Y., Liou, J.G., Yang, J.S., Ye, K.Ultrahigh pressure metamorphism in the forbidden zone: the Xugou garnet peridotiteJournal of Metamorphic Geology, Vol. 21, 6, pp. 539-50.ChinaUHP
DS2003-1548
2003
Zhang, R.Y., Liou, J.G., Zheng, Y.F., Fu, B.Transition of UHP eclogites to gneissic rocks of low amphibolite facies duringLithos, Vol. 70, 3-4, pp. 269-91.ChinaUHP, metamorphism
DS2003-1550
2003
Zhang, Ru.Y., Liou, J.G.Clinopyroxenite from the Sulu ultrahigh pressure terrane, eastern China: origin andAmerican Mineralogist, Vol. 88, 10, Oct. pp. 1591-1619.ChinaUHP
DS2003-1555
2003
Zhao, Z.Y., Fang, A.M., Yu, L.J.High to ultrahigh pressure ductile shear zones in the Sulu UHP metamorphic belt, China:Terra Nova, Vol. 15, pp. 322-29.ChinaUHP, subduction
DS2003-1558
2003
Zheng, Y.F., Gong, B., Zhao, Z.F., Fe, B., Li, Y.L.Two types of gneisses associated with eclogite at Shuanghe in the Dabie terrane:Lithos, Vol. 70, 3-4, pp. 321-343.ChinaUHP, eclogites
DS2003-1559
2003
Zheng, Y-F., Fu, B., Gong, B., Li, L.Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the DabieEarth Science Reviews, Vol. 62, 1-2, July, pp. 105-161.ChinaUHP, Subduction
DS2003-1560
2003
Zheng, Y-F., Yang, J-J., Gong, B., Jahn, B-M.Partial equilibrium of radiogenic and stable isotope systems in garnet peridotite duringAmerican Mineralogist, Vol. 88, pp. 1633-43.ChinaGeochronology, UHP
DS200412-0108
2003
Bassett, W.A.High pressure temperature aqueous systems in the hydrothermal diamond anvil cell.European Journal of Mineralogy, Vol. 15, 5, pp. 773-80.TechnologyUHP - experimental
DS200412-0126
2003
Bejina, F., Jaoul, O., Liebermann, R.C.Diffusion in minerals at high pressure: a review.Physics of the Earth and Planetary Interiors, Vol. 139, 1-2, Sept. 30, pp. 3-20.TechnologyPetrology, experimental, UHP
DS200412-0147
2003
Beyssac, O., Chopin, C., Mposkos, E.D., Kostopoulos, D.K.Comment and reply ' diamond, former coesite and supersilicic garnet in metasedimentary rocks from the Greek Rhodope: a new ultraEarth and Planetary Science Letters, Vol. 214, no. 3-4, pp. 669-678.Europe, GreeceUHP
DS200412-0200
2003
Brandt, S., Klemd, R., Okrusch, M.Ultrahigh temperature metamorphism and multistage evolution of garnet orthopyroxene granulites from the Proterozoic Epupa CompleJournal of Petrology, Vol. 44,6,pp. 1121-44.Africa, NamibiaUHP
DS200412-0206
2004
Brey, G.P., Bulatov, V., Girnis, A., Harris, J.W., Stachel, T.Ferropericlase - a lower mantle phase in the upper mantle.Lithos, Vol. 77, 1-4, Sept. pp. 655-663.South America, BrazilUHP, diamond inclusions, olivine, San Luiz
DS200412-0227
2003
Brown, M., Baldwin, J., Morales, J., Fuck, R.Modelling ultra hot beauties from Brazil: peak temperature and P-T evolution.Geological Society of America, Annual Meeting Nov. 2-5, Abstracts p.222.South America, BrazilUHP
DS200412-0286
2003
Carswell, D.A., Brueckner, H.K., Cuthbert, S.J., Mehta, K., O'Brien, P.J.The timing of stabilization and the exhumation rate for ultra high pressure rocks in the Western Gneiss region of Norway.Journal of Metamorphic Geology, Vol. 21, 6, pp. 601-612.Europe, NorwayUHP
DS200412-0287
2003
Carswell, D.A., Tucker, R.D., O'Brien, P.J., Krogh, T.E.Coesite micro-inclusions and the U Pb age of zircons from the Hareidland eclogite in the Western Gneiss region of Norway.Lithos, Vol.67, 3-4, April, pp. 181-190.Europe, NorwayGeochronology, UHP
DS200412-0290
2004
Cartigny, P., Chinn, I., Viljoen, K.S., Robinson, D.Early Proterozoic ultrahigh pressure metamorphism: evidence from microdiamonds.Science, Vol. 304, 5672, May 7, pp. 853-4.TechnologyMicrodiamonds, UHP
DS200412-0319
2003
Chen, J.F., Xie, Z., Li, H.M., Zhang, X.D., Zhou, T.X., Park, Ahn, Chen, ZhangU Pb zircon ages for a collision related K rich complex at Shidao in the Sulu ultrahigh pressure terrane, China.Geochemical Journal, Vol. 37, pp. 35-46.ChinaUHP, shoshonites
DS200412-0327
2003
Chopin, C.Ultra high pressure metamorphism: tracing continental crust into the mantle.Earth and Planetary Science Letters, Vol. 212, 1-2, pp. 1-14.MantleUHP
DS200412-0350
2003
Compagnoni, R.HP metamorphic belt of western Alps.Episodes, September, pp. 200-204.Europe, AlpsUHP, Dora-Massif, eclogite
DS200412-0461
2004
Dobretsov, N.L., Shatsky, V.S.Exhumation of high pressure rocks of Kokchetav massif: facts and models.Lithos, Vol. 78, 3, Nov. pp. 307-318.RussiaKumdy-dol diamondiferous domain, UHP melting
DS200412-0534
2004
Fan, W-M., Guo, F., Wang, Y-J, Zhang, M.Late Mesozoic volcanism in the northern Huaiyang tectono-magmatic belt: partial melts from lithospheric mantle with subducted coChemical Geology, Vol. 209, 1-2, pp. 27-48.ChinaUHP, Dabie Orogen, subduction
DS200412-0537
2003
Faure, M., Lin, W., Monie, P., Le Breton, N., Pouissineau, S., Panis, D., Deloule, E.Exhumation tectonics of the ultrahigh pressure metamorphic rocks in the Qinling orogen in east China: new petrological structuraTectonics, Vol. 22, 3, 10.1029/2002TC001450China, ShandongUHP
DS200412-0538
2003
Faure, M., Lin, W., Scharer, U., Shu, L., Sun, Y., Arnaud, N.Continental subduction and exhumation of UHP rocks. Structural and geochronological insights from the Dabie Shan, East China.Lithos, Vol. 70, 3-4, pp. 213-41.ChinaUHP, geochronology
DS200412-0549
2003
Ferrando, S.Fluid rock interaction in the UHP KY-EP-PHE eclogite from Donghai area, Sulu Terrance, eastern China.Geological Society of America, Annual Meeting Nov. 2-5, Abstracts p.225.ChinaUHP
DS200412-0584
2003
Froitzheim, N., Pleuger, J., Roller, S., Nagel, T.Exhumation of high and ultrahigh pressure metamorphic rocks by slab extraction.Geology, Vol. 31, 10, p. 925-8.Europe, AlpsUHP, metamorphism
DS200412-0587
2003
Fu, B., Touret, J.L., Zheng, Y.F., Jahn, B.Fluid inclusions in granulites, granulitized eclogites and garnet pyroxenites from the Dabie Sulu terranes, eastern China.Lithos, Vol. 70, 3-4, pp. 293-319.ChinaUHP, eclogites
DS200412-0588
2003
Fu, B., Touret, J.L.R., Zheng, Y.F.Remnants of premetamorphic fluid and oxygen isotopic signatures in eclogites and garnet clinopyroxenite form the Dabie Sulu terrJournal of Metamorphic Geology, Vol. 21, 6, pp. 561-78.ChinaUHP, eclogites, geochronology
DS200412-0666
2004
Gilotti, J.A., Nutman, A.P., Brueckner, H.K.Devonian to Carboniferous in the Greenland Caledonides: U Pb zircon and Sm Nd ages of high pressure and ultrahigh pressure metamContributions to Mineralogy and Petrology, Vol. 148, 2, pp. 215-235.Europe, GreenlandUHP, geochronology
DS200412-0690
2004
Gong, Z., Fei, Y., Dai, F., Zhang, L., Jing, F.Equation of state and phase stability of mantle perovskite up to 140 GPa shock pressure and its geophysical implications.Geophysical Research Letters, Vol. 31, 4, Feb. 28, DOI 1029/2004 GLO19132MantleGeophysics - UHP
DS200412-0714
2003
Green, H.W.Psychology of a changing paradigm: ultra high pressure metamorphism.Geological Society of America, Annual Meeting Nov. 2-5, Abstracts p.95.MantleUHP
DS200412-0746
2003
Guo, F., Fan, W., Wang, F., Lin, G.Geochemistry of late Mesozoic mafic magmatism in west Shandong Province, eastern China: characterizing the lost lithospheric manGeochemical Journal, Vol. 37, pp. 63-77.ChinaUHP, xenoliths
DS200412-0758
2003
Hacker, B.R., Anderson, T.B., Root, D.B., Mehl, L., Mattinson, J.M., Wooden, J.L.Exhumation of high pressure rocks beneath the Solund Basin, Western gneiss region, Norway.Journal of Metamorphic Geology, Vol. 21, 6, pp. 613-30.Europe, NorwayUHP
DS200412-0760
2003
Hacker, B.R., Calvert, A., Zhang, R.Y., Ernst, W.G., Liou, J.G.Ultrarapid exhumation of ultrahigh pressure diamond bearing metasedimentary rocks of the Kokchetav Massif, Kazakhstan?Lithos, Vol. 70, 3-4, pp. 61-75.Russia, KazakhstanUHP
DS200412-0776
2003
Hammouda, T.High pressure melting of carbonated eclogite and experimental constraints on carbon recycling and storage in the mantle.Earth and Planetary Science Letters, Vol. 214, 1-2, pp.357-68.MantleUHP, carbon
DS200412-0856
2003
Huang, S.L., Shen, P., Yui, T.F., Chu, H.T.Metal sulfur COH silicate fluid mediated diamond nucleation in Kokchetav ultra high pressure gneiss.European Journal of Mineralogy., Vol. 15, 3, pp. 503-512.Russia, Kola PeninsulaUHP
DS200412-0873
2004
Irifune, T., Kuiro, A., Sakamoto, S., Inoue, T., Sumiya, H., Funakoshi, K.Formation of pure polycrystalline diamond by direct conversion of graphite at high pressure and high temperature.Physics of the Earth and Planetary Interiors, Vol. 143-144, pp. 593-600.TechnologyUHP - mineralogy
DS200412-0881
2003
Isshiki, E., Irifune, T., Hiropse, K., Ono, S., Ohishi, Y., Watanuki, T., Nishibori, E., Takat, M., Sakata, M.Stability of magnesite and its high pressure form in the lowermost mantle.Nature, No. 6969, pp. 60-62.MantleUHP
DS200412-0898
2003
Jahn, B., Fan, Q., Yang, J.J., Henin, O.Petrogenesis of the Maowu pyroxenite eclogite body from the UHP metamorphic terrane of Dabie Shan: chemical and isotopic constraLithos, Vol. 70, 3-4, pp. 243-67.ChinaUHP, geochronology
DS200412-0991
2004
Kessel, R., Ulmer, P., Pettke, T., Schmidt, M.W., Thompson, A.B.A novel approach to determine high pressure high temperature fluid and melt compositions using diamond trap experiments.American Mineralogist, Vol. 89, June pp. 1078-1086.TechnologyUHP, freezing approach
DS200412-0993
2004
Kessel, R., Ulmer, P., Pettke, T., Schmidt, M.W., Thompson, A.B.A novel approach to determine high pressure high temperature fluid and melt compositions using diamond trap experiments.American Mineralogist, Vol. 89, 6, pp. 1078-1086.TechnologyPetrology, experimental UHP
DS200412-1019
2003
Klemme, S., Meyer, H.P.Trace element partitioning between baddeleyite and carbonatite melt at high pressures and high temperatures.Chemical Geology, Vol. 199, no. 3-4, pp.233-42.TechnologyUHP
DS200412-1045
2004
Korsakov, A.V., Theunissen, K., Smirnova, L.V.Intergranular diamonds derived from partial melting of crustal rocks at ultrahigh pressure metamorphic conditions.Terra Nova, Vol. 16, 3, pp. 146-151.RussiaUHP, Kokchetav, Kumby-Kol
DS200412-1057
2004
Krogh Ravna, E.J., Terry, M.P.Geothermobarometry of UHP and HP eclogites and schists - an evaluation of equilibration temperatures among garnet clinopyroxen kyanite phengiteJournal of Metamorphic Geology, Vol. 22, 6, pp. 579-592.TechnologyUHP
DS200412-1060
2003
Kuang, S., Zhang, B.Crust mantle interaction in Dabie Orogenic belt, central China: geochemical evidence from late Cretaceous basalts.Chinese Journal of Geochemistry, Vol. 22, 3, pp. 231-43.ChinaUHP
DS200412-1119
2003
Lesher, C.E, Pickering Witter, J., Baxter, G., Walter, M.Melting of garnet peridotite: effects of capsules and thermocouples, and implications for the high pressure mantle solidus.American Mineralogist, Vol. 88, 8-9, pp. 1181-89.MantleGeothermometry, UHP
DS200412-1128
2003
Li, Q., Li, S., Zheng, Y.F., Li, H., Massone, H.J., Wang, Q.A high precision U Pb age of metamorphic rutile in coesite bearing eclogite from the Dabie Mountains in central China: a new conChemical Geology, Vol. 200, 3-4, pp. 255-65.ChinaUHP, geochronology
DS200412-1140
2004
Liou, J.G., Tsujimori, T., Zhang, R.Y., Katayama, I., Maruyama, S.Global UHP metamorphism and continental subduction collision: the Himalayan model.International Geology Review, Vol. 46, 1, pp. 1-27.EuropeUHP - subduction not specific to diamonds
DS200412-1153
2003
Litvin, Yu.A.Alkaline chloride components in processes of diamond growth in the mantle and high pressure experimental conditions.Doklady Earth Sciences, Vol. 389A, 3, March-April,pp. 388-391.MantleUHP
DS200412-1156
2004
Liu, F., Xu, Z., Liou, J.G., Song, B.SHRIMP U Pb ages of ultrahigh pressure and retrograde metamorphism of gneisses, south western Sulu terrane, eastern China.Journal of Metamorphic Geology, Vol. 22, 4, pp. 315-326.ChinaGeochronology, UHP
DS200412-1157
2004
Liu, J., Ye, K.Transformation of garnet epidote amphibolite to eclogite, western Dabie Mountains, China.Journal of Metamorphic Geology, Vol. 22, 5, pp. 383-394.ChinaUHP, Dabie Shan
DS200412-1163
2004
Liu, X., Wei, C., Li, S., Dong, S., Liu, J.Thermobaric structure of a traverse across western Dabie Shan: implications for collision tectonics between the Sino-Korean andJournal of Metamorphic Geology, Vol. 22, 4, pp. 361-379.ChinaUHP, geothermobarometry
DS200412-1191
2002
Mackwell, S.J., Paterson, M.S.New developments in deformation studies: high strain deformation.Plastic Deformation of Minerals and Rocks, Geological Society of America, Mineralogy and Geochemistry Series, No. 51, Chapter 1, pp. 1-17.MantleUHP
DS200412-1236
2003
Maruyama, S.Significance of UHP mineralogy in collisional belt: insight from the Kokchetav Massif.Geological Society of America, Annual Meeting Nov. 2-5, Abstracts p.227.Russia, KazakhstanUHP
DS200412-1319
2003
Mingbao, P., Qinglong, Z., Huafu, L., Huogen, C., Shouju, C., Shipeng, Z.The discovery of diamond from the Zhimafang pyrope peridotite of the Sulu UHP metamorphic zone, East Chin a and its geological imActa Geologica Sinica, Vol. 77, 3, pp. 332-7.ChinaUHP- deposit Sulu
DS200412-1399
2004
Nakamura, D., Svojtka, K., Naemura, T., HirajamaVery high pressure >4 GPa eclogite associated with the Moldanubian Zone garnet peridotite Nove Dory, Czech Republic.Journal of Metamorphic Geology, Vol. 22, 6, pp. 593-603.Europe, Czech RepublicEclogite, UHP
DS200412-1461
2004
Ohtaka, O., Shimono, M., Ohnisi, N., Fukui, H., Takebe, H., Arima, H., Yamanaka, T.,Kikegawa, T., Kume, S.HIP production of a diamond/ SiC composite and application to high pressure anvils.Physics of the Earth and Planetary Interiors, Vol. 143-144, pp. 587-591.TechnologyUHP
DS200412-1462
2004
Okada, T., Utsumi, W., Kaneko, H., Turkevich, V., Hamaya, N., Shimomura, O.Kinetics of the graphite diamond transformation in aqueous fluid determined by in situ X ray diffractions at high pressures andPhysics and Chemistry of Minerals, Vol. 31, 4, pp. 261-268.TechnologyUHP
DS200412-1529
2003
Perrilat, J.P., Daniel, I., Lardeaux, J.M., Cardon, H.Kinetics of the coesite quartz transition: application to the exhumation of ultrahigh pressure rocks.Journal of Petrology, Vol. 44, 4, pp. 773-88.TechnologyUHP
DS200412-1596
2003
Proyer, A.Metamorphism of pelites in NKFMASH - a new petrogenetic grid with implications for the preservation of high pressure mineral assJournal of Metamorphic Geology, Vol. 21, 5, June pp. 493-510.TechnologyUHP - not specific to diamonds
DS200412-1605
2003
Qian, Q., Chung, S-L., Lee, T-Y., Wen, D.J.Mesozoic high Ba Sr granitoids from North China: geochemical characteristics and geological implications.Terra Nova, Vol. 15, pp. 272-278.ChinaUHP - Dabie Sulu orogen
DS200412-1637
2003
Ray, L., Kumar, P.S., Reddy, G.K., Roy, S., Rao, G.V., Srinivasan, R., Rao, R.U.M.High mantle heat flow in a Precambrian granulite province: evidence from southern India.Journal of Geophysical Research, Vol. 108, 2, ETG 6IndiaUHP Geothermometry
DS200412-1684
2004
Rolfo, F., Compagnoni, R., Wu, W., Xu, S.A coherent lithostratigraphic unit in the coesite eclogite complex of Dabie Shan China: geologic and petrologic evidence.Lithos, Vol. 73, 1-2, March pp. 71-94.ChinaUHP, metamorphism
DS200412-1689
2003
Romer, R.L., Wawrzenitz, N., Oberhansli, R.Anomalous unradiogenic 87 Sr 86 Sr ratios in ultrahigh pressure crustal carbonates - evidence for fluid infiltration during deepTerra Nova, Vol. 15, pp. 330-36.ChinaUHP, subduction, Dabie Shan
DS200412-1722
2004
Sajeev, K., Osani, Y., Santosh, M.Ultrahigh temperature metamorphism followed by two stage decompression of garnet orthopyroxene sillimanite granulites from GanguContributions to Mineralogy and Petrology, Vol. 148, 1, pp. 29-46.IndiaUHP
DS200412-1741
2003
Scharer, U., Labrousse, L.Dating the exhumation of UHP rocks and associated crustal melting in the Norwegian Caledonides.Contributions to Mineralogy and Petrology, Vol. 144, 6, pp. 758-70.Europe, NorwayGeochronology, UHP
DS200412-1748
2004
Schertl, H.P., Neuser, R.D., Sobolev, N.V., Shatsky, V.S.UHP metamorphic rocks from Dora Maira Western Alps and Kokchetav Kazakhstan: new insights using cathodluminescence petrography.European Journal of Mineralogy, Vol. 16, 1, pp. 49-57.KazakhstanUHP
DS200412-1755
2003
Schmid, R., Romer, R.L., Franz, L., Oberhansli, R., Martinotti, G.Basement cover sequences within the UHP unit of the Dabie Shan.Journal of Metamorphic Geology, Vol. 21, 6, pp. 531-38.ChinaUHP
DS200412-1878
2003
Song, S., Yang, J., Liou, J.G., Wu, C., Shi, R., Xu, Z.Petrology, geochemistry and isotopic ages of eclogites from the Dulan UHPM terrane, the North Qaidam NW China.Lithos, Vol. 70, 3-4, pp. 195-211.ChinaUHP, geochronology
DS200412-1879
2004
Song, S., Zhang, L., Niu, Y.Ultra deep origin of garnet peridotite from north Qaidam ultrahigh pressure belt, northern Tibetan Plateau, NW China.American Mineralogist, Vol. 89, 7, pp. 1330-36.China, TibetUHP
DS200412-1880
2003
Song, S.G., Yang, J.S., Xu, ZQ, Shi, R.D.Metamorphic evolution of the coesite bearing ultrahigh pressure terrane in the North Qaidam northern Tibet, NW China.Journal of Metamorphic Geology, Vol. 21, 6, pp. 631-44.ChinaUHP
DS200412-1904
2004
Stacey, F.D., Davis, P.M.High pressure equations of state with applications to the lower mantle and core.Physics of the Earth and Planetary Interiors, Vol. 142, 3-4, pp. 137-184.MantleUHP
DS200412-1979
2004
Terry, M.P., Robinson, P.Geometry of eclogite facies structural features for production and exhumation of ultrahigh pressure and high pressure rocks, WesTectonics, Vol. 23, 2, 10.1029/2002 TC001401Europe, NorwayUHP
DS200412-1998
2004
Timmermann, H., Stedra, V., Gerdes, A., Noble, S.R., Parrish, R.R., Dorr, W.The problem of dating high pressure metamorphism: a U Pb isotope and geochemical study on eclogites and related rocks of the MarJournal of Petrology, Vol. 45, 7, pp. 1311-1338.Europe, Czech RepublicEclogite, UHP
DS200412-2074
2004
Walsh, E.O., Hacker, B.R.The fate of subducted continental margins; two stage exhumation of the high pressure ultrahigh pressure Western Gneiss region, NJournal of Metamorphic Geology, Vol. 22, 7, pp. 671-687.Europe, NorwayUHP - metamorphism, eclogites
DS200412-2082
2003
Wang, Q., Li, R., Wang, D., Li, S.Eclogites preserved as pebbles in Jurassic conglomerate, Dabie Mountains, China.Lithos, Vol. 70, 3-4, pp. 345-57.ChinaUHP, eclogites
DS200412-2084
2004
Wang, X., Griffin, W.L.Unusual Hf contents in metamorphic zircon from coesite bearing eclogites of the Dabie Mountains, east central China: implicationJournal of Metamorphic Geology, Vol. 22, 7, pp. 629-637.ChinaUHP - metamorphism, eclogites
DS200412-2155
2004
Xie, Z., Zheng, Y-F., Jahn, B-M., Ballevre, M., Chen, J., Gautier, P., Gao, T., Gong, B., Zhou, J.Sm Nd and Rb Sr dating of pyroxene garnetite from North Dabie in east centra China: problem of isotope disequilibrium due to retChemical Geology, Vol. 206, 1-2, May 28, pp. 137-158.ChinaUHP, eclogite, geochronology
DS200412-2159
2003
Xu, S., Liu, Y., Chen, G., Compagnoni, R., Rolfo, F., He, M., Liu, H.New finding of microdiamonds in eclogites from Dabie Sulu region in central eastern China.Chinese Science Bulletin, Vol. 48, 10, May, pp. 988-994.ChinaUHP Deposit - Dabie Shan area
DS200412-2168
2003
Yang, J.Two ultrahigh pressure metamorphic events recognized in the central orogenic belt of China: evidence from the U Pb dating of coeGeological Society of America, Annual Meeting Nov. 2-5, Abstracts p.226.ChinaUHP, geochronology
DS200412-2169
2003
Yang, J., Xu, Z., Dobrzhinetskaya, L.F., Green, H.W., Pei, X., Shi, R., Wu, C., Wooden, J.L., Zhang, J., WanDiscovery of metamorphic diamonds in central China: an indication of a > 4000 km long zone of deep subduction resulting from mulTerra Nova, Vol. 15, pp. 370-379.ChinaSubduction, Central Orogenic Belt, UHP
DS200412-2170
2003
Yang, J.J.Titanium clinohumite garnet pyroxene rock from the Su Lu UHP metamorphic terrane China: chemical evolution and tectonic implicatLithos, Vol. 70, 3-4, pp. 359-79.ChinaUHP, eclogites, metamorphism
DS200412-2171
2003
Yang, J-J., Enami, M.Chromian dissakisite (Ce) in a garnet lherzolite from the Chinese Su-Lu UHP metamorphic terrane: implications for Cr incorporatiAmerican Mineralogist, Vol. 88, pp. 604-10.ChinaUHP, Su-Lu Zhimafang
DS200412-2174
2003
Yang, Y.S., Wooden, J.L., Wu,C.L., Liu, F.L., Xu,ZQ, Shi, R.D., Katayama, I., Liou, J.G., Maruyama, S.SHRIMP U Pb dating of coesite bearing zircon from the ultrahigh pressure metamorphic rocks, Sulu terrane, east China.Journal of Metamorphic Geology, Vol. 21, 6, pp. 551-60.ChinaUHP
DS200412-2188
2004
You, Z., Zhong, Z., Suo, S., Zhou, H.The high temperature garnet pyroxenite enclaves in the spinel bearing peridotie: evidence for partial melting of the upper mantlActa Geologica Sinica, Vol. 78, 1, pp. 89-96.ChinaUHP, magmatism
DS200412-2205
2003
Zhang, L., Ellis, D.J., Arculus, R.J., Jiang, W., Wei, C.Forbidden zone subduction of sediments to 150 km depth - the reaction of dolomite to magnesite + aragonite in the UHPM metapelitJournal of Metamorphic Geology, Vol. 21, 6, pp. 523-30.ChinaSubduction, UHP
DS200412-2207
2003
Zhang, R.Y., Liou, J.G., Yang, J.S., Ye, K.Ultrahigh pressure metamorphism in the forbidden zone: the Xugou garnet peridotite.Journal of Metamorphic Geology, Vol. 21, 6, pp. 539-50.ChinaUHP
DS200412-2208
2004
Zhang, R.Y., Liou, J.G., Zheng, J.P.Ultrahigh pressure corundum rich garnerite in garnet peridotite, Sulu terrane, China.Contributions to Mineralogy and Petrology, Vol. 147, 1, pp. 21-31.ChinaUHP
DS200412-2209
2003
Zhang, R.Y., Liou, J.G., Zheng, Y.F., Fu, B.Transition of UHP eclogites to gneissic rocks of low amphibolite facies during exhumation: evidence from the Dabie Terraine, cenLithos, Vol. 70, 3-4, pp. 269-91.ChinaUHP, metamorphism
DS200412-2210
2003
Zhang, R.Y., Zhai, S.M., Fei, Y.W., Liou, J.G.Titanium solubility in coexisting garnet and clinopyroxene at very high pressure: the significance of exsolved rutile in garnet.Earth and Planetary Science Letters, Vol. 216, 4, Dec. 10, pp. 591-601.TechnologyUHP, solubility
DS200412-2211
2003
Zhang, Ru.Y., Liou, J.G.Clinopyroxenite from the Sulu ultrahigh pressure terrane, eastern China: origin and evolution of garnet exsolution in clinopyroxAmerican Mineralogist, Vol. 88, 10, Oct. pp. 1591-1619.ChinaUHP
DS200412-2220
2003
Zhao, Z.Y., Fang, A.M., Yu, L.J.High to ultrahigh pressure ductile shear zones in the Sulu UHP metamorphic belt, China: implications for continental subductionTerra Nova, Vol. 15, pp. 322-29.ChinaUHP, subduction
DS200412-2225
2003
Zheng, Y.F., Gong, B., Zhao, Z.F., Fe, B., Li, Y.L.Two types of gneisses associated with eclogite at Shuanghe in the Dabie terrane: carbon isotope, zircon Y.F. dating and oxygen iLithos, Vol. 70, 3-4, pp. 321-343.ChinaUHP, eclogites
DS200412-2226
2003
Zheng, Y-F., Fu, B., Gong, B., Li, L.Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie Sulu orogen in China: implications for geodynEarth Science Reviews, Vol. 62, 1-2, July, pp. 105-161.ChinaUHP Subduction
DS200412-2227
2003
Zheng, Y-F., Yang, J-J., Gong, B., Jahn, B-M.Partial equilibrium of radiogenic and stable isotope systems in garnet peridotite during ultrahigh pressure metamorphism.American Mineralogist, Vol. 88, pp. 1633-43.ChinaGeochronology, UHP, Shimafang, Sulu
DS200412-2230
2004
Zhu, Y., Ogasawara, Y.Clinopyroxene phenocrysts ( with green salite cores) in trachybasalts: implications for two magma chambers under the Kokchetav UJournal of Asian Earth Sciences, Vol. 22, 5, January pp. 517-527.Russia, KazakhstanUHP, magma mixing, subduction
DS200512-0194
2005
Cosca, M.A., Giorgia, D., Rumble, D., Liou, J.G.Limiting effect of UHP metamorphism on length scales of oxygen, hydrogen and argon isotope exchange: an example from the Qinglongshan UHP eclogites, Sulu Terrain.International Geology Review, Vol. 47, 7, pp. 716-749.Asia, ChinaUHP
DS200512-0236
2004
Dobretsov, N.L., Buslov, M.M.Serpentinitic melanges associated with HP and UHP rocks in central Asia.International Geology Review, Vol. 46, 11, pp. 957-980.China, AsiaUHP
DS200512-0239
2004
Dobrzhinetskaya, L.F., Renfro, A.P., Green, H.W.II.Synthesis of skeletal diamonds: implications for microdiamond formation in orogenic belts.Geology, Vol. 32, 10, Oct. pp. 869-872.KazakhstanUHP, C-O-H fluid, Kokchetav massif
DS200512-0240
2005
Dobrzhinetskaya, L.F., Wirth, R., Green, H.W.Direct observation and analysis of a trapped COH fluid growth medium in metamorphic diamond.Terra Nova, Vol. 17, 5, Oct. pp. 472-477.KazakhstanDiamond morphology, metamorphic, UHP Kokchetav Massif
DS200512-0242
2005
Dong, S., Gao, R., Cong, B., Zhao, Z., Liu, X., Li, S., Huang, D.Crustal structure of the southern Dabie ultrahigh pressure orogen and Yangtze foreland from deep seismic reflection profiling.Terra Nova, Vol. 16, 6, Dec. pp. 319-324.ChinaUHP, tectonics
DS200512-0287
2005
Ferrando, S., Frezzotti, M.L., Dallai, L., Compagnoni, R.Fluid rock interaction in UHP phengite kyanite epidote eclogite from the Sulu Orogen, eastern China.International Geology Review, Vol. 47, 7, pp. 750-774.Asia, ChinaUHP
DS200512-0314
2005
Gapais, D., Brun, J-P., Cobbold, P.R.Deformation mechanisms, rheology and tectonics: from minerals to the lithosphere.Geological Society of London, SP 243, 320p.MantleBook - review papers on rheology, UHP
DS200512-0364
2005
Green, H.W.Psychology of a changing paradigm: 40 + years of high pressure metamorphism.International Geology Review, Vol. 47, 5, May, pp. 439-456.MantleUHP
DS200512-0378
2005
Gui, F., Fan, W., Wang, Y.Petrogenesis and tectonic implications of Early Cretaceous high K calc alkaline volcanic rocks in the Laiyang Basin of the Sulu Belt, eastern China.The Island Arc, Vol. 14, 2, June pp. 69-90.ChinaUHP
DS200512-0421
2005
Hemley, R.J.,Chun Chen, Y., Yan, C-S.Growing diamond crystals by chemical vapor deposition.Elements, Vol. 1, 2, March pp. 105-108.CVD, HP
DS200512-0423
2005
Hermann, J., O'Neill, H.S.C., Berry, A.J.Titanium solubility in olivine in the system TiO2 MgO SiO2: no evidence for an ultra deep origin of Ti bearing olivine.Contributions to Mineralogy and Petrology, Vol. 148, 6, pp. 746-760.UHP
DS200512-0455
2004
Hwang, S.L., Shen, P., Chu, H-T., Yui, T-F, Liou, J.G., Sobolev, N.V., Zhang, R-Y., Shatsky, V.S., ZayachkovskyKokchetavite: a new potassium feldspar polymorph from the Kokchetav ultrahigh pressure terrane.Contributions to Mineralogy and Petrology, Vol. 148, 3, pp. 380-RussiaUHP
DS200512-0473
2005
Jahn, B., Liu, X., Yui, T.F., Morin, N., Coz, M.B.High pressure/ultrahigh pressure eclogites from the Hongan Block, east central China: geochemical characterization, isotope disequilibrium, geochronologyContributions to Mineralogy and Petrology, Vol. 149, 5, pp. 499-526.Asia, ChinaUHP
DS200512-0474
2005
Jahn, B-M., Liu, X., Yui, T-F., Morin, N., Bouhnik-Le Coz, M.High pressure ultrahigh pressure eclogites from the Hong an Block, east central China: geochemical characterization, isotope disequilibrium and geochronological controversy.Contributions to Mineralogy and Petrology, On lineChinaUHP
DS200512-0498
2005
Katayama, I., Nakashima, S., Yurimoto, H.Water content in natural eclogite and implication for water transport into deep upper mantle.Lithos, In press,RussiaKokchetav Massif, UHP, subduction
DS200512-0535
2005
King, R.L., Bebout, G.E., Kobayashi, K., Nakamura, E., Van der Klauw, S.N.G.C.Ultrahigh pressure metabasaltic garnets as probes into deep subduction zone chemical cycling.Geochemistry, Geophysics, Geosystems: G3, Vol. 5, Q12J14, doi:10.1029/2004 GC000746TechnologyUHP
DS200512-0555
2004
Kogiso, T., Hirschmann, M.M., Pertermann, M.High pressure partial melting of mafic lithologies in the mantle.Journal of Petrology, Vol. 45, 12, Dec. pp. 2407-2422.MantleUHP
DS200512-0558
2005
Komabayahi, T., Omori, S., Maruyama, S.Experimental and theoretical study of stability of dense hydrous magnesium silicates in the deep upper mantle.Physics of the Earth and Planetary Interiors, Vol. 153, 4, Dec. 15, pp. 191-209.MantleUHP, peridotites, subduction, Geothermometry, water
DS200512-0568
2004
Korsakov, A.V., Shatsky, V.S.Origin of graphite coated diamonds from ultrahigh pressure metamorphic rocks.Doklady Earth Sciences, Vol. 399, 8, pp.1156-1159.(1160-1163?)RussiaUHP
DS200512-0590
2005
Kung, J., Li, B.In situ measurement for the unquenchable high pressure clinopyroxene phase: implication for the upper mantle.Geophysical Research Letters, Vol. 32, 1, Jan. 16, L01307 10.1029/2004 GLO21661MantleUHP
DS200512-0644
2005
Lin,L.H., Wang, P-L., Lo, C-H., Tsai, C-H., Jahn, B-M.40 Ar 39 Ar thermochronological constraints on the exhumation of ultrahigh pressure metamorphic rocks in the Sulu Terrane of eastern China.International Geology Review, Vol. 47, 7, pp. 872-886.Asia, ChinaUHP
DS200512-0642
2005
Lindblom, J., Holsa, J., Papunen, H., Hakkanen, H.Luminescence study of defects in synthetic as-grown and HPHT diamonds compared to natural diamonds.American Mineralogist, Vol. 90, pp. 428-440.Photoluminescence technology, UHP
DS200512-0645
2005
Litasov, K., Ohtani, E., Sano, A., Suzuki, A., Funakoshi, K.In situ X-ray diffraction study of post spinel transformation in a peridotite mantle: implication for the 660 km discontinuity.Earth and Planetary Science Letters, Vol.238, 3-4, pp. 311-328.MantleUHP, ringwoodite, perovskite
DS200512-0646
2005
Litasov, K.D., Ohtani, E.Phase relations in hydrous MORB at 18 - 28 GPa: implications for heterogeneity of the lower mantle.Physics of the Earth and Planetary Interiors, Vol. 150, 4, June 15, pp. 239-263.MantleSubduction, slab, UHP
DS200512-0648
2005
Liu, F., Liou, J.G., Xu, Z.U Pb SHRIMP ages recorded in the coesite bearing zircon domains of paragneisses in the southwestern Sulu terrane, eastern China: new interpretations.American Mineralogist, Vol. 90, pp. 790-800.ChinaUHP, geochronology
DS200512-0650
2004
Liu, X., Jah, B., Liu, D., Dong, S., Li, S.SHRIMP U-Pb zircon dating of a metagabbro and eclogites from western Dabie Shan ( Hong'an Block) Chin a and its tectonic implications.Tectonophysics, Vol. 394, 3-4, Dec. 1-, pp. 171-192.ChinaGeochronology, UHP
DS200512-0661
2005
Lustrino, M.Basaltic magmatism influenced by high pressure basaltic lithogies stored in the upper mantle.mantleplumes.org, 8p.MantleGarnet pyroxenites, geochemistry, UHP
DS200512-0664
2005
Ma, C., She, Z., Ai, X.An Early Cretaceous intrusive complex in the Dabie Shan ultrahigh pressure metamorphic terrane, East China. Evidence for the beginning of post orogenic collapse.GAC Annual Meeting Halifax May 15-19, Abstract 1p.ChinaUHP, crustal root
DS200512-0668
2005
MacKenzie, J.M., Canil, D., Johnston, S.T., English, J., Mihalynuk, M.G., Grant, B.First evidence for ultrahigh pressure garnet peridotite in the North American Cordillera.Geology, Vol. 33, 2, pp. 105-108.Canada, Yukon, British ColumbiaUHP, Mantle lithosphere
DS200512-0685
2003
Marakushev, A.A., Lonkan, S., Bobrov, A.V., Hengweng, Z., Fu, L.Evolution of the SuLu eclogite ultramafic foldbelt in East China.Moscow University Geology Bulletin, Vol. 58, 6, pp. 33-46.ChinaUHP
DS200512-0695
2004
Mattison, C.G., Zhang, Ru.Y., Tsujimori, T., Liou, J.G.Epidote rich talc kyanite phengite eclogites, Sulu terrane, eastern China: P T fo2 estimates and the significance of epidote talc assemblage in eclogite.American Mineralogist, Vol. 89, pp. 1772-1783.ChinaUHP
DS200512-0793
2005
Nosenfelder, J.L., Schertl, H-P., Smyth, J.R., Liou, J.G.Factors in the preservation of coesite: the importance of fluid infiltration.American Mineralogist, Vol. 90, pp. 779-789.MantleUHP - coesite
DS200512-0799
2005
Ogasawara, Y.Microdiamonds in ultrahigh pressure metamorphic rocks.Elements, Vol. 1, 2, March pp. 91-96.Russia, MantleUHP, continental collision, Kokchetav
DS200512-0815
2004
Page, F.Z.Quartz exsolution in clinopyroxene is not proof of ultra high pressures: evidence from phase equilibration temperatures and eclogite from the eastern Blue Ridge, southern Appalachians.Geological Society of America Annual Meeting ABSTRACTS, Nov. 7-10, Paper 195-3, Vol. 36, 5, p. 453.United States, AppalachiaUHP, Ecologite
DS200512-0856
2005
Pilchin, A.The role of serpentinization in exhumation of high to ultra high pressure metamorphic rocks.Earth and Planetary Science Letters, Vol. 237, 3-4, Sept. 15, pp. 815-828.TechnologyUHP
DS200512-0862
2005
Pla Cid, J., Stoll Nardi, L.V., Gisbert, P.E., Merlet, C., Boyer, B.SIMS analyses on trace and rare earth elements in coexisting clinopyroxene and mica from minette mafic enclaves in potassic syenites crystallized under high pressure.Contributions to Mineralogy and Petrology, Vol. 148, 6, pp. 675-688.UHP - minettes
DS200512-0900
2005
Reverdatto, V.V., Selyatisky, A.Yu., Remizov, D.N., Khlestov, V.V.Geochemical distinctions between mantle and crustal high/ultrahigh pressure peridotites and pyroxenites.Doklady Earth Sciences, Vol. 400, 1, pp. 72-76.MantleUHP
DS200512-0910
2005
Root, D.B., Hacker, B.R., Gans, P.B., Ducea, E.A., Eide, J.L.Discrete ultrahigh prssure domains in the Western Gneiss region, Norway: implications for formation and exhumation.Journal of Metamorphic Geology, Vol. 23, 1, pp. 45-61.Europe, NorwayUHP
DS200512-0982
2005
Siebert, J., Guyot, F., Malavergne, V.Diamond formation in metal? carbonate interactions.Earth and Planetary Science Letters, Vol. 229, 3-4, pp. 205-216.UHP, Earth differentiation, diamond genesis
DS200512-1026
2005
Song, S., Zhang, L., Chen, J., Liou, J.G., Niu, Y.Sodic amphibole exsolutions in garnet from garnet-peridotite, North Qaidam UHP belt, NW China: implications for ultradeep origin and hydroxyl defects in mantle garnets.American Mineralogist, Vol. 90, pp. 814-820.ChinaUHP, water
DS200512-1058
2005
Stracke, A., Hofmann, A.W., Hart, S.R.FOZO, HIMU and the rest of the mantle zoo.Geochemistry, Geophysics, Geosystems: G3, Vol. 6, doi:10.1029/2004 GC000824MantleUHP
DS200512-1063
2005
Sueda, Y., Irifune, T., Nishiyama, N., Rapp, Ferroir, Onozawa, Yagi, Merkel, Miyajima, FunakoshiA new high pressure form of K Al Si3 08 under lower mantle conditions.Geophysical Research Letters, Vol. 31, 23, Dec. 16, DOI 10.1029/2004 GLO21156MantleUHP
DS200512-1065
2004
Suo, S., Zhong, Z., Zhou, H.Tectonic evolution of Dabie Sulu UHP and HP metamorphic belts, east-central China.Earth Science Frontiers, Vol. 11, 4, pp. 71-82. Ingenta 1045384797ChinaUHP
DS200512-1163
2005
Wallis, S., Tsuboi, M., Suzuki, K., Fanning, M., Jiang, L., Tanaka, T.Role of partial melting in the evolution of the Sulu (eastern China) ultrahigh pressure terrane.Geology, Vol. 33, 2, pp. 129-132.ChinaUHP
DS200512-1165
2005
Wang, Q., Shaocheng, J., Salisbury, M.H., Xia, B., Pan, M., Xu, Z.Shear wave properties and Poisson's ratios of ultrahigh pressure metamorphic rocks from the Dabie Sulu orogenic belt, China: implications for crustal composition.Journal of Geophysical Research, Vol. 110, B8, pp. B08411 10.1029/2004 JB003435Asia, ChinaUHP
DS200512-1201
2005
Wu, X., Meng, D., Han, Y.aPbO2 type nanophase TiO2 from coesite bearing eclogite in the Dabie Mountains, China.American Mineralogist, Vol. 90, July-August pp. 1458-1461.Asia, ChinaUHP - Coesite eclogite
DS200512-1205
2005
Xiao, Y., Hoefs, J., Kronz, A.Compositionally zoned Cl rich amphiboles from North Dabie Shan, China: monitor of high pressure metamorphic fluid rock interaction processes.Lithos, Vol. 81, 1-4, April pp. 279-295.ChinaUHP
DS200512-1207
2005
Xu, S., Liu, Y., Chen, G., Ji, S., Ni, P., Xiao, W.Microdiamonds, their classification and tectonic implications for the host eclogites from the Dabie and Su-Lu regions in central eastern China.Mineralogical Magazine, Vol. 69, 4, Aug. pp. 509-520.ChinaUHP, microdiamonds
DS200512-1214
2005
Yang, T.N., Zeng, L., Liou, J.G.Mineral evolution of a garnet pyroxenite nodule within eclogite, eastern Sulu ultrahigh-pressure metamorphic terrane, east China.Journal of Metamorphic Geology, Vol. 23, 8, pp. 667-680.ChinaUHP
DS200512-1215
2005
Yang, X.Y.Geochemistry of rare gases in eclogites from Dabie Shan orogenic belt, eastern China.Journal of the Geological Society of India, Vol. 65, 4, pp. 479-481.ChinaEclofites, UHP
DS200512-1234
2005
Zeming, Z., Kun, S., Van den Kerkhof, A.M., Hoefs, J., Liou, J.G.Fluid composition and evolution attending UHP metamorphism: study of fluid inclusions from drill cores, southern Sulu Belt, eastern China.International Geology Review, Vol. 47, 3, pp. 297-309.ChinaUHP
DS200512-1243
2005
Zhang, J.X., Yang, J.S., Mattison, C.G., Xu, Z.Q., Meng, F.C., Shi, R.D.Two contrasting eclogite cooling histories, north Qaidam HP/UHP terrane, western China: petrological and isotopic constraints.Lithos, Vol. 84, 1-2, Sept. pp. 51-76.ChinaEclogite, UHP, geochronology
DS200512-1244
2005
Zhang, L., Song, S., Liou, J.G., Ai, Y., Li, X.Relict coesite exsolution omphacite from western Tian Shan eclogites, China.American Mineralogist, Vol. 90, 1, Jan. pp. 181-186.ChinaUHP
DS200512-1246
2004
Zhang, R.Y., Liou, J.G., Yang, J.S., Liu, L., Jahn, B-M.Garnet peridotites in the UHP Mountain Belts of China.International Geology Review, Vol. 46, 11, pp. 981-1004.China, AsiaUHP
DS200512-1247
2005
Zhang, R.Y., Liou, J.G., Zheng, J-P., Griffin, W.L., Yui, T-F, O'Reilly, S.Y.Petrogenesis of the Yangkou layered garnet peridotite complex, Sulu UHP terrane, China.American Mineralogist, Vol. 90, pp. 801-813.ChinaUHP
DS200512-1248
2005
Zhang, R.Y., Yang, J.S., Wooden, J.L., Liou, J.G., Li, T.F.U Pb SHRIMP geochronology of zircon in garnet peridotite from the Sulu UHP terrane, China: implications for mantle metasomatism and subduction.Earth and Planetary Science Letters, Vol. 237, 3-4, Sept. 15, pp. 729-743.Asia, ChinaUHP metamorphism, geochronology
DS200512-1251
2005
Zhang, Z., Xiao, Y., Liu, F., Liou, J.G., Hoefs, J.Petrogenesis of UHP metamorphic rocks from Qinglongshan, southern Sulu east central China.Lithos, Vol. 81, 1-4, April pp. 189-207.ChinaUHP
DS200512-1257
2005
Zhao, Z.Y., Wei, C.J., Fang, A.M.Plastic flow of coesite eclogite in a deep continent subduction regime: microstructures, deformation mechanisms and rheologic implications.Earth and Planetary Science Letters, Vol. 237, 1-2, Aug, 30, pp. 209-222.Asia, ChinaUHP, Sulu
DS200512-1263
2005
Zhenyu, C., Yuchuan, C., Denghong, W., Xu, J., Zhou, J.Rutiles in eclogite from the Sulu UHPM terrane: a preliminary study.Mineral deposit Research: Meeting the Global Challenge. 8th Biennial SGA Beijing, Aug. 18-22, 2005. Springer, Chapter 7-3, pp. 731-734.ChinaUHP
DS200612-0061
2006
Auzende, A.L., Badro, J., Weber, P., Fallon, S.J., Ryerson, F.J.Element partitioning at ultra high pressure: new insights on bulk lower mantle geochemistry.Geochimica et Cosmochimica Acta, Vol. 70, 18, p. 25, abstract only.MantleUHP
DS200612-0062
2006
Auzende, A.L., Badro, J., Weber, P., Fallon, S.J., Ryerson, F.J.Element partitioning at ultra high pressure: new insights on bulk lower mantle geochemistry.Geochimica et Cosmochimica Acta, Vol. 70, 18, 1, p. 25, abstract only.MantleUHP
DS200612-0091
2006
Barron, B.J., Barron, L.M.UHP terranes under NSW Australia.Geochimica et Cosmochimica Acta, Vol. 70, 18, p. 1. abstract only.Australia, New South WalesUHP
DS200612-0092
2005
Barron, B.J., Barron, L.M., Duncan, G.Eclogitic and ultrahigh pressure crustal garnets and their relationship to Phanerozoic subduction diamonds, Bingara area, New England Fold Belt, eastern Australia.Economic Geology, Vol. 100, 8, Dec. pp.AustraliaUHP subduction
DS200612-0181
2006
Brown, M.Do ultrahigh temperature and ultrahigh pressure metamorphic belts record secular change in tectonic regime on Earth?International Mineralogical Association 19th. General Meeting, held Kobe, Japan July 23-28 2006, Abstract p.205.MantleUHP
DS200612-0208
2006
Cailai, W., Wooden, J.L., Jingsui, Y., Robinson, P.T., Lingsen, Z., Rendeng, S., Songyong, C.Granitic magmatism in the North Qaidam Early Paleozoic Ultra high pressure metamorphic belt, northwest China.International Geology Review, Vol. 48, 3, pp. 223-240.Asia, ChinaUHP
DS200612-0226
2006
Carswell, D.A., Van Roermund, H.L.M., De Vries, D.F., WiggersScandian ultrahigh pressure metamorphism of Protereozoic basement rocks on Fjortoft and Otroy, western Gneiss region, Norway.International Geology Review, Vol. 48, 11, pp. 957-977.Europe, NorwayUHP
DS200612-0246
2006
Chen, D., Ni, T., Deloule, E., Li, B.Zircon Lu Hf and U Pb isotopic compositions in ultrahigh pressure eclogite from Dabie orogen eastern central China.Geochimica et Cosmochimica Acta, Vol. 70, 18, 1, p. 19, abstract only.ChinaUHP
DS200612-0305
2006
Daogong, C., Deloule, E., Tao, Ni.Metamorphic zircon from Xindian eclogite, Dabie Terrain: U Pb age and oxygen isotope composition.Science China Earth Sciences, Vol. 49, 1, Jan. pp. 66-76.ChinaUHP - eclogite, Dabie Shan
DS200612-0336
2006
Dobretsov, N.I., Buslov, M.M., Zhimulev, F.I., Travin, A.V., Zayachkovsky, A.A.Vendian Early Ordovician geodynamic evolution and model for exhumation of ultrahigh and high pressure rocks from the Kokchetav subduction collision zone.Russian Geology and Geophysics, Vol. 47, 4, pp. 424-440.Russia, KazakhstanUHP
DS200612-0339
2005
Dobrzhinetskaya, L.F., Wirth, R., Green, H.W.Direct observation and analysis of a trapped COH fluid growth medium in metamorphic diamond.Terra Nova, Vol. 17, 5, pp. 472-477.MantleUHP
DS200612-0345
2006
Dorjnamjaa, D., Selenge, D., Garanin, K.V.Diamond bearing astropipes in Mongolia their recognition and characteristics.Geochimica et Cosmochimica Acta, Vol. 70, 18, p. 1. abstract only.Asia, MongoliaUHP Breccia pipes
DS200612-0377
2006
Ernst, W.G.Preservation/exhumation of ultrahigh pressure subduction complexes.Lithos, in press availableMantle, Alps, HimalayasUHP, tectonics, collisional orogens
DS200612-0390
2006
Fedorov, I.I., Chepurov, A.I., Sonin, V.M., Zhimulev, E.I.Experimental study of the effect of high pressure and high temperature on silicate and oxide inclusions in diamonds.Geochemistry International, Vol. 44, 10, pp. 1048-1052.TechnologyUHP, diamond inclusions
DS200612-0392
2005
Ferrando, S., Frzzotti, M.L., Dallai, L., Compagnoni, R.Multiphase solid inclusions in UHP rocks ( Su-Lu, China): remnants of supercritical silicate rich aqueous fluids released during continental subduction.Chemical Geology, Vol. 223, 1-3, Nov. 22, pp. 68-81.ChinaUHP
DS200612-0472
2006
Glukhovsky, M.Z.Giant swarms of Precambrian mafic dikes and potential diamond resources of ancient platforms.Geotectonics, Vol. 40, 1, Jan. pp. 11-24.Russia, CanadaDike swarms - mantle plumes, UHP, plate tectonics
DS200612-0511
2006
Gunn, D.C., Luth, R.W.Carbonate reduction by Fe-S-O melts at high pressure and high temperature.American Mineralogist, Vol. 91, July pp. 1110-1116.TechnologyPetrology, UHP, crystal synthesis, diamond
DS200612-0516
2006
Hacker, B.R.Duration of UHP tectonism.Geochimica et Cosmochimica Acta, Vol. 70, 18, p. 1. abstract only.MantleUHP, tectonics
DS200612-0517
2006
Hacker, B.R., McClelland, W.C., Liou, J.G.Ultrahigh pressure metamorphism: deep continental subduction.Geological Society of America, Special Paper, No. 403, 200p.China, RussiaUHP, geochronology, subduction
DS200612-0518
2006
Hacker, B.R., Wallis, S.R., Ratschbacher, L., Grove, M., Gehrels, G.High temperature geochronology constraints on the tectonic history and architecture of the ultrahigh pressure Dabie-Sulu Orogen.Tectonics, Vol. 25, 5, TC5006ChinaUHP, tectonics
DS200612-0571
2006
Hermann, J., Rubatto, D., Korsakov, A.V., Shatsky, V.S.The age of metamorphism of Diamondiferous rocks determined with SHRIMP dating of zircons. KokchetavRussian Geology and Geophysics, Vol. 47, 4, pp. 511-518.Russia, KazakhstanUHP - geochronology
DS200612-0613
2006
Hwang, S.L., Chu, H-T., Yui, T-F., Shen, P., Schertl, H-P., Liou, J.G., Sobolev, N.V.Nanometer size P/K rich silica glass (former melt) inclusions in microdiamond from the gneisses of Kokchetav and Erzgebirge massifs: diversified...Earth and Planetary Science Letters, in pressRussia, Europe, GermanyUHP metamorphic microdiamonds, host rock buffering
DS200612-0614
2006
Hwang, S-L., Shen, P., Chu, H-T., Yu, T-F.A new occurrence and new dat a on akdalaite a retrograde mineral from UHP Whiteschist, Kokchetav Massif, northern Kazakhstan.International Geology Review, Vol. 48, 8, pp. 754-RussiaUHP
DS200612-0682
2006
Kelsey, D.E.Ultrahigh temperature crustal metamorphism.Geochimica et Cosmochimica Acta, Vol. 70, 18, p. 13. abstract only.MantleUHP
DS200612-0699
2006
Kikuchi, M., Ogasawara, Y.Hydroxyl in diopside of diamond free ultrahigh pressure dolomitic marble from Kokchetav Massif, Kazakhstan.Geological Society of America, In: Hacker, B.R., McClelland, Liou: Ultra High Pressure Metamorphism, Special Paper 403, pp. 139-145.RussiaUHP
DS200612-0729
2006
Kopylova, M., Francis, D., Barron, L.The Earth's Mantle: new insights from diamonds and mantle xenoliths.Mineralogical Association of Canada, www.gacmac2006.caCanada, QuebecTechnical meeting - alluvials, UHP, craton
DS200612-0735
2005
Korsakov, A.V., Hermann, J.Silicate and carbonate melt inclusions associated with diamonds in deeply subducted carbonate rocks.Earth and Planetary Science Letters, Vol. 241, 1-2, pp. 104-118.Russia, KazakhstanUHP, Kokchetav massif
DS200612-0746
2006
Krogh Ravna, E.J., Roux, M.R.M.Metamorphic evolution of the Tonsvika eclogite, Tromso Nappe - evidence for a new UHPM province in the Scandinavian Caledonides.International Geology Review, Vol. 48, 10, October pp. 861-881.Europe, Scandinavia, NorwayUHP
DS200612-0788
2006
Leech, M.L., Webb, L.E., Yang, T.N.Diachronous histories for the Dabie Sulu orogen from high temperature geochronology.Geological Society of America, Special Paper, No. 403, pp. 1-22.ChinaUHP
DS200612-0812
2006
Li, H., Wang, L., Li, C., Hu, D., Yu, D.S wave velocity structure of the lithosphere beneath the western Dabie Mountain, China.Geochimica et Cosmochimica Acta, Vol. 70, 18, p. 15, abstract only.ChinaUHP, geophysics - seismics
DS200612-0813
2006
Li, l., Long, H., Raterron, P., Weidner, D.Plastic flow of pyrope at mantle pressure and temperature.American Mineralogist, Vol. 91, pp. 517-525.TechnologyUHP, X-ray imaging, garnet
DS200612-0823
2006
Liou, J.G., Tsuijmori, T., Chu, W., Zhang, R.Y., Wooden, J.L.Protolith and metamorphic ages of the Haiyangsuo Complex, eastern China: a non UHP exotic tectonic slab in the Sulu ultrahigh pressure terrane.Mineralogy and Petrology, Vol. 88, 1-2, pp. 207-226.ChinaUHP
DS200612-0828
2006
Liu, J., Ye, K., Sun, M.Exhumation P T path of UHP eclogites in the Hong'an area, western Dabie Mountains, China.Lithos, Vol. 89, 1-2, June pp. 154-173.ChinaUHP, coesites
DS200612-0854
2006
Malaspina, N., Hermann, J., Scambelluri, M., Compagnoni, R.Multistage metasomatism in ultrahigh pressure mafic rocks from North Dabie complex (China).Lithos, Vol.90, 1-2, August pp. 19-42.ChinaUHP - metasomatism
DS200612-0902
2006
Medaris, L.G., Beard, B.L.Mantle derived UHP garnet pyroxenite and eclogite in the Moldanubian Gfohl Nappe, Bohemian Massif: a geochemical review, New PT and tectonic interpretationsInternational Geology Review, Vol. 48, 9, pp. 765-777.EuropeUHP
DS200612-0940
2006
Mohan, A., Osanai, Y.Art of petrography: an amazing tool for snap-shots of the journey of UHT rocks.International Mineralogical Association 19th. General Meeting, held Kobe, Japan July 23-28 2006, Abstract p.205.MantleUHP
DS200612-0999
2005
Ogasawara, Y., Aoki, K.The role of fluid for diamond free UHP dolomitic marble from the Kokchetav Massif.International Geology Review, Vol. 47, 11, pp. 1178-1193.RussiaUHP
DS200612-1000
2006
Oh, C.W.A new concept on tectonic correlation between Korea, Chin a and Japan: histories from the late Proterozoic to Cretaceous.Gondwana Research, Vol. 9, pp. 47-61.Asia, China, Korea, JapanUHP, Dabie Sulu collision belt
DS200612-1022
2006
Palyanov, Yu.N., Borzdov, Yu.M., Khokhryakov, A.F., Kupriyanov, I.N., Sobolev, N.V.Sulfide melts - graphite interaction at HPHT conditions: implications for diamond genesis.Earth and Planetary Science Letters, Vol. 250, 1-2, Oct. 15, pp. 269-280.MantleUHP, diamond genesis, carbon
DS200612-1073
2005
Perchuk, A.L., Burchard, M., Maresch, W.V., Schertl, H-P.Fluid mediated modification of garnet interiors under ultrahigh pressure conditions.Terra Nova, Vol. 17, 6, pp. 545-553.MantleUHP
DS200612-1076
2006
Perraki, M., Proyer, A., Mposkos, E., Kaindl, R., Hoinkes, G.Raman micro spectroscopy on diamond, graphite and other carbon polymorphs from the ultrahigh pressure metamorphic Kimi Complex of the Rhodope metamorphic province.Earth and Planetary Science Letters, Vol. 241, 3-4, pp. 672-685.Europe, GreeceUHP
DS200612-1077
2006
Perrillat, J.P., Ricolleau, A., Daniel, I., Fiquet, G., Mezouar, M., Guignot, N., Cardon, H.Phase transformations of subducted basaltic crust in the upmost lower mantle.Physics of the Earth and Planetary Interiors, Vol. 157, 1-2, pp. 139-149.MantleUHP, subduction
DS200612-1117
2006
Qiu, H-N., Wijbrans, J.R.Paleozoic ages and excess 40 Ar in garnets from the Bixiling eclogite in DabieShan, China: new insights from 40Ar 39Ar dating by stepwise crushing.Geochimica et Cosmochimica Acta, In pressAsia, ChinaUHP, geochronology
DS200612-1130
2006
Ratschbacher, L., Franz, L., Enkelmann, E., Jonckheere, R., Porschke, A., Hacker, B.R., Dong, S., Zhang, Y.The Sino-Korean Yangtze suture, the Huwan detachment and the Paleozoic Tertiary exhumation of ultra high pressure rocks along the Tongbai Xinxian Dabie Mtns.Geological Society of America, Special Paper, No. 403, pp. 45-76.ChinaUHP
DS200612-1157
2006
Reverdatto, V.V., Selyatitskii, A.Y.Olivine garnet olivine spinel and orthopyroxene metamorphic rocks of the Kokchetav Massif, northern Kazakhstan.Petrology, Vol. 13, 6, pp. 513-539.RussiaUHP
DS200612-1231
2006
Scambelluri, M., Hermann, J., Malaspina, N.The deep subduction fluids in high and ultrahigh pressure rocks and their interaction with the overlying mantle wedge.Geochimica et Cosmochimica Acta, Vol. 70, 18, p. 559, abstract only.MantleUHP, subduction
DS200612-1234
2005
Schertl, H.P., Medenbach, O., Neuser, R.D.UHP metamorphic rocks from Dora Maira, western Alps: cathodluminescence of silica and twinning of coesite.Russian Geology and Geophysics, Vol. 46, 12, pp. 1327-1332.Europe, AlpsUHP - coesite
DS200612-1242
2006
Schneider, J., Jahn, B-M., Okamoto, K., Tong, L., Lizuka, Y., Xu, Z.Rb Sr and Sm Nd isotope analyses of CCSD eclogites ( Sulu, China): a test for the closure temperature concept.Geochimica et Cosmochimica Acta, Vol. 70, 18, p. 12, abstract only.ChinaUHP, geochronology
DS200612-1271
2005
Shatsky, V.S., Palyanov, Y.N., Sokol, A.G., Tomilenko, A.A., Sobolev, N.V.Diamond formation in UHP dolomite marbles and garnet pyroxene rocks of the Kokchetav Massif, northern Kazakstan: natural and experimental evidence.International Geology Review, Vol. 47, 10, pp. 999-1010.RussiaUHP
DS200612-1272
2006
Shatsky, V.S., Ragozin, A.J., Sobolev, N.V.Some aspects of metamorphic evolution of ultrahigh pressure calc-silicate rocks.Russian Geology and Geophysics, Vol. 47, 1 pp. 105-119.MantleUHP
DS200612-1273
2006
Shatsky, V.S., Sitnikova, E.S., Kozmenko, O.A., Palessky, S.V., Nikolaeva, I.V., Zayachkowsky, A.A.Behaviour of incompatible elements during ultrahigh pressure metamorphism. Kokchetav MassifRussian Geology and Geophysics, Vol. 47, 4, pp. 482-496.Russia, KazakhstanUHP - geochemistry
DS200612-1298
2005
Shutian, S., Zhong, Z., Zhou, H.Tectonic evolution of the Dabie Sulu UHP and HP metamorphic belts, east central China: structural record in UHP rocks.International Geology Review, Vol. 47, 11, pp. 1207-1221.Asia, ChinaUHP
DS200612-1329
2006
Sobolev, N.V.Coesite as an indicator of ultrahigh pressures in continental lithosphere.Russian Geology and Geophysics, Vol. 47, 1 pp. 94-104.MantleUHP - coesite
DS200612-1331
2006
Sobolev, N.V., Schertl, H.P., Neuser, R.D.Composition and paragenesis of garnets from ultrahigh pressure calc-silicate metamorphic rocks of the Kokchetav massif.Russian Geology and Geophysics, Vol. 47, 4, pp. 519-Russia, KazakhstanUHP - geochemistry garnets
DS200612-1332
2006
Sodoudi, F., Yuan, X., Liu, Q., Chen, J.K.Lithospheric thickness beneath the Dabie Shan, central eastern Chin a from S receiver functions.Geophysical Journal International, Vol. 166, 3, pp. 1362-1367.ChinaGeophysics - seismics, UHP
DS200612-1420
2005
Terry, M.P., Heidelbach, F.Deformation enhanced metamorphic reactions and the rheology of high pressure shear zones, Western Gneiss region, Norway.Journal of Metamorphic Geology, Vol. 24, 1, pp. 3-18.Europe, NorwayUHP
DS200612-1443
2006
Tsujimori, T., Sisson, V.B., Liou, J.G., Harow, G.E., Sorensen, S.S.Very low temperature record of the subduction process: a review of worldwide lawsonite eclogites.Lithos, In press available,Canada, British Columbia, Guatemala, Australia, NorwaySubduction - cold, UHP metamorphism
DS200612-1493
2006
Vrijmoed, J.C., Van Roermund, H.L., Davies, G.R.Evidence for diamond grade ultra high pressure metamorphism and fluid interaction in the Svartberget Fe Ti garnet peridotite websterite body, western Gneiss region, Norway.Mineralogy and Petrology, Vol. 88, 1-2, pp. 381-405.Europe, NorwayUHP
DS200612-1494
2006
Vrijmoed, J.C., Van Roermund, H.L.M., Davies, G.R.Evidence for diamond grade ultra high pressure metamorphism and fluid interaction in the Svartberget Fe Ti garnet peridotite websterite body, Western GneissMineralogy and Petrology., Vol. 88, 1-2, pp. 381-Europe, NorwayUHP
DS200612-1506
2005
Wang, Q., Ji, S., Salisbury, M.H., Xia, B., Pan, M., Xu, Z.Shear wave properties and Poisson's ratios of ultrahigh pressure metamorphic rocks from Dabie Sulu orogenic belt.Journal of Geophysical Research, Vol. 110, B8, BO8208.ChinaUHP
DS200612-1512
2006
Wawrzenitz, N., Romer, R.L., Oberhansli, R., Dong, S.Dating of subduction and differential exhumation of UHP rocks fromn the Central Dabie Complex ( E-China): constraints from microfabrics, Rb-Sr and U-Pb isotope systems.Lithos, in press,ChinaGeochronology, UHP
DS200612-1515
2006
Webb, L.E., Leech, M.L., Yang, T.N.49 Ar 39 Ar thermochronology of the Sulu terrane: Late Triassic exhumation of high and ultrahigh pressure rocks -implications for Mesozoic tectonics East Asia.Geological Society of America, Special Paper, No. 403, pp. 77-92.ChinaUHP
DS200612-1516
2006
Webb, L.E., Leech, M.L., Yang, T.N.40 Ar 39 Ar thermochronology of the Sulu terrane: Late Triassic exhumation of high and UHP rocks and implications for Mesozoic tectonics in East Asia.Geological Society of America Special Paper, No. 403, pp. 77-92.ChinaUHP - Sulu, Dabie, geothermometry
DS200612-1529
2006
Wijbrans, J.R., Qiu, H.N.Dabie Shan UHP garnets dated by 40 Ar 39 Ar stepwise crushing: more early Paleozoic ages.Geochimica et Cosmochimica Acta, Vol. 70, 18, p. 21, abstract only.ChinaUHP, geochronology
DS200612-1533
2006
Williams, M.L., Hanmer, S.Structural and metamorphic process in the lower crust: evidence from a deep crustal isobarically cooled terrane, Canada.Evolution and differentiation of Continental Crust, ed. Brown, M., Rushmer, T., Cambridge Univ. Press, Chapter 2, pp. 231-267.Mantle, CanadaHP, geochemistry
DS200612-1548
2006
Wu, F-Y., Yang, Y-H., Xie, L-W., Yang, J-H., Xu, P.Hf isotopic compositions of the standard zircons and baddeleyites used in U Pb geochronology.Chemical Geology, Vol. 234, 1-2, Oct 30, pp. 105-126.ChinaUHP, geochronology
DS200612-1552
2005
Xia, Q-K., Sheng, Y-M., Yang, X-Z., Yu, H-M.Heterogeneity of water in garnets from UHP eclogites, eastern Dabie Shan, China.Chemical Geology, Vol. 224, 4, Dec. 20, pp. 237-246.ChinaUHP, Bixiling
DS200612-1562
2006
Yang, J., Wu, C., Zhang, J., Shi, R., meng, F.,Wooden, J., Yang, H-Y.Protolith of eclogites in the north Qaidam and Altun UHP terrane, NW China: earlier oceanic crust?Journal of Asian Earth Sciences, In press, availableChinaUHP, subduction, eclogites
DS200612-1563
2006
Yang, J-J.Ca rich garnet clinopyroxene rocks at Hujialin in the Su Lu terrane (eastern China): deeply subducted arc cumulates?Journal of Petrology, Vol. 47, 5, pp. 965-990.Asia, ChinaUHP, subduction
DS200612-1573
2006
Yongliang, A., Lifei, Z., Li, X., Qu, J.Geochemical characteristics and tectonic implications of HP UHP eclogites and blueschists in southwestern Tian Shan China.Progress in Natural Science, Vol. 16, 6, June pp. 624-632.ChinaUHP
DS200612-1579
2006
Yuan, H.L., Gao, S., Rudnick, R.L., Jin, Z.M., Walker, R.J.Re Os evidence for age and origin of peridotites from the Dabie Sulu UHP belt.Geochimica et Cosmochimica Acta, Vol. 70, 18, p. 10. abstract only.ChinaUHP, geochronology
DS200612-1592
2006
Zhang, K-J., Cai, J-X., Zhang, Yu-X., Zhao, T-P.Eclogites from central Qiangtang, northern Tibet, China: and tectonic implications.Earth and Planetary Science Letters, Vol. 245, 3-4, May 30, pp. 722-729.Asia, ChinaUHP, subduction
DS200612-1596
2005
Zhang, Z., Xiao, Y., Hoefs, J., Xu, Z., Liou, J.G.Petrogenesis of UHP metamorphic crustal and mantle rocks from the Chinese continent in the main hole pre-pilot hole 1 Sulu Basin.International Geology Review, Vol. 47, 11, pp. 1160-1177.Asia, ChinaUHP
DS200612-1597
2006
Zhang, Z.M., Liou, J.G., Zhao, X.D., Shi, C.Petrogenesis of Maiobei rutile eclogites from the southern Sulu ultrahigh pressure metamorphic belt, eastern China.Journal of Metamorphic Geology, Vol. 24, 8, pp. 727-741.ChinaUHP
DS200612-1600
2006
Zhao, R., Liou, J.G., Zhang, R.Y., Li, T.SHRIMP U Pb zircon dating of the Rongcheng eclogite and associated peridotite: new constraints for UHP metamorphism of mantle derived mafic ultramafic bodiesGeological Society of America Special Paper, No. 403, pp. 115-126.ChinaUHP - Sulu, Dabie, geochronology
DS200612-1602
2006
Zhao, Z-F., Zheng, Y-F., Gao, T.S., Wu, Y.B., Chen, B., Chen, F-K., Wu, F.Y.Isotopic constraints on age and duration of fluid assisted high pressure eclogite facies recrystallization during exhumation of deeply subducted continental crursJournal of Metamorphic Geology, Vol. 24, 8, pp. 687-702.ChinaUHP Sulu orogen
DS200612-1604
2006
Zheng, J., Griffin, W.L., O'Reilly, S.Y., Yang, J.S., Zhang, R.Y.A refractory mantle protolith in younger continental crust, east central China: age and composition of zircon in Sulu ultrahigh pressure peridotite.Geology, Vol. 34, 9, Sept. pp. 705-708.ChinaUHP, geochronology
DS200612-1609
2006
Zheng, Y.F., Zhao, Z-F., Wu, Y-B., Gong, B.Protolith nature of deeply subducted continent: zircon U-Pb age, Hf and O isotope constraints from UHP eclogite and gneiss in the Dabie orogen.Geochimica et Cosmochimica Acta, Vol. 70, 18, p. 18, abstract only.ChinaUHP, geochronology
DS200612-1610
2006
Zheng, Y-F., Zhao, Z.F., Wu, Y-B., Zhang, S-B., Liu, X., Wu, F-Y.Zircon U Pb age, Hf and O isotope contraints on protolith origin of ultrahigh pressure eclogite and gneiss in the Dabie Orogen.Chemical Geology, Vol. 231, 1-2, pp. 135-158.ChinaUHP
DS200612-1611
2006
Zhenyu, C., Jinjie, Y.Trace elements of rutile in eclogites from Sulu UHPM terrane, China.Geochimica et Cosmochimica Acta, Vol. 70, 18, p. 21, abstract only.ChinaUHP, geochemistry
DS200612-1612
2006
Zhenyu, C., Yuchuan, C., Denghong, W., Jue, X., Jianxiong, Z.Rutiles in eclogites from the Sulu UHPM terrane: a preliminary study.Maor & Bierlein eds. Understanding ore systems through precise geochronology, isotope tracing, microgeochem., Chapter 7-36, pp.861-864.ChinaUHP
DS200712-0031
2007
Asahara, Y., Frost, D.J., Rubie, D.C.Partitioning of FeO between magnesiwustite and liquid iron at high pressures and temperatures: implications for the composition of the Earth's outer core.Earth and Planetary Science Letters, Vol. 257, 3-4, May 30, pp. 435-449.MantleUHP
DS200712-0060
2007
Bebout, G.E.Metamorphic chemical geodynamics of subduction zones.Earth and Planetary Science Letters, Vol. 260, 3-4, pp. 373-393.MantleUHP metamorphism
DS200712-0077
2006
Bhowmik, S.K.Ultra high temperature metamorphism and its significance in the Central Indian Tectonic Zone.Lithos, Vol. 92, 3-4, pp. 484-505.IndiaUHP
DS200712-0079
2007
Bindi, L., Bobrov, A., Litvin, Y.A.in corporation of Fe3+ in phase -X, A2xM2Si207Hx, a potential high pressure K-rich hydrous silicate in the mantle.Mineralogical Magazine, Vol. 71, 3, pp. 265-272.MantleUHP
DS200712-0116
2006
Brown, D., Spadea, P., Puchkov, V., Alvarez-Marron, J., Herrington, R., Willner, A.P., Hetzel, R., Gorozhanina, Y., Juhlin, C.Arc continent collision in the southern Urals.Earth Science Reviews, in press availableRussia, UralsBaltica tectonics, UHP, geochemistry
DS200712-0169
2007
Chatzitheodoridis, E., Kostopoulos, D., Lyon, I., Henkel, T., Cornelius, N., Baltatzis, E., Reischmann, T.Elemental distributions in zircons from Diamondiferous UHPM rocks from the Greek Rhodope: a TOF-SIMS study.Plates, Plumes, and Paradigms, 1p. abstract p. A163.Europe, GreeceUHP
DS200712-0172
2007
Chen, D., Deloule, E., Li, B., Ni, T.Zircon Lu-Hf isotope and its significance to ultra high pressure metamorphic rocks from Dabie Terrain, Eastern China.Plates, Plumes, and Paradigms, 1p. abstract p. A164.ChinaUHP
DS200712-0174
2007
Chen, Z., Li, Q.Can rutile thermometry link to rutile U-Pb age?Plates, Plumes, and Paradigms, 1p. abstract p. A169.ChinaUHP, geochronology
DS200712-0175
2007
Cheng, H., King, R.L., Nakamura, E., Vervoort, J.D.Rates of eclogitic metamorphism of subducted continental slab.Plates, Plumes, and Paradigms, 1p. abstract p. A169.ChinaUHP, Danie Shan
DS200712-0223
2007
Davydov, V.A., Rakhmanina, A.V., Rols, S., Agafonov, V., Pulikkathara, M.X., Wal, R.V., Khabashesku, V.N.Size dependent phase transition of diamond to graphite at high pressures.Journal of Physical Chemistry , Vol. 111, no. 35, pp. 12918-12925. Ingenta 1074185621TechnologyUHP
DS200712-0241
2006
Dewey, J.F., Robb, L., Van Schalkwyk, L.Did Bushmanland extensionally unroof Namaqualand?Precambrian Research, Vol. Nov. pp. 173-182.Africa, South AfricaUHT metamorphism
DS200712-0306
2006
Fedorov, I.I., Chepurov, A.I., Sonin, V.M., Zhimulev, E.I.Experimental study of the effect of high pressure and high temperature on silicate and oxide inclusions in diamonds.Geochemistry International, Vol. 44, 10, pp. 1048-TechnologyUHP - diamond inclusions
DS200712-0370
2007
Gong, B., Zheng, Y-F., Chen, R-X.H-O isotopes and water content in nominally anhydrous minerals from UHP eclogite in the Dabie Orogen.Plates, Plumes, and Paradigms, 1p. abstract p. A342.ChinaUHP
DS200712-0400
2006
Hacker, B.R.Pressures and temperatures of ultrahigh pressure metamorphism: implications for UHP tectonics and H2O in subducting slabs.International Geology Review, Vol. 48, 12, pp. 1053-1066.MantleUHP, subduction
DS200712-0479
2007
Jahn, B-m., Chen, B.Dabie Shan UHP metamorphic terrane: Sr Nd Pb isotopic constraint to pre-metamorphic subduction polarity.International Geology Review, Vol. 49, 1, pp. 14-29.ChinaUHP
DS200712-0492
2006
Jianxin, Z., Jingsui, Y., Fabcong, M.,Yusheng, W., Huimin, Li., Cailai, W.U Pb isotopic studies of eclogites and their host gneisses in the Xitishan area of the North Qaidam mountains, western China: new evidence HP-UHP belt.Journal of Asian Earth Sciences, Vol. 28, 2-3, Nov. 15, pp. 143-150.ChinaUHP, Eclogites
DS200712-0567
2007
Konrad-Schmolke, M., Zack, T., O'Brien, P.J.Trace element partitioning in subducted slabs: constraints from garnet inclusions and thermodynamic modelling.Plates, Plumes, and Paradigms, 1p. abstract p. A510.Mantle, NorwaySubduction, UHP
DS200712-0574
2007
Kostopoulos, D., Chatzitheodoridis, E., Cornelius, Baltatzis, ReischmannEnvironment of diamond formation in UHPM rocks from the Greek Rhodope: a Raman study of inclusions in zircon.Plates, Plumes, and Paradigms, 1p. abstract p. A517.Europe, GreeceUHP
DS200712-0619
2007
Lenze, A., Stockhert, B.Microfabrics of UHP metamorphic granites in the Dora Maira Massif, western Alps - no evidence of deformation at great depths.Journal of Metamorphic Geology, Vol. 25, pp. 461-475.EuropeUHP metamorphism
DS200712-0622
2007
Li, L., Zheng, Y-F., Cartigny, P.Nitrogen and oxygen isotopes in phengite from UHP metamorphic rocks in the Sulu orogen, China.Plates, Plumes, and Paradigms, 1p. abstract p. A573.ChinaUHP
DS200712-0634
2007
Litvin, Y.A.High pressure mineralogy of diamond genesis.Geological Society of America, Special Paper, No. 421, pp. 83-104.MantleUHP
DS200712-0635
2006
Liu, D., Jian, P., Kroner, A., Xu, S.Dating of prograde metamorphic events deciphered from episodic zircon growth in rocks of the Dabie Sulu UHP complex, China.Earth and Planetary Science Letters, Vol. 250, 3-4, Oct. 30, pp. 650-666.ChinaUHP
DS200712-0636
2007
Liu, F., Gerdes, A.Zoned zircon from eclogite leases in marbles from the Dabie-Sulu UHP belt: a clear record of ultra-deep subduction and fast exhumation.Plates, Plumes, and Paradigms, 1p. abstract p. A588.ChinaUHP
DS200712-0637
2006
Liu, F., Liou, J.G., Xue, H.Identification of UHP and non-UHP orthogneisses in the Sulu UHP terrane, eastern China: evidence from SHRIMP U-Pb dating of mineral inclusion bearing zircons.International Geology Review, Vol. 48, 12, pp. 1067-1086.ChinaUHP, geochronology
DS200712-0639
2007
Liu, L., Zhang, J., Green, H.W.II, Jin, Z., Bozhilov, K.N.Evidence of former stishovite in metamorphosed sediments, implying subduction to > 350 km.Earth and Planetary Science Letters, Vol. 263,3-4, Nov.30, pp. 180-191.MantleUHP
DS200712-0641
2007
Liu, X., Jin,Z., Green, H.W.Clinoenstatite exsolution in diopsidic augite of Dabie Shan - garnet peridotite from depth of 300 km.Americam Mineralogist, Vol. 92, 4, pp. 546-552.ChinaUHP
DS200712-0642
2007
Liu, X-W., Jin, Z-M., Green, H.W.II.Clinoenstatite exsolution in diopsidic augite of Dabieshan: garnet peridotite from depth of 300 km.American Mineralogist, Vol. 92, pp. 546-552.ChinaPeridotite, UHP
DS200712-0643
2007
Liu, Y-C.Ultrahigh pressure eclogite transformed from mafic granulite in the Dabie Orogen, east central China.Journal of Metamorphic Geology, Vol. 25, 9, pp. 975-989.ChinaUHP - Eclogite
DS200712-0698
2007
Mattinson, C.G., Wooden, J.L., Liou, J.G., Bird, D.K., Wu, C.L.Age and duration of eclogite facies metamorphism, North Quaidam HP/UHP terrane, western China.American Journal of Science, Vol. 306, 9, pp. 683-711.ChinaUHP
DS200712-0757
2006
Mposkos, E., Krohe, A.Pressure temperature deformation paths of closely associated ultra high pressure ( diamond bearing) crustal and mantle rocks of the Kimi Complex:Canadian Journal of Earth Sciences, Vol. 43, 12, Dec. pp. 1755-1776.Europe, GreeceUHP - not specific to diamonds, eclogite
DS200712-0821
2007
Pearson, D.G., Harlou, R., Hayman, P., Cartigny, P., Kopylova, M.Sr isotopic compositions of ultra deep inclusions in diamonds: implications for mantle chemical structure and evolution.Plates, Plumes, and Paradigms, 1p. abstract p. A769.MantleUHP
DS200712-0918
2007
Rubatto, D., Hermann, J.Zircon behaviour in deeply subducted rocks.Elements, Vol. 3, 1, Feb. pp.31-36.TechnologyUHP - Zircon geochronology
DS200712-0925
2006
Safonov, O.G., Perchuk, L.L., Litvin, Y.A.Melting relations in the chloride carbonate silicate systems at high pressure and model for formation of alkalic diamond forming liquids in the upper mantle.Earth and Planetary Science Letters, in press availableTechnologyUHP, melts, kimberlites
DS200712-0952
2007
Schmidt, A., Weyer, S., Xiao, Y., Hoefs, J., Brey, G.P.Lu Hf geochronology of eclogites from the Dabie Sulu terrain: constraints on the timing of eclogite facies metamorphism.Plates, Plumes, and Paradigms, 1p. abstract p. A894.ChinaUHP
DS200712-0979
2006
Shi, Y., Wang, Q.Variation in PT conditions across the upper contact of the UHP terrane, Dabie Shan, China: gradational or abrupt?Journal of Metamorphic Geology, Vol. 24, 9, pp. 803-822.ChinaUHP
DS200712-1010
2007
Sobolev, N.V., Schertl, H-P., Neuser, R.D., Shatsky, V.S.Relict unusually low iron pyrope grossular garnets from UHPM calc-silicate rocks of the Kochetav Massif, Kazakhstan.International Geology Review, Vol. 49, 8, pp. 717-731.Russia, KazakhstanUHP
DS200712-1133
2007
Wang, Q., Wyman, D.A., Xu, J., Jian, P., Zhao, Z., Li, C., Xu, W., Ma, J., He, B.Early Cretaceous adakitic granites in the northern Dabie Complex, central China: implications for partial melting and delamination of thickened lower crust.Geochimica et Cosmochimica Acta, Vol. 71, 10, May 15, pp. 2609-2636.ChinaUHP - Dabie Shon
DS200712-1184
2007
Wu, Y-B., Gao, S., Zhang, H-F., Wang, S-H., Jiao, W-F., Liu, Y-S, Yuan, H-L.Timing of UHP metamorphism in the Hongan area, western Dabie Mountains China: evidence from zircon Pb age, trace element and Hf isotope composition.Contributions to Mineralogy and Petrology, Vol. 155, 1, pp. 123-133.ChinaUHP
DS200712-1185
2007
Wu, Y-B., Zheng, Y-F., Zhang, S-B., Zhao, Z-F., Wu, F-Y., Liu, X-M.Zircon UPb ages and Hf isotope compositions of migmatite from the North Dabie Terrane in China: constraints on partial melting.Journal of Metamorphic Geology, Vol. 25, 9, pp. 901-1009.ChinaUHP - melting
DS200712-1198
2007
Yang, J-S., Dobrzhinetskaya, L.Diamond and coesite bearing chromitites from the Luobusa ophiolite, Tibet.Geology, Vol. 35, 10, Oct. pp. 875-878.Asia, TibetUHP
DS200712-1203
2007
Ye, K., Song, Y., Wu, J.Upward mantle wedge convection recorded by Zhimafang orogenic garnet lherzolite, Sulu UHP terrane, eastern China.Frontiers in Mineral Sciences 2007, Joint Meeting of Mineralogical societies Held June 26-28, Cambridge, Abstract Volume p. 258-259.ChinaUHP
DS200712-1204
2007
Ye, K., Song, Y., Wu, J.Upward mantle wedge convection recorded by Zhimafang orogenic garnet lherzolite, Sulu UHP terrane, eastern China.Frontiers in Mineral Sciences 2007, Joint Meeting of Mineralogical societies Held June 26-28, Cambridge, Abstract Volume p. 258-259.ChinaUHP
DS200712-1205
2007
Yin, A., Manning, C.E., Lovera, O., Menold, C.A., Chen, X., Gehrels, G.Early Paleozoic tectonic and thermomechanical evolution of ultrahigh pressure (UHP) metamorphic rocks in the northern Tibetan Plateau, northwest China.International Geology Review, Vol. 49, 8, pp. 681-716.ChinaUHP
DS200712-1223
2007
Zhai, M., et al.Linking the Sulu UHP belt to the Korean Peninsula: evidence from eclogite, Precambrian basement and Paleozoic basin.Gondwana Research, Vol. 12, 4, pp. 388-403.ChinaUHP
DS200712-1226
2007
Zhang, J., Green, H.W.II.On the deformation of UHP eclogite: from laboratory to nature.International Geology Review, Vol. 49, 6, pp. 487-503.MantleUHP
DS200712-1228
2007
Zhang, R.Y., Li, T., Rumble, D., Yui, T-F., Li, L., Yang, J.S., Pan, Y., Liou, J.G.Multiple metasomatism in Sulu ultrahigh P garnet peridotite constrained by petrological geochemiscal investigations.Journal of Metamorphic Geology, Vol. 25, 2, pp. 149-164..ChinaUHP
DS200712-1229
2007
Zhang, R.Y., Liou, J.G., Ernst, W.G.Ultrahigh pressure metamorphic belts in China: major progress in the past several years.International Geology Review, Vol. 49, 6, pp. 504-519.ChinaUHP
DS200712-1237
2007
Zhao, R., Liou, J.G., Tsujimori, T., Zhang, Ru.Y.Petrology and U-Pb SHRIMP geochronology of a garnet peridotite, Sulu UHP terrane, east central China.International Geology Review, Vol. 49, 8, pp.ChinaUHP
DS200712-1238
2007
Zhao, R., Zhang, R.Y., Liou, J.G., Booth, A.L., Pope, E.C., Chamberlain, C.P.Petrochemistry oxygen isotopes and U-Pb SHRIMP geochronology of mafic ultramafic bodies from the Sulu UHP terrane, China.Journal of Metamorphic Geology, Vol. 25, 2, pp. 207-224.ChinaUHP
DS200712-1241
2007
Zheng, Y-F., Wu, Y-B., Zhao, A-F., Zhang, S-B.Metamorphic effect on zircon Lu-Hf and U-Pb isotope systems in eclogite facies metamorphic rocks from the Dabie Orogen.Frontiers in Mineral Sciences 2007, Joint Meeting of Mineralogical societies Held June 26-28, Cambridge, Abstract Volume p. 88-89.ChinaUHP
DS200712-1242
2007
Zheng, Y-F., Wu, Y-B., Zhao, A-F., Zhang, S-B.Metamorphic effect on zircon Lu-Hf and U-Pb isotope systems in eclogite facies metamorphic rocks from the Dabie Orogen.Frontiers in Mineral Sciences 2007, Joint Meeting of Mineralogical societies Held June 26-28, Cambridge, Abstract Volume p. 88-89.ChinaUHP
DS200812-0081
2008
Barron, L.M., Barron, B.J., Mernagh, T.P., Birch, W.D.Ultrahigh pressure macro diamonds from Copeton (New South Wales, Australia), based on Raman spectroscopy of inclusions.Ore Geology Reviews, Vol. 34, pp. 76-86.Australia, New South WalesUHP - Copeton
DS200812-0086
2008
Bass, J.D., Parise, J.B.Deep Earth and recent developments in mineral physics.Elements, Vol. 4, 3, June pp. 157-164.MantleMineral physics, HP
DS200812-0130
2008
Boutelier, D.A., Chemende, A.I.Exhumation of UHP/LT rocks due to the local reduction of the interplate pressure: thermo mechanical modelling.Earth and Planetary Science Letters, Vol. 271, 1-4, pp. 226-232.MantleUHP
DS200812-0207
2008
Chen, D., Meng, Q., Ni, T., Zhi, X.Re Os and Lu Hf isotope evidence for the genesis of pyroxenite from northern Dabie ultrahigh pressure complex belt, eastern central China.Goldschmidt Conference 2008, Abstract p.A154.ChinaDabie Orogen, UHP
DS200812-0208
2008
Chen, D.L., Liu, L., Sun, Y.Geochemistry and geochronology of the North Qaidam UHP terrane NW China.Goldschmidt Conference 2008, Abstract p.A153.ChinaUHP
DS200812-0209
2008
Chen, H., King, R.L., Nakamura, E., Vervoort, J.D., Zhou, Z.Coupled Lu Hf and Sm Nd geochronology constraints garnet growth in ultra high pressure eclogites from the Dabie Orogen.Journal of Metamorphic Geology, in press availableChinaUHP, geochronology
DS200812-0211
2008
Chen, R.X., Zheng, Y.F., Gong, B.Mineral water concentration and H isotope evidence for decompressional dehydration during exhumation of deeply subducted continental crust.Goldschmidt Conference 2008, Abstract p.A156.ChinaUHP
DS200812-0212
2008
Chen, Z.Y.Rutiles in UHPM rocks from Sulu Dabie orogen.Goldschmidt Conference 2008, Abstract p.A157.ChinaUHP
DS200812-0213
2008
Cheng, H., King, R.L., Nakamura, E., Vervoort, J.D., Zhou, Z.Coupled Lu Hf and Sm Nd geochronology constrains garnet growth in ultra high pressure eclogites from the Dabie orogen.Journal of Metamorphic Geology, Vol. 26. 7, pp. 741-758.ChinaUHP
DS200812-0214
2008
Cheng, H., King, R.L., Nakamura, E., Vervoort, J.D., Zhou, Z.Coupled LuHf and SmNd geochronology constrains garnet growth in ultra high pressure eclogites from the Dabie orogen.Journal of Metamorphic Geology, Vol. 26, 7, Sept. pp. 741-758.ChinaUHP
DS200812-0215
2007
Cheng, H., Zhou, Z., Nakamura, E.Crystal size distribution of garnets in eclogites from the Dabie Orogen central China.American Mineralogist, Vol. 93, pp. 124-133.ChinaUHP
DS200812-0217
2008
Chepunov, A.I., Fedorov, I.I., Sonin, V.M., Logvinova, A.M., Chepunov, A.A.Thermal effect on sulfide inclusions in diamonds ( from experimental data).Russian Geology and Geophysics, Vol. 49, pp. 738-742.Russia, YakutiaTechnology - sulphide inclusions, UHP
DS200812-0287
2007
Dobrzhinetskaya, L.Ultrahigh pressure metamorphic fluid: evidence from subduction zone microdiamonds.Geological Society of America Annual Meeting 2007, Denver Oct. 28, 1p. AbstractMantle, Russia, Kazakhstan, Europe, GermanyUHP
DS200812-0289
2008
Dobrzhinetskaya, L.F., Brueckner, H.K., Cuthbert, S.I.Ultrahigh pressure metamorphism: from Earth's interior to mountain buildings.Lithos, In press available 20p.MantleUHP
DS200812-0290
2008
Dong, S.W., Li, Q.S., Gao, R., Liu, F.T., Liu, X.C., Xue, H.M., Guan, Y.Moho mapping in the Dabie ultrahigh pressure collisional orogen, central China.American Journal of Science, Vol. 308, 4, pp. 517-528.ChinaUHP
DS200812-0328
2007
Ernst, W.G., Hacker, B.R., Liou, J.G.Petrotectonics of ultrahigh pressure crustal and upper-mantle rocks - implications for Phanerozoic collisional orogens.Geological Society of America, Whence the Mountains? Inquiries into the evolution of orogenic system., pp. 27-49.MantleUHP subduction
DS200812-0329
2008
Ernst, W.G., Liou, J.G.High and ultrahigh pressure metamorphism: past results and future prospects.American Mineralogist, Vol. 93, Nov-dec. pp. 1771-1786.China, EuropeUHP
DS200812-0344
2008
Fei, Y., Ricolleau, A.Constraints on deep Earth heterogeneities from mineral physics data.Goldschmidt Conference 2008, Abstract p.A260.MantleUHP
DS200812-0384
2008
Gao, E-G., Liu, H., Liu, L-F.The origin and tectonic frame of the Dabie Shan orogenic belt: constraints from geophysical data.Goldschmidt Conference 2008, Abstract p.A293.ChinaUHP
DS200812-0447
2008
Harley, S.L.Refining the P-T records of UHT crustal metamorphism.Journal of Metamorphic Geology, Vol. 26, 2, pp. 25-154.TechnologyUHT
DS200812-0488
2008
Huang, F., li, S., Dong, F., He, Y., Chen, F.High mag adakitic rocks in the Dabie orogen, central China: implications for foundering mechanisms of lower continental crust.Chemical Geology, Vol. 255, 1-2, Sept. 30, pp. 1-13.ChinaUHP
DS200812-0527
2008
Jones, A.G., Evans, R.L., Eaton, D.W.Velocity conductivity relationships for mantle mineral assemblages in Archean cratonic lithosphere based on a review of laboratory dat a and Hashin-Shtrikman extremal bonds.Lithos, In press available 59p.MantleUHP
DS200812-0549
2007
Kavner, A.Garnet yield strength at high pressures and implications for upper mantle and transition zone rheology.Journal of Geophysical Research, Vol. 112, B12207MantleUHP
DS200812-0658
2008
Li, S., Jin, C., Dai, L., Liu, X., Zhou, X.Thermochronological constraints to two stage Indonesian extrusion of the HP UHP terranes in the Dabie Sulu orogen, central Chine.Goldschmidt Conference 2008, Abstract p.A544.ChinaUHP
DS200812-0659
2008
Li, T.F., Yang, J.S., Zhang, R.Y.Geochemical characteristics, UHP metamorphic age, and genesis of the Huijialing garnet clinopyroxenite, Sulu terrane, China.International Geology Review, Vol. 50, 1, pp. 48-60.ChinaUHP
DS200812-0710
2008
Manon, M.R., Dachs, E., Essene, E.J.Low T heat capacity measurements and new entropy dat a for titanite ( sphene) implications for thermobarometry of high pressure rocks.Contributions to Mineralogy and Petrology, Vol. 156, 6, pp. 709-720.TechnologyUHP
DS200812-0812
2008
Oganov, A.R., Ono, S., Ma, Y., Glass, C.W., Garcia, A.Novel high pressure structures of MgCo3, CaCo3 and CO2 and their role in Earth's lower mantle.Earth and Planetary Science Letters, Vol. 273, pp. 38-47.MantleUHP, Carbon storage
DS200812-0833
2008
Ota, T., Kobayashi, K., Kunihiro, T., Nakamura, E.Boron cycling by subducted lithosphere, insights from Diamondiferous tourmaline from the Kochetav ultrahigh pressure metamorphic belt.Geochimica et Cosmochimica Acta, Vol. 72, 14, pp. 3531-3541.Russia, KazakhstanCoesite, UHP
DS200812-0951
2008
Reutsky, V.N., Borzdov, Yu.M., Palyanov, Yu.N.Carbon isotope fractionation associated with HPHT crystallization of diamond.Diamond and Related Materials, Vol. 17, 11, November pp. 1986-1989.TechnologyUHP
DS200812-0953
2008
Reverdatto, V.V., Selyatitskiy, A.Yu., Carswell, D.A.Geochemical distinctions between crustal and mantle derived peridotites/pyroxenites in high/ultrhigh pressure metamorphic complexes.Russian Geology and Geophysics, Vol. 49, pp. 73-90.Russia, KazakhstanKokchetav massif, UHP
DS200812-1006
2008
Santosh, M., Tsunogae, T., Ohyama, H., Sato, K., Li, J.H., Liu, S.J.Carbonic metamorphism at ultrahigh temperatures: evidence from North Chin a Craton.Earth and Planetary Science Letters, Vol. 266, 1-2, pp. 149-165.ChinaUHP
DS200812-1020
2008
Schmidt, A., Weyer, S., Mezger, K., Scherer, E.E., Xiao, Y., Hoefs, J., Brey, G.P.Rapid eclogization of the Dabie Sulu UHP terrane: constraints from Lu Hf garnet geochronology.Earth and Planetary Science Letters, Vol. 273, 1-2, Aug. 30, pp. 203-213.ChinaUHP
DS200812-1021
2008
Schmidt, A., Weyer, S., Mezger, K., Scherer, E.E., Xiao, Y., Hoefs, J., Brey, G.P.Rapid eclogitization of the Dabie Sulu UHP terrane: constraints from Lu Hf garnet geochronology.Earth and Planetary Science Letters, In press available, 49p.ChinaUHP
DS200812-1042
2008
Seto, Y., Hamane, D., Nagai, T., Fujino, K.Fate of carbonates within oceanic plates subducted to the lower mantle, and a possible mechanism of diamond formation.Physics and Chemistry of Minerals, Vol. 35, 4, pp. 223-229.MantleUHP, Diamond genesis
DS200812-1053
2008
Shi, R.D., Ding, B.H., Zhi, X.C., Zhao, G.C.Re Os isotope constraints on the genesis of the Luliangshan garnet peridotites in the North Qaidam UHP belt, Tibet.Goldschmidt Conference 2008, Abstract p.A857.Asia, TibetUHP
DS200812-1099
2008
Sonin, V.A.M.A., Zhimulev, E.A.I.A., Chepurov, A.A.I.A., Fedorov, I.A.I.A.Diamond stability in NaCl and NaF melts at high pressure.Doklady Earth Sciences, Vol. 420, 1, pp. 641-643.TechnologyUHP
DS200812-1237
2008
Wang, Q., Shi, Y., Lin Wei, Guo, J.Exhumation of the Dabie UHP terrane, China.International Geology Review, Vol. 50, 1, pp. 15-31.ChinaUHP
DS200812-1293
2008
Yang, T.N., Zeng, L., Zhao, Z.R., Liou, J.G.Retrograde reaction of an ultrahigh pressure metamorphic spinel pyroxenite lens, northeast Sulu UHP terrane, eastern China.International Geology Review, Vol. 50, 1, pp. 32-47.ChinaUHP
DS200812-1309
2008
Zhai, S., Ito, E.Phase relations of CaAl4Si2O11 at high pressure and high temperature with implications for subducted continental crust into the deep mantle.Physics of the Earth and Planetary Interiors, Vol. 167, 161-167.MantleUHP
DS200812-1312
2008
Zhang, R.Y., Pan, Y.M., Yang, Y.H., Li, T.F., Liou, J.G., Yang, J.S.Chemical composition and ultrahigh P metamorphism of garnet peridotites from the Sulu UHP terrane, China: investigation of major, trace elements and Hf isotopesChemical Geology, in press available,ChinaUHP
DS200812-1313
2008
Zhang, R.Y., Pan, Y.M., Yang, Y.H., Li, T.F., Liou, J.G., Yang, J.S.Chemical composition and ultrahigh P metamorphism of garnet peridotites from the Sulu UHP terrane, China: investigation of major trace elements and Hf isotopes.Chemical Geology, Vol. 255, 1-2, Sept. 30, pp. 250-264.ChinaUHP
DS200812-1317
2008
Zhang, Z-M., Shen, K., Sun, W-D., Liu, Y-S., Liou, C.S., Wang, J-L.Fluids in deeply subducted continental crust: petrology, mineral chemistry and fluid inclusion of UHP metamorphic veins from the Sulu Orogen, eastern China.Geochimica et Cosmochimica Acta, Vol. 72, 13, July 1, pp. 3200-3228.ChinaUHP
DS200812-1320
2008
Zhao, Z-F., Zheng, Y.F., Wei, C-S., Chen, F-K., Liu, X., Wu, F-Y.Zircon U Pb ages, Hf and O isotopes constrain the crustal architecture of the ultrahigh pressure Dabie orogen in China.Chemical Geology, Vol. 253, 3-4, August 15, pp. 222-242.ChinaUHP
DS200812-1322
2008
Zheng, J.P., Sun, M., Griffin, W.L., Zhou, M.F., Zhao, G.C., Robinson, P., Tang, H.Y., Zhang, Z.H.Age and geochemistry of contrasting peridotite types in the Dabie UHP belt, eastern China: petrogenetic and geodynamic implications.Chemical Geology, Vol. 247, pp. 282-304.ChinaUHP
DS200912-0040
2009
Beaumont, C., Jamieson, R.A., Butler, J.P., Warren, C.J.Crustal structure: a key constraint on the mechanism of ultra high pressure rock exhumation.Earth and Planetary Science Letters, Vol. 287, 1-2, pp. 116-129.MantleUHP
DS200912-0107
2009
Chardon, D., Capais, D., Agnard, F.Flow of ultra hot orogens: a review from the Precambrian, clues for the Phanerozoic.Tectonophysics, Vol. 477, pp. 105-118.MantleUHP, orogens
DS200912-0110
2009
Cheng, H., Nakamura, E., Zhou, Z.Garnet Lu Hf dating of retrograde fluid activity during ultrahigh pressure metamorphic eclogites exhumation.Mineralogy and Petrology, Vol. 95, 3-4, pp. 315-326.MantleUHP
DS200912-0177
2008
Dobrzhinetskaya, L., Wirth, R., Yang, J., Green, H.W.Nontraditional 'deliverers' of UHP rocks from Earth's deep interior to surface.American Geological Union, Fall meeting Dec. 15-19, Eos Trans. Vol. 89, no. 53, meeting supplement, 1p. abstractMantleUHP
DS200912-0178
2009
Dobrzhinetskaya, L.F.New geological settings for ultrahigh pressure rocks.GAC/MAC/AGU Meeting held May 23-27 Toronto, Abstract onlyMantleUHP
DS200912-0179
2009
Dobrzhinetskaya, L.F., Wirth, R., Green, H.Lamellae of phylosilicates in K rich diopside from UHP marble of the Kokchetav massif, Kazakhstan: FIB-TEM and synchrotron IR studies.Goldschmidt Conference 2009, p. A296 Abstract.RussiaUHPM - diamond inclusions
DS200912-0231
2008
Frost, D.J., Asahara, Y., Tsuno, K., Rubie, D.C., Pickles, J.An experiment based model describing the partitioning of oxygen between Earth's mantle and core.American Geological Union, Fall meeting Dec. 15-19, Eos Trans. Vol. 89, no. 53, meeting supplement, 1p. abstractMantleUHP
DS200912-0232
2009
Frost, D.J., McCammon, C.A.The effect of oxygen fugacity on the olivine to wadsleyite transformation: implications for remote sensing of mantle redox state at the 410 km seismic ...American Mineralogist, Vol. 94, 7, pp. 872-882.MantleUHP - discontinuity
DS200912-0261
2009
Goscombe, B.D., Gray, D.R.Metamorphic response in orogens of different obliquity, scale and geometry.Gondwana Research, Vol. 15, 2, pp. 151-167.MantleUHP
DS200912-0275
2009
Hacker, B.R., Wallis, S.R., McWilliams, M.O., Gans, P.B.40 Ar 39AR constraints on the tectonic history and architecture of the ultrahigh pressure Sulu orogen.Journal of Metamorphic Geology, Vol. 27, 9, pp. 827-844.ChinaUHP
DS200912-0284
2009
Harte, B., Taniguchi, T., Chakraborty, S.Diffusion in diamond. II. High pressure temperature experiments.Mineralogical Magazine, Vol.73, 2, April, pp. 201-204.TechnologyUHP
DS200912-0324
2009
Husson, L., Brun, J-P., Yamato, P., Faccenna, C.Episodic slab rollback fosters exhumation of HP-UHP rocks.Geophysical Journal International, Vol. 179, 3, pp. 1291-1300.MantleUHP
DS200912-0349
2008
Kagi, H., Odake, S., Zedgenizov, D.Depth of diamonds formation: a novel spectroscopic approach to the 3-D mapping of stress patterns.American Geological Union, Fall meeting Dec. 15-19, Eos Trans. Vol. 89, no. 53, meeting supplement, 1p. abstractMantleUHP
DS200912-0361
2009
Katsube, A., Hayasaka, Y., Santosh, M., Li, S., Terada, K.SHRIMP zircon U Pb ages of eclogite and orthogneiss from Sulu ultrahigh pressure zone in Yangkou area, eastern China.Gondwana Research, Vol. 15, 2, pp. 168-177.ChinaUHP
DS200912-0421
2009
Kylander Clar, A.R.C., Hacker, B.R., Johnson, C.M., Beard, B.L., Mahlen, N.Slow subduction of a thick ultrahigh pressure terrane.Tectonics, Vol. 28, 2, TC2003MantleUHP
DS200912-0437
2009
Li, S., Kusky, T.M., Liu, X., Zhang, G., Zhao, G., Wang, L., Wang, Y.Two stage collision related extrusion of the western Dabie HP-UHP metamorphic terranes, centra China: evidence from quartz c-axis fabrics and structures.Gondwana Research, Vol. 18, 2, pp. 294-309.ChinaUHP
DS200912-0439
2009
Liou, J.G., Ernst, E.G., Zhang, R.Y., Tsujimori, T., Jahn, B.M.Ultrahigh pressure minerals and metamorphic terranes - the view from China.Journal of Asian Earth Sciences, Vol. 35, 3-4, pp. 199-231.ChinaUHP
DS200912-0444
2009
Liu, F.An unique record of ultra deep subduction and fast exhumation hidden in zircons from marbles and eclogites in the Sulu Dabie UHP terrane, China.Goldschmidt Conference 2009, p. A776 Abstract.ChinaUHP
DS200912-0445
2009
Liu, F.L., Gerdes, A., Xue, H.M.Differential subduction and exhumation of crustal slices in the Sulu HP-UHP metamorphic terrane: insights from mineral inclusions, trace elements, U-Pb and Lu Hf isotope analyses of zircon in orthogneissJournal of Metamorphic Geology, Vol. 27, 9, pp. 805-825.ChinaUHP
DS200912-0446
2009
Liu, Q., Yang, T., Zeng, Q., Zheng, J., Luo, Y., Qui, N., Xu, H., Jin, Z.Magnetic study of the UHP eclogites from the Chinese Continental Scientific drilling project.Journal of Geophysical Research, Vol. 114, B02106.ChinaUHP
DS200912-0476
2009
Masago, H., Omori, S., Maruyama, S.Counter clockwise prograde P-T path in collisional orogeny and water subduction at the Precambrian Cambrian boundary: the ultrahigh pressure KochetavGondwana Research, Vol. 15, 2, pp. 137-150.RussiaUHP
DS200912-0534
2009
Nestola, F., Smyth, J.R., Parisatto, M., Secco, L., Princivalle, F., Bruno, M., Prencipe, M., Dal Negro, A.Effects of non-stochiometry on the spinel structure at high pressure: implications for Earth's mantle mineralogy.Geochimica et Cosmochimica Acta, Vol. 73, 2, pp. 489-492.MantleUHP
DS200912-0582
2009
Perraki, M., Korsakov, A.V., Smith, D.C., Mposkos, E.Raman spectroscopic and microscopic criteria for the distinction of microdiamonds in ultrahigh-pressure metamorphic rocks from diamonds in sample preparation materials.American Mineralogist, Vol. 94, pp. 546-556.Russia, Kazakhstan, Europe, Germany, GreeceUHP
DS200912-0609
2009
Rai, A., Gaur, V.K., Rai, S.S., Preistley, K.Seismic signatures of the Pan-African orogeny: implications for southern Indian high grade terranes.Geophysical Journal International, Vol. 176, 2, pp. 518-528.IndiaUHP
DS200912-0717
2009
Song, S., Su, L., Niu, Y., Zhang, G., Zhang, L.Two types of peridotite in North Qaidam UHPM belt and their tectonic implications for oceanic and continental subduction: a review.Journal of Asian Earth Sciences, Vol. 35, 3-4, pp. 285-297.ChinaUHP
DS200912-0744
2009
Tang, H.Y., Zheng, J.P., Yu, C.M.Age and composition of the Rushan intrusive complex in the northern Sulu orogen, eastern China: petrogenesis and lithospheric mantle evolution.Geological Magazine, Vol. 146, 2, pp. 199-215.ChinaUHP
DS200912-0808
2009
Watenphu, A., Wunder, B., Heinrich, W.High pressure ammonium bearing silicates: implications for nitrogen and hydrogen storage in Earth's mantle.American Mineralogist, Vol. 94, 2-3, pp. 283-292.MantleUHP
DS200912-0824
2009
Wu, X., Meng, D.Defect microstructure in garnet, omphacite and symplectite from UHP eclogites, eastern Dabie Shan China: a TEM and FTIR study.Mineralogical Magazine, Vol. 72, 5, pp. 1057-1069.ChinaUHP
DS200912-0827
2008
Xu, S., Wu, W., Xiao, W., Yang, J., Chen, J., Ji, S., Liu, Y.Moissanite in serpentine from the Dabie Mountains in China.Mineralogical Magazine, Vol. 72, 4, pp. 899-908.ChinaUHP
DS200912-0854
2009
Zhang, Z.M., Schertl, H.P., Wang, J.L., Shen, K., Liou, J.G.Source of coesite inclusions within inherited magmatic zircon from Sulu UHP rocks, eastern China, and their bearing for fluid rock interaction and SHRIMP dating.Journal of Metamorphic Geology, Vol. 27, 4, pp. 317-333.ChinaUHP
DS200912-0862
2009
Zheng, L.,Zhi, X., Reisberg, L.Re-Os systematics of the Raobazhai peridotite massifs from the Dabie orgenic zone, eastern China.Chemical Geology, Vol. 268, 1-2, Oct. 20, pp. 1-14.ChinaUHP
DS200912-0864
2009
Zhou, S., Zang, C., Ma, H., Li, X., Zhang, H., Jia, X.Study on growth of coarse grains of diamond with high quality under HPHT.Chinese Science Bulletin, Vol. 54, 1, pp. 163-167.TechnologyUHP
DS200912-0865
2009
Zhou, Y.F., Massonne, H.J., Zhu, M.F.Petrology of low temperature, ultra high pressure marbles and interlayered coesite eclogites near Sanqingge, Sulu terrane, eastern China.Mineralogical Magazine, Vol.73, 2, April, pp. 3-7-332.ChinaUHP
DS200912-0869
2009
Zozulya, D.A.R.A., Peltonen, S.A.P.A., O'Brien, H.A., Lehtonen, M.A.Kimberlite depth facies of high pressure pyroxene in the Kola region.Doklady Earth Sciences, Vol. 425, 2, pp. 350-352.Russia, Kola PeninsulaUHP
DS201012-0038
2010
Barnhoorn, A., Drury, M.R., Van Roermund, H.L.M.Evidence for low viscosity garnet rich layers in the upper mantle.Earth and Planetary Science Letters, Vol. 289, pp. 54-67.MantleRheology, peridotite, UHP
DS201012-0060
2010
Bobrov, A., Dymshits, A., Litvin, Yu., Litasov, K., Shatskiy, A., Ohtani, E.Sodium bearing majorite garnet: nature and experimental aspects.International Mineralogical Association meeting August Budapest, abstract p. 148.Russia, Timan, South America, Brazil, ChinaUHP
DS201012-0073
2010
Brenker, F.Trapped high density fluids in superdeep diamonds.International Mineralogical Association meeting August Budapest, AbstractTechnologyUHP
DS201012-0074
2010
Brown, R., White, R.W., Sandiford, M.On the importance of minding one's Ps and Ts: metamorphic processes and quantitative petrology.Journal of Metamorphic Geology, Vol. 28, 6, pp. 561-567.TechnologyUHP
DS201012-0076
2010
Bryanchaninova, N.I., Makeev, A.B.Garnet of the pyrope majorite series.International Mineralogical Association meeting August Budapest, abstract p. 152.Russia, Timan, South America, BrazilUHP
DS201012-0138
2010
Day, H.W.An improved estimate of the diamond-graphite transition.Geological Society of America Abstracts, 1/2p.TechnologyUHP
DS201012-0143
2010
De Koker, N.Thermal conductivity of MgO periclase at high pressure: implications for the D' region.Earth and Planetary Science Letters, Vol. 292, 3-4, pp. 392-398.MantleUHP
DS201012-0151
2010
Deon, F., Koch-Muller, M., Rhede, D., Wirth, R.Water and iron effect on the P-T-x coordinates of the 410 km discontinuity in the Earth upper mantle.Contributions to Mineralogy and Petrology, in press available, 14p.MantleUHP
DS201012-0173
2010
Dubinchuk, V.T., Simakov, S.K., Pechnikov, V.A.Lonsdaleite in diamond bearing metamorphic rocks of the Kokchetav massif.Doklady Earth Sciences, Vol. 430, 1, pp. 40-42.RussiaUHP Mineralogy
DS201012-0241
2010
Goldschmidt ConferenceSession on UHP including Dabie, Sulu, North Qaidam areas.Goldschmidt 2010 abstracts, abstractChinaUHP
DS201012-0260
2010
Halama, R., Bebout, G.E., John, T., Schenk, V.Nitrogen recycling in subducted oceanic lithosphere: the record in high and ultrahigh pressure metabasaltic rocks.Geochimica et Cosmochimica Acta, Vol. 74, 5, pp. 1636-1652.MantleUHP
DS201012-0300
2010
Hwang, S-L., Yui, T-F., Chu, H-T., Shen, P., Zhang, R-Y., Liou, J.G.An AEM study of garnet clinopyroxenite from the Sulu ultrahigh pressure terrane: formation mechanisms of oriented ilmenite, spinel, magnetite, amphibole andContributions to Mineralogy and Petrology, in press available, 14p.TechnologyUHP, Garnet inclusions in clinopyroxenes
DS201012-0390
2010
Kiseeva, E.High pressure experiments on anhydrous carbonated eclogite at 9-20GPa? Implications for the recycling of carbonate in the mantle.International Mineralogical Association meeting August Budapest, AbstractMantleUHP
DS201012-0406
2010
Korsakov, A.V., Perraki, M., Zedgenizov, D.A., Bindi, L.Diamond graphite relationships in ultrahigh pressure metamorphic rocks from the Kochetav Massif, northern Kazakhstan.Journal of Petrology, Vol. 51, 3, pp. 763-783.RussiaUHP
DS201012-0439
2010
Li, H., Gerya, T.V., Burg, J.P.Influence of tectonic overpressure on P-T paths of HP-UHP rocks in continental collision zones: thermomechanical modeling.Journal of Metamorphic Geology, Vol. 28, 3, pp. 227-247.MantleUHP
DS201012-0441
2010
Li, W-Y., Teng, F-Z., Xiao, Y., Huang, J.Mantle like magnesium isotopic composition of orogenic eclogites from the Dabie Sulu UHPM belt, China.Goldschmidt 2010 abstracts, abstractChinaUHP
DS201012-0452
2010
Liu, F.L., Liou, J.G.Zircon as the best mineral for P-T time history of UHP metamorphism: a review on mineral inclusions and U-Pb SHRIMP ages of zircons from the Dabie Sulu UHP rocks.Journal of Asian Earth Sciences, Vol. 40, 1, pp. 1-39.ChinaUHP
DS201012-0454
2010
Liu, Q., Zeng, Q., Zheng, J., Yang, T., Qui, N., Liu, Z., Lou, Y., Jin, Z.Magnetic properties of serpentinized garnet peridotites from the CCSD main hole in the Sulu ultrahigh pressure metamorphic belt, eastern China.Journal of Geophysical Research, Vol. 115, B6, B06104ChinaUHP
DS201012-0455
2010
Liu, X., Jahn, B-M., Lou, Y.Diachronous subduction and exhumation of the Tongbai Dabie Sulu HP/UHP metamorphic belt in central China.Goldschmidt 2010 abstracts, posterChinaUHP
DS201012-0601
2010
Proyer,A., Krenn, K., Hoinkes, G.Open system precipitation - a new way to explain crystallographically oriented precipitates/exsolutions in mineral from high-T/high-P rocks.International Mineralogical Association meeting August Budapest, abstract p. 211.Europe, Greece, BulgariaUHP Rhodope Mountains
DS201012-0650
2010
Saha, L., Pant, N.C., Pati, J.K., Upadhyay, D., Berndt, J., Bhattacharya, A., Satynarayanan, M.Neoarchean high pressure margarite phengite muscovite chlorite corona mantle corundum in quartz free high Mg, Al phlogopite chlorite schists from the BundelkhandContributions to Mineralogy and Petrology, in press available, 20p.IndiaCraton, U H metamorphism
DS201012-0651
2009
Sakamaki, T., Ohtani, E., Urakawa, S., Suzuki, A., Katayama, Y.Density of dry peridotite magma at high pressure using an x-ray absorption method.American Mineralogist, Vol. 95, pp. 144-147.TechnologyUHP
DS201012-0658
2010
Santosh, M., Kusky, T.Origin of paired high pressure ultrahigh temperature orogens: a ridge subduction and slab window model.Terra Nova, Vol. 22, 1, pp. 35-42.MantleSubduction, UHP
DS201012-0680
2010
Seleverstone, J., Frezzotti, M.L., Sharp, Z.D., Compagnoni, R.Low temperature diamonds in oceanic rocks from the western Alps.Geological Society of America Abstracts, 1/2p.Europe, AlpsUHP - microdiamonds
DS201012-0741
2010
Sonin, V.M., Zhimulev, E.I., Chepurov, A.I., Afanasev, V.P., Pokhilenko, N.P.High pressure etching of diamond in chloride melt in the presence of aqueous fluid.Doklady Earth Sciences, Vol. 434, 2, pp. 1359-1361.TechnologyUHP
DS201012-0742
2010
Spandler, C., Petke, T., Hermann, J.Experimental and natural constraints on the composition of UHP metamorphic fluids. Keynote paper.Goldschmidt 2010 abstracts, abstractTechnologyReview - UHP
DM201012-2313
2010
The Israeli Diamond IndustryThe impact of HPHT on a diamond's color.israelidiamond.co.il, July 25, 3p.TechnologyUHP
DS201012-0829
2010
Wang, L., Jin, Z.M., Kusky, T., Xu, H.J., Liu, X.W.Microfabric characteristics and rheological significance of ultra high pressure metamorphosed jadeite quartzite and eclogite Shuanghe, Dabie Mtns.Journal of Metamorphic Geology, Vol. 28, 2, pp. 163-182.ChinaUHP
DS201012-0830
2010
Wang, L., Kusky, T.M., Li, S.Structural geometry of an exhumed UHP terrane in the eastern Sulu Orogen, China: implications for continental collisional processes.Journal of Structural Geology, Vol. 32, 4, pp. 423-440.ChinaUHP
DS201012-0838
2010
Wei, C.J., Li, J., Yu, Y., Zhang, J.S.Phase equilibration temperatures and metamorphic evolution of glaucophane bearing UHP eclogites from the western Dabie Shan terrane, central China.Journal of Metamorphic Geology, Vol. 28, 6, pp. 647-666.ChinaUHP
DS201012-0865
2010
Xie, Z., Chen, J-F., Cui, Y-R.Episodic growth of zircon in UHP orthogneisses from the North Dabie Terrane of east central China: implications for crustal architecture of a collisional orogen.Journal of Metamorphic Geology, In press available,ChinaUHP
DS201012-0871
2010
Yang, J., Cawood, P.A., Du, Y.Detrital record of mountain building: provenance of Jurassic foreland basin to the Dabie Mountains.Tectonics, Vol. 29, 4, TC4011.ChinaUHP
DS201012-0890
2010
Zhang, J.X., Mattinson, C.G., Yu, S.Y., Li, J.P., Meng, F.C.U-Pb zircon geochronology of coesite bearing eclogites from the southern Dulan areas of the North Qaidam UHP terrane, northwestern China: spatially and temporallyJournal of Metamorphic Geology, Vol. 28, 9, pp. 955-978.ChinaUHP - subduction
DS201112-0024
2011
Arai, S., Ahmed, A.H., Miura, M.Ultrahigh pressure podiform chromitites as a possible deep recycled material.Goldschmidt Conference 2011, abstract p.447.Asia, Tibet, OmanUHP
DS201112-0121
2011
Bruce, L.F., Kopylova, M.G., Longo, M., Ryder, J., Dobrzhinetskaya, L.F.Luminescence of diamonds from metamorphic rocks.American Mineralogist, Vol. 96, 1, pp. 14-22.Canada, Ontario, Wawa, Russia, GermanyUHP, cathodluminescence
DS201112-0176
2011
Chen, R-X., Zheng, Y-F.Timing of dehydration melting and fluid flow during continental subduction zone metamorphism in the Dabie orogen.Goldschmidt Conference 2011, abstract p.655.ChinaUHP
DS201112-0177
2011
Chen, Y., Ye, K., Guo, S., Liu, J.B.Metasomatic pyroxenites and peridotites in the mantle wedge: tracing he high Nb/Ta reservoir.Goldschmidt Conference 2011, abstract p.658.ChinaDabie Shan, deep recycled eclogites, UHP
DS201112-0179
2011
Chen, Y-X., Zheng, Y-F., Chen, R-X.Metamorphic growth and recrystallization of zircons in negative delta 18 O metamorphic rocks: a combined study of U-Pb dating, trace elements and O-Hf isotopes.Goldschmidt Conference 2011, abstract p.658.ChinaSulu orogen UHP
DS201112-0180
2011
Cheng, H., Vervoort, J.D., Li, X., Zhang, C., Li, Q., Zheng, S.The growth interval of garnet in the UHP eclogites from the Dabie orogen, China.American Mineralogist, Vol. 96, 8-9, pp. 1300-1307.ChinaUHP
DS201112-0191
2011
Clark, C., Fitzsimons, I.C.W., Healy, D., Harkley, S.L.How does the continental crust get really hot?Elements, Vol. 7, 4, August pp. 235-240.MantleMetamorphism, UHT, thermal modelling
DS201112-0279
2011
Dobrzhinetskaya, L., Wirth, R., Green, H.W., Sumino, H.Fluids nature at peak of ultrahigh pressure metamorphism in deep subduction zones - evidence from diamonds.Goldschmidt Conference 2011, abstract p.769.Russia, Kazakhstan, Europe, GermanyUHP - Kokchetav
DS201112-0300
2011
Ellis, S.M., Little,T.A., Wallace, L.M.,Hacker, B.R., Buiter, S.J.H.Feedback between rifting and diapirism can exhume ultrahigh pressure rocks.Earth and Planetary Science Letters, Vol. 311, 3-4, pp. 427-438.AustraliaUHP
DS201112-0344
2011
Gao, X.Y., Zheng, Y.F., Chen, Y.X.Dehydration melting of ultrahigh pressure eclogite in the Dabie Orogen: evidence from multiphase solid inclusions in garnet.Journal of Metamorphic Geology, in press availableChinaUHP
DS201112-0346
2011
Gao, X-Y., Zheng, Y-F., Chen, Y-X.U-Pb ages and trace elements in metamorphic zircon and titanite from UHP eclogite in the Dabie orogen: constraints on P-T-t path.Journal of Metamorphic Geology, Vol. 29, 7, pp. 721-740.ChinaUHP
DS201112-0429
2010
Helmstaedt, H.H., Gurney, J.J., Richardson, S.H.Ages of cratonic diamond and lithosphere evolution: constraints on Precambrian tectonics and diamond exploration.The Canadian Mineralogist, Vol. 48, 6, pp. 1385-1408.Canada, GlobalGeochronology, craton roots, UHP
DS201112-0456
2011
Huang, J., Xiao, Y., Worner, G.Element mobility across the boundary between UHP eclogite and gneiss: insights into supercritical fluids in continental subduction zones.Goldschmidt Conference 2011, abstract p.1062.ChinaDabie UHP
DS201112-0527
2011
Klemd, R., Scherer, J.E.E., Rondenay, S., Gao, J.Changes in dip of subducted slabs at depth: petrological and geochronological evidence from HP-UHP rocks (Tianshan, NW China).Earth and Planetary Science Letters, Vol. 310, 1-2, pp. 9-20.ChinaUHP
DS201112-0543
2011
Korsakov, A.V., Golovin, A.V., Dieing, T., Toporski, J.Fluid inclusions in rock forming minerals of ultrahigh pressure metamorphic rocks ( Kokchetav massif, northern Kazakhstan).Doklady Earth Sciences, Vol. 437, 2, pp. 473-478.Russia, KazakhstanUHP
DS201112-0592
2011
Li, H., Wang, D., Cheng, X.Metamorphic fluid activities and their effects on petrologgical and geochemical characteristics of UHP rocks, southern Sulu UHP terrane, China.Goldschmidt Conference 2011, abstract p.1310.ChinaUHP - eclogites
DS201112-0608
2011
Litasov, K.D., Shatskiy, A.F., Pokhilenko, N.P.Phase relations and melting in the systems of peridotite H2O CO2 and eclogite H2OCO2 at pressures up to 27 GPa.Doklady Earth Sciences, Vol. 437, 2, pp. 498-502.MantleUHP
DS201112-0613
2011
Liu, Y-C., Gu, X-F., Rolfo, F., Chen, Z-Y.Ultra high pressure metamorphism and multistage exhumation of eclogite of the Luotian dome, North Dabie Complex Zone: evidence from mineral inclusions -textureJournal of Asian Earth Sciences, Vol. 42, 4, pp. 607-617.Asia, ChinaUHP
DS201112-0713
2011
Mysen, B.O., Kumamoto, K., Cody, G.D., Fogel, M.L.Solubility and solution mechanisms of C-O-H volatiles in silicate melt with variable redox conditions and melt composition at upper mantle temperatures and pressures.Geochimica et Cosmochimica Acta, Vol. 75, 9, pp. 6183-6199.MantleUHP
DS201112-0752
2011
Ogassawara, Y., Hasiguchi, Y., Igarashi, M., Harada, Y.Microdiamonds: a relict of intermediate phase for diamond formation.Geological Society of America, Annual Meeting, Minneapolis, Oct. 9-12, abstractRussiaKokchetav massif, UHP
DS201112-0754
2011
Ohuchi, T., Kawazoe, T., Nishihara, Y., Nishiyama, N., Irifune, T.High pressure and temperature fabric transitions in olivine and variations in upper mantle seismic anisotropy.Earth and Planetary Science Letters, Vol. 304, 1-2, pp. 55-63.MantleUHP
DS201112-0755
2011
Okoemova, V.Yu., Vasiliev, P.G., Kuzyura, A.V., Litvin, Yu.A., Wall, F., Jeffries, T.Experimental study of partition of rare elements between minerals and melts of diamond forming eclogite carbonatite and peridotite carbonatites systems.Goldschmidt Conference 2011, abstract p.1566.TechnologyHP
DS201112-0768
2011
Park, M., Jung, H.Microstructure of Yuka eclogite, North Qaidam HP UHP terrane northwestern China.Goldschmidt Conference 2011, abstract p.1598.ChinaUHP
DS201112-0859
2011
Reverdatto, V.Comparison of the compositions of olivines and clinopyroxenes from mantle and crustal peridotites of collisional high pressure/ultrahigh pressure zones.Doklady Earth Sciences, Vol. 438, 1, pp. 705-710.MantleUHP
DS201112-0871
2004
Robinson, P.T., Bai, W-J., Malpas, J., Yang, J-S., Zhou, M-F., Fang, Q-S., Hu, X-F., Cameron, StaudigelUltra high pressure minerals in the Loubasa ophiolite, Tibet and their tectonic implications.Aspects of the Tectonic evolution of China, Editors Fletcher, Ali, Aitchison, Geological Society Of America, Spec. Pub.226, pp.247-71China, TibetUHP
DS201112-0901
2011
Sakamaki, T., Ohtani, E., Urakawa, S., Terasaki, H., Katayama, Y.Density of carbonated peridotite magma at high pressure using an X-ray absorption method.American Mineralogist, Vol. 96, pp. 553-557.MantleHP
DS201112-0928
2010
Schmetzer, K.High pressure high temperature treatment of diamonds - a review of the patent literature from five decades 1960-2009.Journal of Gemmology, Vol. 32, 1-4, pp. 52-65. plus supplementGlobalUHP - Color treatment
DS201112-0929
2011
Schmidt, A., Mezger, K., O'Brien, P.J.The time of eclogite formation in the ultrahigh pressure rocks of the Sulu terrane constraints from Lu-Hf garnet geochronology.Lithos, Vol. 125, pp. 743-756ChinaUHP
DS201112-0935
2011
Selyatitskii, A.Yu., Reverdatto, V.V.Comparison of the compositions of olivines and clinopyroxenes from mantle and crustal peridotites of collisional high pressure ultrahigh pressure zones.Doklady Earth Sciences, Vol. 438, 1, pp. 705-710.MantleUHP
DS201112-0947
2011
Sheng, Y-M., Zheng, Y-F.Partial melting and element transfer during continental subduction zone metamorphism: geochemical insights from leucosome within UHP eclogite in the Dabie Orogen.Goldschmidt Conference 2011, abstract p.1854.ChinaUHP
DS201112-0982
2011
Sobolev, N.V., Schertl, H-P., Valley, J.W., Page, F.Z., Kita, N.T., Spicuzza, M.J., Neuser, R.D., Logvinova, A.M.Oxygen isotope variations of garnets and clinopyroxenes in a layered Diamondiferous calcsilicate rock from Kokchetav Massif, Kazakhstan: a window into geochemicalContributions to Mineralogy and Petrology, Vol. 162, 5, pp.1079-1092.Russia, KazakhstanDeeply subducted UHPM rocks
DS201112-0992
2011
Spivak, A., Dubrovinskii, Yu., LitvinCongruent melting of calcium carbonate in a static experiment at 3500 K and 10-22 GPa: its role in the genesis of ultradeep diamonds.Doklady Earth Sciences, Vol. 439, 2, pp. 1171-1174.MantleUHP diamond genesis
DS201112-1051
2011
Tomlinson, E.L., Howell, D., Jones, A.P., Frost, D.J.Characteristics of HPHT diamond grown at sub-lithosphere conditions (10-20 GPa).Diamond and Related Materials, Vol. 20, 1, Jan. pp. 11-17.TechnologyUHP
DS201112-1053
2011
Tong, L., Jahn, B-M., Zheng, Y-F.Diverse P-T paths of the northern Dabie complex in central Chin a and its reworking in the early Cretaceous.Journal of Asian Earth Sciences, Vol. 42, 4, pp. 633-640.Asia, ChinaUHP
DS201112-1123
2011
Wu, Y., Gao, S., Liu, X., Wang, J., Peng, M., Gong, H., Yuan, H.Two stage exhumation of the ultrahigh pressure metamorphic rocks from the Western Dabie Orogen, central China.Journal of Geology, Vol. 119, pp. 15-32.ChinaUHP
DS201112-1124
2011
Wu, Y., Gao, S., liu, X., Wang, J., peng, M., Gong, H., Yuan, H.Two stage exhumation of ultrahigh pressure metamorphic rocks from the western Dabie orogen, Central China.Journal of Geology, Vol. 119, 1, Jan. pp. 15-31.ChinaUHP
DS201112-1125
2011
Wu, Y., Gao, S., Liu, X., Wang, J., Peng, M., Gong, H., Yuan, H.Two stage exhumation of ultrahigh pressure metamorphic rocks from the western Dabie Orogen, central China.Journal of Petrology, Vol. 119, no. 1, pp. 15-31.ChinaUHP
DS201112-1126
2011
Xia, Q-X., Zheng, Y-F., Lu, X-N.Multistage growth of garnet in UHP metagranite in the Dabie orogen.Goldschmidt Conference 2011, abstract p.2188.ChinaUHP
DS201112-1160
2011
Zhang, C., Zhang, L., Van Roermund, H., Song, S., Zhang, G.Petrology and SHRIMP U-Pb dating of Xitieshan eclogite, North Quidam, UHP metamorphic belt, NW China.Journal of Asian Earth Sciences, Vol. 32, 4, pp. 752-767.ChinaUHP
DS201112-1164
2011
Zhang, Z.M., Dong, X., Liou, J.G., Liu, F., Wang, W., Yui, F.Metasomatism of garnet periodite from Jiangzhuang, Sulu UHP belt: constraints on the interactions between crust and mantle rocks during subduction of cont. lithosphereJournal of Metamorphic Geology, in press availableChinaUHP
DS201112-1165
2011
Zhang, Z.M., Dong, X., Liou, J.G., Liu, F., Wang, W., Yui, F.Metasomatism of garnet peridotite from Jiangzhuang, southern Sulu UHP belt: constraints on the interactions between crust and mantle rocks during subduction of continentalJournal of Metamorphic Geology, Vol. 29, 9, pp. 917-937.ChinaUHP
DS201112-1166
2011
Zhang, Z.M., Shen, K., Liou, J.G., Dong, X., Wang, W., Yu, F., Liu, F.Fluid rock interactions during UHP metamorphism: a review of the Dabie Sulu orogen, east-central China.Journal of Asian Earth Sciences, Vol. 42, 3, pp. 316-329.ChinaUHP
DS201112-1168
2011
Zhao, Z., Niu, N.I., Christensen, W., Zhou, Q., Zhang, Z.M., Xie, Z.C., Zhang, J.L.Delamination and ultradeep subduction of continental crust: constraints from elastic wave velocity and density measurement in ultrahigh pressure metamorphic rocksJournal of Metamorphic Geology, Vol. 29, 7, pp. 781-801.MantleSubduction, UHP
DS201112-1169
2011
Zhao, Z., Niu, Y., Christensen, N.I., Zhou, Hou, Zhang, Xie, Zhang, LiuDelamination and ultra deep subduction of continental crust: constraints from elastic wave velocity and density measurement in ultra high pressure metamorphic rocksJournal of Metamorphic Geology, Vol. 29, 7, pp. 781-801.ChinaUHP - Dabie
DS201112-1170
2011
Zhao, Z., Niu, Y., Christensen, N.I., Zhou, W., Hou, Q., Zhang, Z.M., Xie, H., Zhang, Z.C., Liu, J.Delamination and ultradeep subduction of continental crust: constraints from elastic wave velocity and density measurement in ultrahigh pressure met. rocksJournal of Metamorphic Geology, Vol. 29, 7, pp. 781-801.MantleUHP
DS201112-1172
2011
Zhou, L-G., Xia, Q-X., Zheng, Y-F., Chen, R-X.Multistage growth of garnet in ultrahigh pressure eclogite during continental collision in the Dabie Orogen: constrained by trace elements and U Pb ages.Lithos, Vol. 127, 1-2, pp. 101-127.ChinaUHP
DS201212-0138
2012
Dai, L-Q., Zhao, Z-F., Zheng, Y-F., Zhang, J.The nature of orogenic lithospheric mantle: geochemical constraints from Post collisional mafic-ultramafic rocks in the Dabie orogen.Chemical Geology, Vol. 334, pp. 99-121.ChinaUHP
DS201212-0163
2013
Dobrzhinetskaya, L.F., Wirth, R., Green, H.W., Schreiber, A., O'Bannon, E.First find of polycrystalline diamond in ultrahigh-pressure metamorphic terrane of Erzgebirge, Germany.Journal of Metamorphic Geology, Vol. 31, 1, pp. 5-18.Europe, GermanyUHP
DS201212-0164
2012
Dobrzhinskaya, L.F., Wirth, R., Green, H.W., Schreiber, A., O'bannon, E.First find of polycrystalline diamond in ultrahigh pressure metamorphic terrane of Erzgebirge Germany.Journal of Metamorphic Geology, in press availableEurope, GermanyUHP
DS201212-0176
2012
Dvir, O., Angert, A., Kessel, R.Determining the composition of C-H-O liquids following high-pressure and high-temperature diamond-trap experiments.Contributions to Mineralogy and Petrology, in press available 7p.TechnologyMantle, HP
DS201212-0187
2012
Escudero, A., Miyajima, N., Langenhorst, F.Microstructure, composition and P-T conditions of rutile from Diamondiferous gneiss of the Saxonian Erzgebirge Germany.Chemie der Erde, Vol. 72, 1, pp. 25-30.Europe, GermanyUHP
DS201212-0188
2012
Escudero, A., Myyajima, N., Langenhorst, F.Microstructure, composition and P-T conditions of rutile from Diamondiferous gneiss of the Saxonian Ezgebirge, Germany.Chemie Der Erde, Vol. 72, 1, pp. 25-30.Europe, GermanyUHP , geothermometry
DS201212-0228
2012
Gao, X.Y., Zheng, Y.F., Chen, Y.X.Dehydration melting of ultra high pressure eclogite in the Dabie Orogen: evidence from multiphase solid inclusions in garnet.Journal of Metamorphic Geology, Vol. 30, 2, pp. 193-210.ChinaUHP
DS201212-0271
2012
Guo, X., Encarnacion, J., Deino, A., Xu, X., Li, Z., Tian, X.Collision and rotation of the South Chin a block and their role in the formation and exhumation of ultrahigh pressure rocks in the Dabie Shan orogen.Terra Nova, in press availableChinaUHP
DS201212-0272
2012
Guo, X., Encarnacion, J., Xu, X., Deino, A., Li, Z.,Tian, X.Collision and rotation of the South Chin a block and their role in the formation and exhumation of ultrahigh pressure rocks in the Dabie Shan orogen.Terra Nova, Vol. 24, 5, pp. 339-350.ChinaUHP
DS201212-0292
2012
Helmstaedt, H.H.Tectonic relationships between cratonic and ultra high pressure (UHP) diamond implications for craton formation and stabilization.10th. International Kimberlite Conference Feb. 6-11, Bangalore India, AbstractGlobalUHP
DS201212-0390
2012
Kylander-Clark, A.R.C., Hacker, B.R., Mattinson, C.G.Size and exhumation rate of ultrahigh pressure terranes linked to orogenic stage.Earth and Planetary Science Letters, Vol. 321-322, pp. 115-120.MantleUHP
DS201212-0395
2012
Langenhorst, F., Deutsch, A.Shock metamorphism of minerals.Elements, Vol. 8, 1, Feb. pp. 31-36.TechnologyHP, melting
DS201212-0410
2012
Liou, J.G., Zhang, R., Liu, F., Zhang, Z., Ernst, W.G.Mineralogy, petrology, U-Pb geochronology, and geologic evolution of the Dabie Sulu classic ultrahigh pressure metamorphic terrane, east-central China.American Mineralogist, Vol. 97, no. 10, pp. 1533-1543.ChinaUHP
DS201212-0415
2012
Liu, F., Gerdes, A., Liu, P.U-Pb trace element and Lu-Hf properties of unique dissolution-repricipitation zircon from the UHP eclogite in the sw Sulu Terrane, eastern China.Gondwana Research, Vol. 22, 1, pp. 169-183.ChinaUHP
DS201212-0416
2012
Liu, F., Gerdes, A., Liu, P.U-Pb trace element and Lu-Hf properties of unique dissolution reprecipitation zircon from UHP eclogite in sw Sulu terrane, eastern China.Gondwana Research, Vol. 22, 1, July pp. 169-183.ChinaUHP
DS201212-0433
2012
Malaspina, N., Langenhorst, F., Fumagalli, P., Tumiati, S., Poli, S.Fe 3+ distribution between garnet and pyroxenes in mantle wedge carbonate bearing garnet peridotites ( Sulu, China) and implications for their oxidation state.Lithos, Vol. 146-147, pp. 11-17.ChinaUHP
DS201212-0434
2012
Malaspina, N., Langenhorst, F., Fumagalli, P., Tumiati, S., Poli, S.Fe 3 + distribution between garnet and pyroxenes in mantle wedge carbonate bearing garnet peridotites ( Sulu China) and implications for their oxidation state.Lithos, Vol. 146-147, pp. 11-17.ChinaUHP
DS201212-0445
2012
Martin, A.M., Laporte, D., Koga, K.T., Kawamoto, T., Hammouda, T.Experimental study of the stability of a dolomite + coesite assemblage in contact with peridotite: implications for sediment-mantle interaction and diamond formation during subduction.Journal of Petrology, Vol. 53, 2, pp. 391-417.TechnologyUHP, diamond genesis
DM201212-2305
2012
Mining.comDouble diamond anvil generates pressures greater than at the centre of the Earth.Mining.com, Oct. 25, 1/2p.TechnologyNews item - UHP
DS201212-0631
2012
Selyatitskii, A.Yu., Reverdatto, V.V.Comparison of the compositions of clinopyroxenes, garnets and spinels from mantle and crustal peridotites of collisional high pressure/ultrahigh pressure zones.Doklady Earth Sciences, Vol. 441, 2, pp.MantleUHP - Kokchetav
DS201212-0644
2012
Sheg, Y-M., Zheng, Y-F., Li, S-N., Hu, Z.Element mobility during continental collision: insights from polymineralic metamorphic vein within UHP eclogite in the Dabie Orgoen.Journal of Metamorphic Geology, in press availableChinaUHP
DS201212-0660
2012
Sizova,E., Gerya, T., Brown, M.Exhumation mechanisms of melt bearing ultrahigh pressure crustal rocks during collision of spontaneously moving plates.Journal of Metamorphic Geology, Vol. 30, 9, pp. 927-955.MantleUHP
DS201212-0661
2012
Sizoya, E., Gerya, T., Brown, M.Exhumation mechanisms of melt bearing ultrahigh pressure crustal rocks during collision of spontaneously moving plates.Journal of Metamorphic Geology, in press availableRussia, KazakhstanKokchetav Massif, UHP
DS201212-0785
2012
Williams-Jones, A.E., Migdisov, A.A., Samson, I.M.Hydrothermal mobilisation of the rare earth elements - a tale of "ceria" and "yttria".Elements, Vol. 8, 5, Oct. pp. 355-360.GlobalGeochemistry, UHP, transport and deposition
DS201212-0795
2012
Xiaoyu, G., Encarnacion, J., Xiao, X., Deino, A., Li, Z., Xiabo, T.Collision and rotation of the South Chin a block and their role in the formation and exhumation of ultrahigh pressure rocks in the Dabie Shan orogen.Terra Nova, Vol. 24, 5, pp. 339-350.ChinaUHP
DS201212-0796
2012
Xu, S., Wu, W., Lu, Y., Wang, D.Tectonic setting of the low grade metamorphic rocks of the Dabie Orogen, central eastern China.Journal of Structural Geology, Vol. 37, pp. 134-149.ChinaUHP
DS201212-0800
2012
Yamamoto, H., Terabayashi, M., Okura, H., Matsui, T., Kanedo, Y.Northward extrusion of the ultrahigh-pressure units in the southern Dabie metamorphic belt, east-central China.Island Arc, in press availableChinaUHP
DS201212-0820
2012
Zhang, Z.M., Shen, K., Liou, J.G., Dong, X., Wang, W., Yu, F., Liu, F.Fluid rock interactions during UHP metamorphism: a review of the Dabie-Sulu orogen, east central China.Journal of Asian Earth Sciences, Vo. 43, 3, pp. 316-329.ChinaUHP
DS201312-0014
2013
Alifirova, T.A., Pokhilenko, L.N.Apatite exsolution as an indicator of Udachnaya grospydite UHP history.Goldschmidt 2013, AbstractRussiaUHP
DS201312-0218
2013
Dobrzhinetskaya, L., Faryad, S.W., Hoinkes, G.Mineral transformations in HP-UHP metamorphic terranes.Journal of Metamorphic Geology, Vol. 31, 1, pp. 3-4.MantleUHP
DS201312-0219
2013
Dobrzhinetskaya, L., Wirth, R., Green, H.W., Schreiber, A., O'Bannon, E.First find of polycrystalline diamond in ultrahigh pressure metamorphic terrane of Erzgebirge Germany.Journal of Metamorphic Geology, Vol. 31, pp. 5-18.Europe, GermanyUHP
DS201312-0233
2013
Dvir, O., Angert, A., Kessel, R.Determining the composition of C-H-O liquids following high pressure and high temperature diamond trap experiments.Contributions to Mineralogy and Petrology, Vol. 165, 3, pp. 593-599.MantleUHP
DS201312-0260
2012
Faryad, S.W., Dobrzhinetskaya, L., Hoinkes, G., Zhang, J.Ultrahigh pressure and high-pressure metamorphic terrances in orogenic belts: reactions, fluids and geological processes.Gondwana Research, Vol. 23, 4, pp. 841-MantleUHP
DS201312-0294
2013
Gao, X-Y., Zheng, Y.F., Chen, Y.X., Hu, Z.Trace element composition of continentally subducted slab-derived melt: insight from multiphase solid inclusions in ultrahigh pressure eclogite in the Dabie Orogen.Journal of Metamorphic Geology, Vol. 31, 4, pp. 453-468.ChinaUHP
DS201312-0350
2013
Guarino, V., Wu, F-Y., Lustrino, M., Melluso, L., Brotzu, P., Barros Gomes, C.de, Ruberti, E., Tassarini, C.C.G., Svisero, D.P.U-Pb ages, Sr, Nd isotope geochemistry, and petrogenesis of kimberlites, kamafugites and phlogopte-picrites of the Alto Paranaiba Igneous Province, Brazil.Chemical Geology, Vol. 353, pp. 65-82.MantleUHP
DS201312-0347
2012
Guo, S., Ye, K., Wu, Y., Chen, Y., Yang, Y., Zhang, L., Liu, J., Mao, Q., Ma, Y.A potential method to confirm the previous existence of lawsonite in eclogite: the mass imbalance of Sr and LREEs in multi stage epidote ( Ganghe, Dabie UHP terrane).Journal of Metamorphic Gology, Vol. 31, 4, pp. 415-435.ChinaUHP
DS201312-0348
2013
Hacker, B.R., Gerya, T.V.Paradigms, new and old, for ultrahigh-pressure tectonism.Tectonophysics, Vol. 603, pp. 79-88.MantleUHP
DS201312-0349
2013
Hacker, B.R., Gerya, T.V., Gilotti, J.Formation and exhumation of ultrahigh pressure terranes.Elements, Vol. 9, 4, pp. 289-293.MantleUHP
DS201312-0377
2013
Helmstaedt, H.H.Tectonic relationships between E-type cratonic and ultra-high-pressure (UHP) diamonds: implications for craton formation and stabilization.Proceedings of the 10th. International Kimberlite Conference, Vol. 1, Special Issue of the Journal of the Geological Society of India,, Vol. 1, pp. 45-58.MantleUHP
DS201312-0389
2013
Hirose, K., Tateno, S., Ozawa, H.Petrological evidence for deep lower mantle melting.Goldschmidt 2013, AbstractMantleUHP
DS201312-0512
2013
Kovach, V.,Salnikova, E., Wang, K-L., Jahn, B-M., Chiu, H-Y., Reznitskiy, L., Kotov, A., Lizuka, Y., Chung, S-L.Zircon ages and Hf isotopic constraints on sources of clastic metasediments of the Slyudyansky high grade complex, southeastern Siberia: implication for continental growth and evolution of the Central Asian orogenic belt.Journal of Asian Earth Sciences, Vol. 62, pp. 18-36.Russia, SiberiaUHP, Geochronology
DS201312-0584
2013
Massonne, H-J.Constructing the pressure temperature path of ultrahigh pressure rocks.Elements, Vol. 9, 4, August in pressMantleUHP
DS201312-0592
2013
McCelland, W.C., Lapen, T.J.Linking time to the pressure temperature path of ultrahigh pressure rocks.Elements, Vol. 9, 4, August in pressMantleUHP
DS201312-0596
2012
McWilliams, S.Magnesium oxide: from Earth to super-Earth.Science Express, Nov. 22, 1p.MantleUHP
DS201312-0720
2014
Prescher, C., Weigel, C., McCammon, C., Narygina, O., Potapkin, V., Kupenko, I., Sinmyo, R., Chumakov, A.I., Dubrovinsky, L.Iron spin state in silicate glass at high pressure: implications for melts in the Earth's lower mantle.Earth and Planetary Science Letters, Vol. 385, pp. 130-136.MantleUHP
DS201312-0758
2013
Ruiz Cruz, M.D.Are nanotubes and carbon nanostructures the precursors of coexisting graphite and micro-diamonds in UHP rocks?Diamond and Related Materials, Vol. 40, pp. 24-31.Europe, Beltic CordilleraUHP
DS201312-0760
2013
Ruiz-Cruz, M.D.,Sanz de Galdeano, C.Coesite and diamond inclusions, exsolution microstructures and chemical patterns in ultrahigh pressure garnet from Ceuta ( Northern Rif, Spain).Lithos, Vol. 177, pp. 184-206.Europe, SpainUHP
DS201312-0807
2014
Shen, J., Wang, Y., Li, S-g.Common Pb isotope mapping of UHP metamorphic zones in Dabie orogen, central China: implication for Pb isotopic structure of subducted continental crust.Geochimica et Cosmochimica Acta, Vol. 143, pp. 115-131.ChinaUHP
DS201312-0812
2014
Shi, Y., Lin, W., Ji, W., Wang, Q.The architecture of the HP-UHP Dabie Massif: new insights from geothermobarometry of eclogites and implication for the continental exhumation processes.Journal of Asian Earth Sciences, Vol. 86, pp. 38-58.ChinaUHP
DS201312-0870
2013
Sonin, V.M., Chepurov, A.I., Zhimulev, E.I., Chepurov, A.A.Surface graphitization of diamond in K2C03 melt at high pressure.Doklady Earth Sciences, Vol. 451, 2, pp. 858-860.TechnologyUHP
DS201312-0897
2012
Suo, S., Zhong, Z., Zhou, H.Two fresh types of eclogites in the Dabie Sulu UHP metamorphic belt, China: implications for the deep subduction and earliest stages of exhumation of the continental crust.Journal of Earth Science ( Chinese pub in english), Vol. 23, no. 6, pp. 775-785.ChinaUHP
DS201312-0960
2013
Wei, C.J., Qian, J.H., Tian, Z.L.Metamorphic evolution of medium temperatire ultra high pressure ( MT-UHP) eclogites from the South Dabie orogen, central China: an insight from phase equilibration temperatures modelling.Journal of Metamorphic Geology, Vol. 31, 7, pp. 755-774,ChinaUHP
DS201312-0985
2013
Wu, Y-B., Zheng, Y-F.Tectonic evolution of a composite collision orogen: an overview on the Qinling-Tongbai Hongan Dabie Sulu orogenic belt in central China.Gondwana Research, Vol. 23, 4, pp. 1402-1428.ChinaUHP
DS201312-0987
2013
Xie, Z., Hattori, K., Wang, J.Origins of ultramafic rocks in the Sulu ultrahigh pressure terrane, eastern China.Lithos, Vol. 178, pp. 158-170.ChinaUHP
DS201412-0122
2014
Chen, Y-X., Zheng, Y-F., Gao, X-Y., Hu, Z.Multiphase solid inclusions in zoisite bearing eclogite: evidence for partial melting of ultrahigh pressure metamorphic rocks during continental collision.Lithos, Vol. 200-201, pp. 1-21.ChinaSulu UHP
DS201412-0212
2014
Duffy, T.Crystallography's journey to the deep Earth. Improved methods for studing minerals at extreme pressures and temperatures.Nature, Vol. 506, 7489, pp. 427-429.MantleUHP
DS201412-0301
2011
Godard, G., Frizzotti, M-L., Palmeri, R., Smith, D.C.Origin of high pressure disordered metastable phases ( Lonsdaleite and incipiently amorphized quartz) in metamorphic rocks: geodynamic shock or crystal-scale overpressure? In: Ultrahigh Pressure Metamorphism: 25 years after discovery of coesite and diamond. Eds. Dobrzhinetskaya, L., Cuthbert, S., Faryad, W., Elsevier Publ. Pp. 125-148.MantleUHP
DS201412-0359
2014
Hirose, K.Deep earth mineralogy revealed by ultrahigh pressure experiments.Mineralogical Magazine, Vol. 78, 2, pp. 437-446.MantleUHP
DS201412-0415
2014
Jacob, D.E., Dobrrzhinetskaya, L., Wirth, R.New insight into polycrystalline diamond genesis from modern nanoanalytical techniques. Earth Science Reviews, Vol. 136, Sept. pp. 21-35.MantleDiamond, carbonado, UHP, subduction
DS201412-0519
2014
Liu, L., Xiao, Y., Worner, G., Kronz, A., Hou, Z.Detrital rutile geochemistry and theromometry from the Dabie orogen: implications for source - sediment links in a UHPM terrane.Journal of Asian Earth Sciences, Vol. 89, pp. 123-140.ChinaUHP
DS201412-0565
2014
McCammon, C.High pressure matters: the inside story of Earth's deep carbon cycle.EHPRG 2014, 1p. AbtstractMantleUHP
DS201412-0658
2014
Palyanov, Y.N., Bataleva, Y.V., Sokol, A.G., Borzdov, Y.M., Kupriyanov, I.N., Reutsky, V.N., Sobolev, N.V.Mantle slab interaction and redox mechanism of diamond formation.Proceedings of National Academy of Science USA, Vol. 110, 51, Dec. 17, pp.MantleUHP, deep carbon cycle
DS201412-0677
2014
Perraki, M., Faryad, S.W.First finding of microdiamond, coesite and other UHP phases in felsic granulites in the Moldanubian Zone: implications for deep subduction and a revised geodynamic model for Variscan Orogeny in the Bohemian Massif.Lithos, Vol. 202-203, pp. 157-166.EuropeCoesite, UHP
DS201412-0710
2014
Prencipe, M., Bruno, M., Nestola, F., De La Pierre, M., Nimis, P.Toward an accurate ab initio estimation of compressibility and thermal expansion of diamond in the (0, 3000K) temperature and (0,30 Gpa) pressure ranges, at the hybrid HF/DFT theoretical level.American Mineralogist, Vol. 99, pp. 1147-1154.TechnologyUHP
DS201412-0806
2014
Shi, Y., Lin, W.The architecture of the HP-UHP Dabie massif: new insights from geothermobarometry of eclogites, and implication for the continental exhumation processes.Journal of Asian Earth Sciences, Vol. 86, I, pp. 38-58.ChinaUHP
DS201412-0861
2014
Sobolev, N.Ultrahigh pressure mineralogy of the continental lithosphere.ima2014.co.za, IMA Medallist lectureMantleUHP
DS201412-0866
2013
Solopova, N.A., Litvin, Yu.A., Spivak, A.V., Dubrovinskaia, N.A., Dubrovinsky, L.S., Urusov, V.S.The phase diagram of Na carbonate, an alkaline component of the growth medium of ultradeep diamonds.Doklady Earth Sciences, Vol. 451, 1, pp. 1106-1109.TechnologyUHP
DS201412-0871
2014
Song, S., Niu, Y., Zhang, C., Zhang, L.Continental orogenesis from ocean subduction, continent collision/subduction, to orogen collapse, and orogen recycling: the example of the North Qaidam UHPM belt, NW China.Earth Science Reviews, Vol. 129, pp. 59-84.ChinaUHP
DS201412-0885
2014
Stepanov, A.S., Hermann, J., Korsakov, A.V., Rubatto, D.Geochemistry of ultrahigh pressure anatexis: fractionation of elements in the Kokchetav gneisses during melting at diamond facies conditions.Contributions to Mineralogy and Petrology, Vol. 67, 25p.RussiaUHP
DS201412-0960
2014
Wang, H., Wu, Y-B., Gao, S., Zheng, J-P., Liu, Q., Liu, X-C., Qin, Z-W., Yang, S-H., Gong, H-J.Deep subduction of continental crust in accretionary orogen: evidence from U-Pb dating on diamond-bearing zircons from the Qinling orogen, central China.Lithos, Vol. 190-191, pp. 420-429.ChinaUHP
DS201412-0999
2014
Yang, J., Meng, F., Xu, X., Robinson, P.T., Dilek, Y., Makeyev, A.B., Wirth, R., Wiedenbeck, M., Cliff, J.Diamonds, native elements and metal alloys from chromitites of the Ray-Iz ophiolite of the Polar Urals.Gondwana Research, Vol. 27, 2, pp. 459-485.Asia, TibetUHP ophiolite diamonds
DS201412-1000
2014
Yang, J-J., Fan, Z.F., Yu, C., Yan, R.Coseismic formation of eclogite facies cataclastic dykes at Yangkou in the Chinese Sulu UHP metamorphic belt.Journal of Metamorphic Geology, Vol. 32, 9, pp. 937-960.ChinaUHP
DS201505-0251
2015
Hwang, S-L., Shen, P., Chu, H-T., Yui, T-F., Lizuka, Y.Origin of rutile needles in star garnet and implications for interpreation of inclusion textures in ultrahigh pressure metamorphic rocks.Journal of Metamorphic Geology, Vol. Pp. 249-272.TechnologyUHP
DS201509-0426
2015
Saraiva dos Santos, T.J., Da Silva Amaral, W., Ancelmi, M.F., Pitarello, M.Z., Fuck, R.A., Dantas, E.L.U-Pb age of coesite bearing eclogite from NW Borborema Province, NE Brazil: implications for western Gondwana assembly.Gondwana Research, Vol. 28, pp. 1183-1196.South America, BrazilUHP

Abstract: The Late Neoproterozoic assembly of western Gondwana played an important role in the subduction of oceanic and continental lithospheres. Such event was also a source of arc magmatism, reworking of cratonic margins and development of ultra-high pressure (UHP) suture zones. In the Borborema province, NE Brazil, we have described for the first time UHP rocks enclosed within gneiss migmatite and calc-silicate rocks. They bear coesite included in atoll-type garnet from metamafic rocks, identified by petrographic study and Raman microspectroscopy analysis. U-Pb zircon dating of the leucosome of the migmatites and the calc-silicate rock displays, concordant ages of 639 ± 10 Ma and 649.7 ± 5 Ma, respectively, here interpreted as the minimum age of the eclogitization event in the region. U-Pb zircon dating of the coesite-bearing rock defined a concordia age of 614. 9 ± 7.9 Ma that comprised the retrograde eclogitic conditions to amphibolite facies. The UHP rocks, mostly retrograded to garnet amphibolites, occur enclosed in the Paleoproterozoic continental block composed of calc-silicate rocks, migmatized sillimanite gneiss, mylonitic augen gneiss and granitic and tonalitic gneiss along a narrow N-S oriented belt between the Santa Quitéria magmatic arc and the Transbrasiliano lineament. This block was involved in the subduction to UHP eclogite depths, and was retrogressed to amphibolite during its exhumation and thrusting. Our data indicate an important Neoproterozoic transcontinental suture zone connecting the Pharusian belt with Borborema Province, and probably with the Brasília belt in central Brazil.
DS201510-1815
2015
Xu, S., Liu, Y., Chen, G., Ji, S., Ni, P., Xiao, W.Microdiamonds, their classification and tectonic implications for the host eclogites from the Dabie and Su-Lu regions in central eastern China.Mineralogical Magazine, Vol. 69, 4, pp. 590-520.ChinaUHP

Abstract: We have found >10 in situ microdiamonds in thin sections of eclogites from the Dabie and Su-Lu regions of central eastern China since the first occurrence of microdiamond in eclogites from the Dabie Mountains (DMT) reported in 1992. The microdiamonds are found not only in the central part but also in the northern part of the DMT. Several free crystals have been recovered from the crushed eclogites from the central DMT. Most in situ microdiamonds are inclusions in garnets but a few larger ones are intergranular. Most of the diamondiferous eclogites in the central part of the DMT are associated with coesite. Most importantly, the observation of microdiamonds in northern Dabie lead us to question the supposition that this is a low-P metamorphic terrane. All the diamondiferous eclogites from both the north and central DMT are of continental affinity as demonstrated by their negative ?Nd values. Therefore, both the north and central eclogite belts in the DMT are considered to be from the deep subducted terrane. Five in situ microdiamonds and two free crystals are first reported in this paper. The dimensions of the in situ microdiamonds are 30-80 ?m and the free crystals are up to 400–-00 ?m across. All the microdiamonds are confirmed as such by Raman spectroscopy. The results of an infrared spectroscopic investigation on two larger free crystals and two in situ microdiamonds show that all the microdiamonds from both the Dabie and Su-Lu regions are mixed types IaA and IaB diamonds and there is no indication of any synthetic microdiamonds in our samples because such synthetic microdiamonds are always rich in type Ib.
DS201604-0621
2016
Petrik, I., Janak, M., Froitzheim, N., Georgiev, N., Yoshida, K., Sasinkova, V., Konecny, P., Milovska, S.Triassic to Early Jurassic ( c. 200Ma) UHP metamorphism in the Central Rhodopes: evidence from U-Pb dating of monazite in diamond bearing gneiss from Chepelare ( Bulgaria).Journal of Metamorphic Geology, Vol. 34, 3, pp. 265-291.Europe, BulgariaUHP diamond bearing gneiss
DS201605-0905
2016
Stepanov, A.S., Rubatto, D., Hermann, J., Korsakov, A.V.Contrasting P-T paths within the Barchi-Kol terrain ( Kokchetav Complex): implications for subduction and exhumation of continental crust.American Mineralogist, Vol. 101, pp. 788-807.RussiaUHP - subduction

Abstract: The Barchi-Kol terrain is a classic locality of ultrahigh-pressure (UHP) metamorphism within the Kokchetav metamorphic belt. We provide a detailed and systematic characterization of four metasedimentary samples using dominant mineral assemblages, mineral inclusions in zircon and monazite, garnet zonation with respect to major and trace elements, and Zr-in-rutile and Ti-in-zircon temperatures. A typical diamond-bearing gneiss records peak conditions of 49 ± 4 kbar and 950-1000 °C. Near isothermal decompression of this rock resulted in the breakdown of phengite associated with a pervasive recrystallization of the rock. The same terrain also contains mica schists that experienced peak conditions close to those of the diamond-bearing rocks, but they were exhumed along a cooler path where phengite remained stable. In these rocks, major and trace element zoning in garnet has been completely equilibrated. A layered gneiss was metamorphosed at UHP conditions in the coesite field, but did not reach diamond-facies conditions (peak conditions: 30 kbar and 800-900 °C). In this sample, garnet records retrograde zonation in major elements and also retains prograde zoning in trace elements. A garnet-kyanite-micaschist that reached significantly lower pressures (24 ± 2 kbar, 710 ± 20 °C) contains garnet with major and trace element zoning. The diverse garnet zoning in samples that experienced different metamorphic conditions allows to establish that diffusional equilibration of rare earth element in garnet likely occurs at ~900-950 °C. Different metamorphic conditions in the four investigated samples are also documented in zircon trace element zonation and mineral inclusions in zircon and monazite. -Pb geochronology of metamorphic zircon and monazite domains demonstrates that prograde (528-521 Ma), peak (528-522 Ma), and peak to retrograde metamorphism (503-532 Ma) occurred over a relatively short time interval that is indistinguishable from metamorphism of other UHP rocks within the Kokchetav metamorphic belt. Therefore, the assembly of rocks with contrasting P-T trajectories must have occurred in a single subduction-exhumation cycle, providing a snapshot of the thermal structure of a subducted continental margin prior to collision. The rocks were initially buried along a low geothermal gradient. At 20-25 kbar they underwent near isobaric heating of 200 °C, which was followed by continued burial along a low geothermal gradient. Such a step-wise geotherm is in good agreement with predictions from subduction zone thermal models.
DS201606-1108
2016
Reuber, G., Kaus, B.J.P., Schmalholz, S.M., White, R.W.Nonlithostatic pressure during subduction and collision and the formation of (ultra) high pressure rocks.Geology, Vol. 44, 5, pp. 343-346.UHP - subduction

Abstract: The mechanisms that result in the formation of high-pressure (HP) and ultrahigh-pressure (UHP) rocks are controversial. The usual interpretation assumes that pressure is close to lithostatic, petrological pressure estimates can be transferred to depth, and (U)HP rocks have been exhumed from great depth. An alternative explanation is that pressure can be larger than lithostatic, particularly in continental collision zones, and (U)HP rocks could thus have formed at shallower depths. To better understand the mechanical feasibility of these hypotheses, we performed thermomechanical numerical simulations of a typical subduction and collision scenario. If the subducting crust is laterally homogeneous and has small effective friction angles (and is thus weak), we reproduce earlier findings that <20% deviation of lithostatic pressure occurs within a subduction channel. However, many orogenies involve rocks that are dry and strong, and the crust is mechanically heterogeneous. If these factors are taken into account, simulations show that pressures can be significantly larger than lithostatic within nappe-size, mechanically strong crustal units, or within a strong lower crust, as a result of tectonic deformation. Systematic simulations show that these effects are most pronounced at the base of the crust (at ?40 km), where pressures can reach 2-3 GPa (therefore within the coesite stability field) for millions of years. These pressures are often released rapidly during ongoing deformation. Relating metamorphic pressure estimates to depth might thus be problematic in mechanically heterogeneous crustal rock units that appear to have been exhumed in an ultrafast manner.
DS201606-1123
2016
Taguchi, T., Enami, M., Kouketsu, Y.Prograde evolution of Sulu UHP metamorphic rock in Yangzhuang Junan region, deduced by combined Ramas and petrological studies.Journal of Metamorphic Geology, in press availableChinaUHP - coesite, eclogite
DS201608-1409
2016
Glassley, W.Na-P concentrations in high-pressure garnets: a potentially rich, but risky P-T repository.American Mineralogist, Vol. 101, p. 1718.TechnologyUHP - garnets

Abstract: Establishing the history of HP and UHP metamorphic rocks is important for quantifying Earth dynamics. The history of these rocks defines, among other things, paleo-subduction rates, P-T paths, and the kinematics of continent-continent collision. Although the appearance of certain minerals, such as coesite, stishovite, or diamond, provides unequivocal evidence of an HP or UHP component to the history of a rock, they cannot provide details of the P-T-t path a rock has experienced. However, complex solid solutions can. This reflects the fact that solid solutions have the potential to provide a continuous thermodynamically controlled response to evolving P-T conditions. To the extent that such solid-solution characteristics are preserved unmodified in a mineral throughout its history, a detailed description of the trajectory of the rock during burial …
DS201610-1890
2016
Nagayoshi, M., Kubo, T., Kato, T.Experimental investigation of the kinetics of the spinel to garnet transformation in peridotite: a preliminary study.American Mineralogist, Vol. 101, pp. 2020-2028.TechnologyReaction rim, UHP

Abstract: To study the kinetics of the spinel-to-garnet transformation in peridotite, we conducted reaction experiments in the garnet peridotite stability field (3.2 GPa, 1020-1220 °C, for 0.6-30 h) using a single spinel crystal embedded in monomineralic orthopyroxene powder or in a mixture of powdered orthopyroxene and clinopyroxene. The growth textures observed in the reaction rim between the spinel crystal and the polycrystalline pyroxenes show that the reaction rim grew in both the spinel and pyroxenes directions, suggesting mobility of both SiO2 and R2O3 components (where R is a trivalent cation). Olivine grains formed only in the presence of monomineralic orthopyroxene and were present in some domains without forming reaction rims. Based on a diffusion-controlled growth model, the growth kinetics of the garnet reaction rim can be described by [x(t)]2 = k0 exp(?H*/RT)t, where x(t) is the rim width at time t, R is the gas constant, T is the absolute temperature, and H* is the activation enthalpy of reaction; k0 and H* are, respectively, k0 = 10?19.8 ± 4.9 m2/s and H* = 171 ± 58 kJ/mol. The development of a garnet reaction rim around a spinel core has been observed in alpine-type peridotitic rocks and mantle xenoliths. The reaction rims experimentally produced in this study are characteristic of corona textures observed in natural rocks, and the experimentally measured growth rate of the rims places important constraints on dynamic transformation processes involving spinel and garnet in peridotite. However, to reconstruct the P-T-t history of the corona texture based on these elementary processes, additional detailed studies on the textural evolution and quantitative kinetics of the garnet-rim growth stage are required.
DS201610-1912
2016
Su, B., Chen, Y., Guo, S., Chu, Z-Y., Liu, J-B., Gao, Y-J.Carbonatitic metasomatism in orogenic dunites from Lijiatun in the Sulu UHP terrane, eastern China.Lithos, Vol. 262, pp. 266-284.ChinaUHP, carbonatite

Abstract: Among orogenic peridotites, dunites suffer the weakest crustal metasomatism at the slab-mantle interface and are the best lithology to trace the origins of orogenic peridotites and their initial geodynamic processes. Petrological and geochemical investigations of the Lijiatun dunites from the Sulu ultrahigh-pressure (UHP) terrane indicate a complex petrogenetic history involving melt extraction and multistage metasomatism (carbonatitic melt and slab-derived fluid). The Lijiatun dunites consist mainly of olivine (Fo = 92.0-92.6, Ca = 42-115 ppm), porphyroblastic orthopyroxene (En = 91.8-92.8), Cr-spinel (Cr# = 50.4-73.0, TiO2 < 0.2 wt.%) and serpentine. They are characterized by refractory bulk-rock compositions with high MgO (45.31-47.07 wt.%) and Mg# (91.5-91.9), and low Al2O3 (0.48-0.70 wt.%), CaO (0.25-0.44 wt.%) and TiO2 (< 0.03 wt.%) contents. Whole-rock platinum group elements (PGE) are similar to those of cratonic mantle peridotites and Re-Os isotopic data suggest that dunites formed in the early Proterozoic (~ 2.2 Ga). These data indicate that the Lijiatun dunites were the residues of ~ 30% partial melting and were derived from the subcontinental lithospheric mantle (SCLM) beneath the North China craton (NCC). Subsequent carbonatitic metasomatism is characterized by the formation of olivine-rich (Fo = 91.6-92.6, Ca = 233-311 ppm), clinopyroxene-bearing (Mg# = 95.9-96.7, Ti/Eu = 104-838) veins cutting orthopyroxene porphyroblasts. Based on the occurrence of dolomite, mass-balance calculation and thermodynamic modeling, carbonatitic metasomatism had occurred within the shallow SCLM (low-P and high-T conditions) before dunites were incorporated into the continental subduction channel. These dunites then suffered weak metasomatism by slab-derived fluids, forming pargasitic amphibole after pyroxene. This work indicates that modification of the SCLM beneath the eastern margin of the NCC had already taken place before the Triassic continental subduction. Orogenic peridotites derived from such a lithospheric mantle wedge may be heterogeneously modified prior to their incorporation into the subduction channel, which would set up a barrier for investigation of the mas
DS201611-2096
2016
Arai, S., Miura, M.Formation and modification of chromitites in the mantle.Lithos, Vol. 264, pp. 277-295.MantlePodiform, UHP, melt

Abstract: Chromitites (aggregates of chromite or chromian spinel) inform us of various mantle processes, including magmatism, magma/peridotite reaction and mantle dynamics [1]. They typically form as magmatic cumulates from chromiteoversaturated melt within conduits in the mantle peridotite [2]. They are usually enveloped by replacive dunite [1]. In Oman, both concordant and discordant chromitites are of low-P (upper mantle) magmatic origin [3, 4]. Their chromite grains contain inclusions of pargasite, aspidolite and pyroxenes, which suggest low P. Mineral chemistry suggests involvement of MORB for the concordant chromitite, and of arc-related magma for the discrodant one. This is consistent with the switch of tectonic setting, from MOR to SSZ, for the Oman ophiolite magmatism. Only the concordant chromitite shows metamorphic characters, i.e. exsolution of diopside in chromite and outward diffusion of Ni (< 30 cm) in the dunite envelope [5], indicating its longer residence in the mantle. Ultra-high pressure (UHP) chromitites have been reported from the Tibetan and Polar Ural ophiolites [6, 7]. Most of their petrographic characteristics can be explained by UHP "metamorphism" of low-P magmatic chromitites above [8]. This may suggest recycling of low-P chromitite as deep as the transion-zone mantle [9]. The UHP chromitite is, however, still highly enigmatic: some characteristics, e.g., the amount and origin of carbon as diamond, are difficult to explain. High-T aqueous fluids containing Cl, S and C, can mobilize Cr and precipitate chromite in the mantle [10]. Chromite was dissolved and precipitated in/from high-T fluids which formed diopsidites in Oman. Chromite was concentrated to form thin "hydrothermal chromitite". Sub-arc metasomatized peridotites contain secondary chromite closely associated with fluid inclusions, indicating Cr mobility via fluids within the mantle wedge. Hydrothermal chromitites are expected in the mantle where fluid circulation is available.
DS201612-2323
2016
Nasdala, L., Steger, S., Reissner, C.Raman study of diamond based abrasives, and possible artefacts in detecting UHP microdiamond.Lithos, Vol. 265, pp. 317-327.TechnologyUHP - microdiamond

Abstract: Raman spectral characteristics of a range of diamond-based abrasives (powders and sprays) and drilling and cutting tools, originating from preparation laboratories worldwide, are presented. Some abrasives show strong broadening of the main diamond band [FWHM (full width at half band-maximum) > 5 cm? 1] accompanied by strong band-downshift (View the MathML source?˜ = 1316-1330 cm? 1). Others are characterised by moderate band broadening (FWHM = 1.8-5 cm? 1) at rather regular band position (View the MathML source?˜ = 1331-1333 cm? 1). In addition we found that a "fresh" abrasive and its used analogue may in some cases show vast differences in their Raman spectra. The Raman parameters of diamond-based abrasives overlap widely with Raman parameters of UHP (ultra-high pressure) microdiamond. It is hence impossible to assign diamond detected in a geological specimen to either an introduced artefact or a genuine UHP relict, from the Raman spectrum alone. Raman is an excellent technique for the detection of minute amounts of diamond; however it does not provide conclusive evidence for the identification of UHP microdiamond. The latter requires thorough verification, for instance by optical microscopy or, if doubts cannot be dispelled, transmission electron microscopy.
DS201612-2349
2016
Yang, J., Robinson, P.T., Dilek, Y.Geological occurrences of diamond-bearing ophiolites.Acta Geologica Sinica, Vol. 90, 1, July abstract P. 216GlobalUHP
DS201701-0026
2016
Piet, H., Badro, J., Nabiel, F., Dennenwaldt, T., Shim, S-H., Cantoni, M., Hebert, C., Gillet, P.Spin and valence dependence on iron partitioning in Earth's deep mantle.Proceedings of National Academy of Science USA, Vol. 113, no. 40, pp. 11127-11130.MantleUHP

Abstract: We performed laser-heated diamond anvil cell experiments combined with state-of-the-art electron microanalysis (focused ion beam and aberration-corrected transmission electron microscopy) to study the distribution and valence of iron in Earth's lower mantle as a function of depth and composition. Our data reconcile the apparently discrepant existing dataset, by clarifying the effects of spin (high/low) and valence (ferrous/ferric) states on iron partitioning in the deep mantle. In aluminum-bearing compositions relevant to Earth's mantle, iron concentration in silicates drops above 70 GPa before increasing up to 110 GPa with a minimum at 85 GPa; it then dramatically drops in the postperovskite stability field above 116 GPa. This compositional variation should strengthen the lowermost mantle between 1,800 km depth and 2,000 km depth, and weaken it between 2,000 km depth and the D" layer. The succession of layers could dynamically decouple the mantle above 2,000 km from the lowermost mantle, and provide a rheological basis for the stabilization and nonentrainment of large low-shear-velocity provinces below that depth.
DS201702-0221
2017
Klonowska, I., Janak, M., Majka, J., Petrik, I., Froitzheim, N., Gee, D.G., sasinkova, V.Microdiamond on Areskutan confirms regional UHP metamorphism in the Seve Nappe complex of the Scandinavian Caledonides.Journal of Metamorphic Geology, in press availableEurope, Sweden, NorwayUHP

Abstract: Metamorphic diamond in crustal rocks provides important information on the deep subduction of continental crust. Here we present a new occurrence of diamond within the Seve Nappe Complex of the Scandinavian Caledonides, on Åreskutan in Jämtland County, Sweden. Microdiamond is found in-situ as single and composite (diamond + carbonate) inclusions within garnet, in kyanite-bearing paragneisses. The rocks preserve the primary peak pressure assemblage of Ca,Mg-rich garnet + phengite + kyanite + rutile, with polycrystalline quartz surrounded by radial cracks indicating breakdown of coesite. Calculated P-T conditions for this stage are 830-840 °C and 4.1-4.2 GPa, in the diamond stability field. The ultrahigh-pressure (UHP) assemblage has been variably overprinted under granulite facies conditions of 850-860 °C and 1.0-1.1 GPa, leading to formation of Ca,Mg-poor garnet+biotite+ plagioclase+K-feldspar+sillimanite+ilmenite+quartz. This overprint was the result of nearly isothermal decompression, which is corroborated by Ti-in-quartz thermometry. Chemical Th-U-Pb dating of monazite yields ages between 445 and 435 Ma, which are interpreted to record post-UHP exhumation of the diamond-bearing rocks. The new discovery of microdiamond on Åreskutan, together with other evidence of ultrahigh-pressure metamorphism (UHPM) within gneisses, eclogites and peridotites elsewhere in the Seve Nappe Complex, provide compelling arguments for regional (at least 200 km along strike of the unit). UHPM of substantial parts of this far-travelled allochthon. The occurrence of UHPM in both rheologically weak (gneisses) and strong lithologies (eclogites, peridotites) speaks against the presence of large tectonic overpressure during metamorphism.
DS201707-1325
2016
Gao, J., Niu, J., Qin, S., Wu, X.Ultradeep diamonds originate from deep subducted sedimentary carbonates.Science China Earth Sciences, Vol. 60, 2, 3p.MantleUHP

Abstract: Diamonds are renowned as the record of Earth’s evolution history. Natural diamonds on the Earth can be distinguished in light of genetic types as kimberlitic diamonds (including peridotitic diamonds and eclogitic diamonds), ultrahigh-pressure metamorphic diamonds and ophiolitic diamonds. According to the inclusion mineralogy, most diamonds originated from continental lithospheric mantle at depths of 140–250 km. Several localities, however, yield ultradeep diamonds with inclusion compositions that require a sublithospheric origin (>~250 km). Ultradeep diamonds exhibit distinctions in terms of carbon isotope composition, N-concentration, mineral inclusions and so on. The present study provides a systematic compilation concerning the features of ultradeep diamonds, based on which to expound their genesis affinity with mantle-carbonate melts. The diamond-parental carbonate melts are proposed to be stemmed from the Earth’s crust through subduction of oceanic lithosphere. Ultradeep diamonds are classified into a subgroup attaching to kimberlitic diamonds grounded by formation mechanism, and present connections in respect of carbon origin to eclogitic diamonds, ultrahigh-pressure metamorphic diamonds and ophiolitic diamonds.
DS201707-1340
2017
Klonowska, I., Janak, M., Majka, J., Petrik, I., Froitzheim, N., Gee, D.Microdiamond on Areskutan confirms UHP metamorphism in the Seve Nappe Complex of the Scandinavian Caledonides.Journal of Metamorphic Geology, Vol. 35, 5, pp. 541-564.Europe, SwedenUHP

Abstract: Metamorphic diamond in crustal rocks provides important information on the deep subduction of continental crust. Here we present a new occurrence of diamond within the Seve Nappe Complex of the Scandinavian Caledonides, on Åreskutan in Jämtland County, Sweden. Microdiamond is found in-situ as single and composite (diamond + carbonate) inclusions within garnet, in kyanite-bearing paragneisses. The rocks preserve the primary peak pressure assemblage of Ca,Mg-rich garnet + phengite + kyanite + rutile, with polycrystalline quartz surrounded by radial cracks indicating breakdown of coesite. Calculated P-T conditions for this stage are 830-840 ºC and 4.1-4.2 GPa, in the diamond stability field. The ultrahigh-pressure (UHP) assemblage has been variably overprinted under granulite facies conditions of 850-860 ºC and 1.0-1.1 GPa, leading to formation of Ca,Mg-poor garnet + biotite + plagioclase + K-feldspar + sillimanite + ilmenite + quartz. This overprint was the result of nearly isothermal decompression, which is corroborated by Ti-in-quartz thermometry. Chemical Th-U-Pb dating of monazite yields ages between 445 and 435 Ma, which are interpreted to record post-UHP exhumation of the diamond-bearing rocks. The new discovery of microdiamond on Åreskutan, together with other evidence of ultrahigh-pressure metamorphism (UHPM) within gneisses, eclogites and peridotites elsewhere in the Seve Nappe Complex, provide compelling arguments for regional (at least 200 km along the unit) UHPM of substantial parts of this far-travelled allochthon. The occurrence of UHPM in both rheologically weak (gneisses) and strong lithologies (eclogites, peridotites) speaks against the presence of large tectonic overpressure during metamorphism.
DS201707-1356
2016
Perchuk, A.L., Safonov, O.G., Smit, C.A., van Reenen, D.D., Zkharov, V.S., Gerya, T.V.Precambrian ultra hot orogenic factory: making and reworking of continental crust.Tectonophysics, in press availableMantleUHP

Abstract: Mechanisms of Precambrian orogeny and their contribution to the origin of ultrahigh temperature granulites, granite-greenstone terranes and net crustal growth remain debatable. Here, we use 2D numerical models with 150 °C higher mantle temperatures compared to present day conditions to investigate physical and petrological controls of Precambrian orogeny during forced continental plates convergence. Numerical experiments show that convergence between two relatively thin blocks of continental lithosphere with fertile mantle creates a short-lived cold collisional belt that later becomes absorbed by a long-lived thick and flat ultra-hot accretionary orogen with Moho temperatures of 700–1100 °C. The orogen underlain by hot partially molten depleted asthenospheric mantle spreads with plate tectonic rates towards the incoming lithospheric block. The accretionary orogeny is driven by delamination of incoming lithospheric mantle with attached mafic lower crust and invasion of the hot partially molten asthenospheric wedge under the accreted crust. A very fast convective cell forms atop the subducting slab, in which hot asthenospheric mantle rises against the motion of the slab and transports heat towards the moving orogenic front. Juvenile crustal growth during the orogeny is accompanied by net crustal loss due to the lower crust subduction. Stability of an ultra-hot orogeny is critically dependent on the presence of relatively thin and warm continental lithosphere with thin crust and dense fertile mantle roots subjected to plate convergence. Increased thickness of the continental crust and subcontinental lithospheric mantle, pronounced buoyancy of the lithospheric roots, and decreased mantle and continental Moho temperature favor colder and more collision-like orogenic styles with thick crust, reduced magmatic activity, lowered metamorphic temperatures, and decreased degree of crustal modification. Our numerical modeling results thus indicate that different types of orogens (cold, mixed-hot and ultra-hot) could be created at the same time in the Early Earth, depending on compositional and thermal structures of interacting continental blocks.
DS201708-1592
2017
Anzolini, C.Depth of formation of super deep diamonds.11th. International Kimberlite Conference, PosterMantleUHP

Abstract: “Super-deep” diamonds are thought to crystallize between 300 and 800 km depth because some of the inclusions trapped within them are considered to be the products of retrograde transformation from lower mantle or transition zone precursors. In particular, single inclusion CaSiO3-walstromite is believed to derive from CaSiO3-perovskite, although its real depth of origin has never been proven. Our aim is therefore to determine for the first time the pressure of formation of the diamond-CaSiO3-walstromite pair by “single-inclusion elastic barometry” and to determine whether CaSiO3-walstromite derives from CaSiO3-perovskite or not. We investigated several single phases and assemblages of Ca-silicate inclusions still trapped in a diamond coming from Juina (Brazil) by in-situ analyses (single-crystal X-ray diffraction and micro-Raman spectroscopy) and we obtained a minimum entrapment pressure of ~ 5.7 GPa (? 180 km) at 1500 K. However, the observed coexistence of CaSiO3-walstromite, larnite (?-Ca2SiO4) and CaSi2O5-titanite in one multiphase inclusion within the same diamond indicates that the sample investigated is sub-lithospheric with entrapment pressure between ~ 9.5 and ~ 11.5 GPa at 1500 K, based on experimentally-determined phase equilibria. In addition, thermodynamic calculations suggested that, within a diamond, single inclusions of CaSiO3-walstromite cannot derive from CaSiO3-perovskite, unless the diamond around the inclusion expands by ~ 30% in volume.
DS201708-1644
2017
Gao, X-Y.Multiphase solid inclusions in UHP eclogite from the Dabie orogen: constraints on anatectic melts during continental collision.11th. International Kimberlite Conference, PosterChinaUHP
DS201709-2020
2017
Kotova, J., Fedortchouk, Y., Wirth, R., Whitehouse, M., JakubovaUHP-UHT melting and diamond formation. MicrodiamondsGoldschmidt Conference, abstract 1p.MantleUHP

Abstract: Exhumed ultrahigh-pressure (UHP) terranes, involving slices of deeply subducted crustal rocks, provide unique material for studying material transfer in subduction zones. Diamond-bearing UHP rocks with sedimentary protoliths allow for tracing melting processes at both UHP and UHT including carbon cycling in the Earth. We studied microdiamonds and associated phases in two contrasting lithologies, (1) acid, quartzofeldpathic UHP gneiss composed of garnet, kyanite, feldspar, quartz and biotite, with a high ASI characteristic of sedimentary rocks, and (2) intermediate garnet-clinopyroxene rock containing quartz, feldspar, minor kyanite and biotite, which is metaluminous. Whereas rock (1) contains exclusively single octahedral diamonds with perfect crystal shape in garnet, kyanite (more common) and zircon, the microdiamonds in the rock (2) occur mostly as clusters of cuboid shape in garnet and zircon. Micro-Raman and FIB TEM data document presence of graphite, quartz and rutile at diamond/host interface or in separate multiple solid inclusions (MSI) whereas carbonates are practically absent. The morphology and lack of inclusions reflect relatively slow growth of the octahedral diamonds (rock 1) at lower fluid supersaturation. Individual deep and symmetrical negative trigons (AFM) on the (111) plane suggest dissolution by a residual silicate-carbonate melt. In contrast, polycrystallline character of diamond cuboids (rock 2) along with their common dissolution and formation of numerous tetragonal etch pits reflect relatively rapid growth of these grains from highly supersaturated fluid/melt. Peak P-T conditions for the UHP rocks of ? 1100ºC at 4.5 GPa are located above the phengite dehydration melting curve, where silicate melts are produced and may coexist with carbonate melts. In view of the light carbon isotope composition and lack of carbonates, we suggest that the diamonds crystallized from the graphitized primordial organic matter under reducing conditions at presence of silicate melt.
DS201709-2043
2017
Pimenta Martins, L.G., Matos, M.J.S., Paschoal, A.R., Freire, P.T.C., Andrade, N.F., Aguiar, A.L., Kong, J., Neves, B.R.A., de Oliveira, A.B., Mazzoni, M.S.C., Souza Filhio, A.G., Cancad, L.G.Raman evidence for pressure induced formation of diamondene.Nature Communications, Vol. 8, 9p.Technologydiamondene

Abstract: Despite the advanced stage of diamond thin-film technology, with applications ranging from superconductivity to biosensing, the realization of a stable and atomically thick two-dimensional diamond material, named here as diamondene, is still forthcoming. Adding to the outstanding properties of its bulk and thin-film counterparts, diamondene is predicted to be a ferromagnetic semiconductor with spin polarized bands. Here, we provide spectroscopic evidence for the formation of diamondene by performing Raman spectroscopy of double-layer graphene under high pressure. The results are explained in terms of a breakdown in the Kohn anomaly associated with the finite size of the remaining graphene sites surrounded by the diamondene matrix. Ab initio calculations and molecular dynamics simulations are employed to clarify the mechanism of diamondene formation, which requires two or more layers of graphene subjected to high pressures in the presence of specific chemical groups such as hydroxyl groups or hydrogens.
DS201711-2504
2017
Campione, M., Tumiati, S., Malaspina, N.Primary spinel + chlorite inclusions in mantle garnet formed at ultrahigh pressure. Maowu ultramafic complex.Geochemical Perspectives Letters, Vol. 4, pp. 19-23.ChinaUHP

Abstract: Multiphase inclusions represent microenvironments where the interaction between fluid and host mineral is preserved during the rock geological path. Under its peculiar chemical-physical constraints, the entrapped solute-rich fluid might follow a crystallisation mechanism which is not predictable through simple equilibrium arguments. In this letter, by the modelling of solid-solution equilibrium and the application of principles of mass conservation, we demonstrate that cavities in mantle garnet filled with slab-derived fluids can re-equilibrate to a pyrope + spinel + chlorite assemblage at the same high P-T of their formation. The basis of this occurrence is a dissolution-reprecipitation mechanism, triggered by a dilute, non-equilibrated slab fluid.
DS201712-2706
2017
Mikhno, A.O., Musiyachenko, K.A., Shcheptova, O.V., Koraskov, A.V., Rashchenko, S.V.CO2 bearing fluid inclusions associated with diamonds in zircon from the UHP Kokchetav gneisses.Journal of Raman Spectroscopy, Vol. 48, 11, pp. 1566-1573.RussiaUHP - Kokchetav

Abstract: CO2-bearing fluid inclusions coexisting with diamonds were identified in zircons from diamondiferous gneiss in the Kokchetav Massif. This discovery provides evidence for the presence of CO2 in UHP fluids and diamond formation in moderately oxidized conditions in the Kokchetav gneiss. Fluid and multiphase solid inclusions coexisting in zircons represent immiscible melt and fluid captured close to the peak metamorphic conditions for the Kokchetav UHP gneiss. Most of CO2-bearing inclusions are CO2+H2O mixtures except for some cases when they also contain daughter phases (e.g. muscovite, calcite and quartz) tracing the presence of aqueous and solute-rich fluids at different phases of UHP metamorphism. Decrease of pressure and temperature may have been responsible for the reduction of solutes in the CO2-bearing fluid. The lack of CO2-bearing inclusions in garnet porphyroblasts from diamond-bearing gneiss, as well as the common coexistence of aqueous CO2-bearing inclusions with calcite, testify that most likely all CO2 in fluid was consumed by the calcite-forming reaction and hydrous melt was the only remaining growth medium during retrograde metamorphism of the Kokchetav UHPM gneisses. Neither K-cymrite nor kokchetavite was identified among daughter phases in the hydrous melt inclusions in garnet, which indicates that they hardly could originate in a metapelitic system.
DS201712-2735
2017
Wang, L., Wang, S-J., Brown, M., Zhang, J-F., Feng, P., Jin, Z.M.On the survival of intergranular coesite in UHP eclogite.Journal of Metamorphic Geology, in press availableChinaUHP

Abstract: Coesite is typically found as inclusions in rock-forming or accessory minerals in ultrahigh-pressure (UHP) metamorphic rocks. Thus, the survival of intergranular coesite in UHP eclogite at Yangkou Bay (Sulu belt, eastern China) is surprising and implies locally ‘dry’ conditions throughout exhumation. The dominant structures in the eclogites at Yangkou are a strong D2 foliation associated with tight-to-isoclinal F2 folds that are overprinted by close-to-tight F3 folds. The coesite-bearing eclogites occur as rootless intrafolial isoclinal F1 fold noses wrapped by a composite S1-S2 foliation in interlayered phengite-bearing quartz-rich schists. To evaluate controls on the survival of intergranular coesite we determined the number density of intergranular coesite grains per cm2 in thin section in two samples of coesite eclogite (phengite absent) and threee samples of phengite-bearing coesite eclogite (2-3 vol.% phengite), and measured the amount of water in garnet and omphacite in these samples, and also in two samples of phengite-bearing quartz eclogite (6-7 vol.% phengite, coesite absent). As coesite decreases in the mode, the amount of primary structural water stored in the whole rock, based on the nominally anhydrous minerals (NAMs), increases from 107/197 ppm H2O in the coesite eclogite to 157-253 ppm H2O in the phengite-bearing coesite eclogite to 391/444 ppm H2O in the quartz eclogite. In addition, there is molecular water in the NAMs and modal water in phengite. If the primary concentrations reflect differences in water sequestered during the late prograde evolution, the amount of fluid stored in the NAMs at the metamorphic peak was higher outside of the F1 fold noses. During exhumation from UHP conditions, where NAMs became H2O saturated, dehydroxylation would have generated a free fluid phase. Interstitial fluid in a garnet-clinopyroxene matrix at UHP conditions has dihedral angles >60°, so at equilibrium fluid will be trapped in isolated pores. However, outside the F1 fold noses strong D2 deformation likely promoted interconnection of fluid and migration along the developing S2 foliation, enabling conversion of some or all of the intergranular coesite into quartz. By contrast, the eclogite forming the F1 fold noses behaved as independent rigid bodies within the composite S1-S2 foliation of the surrounding phengite-bearing quartz-rich schists. Primary structural water concentrations in the coesite eclogite are so low that H2O saturation of the NAMs is unlikely to have occurred. This inherited drier environment in the F1 fold noses was maintained during exhumation by deformation partitioning and strain localization in the schists, and the fold noses remained immune to grain-scale fluid infiltration from outside allowing coesite to survive. The amount of inherited primary structural water and the effects of strain partitioning are important variables in the survival of coesite during exhumation of deeply subducted continental crust. Evidence of UHP metamorphism may be preserved in similar isolated structural settings in other collisional orogens.
DS201803-0465
2018
Mysen, B.Mass transfer in the Earth's interior: fluid melt interaction in aluminosilicate C-O-H-N systems at high pressure and temperature under oxidizing conditions.Progress in Earth and Planetary Science, Vol. 5.6, 18p. AvailableMantleUHP - spectroscopy

Abstract: Understanding what governs the speciation in the C-O-H-N system aids our knowledge of how volatiles affect mass transfer processes in the Earth’s interior. Experiments with aluminosilicate melt?+?C-O-H-N volatiles were, therefore, carried out with Raman and infrared spectroscopy to 800 °C and near 700 MPa in situ in hydrothermal diamond anvil cells. The measurements were conducted in situ with the samples at the desired temperatures and pressures in order to avoid possible structural and compositional changes resulting from quenching to ambient conditions prior to analysis. Experiments were conducted without any reducing agent and with volatiles added as H2O, CO2, and N2 because both carbon and nitrogen can occur in different oxidation states. Volatiles dissolved in melt comprise H2O, CO32-, HCO3-, and molecular N2, whereas in the coexisting fluid, the species are H2O, CO2, CO32-, and N2. The HCO3-/CO32- equilibrium in melts shift toward CO32- groups with increasing temperature with ?H?=?114?±?22 kJ/mol. In fluids, the CO2 abundance is essentially invariant with temperature and pressure. For fluid/melt partitioning, those of H2O and N2 are greater than 1 with temperature-dependence that yields ?H values of ??6.5?±?1.5 and ??19.6?±?3.7 kJ/mol, respectively. Carbonate groups, CO32- are favored by melt over fluid. Where redox conditions in the Earth’s interior exceed that near the QFM oxygen buffer (between NNO and MW buffers), N2 is the stable nitrogen species and as such acts as a diluent of both fluids and melts. For fluids, this lower silicate solubility, in turn, enhances alkalinity. This means that in such environments, the transport of components such as high field strength cations, will be enhanced. Effects of dissolved N2 on melt structure are considerably less than on fluid structure.
DS201804-0685
2018
Dilek, Y., Yang, J.Ophiolites, diamonds, and ultrahigh pressure minerals: new discoveries and concepts on upper mantle petrogenesis.Lithosphere, Vol. 10, 1, pp. 3-13.MantleUHP - metasomatism

Abstract: Ophiolitic peridotites represent variously depleted residues of the primitive mantle after multiple episodes of partial melting, melt extraction, and melt-rock interactions. They display a wide range of compositional and geochemical heterogeneities at different scales, and their incompatible bulk-rock compositions and mineral chemistries are commonly inconsistent with their evolution through simple partial melting processes at shallow mantle depths. Approaching these issues from different perspectives, the papers in this volume concentrate on (1) melt evolution and magmatic construction of ophiolites in various tectonic settings, and (2) the occurrence of microdiamonds, ultrahigh-pressure (UHP) minerals, and crustal material as inclusions in ophiolitic chromitites and peridotites. Crustal and mantle rock units exposed in different ophiolites show that the mantle melt sources of ophiolitic magmas undergo progressive melting, depletion, and enrichment events, constantly modifying the melt compositions and the mineralogical and chemical makeup of residual peridotites. Formation and incorporation of microdiamonds and UHP minerals into chromite grains occurs at depths of 350-660 km in highly reducing conditions of the mantle transition zone. Carbon for microdiamonds and crustal minerals are derived from subduction-driven recycling of surface material. Host peridotites with their UHP mineral and diamond inclusions are transported into shallow mantle depths by asthenospheric upwelling, associated with either slab rollback-induced channel flow or superplumes. Decompression melting of transported mantle rocks beneath oceanic spreading centers and their subsequent flux melting in mantle wedges result in late-stage formation of podiform chromitites during the upper mantle petrogenesis of ophiolites. Future studies should demonstrate whether diamonds and UHP minerals also occur in peridotites and chromitites of nonsubduction-related ophiolites.
DM201805-1041
2018
Daily MailScientists discover how to bend diamond in 'surprising' high temperatures and pressures.dailymail.com, Apr. 19, 1/4p.TechnologyNews item - UHP
DS201805-0947
2018
Gordienko, V.Deep seated processes and diamond bearing rocks.New Concepts in Global Tectonics Journal, Vol. 6, no. 1, pp. 4-20. pdfMantlemagmatism, UHP
DS201805-0978
2016
Sokolova, T.S., Dorogokupets, P.I., Dymshits, A.M., Danilov, B.S., Konstantin, D.Microsoft excel spreadsheet for calculations of P-V-T relations and thermodynamic properties from equations of state of MgO, diamond and nine other metals as pressure markers in high-pressure and high-temperature experiments.Computers & Geosciences, Vol. 94, 1, pp. 162-169.TechnologyUHP

Abstract: We present Microsoft Excel spreadsheets for calculation of thermodynamic functions and P-V-T properties of MgO, diamond and 9 metals, Al, Cu, Ag, Au, Pt, Nb, Ta, Mo, and W, depending on temperature and volume or temperature and pressure. The spreadsheets include the most common pressure markers used in in situ experiments with diamond anvil cell and multianvil techniques. The calculations are based on the equation of state formalism via the Helmholtz free energy. The program was developed using Visual Basic for Applications in Microsoft Excel and is a time-efficient tool to evaluate volume, pressure and other thermodynamic functions using T-P and T-V data only as input parameters. This application is aimed to solve practical issues of high pressure experiments in geosciences and mineral physics.
DS201806-1219
2018
Dai, L., Li, S., Li, Z-H., Somerville, I., Santosh, M.Dynamics of exhumation and deformation of HP-UHP orogens in double subduction collision systems: numerical modeling and implications for the Western Dabie Orogen.Earth Science Reviews, Vol. 182, pp. 68-84.ChinaUHP

Abstract: The dynamics of formation and exhumation of high-pressure (HP) and ultra-high pressure (UHP) metamorphic orogens in double subduction-collision zones remain enigmatic. Here we employ two-dimensional thermo-mechanical numerical models to gain insights on the exhumation of HP-UHP metamorphic rocks, as well as their deformation during the collision of a micro-continent with pro- and retro-continental margins along two subduction zones. A three-stage collisional process with different convergence velocities is tested. In the initial collisional stage, a fold-and-thrust belt and locally rootless superimposed folds are developed in the micro-continent and subduction channel, respectively. In the second (exhumation) stage of HP-UHP rocks, a faster convergence model results in upwelling of the asthenosphere, which further leads to a detachment between the crust and lithospheric mantle of the micro-continent. A slower convergence model results in rapid exhumation of HP-UHP rocks along the north subduction channel and a typical piggy-back thrusting structure in the micro-continent. A non-convergence model produces a slab tear-off, leading to the rebound of residual lithosphere of the micro-continent. In the third and final stage, a series of back and ramp thrusts are formed in the micro-continent with the pro-continent re-subducted. Based on an analogy of our numerical results with the Western Dabie Orogen (WDO), we suggest that: (1) slab tear-off results in a rebound of residual lithosphere, which controls the two-stage syn-collisional exhumation process of HP-UHP rocks in the WDO; and (2) in contrast to the single subduction-collision system, the exhumation range of the partially molten rocks with lower viscosity and density is restricted to a specific region of the micro-continent by the Mianlue and Shangdan subduction zones, which generated the complex deformation features in the WDO.
DS201806-1258
2018
Varas-Reus, M.I., Garrido, C.J., Marchesi, C., Bosch, D., Hidas, K.Genesis of ultra-high pressure garnet pyroxenites in orogenic peridotites and its bearing on the compositional heterogeneity of the Earth's mantle. Ronda, Beni BouseraGeochimica et Cosmochimica Acta, Vol. 232, pp. 303-328.Africa, Morocco, Europe, SpainUHP

Abstract: We present an integrated geochemical study of ultra-high pressure (UHP) garnet pyroxenites from the Ronda and Beni Bousera peridotite massifs (Betic-Rif Belt, westernmost Mediterranean). Based on their Sr-Nd-Pb-Hf isotopic systematics, we classify UHP garnet pyroxenites into three groups: Group A pyroxenites (Al 2 O 3 : 15-17.5 wt. %) have low initial 87 Sr/ 86 Sr, relatively high ? Nd , ? Hf and 206 Pb/ 204 Pb ratios, and variable 207 Pb/ 204 Pb and 208 Pb/ 204 Pb. Group B pyroxenites (Al 2 O 3 < 14 wt. %) are characterized by high initial 87 Sr/ 86 Sr and relatively low ? Nd , ? Hf and 206 Pb/ 204 Pb ratios. Group C pyroxenites (Al 2 O 3 ~ 15 wt. %) have depleted radiogenic signatures with relatively low initial 87 Sr/ 86 Sr and 206 Pb/ 204 Pb, high ? Nd and ? Hf , and their 207 Pb/ 204 Pb and 208 Pb/ 204 Pb ratios are similar to those of Group B pyroxenites. The major and trace element and isotopic compositions of UHP garnet pyroxenites support their derivation from ancient (1.5-3.5 Ga) oceanic crust recycled into the mantle and intimately stirred with peridotites by convection. However, the genesis of these pyroxenites requires also the involvement of recycled continental lower crust with an isotopic composition akin to the lower crustal section of the lithosphere where these UHP garnet pyroxenites now reside in. These oceanic and continental crustal components were stirred in different proportions in the convective mantle, originating pyroxenites with a more marked geochemical imprint of either oceanic (Group A) or continental lower crust (Group B), or hybrid compositions (Group C). The pyroxenite protoliths likely underwent several melting events, one of them related to the formation of the subcontinental lithospheric mantle and continental crust, generating restitic UHP garnet pyroxenites now preserved in the Ronda and Beni Bousera orogenic peridotites. The extent of melting was mostly 3 controlled by the bulk Mg-number (Mg#) of the pyroxenite protoliths, where protoliths with low Mg# experienced higher degrees of partial melting than sources with higher Mg#. Positive Eu and Sr anomalies in bulk rocks, indicative of their origin from cumulitic crustal gabbros, are preserved mostly in high Mg# pyroxenites due to their higher melting temperatures and consequent lower partial melting degrees. The results of this study show that the genesis of UHP garnet pyroxenites in orogenic peridotites requires a new recipe for the marble cake mantle hypothesis, combining significant recycling and stirring of both oceanic and continental lower crust in the Earth's mantle. Furthermore, this study establishes a firm connection between the isotopic signatures of UHP pyroxenite heterogeneities in the mantle and the continental lower crust.
DS201806-1259
2018
Wang, L., Wang, S., Brown, M., Zhang, J., Feng, P., Jin, Z.M.On the survival of intergranular coesite in UHP eclogite.Journal of Metamorphic Geology, Vol. 36, 2, pp. 173-194.MantleUHP

Abstract: Coesite is typically found as inclusions in rock?forming or accessory minerals in ultrahigh?pressure (UHP) metamorphic rocks. Thus, the survival of intergranular coesite in UHP eclogite at Yangkou Bay (Sulu belt, eastern China) is surprising and implies locally “dry” conditions throughout exhumation. The dominant structures in the eclogites at Yangkou are a strong D2 foliation associated with tight?to?isoclinal F2 folds that are overprinted by close?to?tight F3 folds. The coesite?bearing eclogites occur as rootless intrafolial isoclinal F1 fold noses wrapped by a composite S1-S2 foliation in interlayered phengite?bearing quartz?rich schists. To evaluate controls on the survival of intergranular coesite, we determined the number density of intergranular coesite grains per cm2 in thin section in two samples of coesite eclogite (phengite absent) and three samples of phengite?bearing coesite eclogite (2-3 vol.% phengite), and measured the amount of water in garnet and omphacite in these samples, and also in two samples of phengite?bearing quartz eclogite (6-7 vol.% phengite, coesite absent). As coesite decreases in the mode, the amount of primary structural water stored in the whole rock, based on the nominally anhydrous minerals (NAMs), increases from 107/197 ppm H2O in the coesite eclogite to 157-253 ppm H2O in the phengite?bearing coesite eclogite to 391/444 ppm H2O in the quartz eclogite. In addition, there is molecular water in the NAMs and modal water in phengite. If the primary concentrations reflect differences in water sequestered during the late prograde evolution, the amount of fluid stored in the NAMs at the metamorphic peak was higher outside of the F1 fold noses. During exhumation from UHP conditions, where NAMs became H2O saturated, dehydroxylation would have generated a free fluid phase. Interstitial fluid in a garnet-clinopyroxene matrix at UHP conditions has dihedral angles >60°, so at equilibrium fluid will be trapped in isolated pores. However, outside the F1 fold noses strong D2 deformation likely promoted interconnection of fluid and migration along the developing S2 foliation, enabling conversion of some or all of the intergranular coesite into quartz. By contrast, the eclogite forming the F1 fold noses behaved as independent rigid bodies within the composite S1-S2 foliation of the surrounding phengite?bearing quartz?rich schists. Primary structural water concentrations in the coesite eclogite are so low that H2O saturation of the NAMs is unlikely to have occurred. This inherited drier environment in the F1 fold noses was maintained during exhumation by deformation partitioning and strain localization in the schists, and the fold noses remained immune to grain?scale fluid infiltration from outside allowing coesite to survive. The amount of inherited primary structural water and the effects of strain partitioning are important variables in the survival of coesite during exhumation of deeply subducted continental crust. Evidence of UHP metamorphism may be preserved in similar isolated structural settings in other collisional orogens.
DS201809-2022
2018
Frigo, C., Stalder, R., Ludwig, T.OH defects in coesite and stishovite during ultrahigh-pressure metamorphism of continental crust. Dora Maira, Kochetav massifsPhysics and Chemistry of Minerals, dor.org/10.1007/ d00269-018-0987-5 13p.Russia, Kazakhstan, Alpscoesite, UHP

Abstract: The high-pressure silica polymorphs coesite and stishovite were synthesized under water-saturated conditions from a natural granitic composition doped with Li and B. Experiments were performed in a Multi-Anvil apparatus between 4 and 9.1 GPa and 900 and 950 °C, based on the conditions of a subducting continental crust as realistic for the ultrahigh-pressure metamorphic units Dora Maira and Kochetav massifs. Run products consisted of coesite/stishovite?+?kyanite?±?phengite?±?omphacite, and quench material. The synthesized silica polymorphs were successively analyzed by infrared spectroscopy, electron microprobe, and Secondary-Ion Mass Spectrometry (SIMS). No hydrous defects were observed in coesite synthesized at 4 GPa and 900 °C, whereas coesite grown at higher pressures revealed a triplet of infrared absorptions bands at 3575, 3523, and 3459 cm??1, two minor bands at 3535 and 3502 cm??1, and a small band at 3300 cm??1 that was only visible at 7.7 GPa. The total amount of Al was charge-balanced by H and the other monovalent cations. However, the band triplet could not be associated with AlOH defects, while the band doublet was inferred to BOH defects and the small band probably corresponded to interstitial H. Stishovite displayed one dominant band at 3116 cm??1 with a shoulder at 3170 cm??1, and a minor band at 2665 cm??1, probably all associated with AlOH defects. BOH defects were not observed in stishovite, and LiOH defects were neither observed in coesite nor stishovite, probably because of preferentially partition of Li in other phases such as omphacite. The total amount of defect protons increased with pressure and with metal impurity concentrations. The general increase in OH defects in silica polymorphs with increasing pressure (this study) contrasted the negative pressure trend of OH in quartz observed previously from the same starting material, and revealed an incorporation minimum of OH in silica polymorphs around the quartz/coesite phase transition.
DS201810-2365
2018
Persikov, E.S., Bukhityarov, P.G., Sokol, A.G.Viscosity of haplokimberlitic and basaltic melts at high pressures: experimental and theoretical studies.Chemical Geology, Vol. 497, pp. 54-63.MantleUHP

Abstract: Only limited data are available at present on the viscosity of kimberlite magmas. We investigate viscosity of synthetic carbonate-bearing (silicate82?+?carbonate18, wt%, 100NBO/T?=?313) anhydrous haplokimberlite melts theoretically and in experiments. We use new experimental data on viscosity of anhydrous haplokimberlite melts and a physical-chemical model (Persikov and Bukhtiyarov 2009; Persikov et al. 2015) to compare basic viscosity features in kimberlitic and basaltic melts (100NBO/T?=?56). Viscosity of melts is determined by the falling sphere quenching method in a large range of temperatures from 1300 to 1950?°C and pressures up to 7.5?GPa. We use two types of high-pressure apparatuses: a high gas pressure apparatus and a high pressure split-sphere multi-anvil apparatus to study the viscosity of melts at moderate (100?MPa CO2 pressure) and high (5.5?GPa and 7.5?GPa) pressures, respectively. The measured viscosity ranges for anhydrous haplokimberlite melts are from 1.5 (±0.45) to 0.11(±0.03) Pa s. The temperature dependence of the viscosity of haplokimberlite and basaltic melts is consistent with the theoretical Arrhenian equation. At a constant temperature, viscosity of anhydrous haplokimberlite melts increases exponentially about ten-fold as pressure increases from 100?MPa to 7.5?GPa. The activation energy of viscous flow increases linearly with pressure increase from 100?MPa to 7.5?GPa for anhydrous haplokimberlite melts but decreases in the case of basaltic melts, with the minimum at ~5.5?GPa. At a moderate pressure (100?MPa), haplokimberlite melts are about twenty times less viscous than basaltic melts, but are about four times more viscous at a high pressure (7.5?GPa), the temperature being 1800?°C in both cases. The experimentally observed behavior of the viscosity of anhydrous haplokimberlite melts is consistent with predictions of the physical-chemical model within the range of uncertainties in both experimental and calculated data (±30% rel.). Thus, the physical-chemical model is used to discuss possible effects of volume percentages of crystals and bubbles on viscosity of kimberlitic and basaltic magmas at different pressures and temperatures during their origin, evolution, and ascent.
DS201902-0313
2018
Ritterbex, S., Harada, T., Tsuchiya, T.Vacancies in MgO at ultrahigh pressure: about mantle rheology of super-Earths.Icarus, Vol. 305, 1, pp. 350-357.MantleUHP

Abstract: First-principles calculations are performed to investigate vacancy formation and migration in the B2 phase of MgO. Defect energetics suggest the importance of intrinsic non-interacting vacancy pairs, even though the extrinsic vacancy concentration might govern atomic diffusion in the B2 phase of MgO. The enthalpies of ionic vacancy migration are generally found to decrease across the B1-B2 phase transition around a pressure of 500?GPa. It is shown that this enthalpy change induces a substantial increase in the rate of vacancy diffusion in MgO of almost four orders of magnitude (?104) when the B1 phase transforms into the B2 phase with increasing pressure. If plastic deformation is controlled by vacancy diffusion, mantle viscosity is expected to decrease in relation to this enhanced diffusion rate in MgO across the B1-B2 transition in the interior of Earth-like large exoplanets. Our results of atomic relaxations near the defects suggest that diffusion controlled creep viscosity may generally decrease across high-pressure phase transitions with increasing coordination number. Plastic flow and resulting mantle convection in the interior of these super-Earths may be therefore less sluggish than previously thought.
DS201903-0510
2019
Frigo, C., Stalder, R., Ludwig, T.OH defects in coesite and stishovite during ultrahigh-pressure metamorphism of continental crust. Dora Massif, KochetavPhysics and Chemistry of Minerals, Vol. 46, pp. 77-89.Russia, Europe, AlpsUHP

Abstract: The high-pressure silica polymorphs coesite and stishovite were synthesized under water-saturated conditions from a natural granitic composition doped with Li and B. Experiments were performed in a Multi-Anvil apparatus between 4 and 9.1 GPa and 900 and 950 °C, based on the conditions of a subducting continental crust as realistic for the ultrahigh-pressure metamorphic units Dora Maira and Kochetav massifs. Run products consisted of coesite/stishovite?+?kyanite?±?phengite?±?omphacite, and quench material. The synthesized silica polymorphs were successively analyzed by infrared spectroscopy, electron microprobe, and Secondary-Ion Mass Spectrometry (SIMS). No hydrous defects were observed in coesite synthesized at 4 GPa and 900 °C, whereas coesite grown at higher pressures revealed a triplet of infrared absorptions bands at 3575, 3523, and 3459 cm??1, two minor bands at 3535 and 3502 cm??1, and a small band at 3300 cm??1 that was only visible at 7.7 GPa. The total amount of Al was charge-balanced by H and the other monovalent cations. However, the band triplet could not be associated with AlOH defects, while the band doublet was inferred to BOH defects and the small band probably corresponded to interstitial H. Stishovite displayed one dominant band at 3116 cm??1 with a shoulder at 3170 cm??1, and a minor band at 2665 cm??1, probably all associated with AlOH defects. BOH defects were not observed in stishovite, and LiOH defects were neither observed in coesite nor stishovite, probably because of preferentially partition of Li in other phases such as omphacite. The total amount of defect protons increased with pressure and with metal impurity concentrations. The general increase in OH defects in silica polymorphs with increasing pressure (this study) contrasted the negative pressure trend of OH in quartz observed previously from the same starting material, and revealed an incorporation minimum of OH in silica polymorphs around the quartz/coesite phase transition.
DS201903-0513
2018
Greaux, S., Yamada, A.Density variations of Cr-rich garnets in the upper mantle inferred from the elasticity of uvarovite garnet.Comptes Rendu Geoscience, doi.org/10.16/ j.crte.2018.09.012 9p.MantleUHP

Abstract: The thermoelastic parameters of Ca3Cr2Si3O12 uvarovite garnet were examined in situ at high pressure up to 13 GPa and high temperature up to 1100 K by synchrotron radiation energy-dispersive X-ray diffraction within a 6-6-type multi-anvil press apparatus. A least-square fitting of room T data to a third-order Birch-Murnaghan (BM3) EoS yielded K0 = 164.2 ± 0.7 GPa, V0 = 1735.9 ± 0.3 Å3 (K’0 fixed to 4.0). P-V-T data were fitted simultaneously by a modified HT-BM3 EoS, which gave the isothermal bulk modulus K0 = 163.6 ± 2.6 GPa, K’0 = 4.1 ± 0.5, its temperature derivative (?K0,T/?T)P = -0.014 ± 0.002 GPa K?1, and the thermal expansion coefficients a0 = 2.32 ± 0.13 ×10?5 K?1 and b0 = 2.13 ± 2.18 ×10?9 K?2 (K’0 fixed to 4.0). Our results showed that the Cr3+ enrichment in natural systems likely increases the density of ugrandite garnets, resulting in a substantial increase of mantle garnet densities in regions where Cr-rich spinel releases chromium through a metasomatic reaction.
DS201903-0550
2019
Wang, D., Vervoort, J.D., Fisher, C.M., Cao, H. Li, G.Integrated garnet and zircon - titanate geochronology constrains the evolution of ultra high pressure terranes: an example from the Sulu orogen.Journal of Metamorphic Geology, in press availableChinaUHP

Abstract: Dating ultrahigh?pressure (UHP) metamorphic rocks provides important timing constraints on deep subduction zone processes. Eclogites, deeply subducted rocks now exposed at the surface, undergo a wide range of metamorphic conditions (i.e., deep subduction and exhumation) and their mineralogy can preserve a detailed record of chronologic information of these dynamic processes. Here we present an approach that integrates multiple radiogenic isotope systems in the same sample to provide a more complete timeline for the subduction?collision?exhumation processes, based on eclogites from the Dabie?Sulu orogenic belt in eastern China, one of the largest ultrahigh?pressure (UHP) terranes on Earth. In this study, we integrate garnet Lu?Hf and Sm?Nd ages with zircon and titanite U?Pb ages for three eclogite samples from the Sulu UHP terrane. We combine this age information with Zr?in?rutile temperature estimates, and relate these multiple chronometers to different P?T conditions. Two types of rutile, one present as inclusions in garnet and the other in the matrix, record the temperatures of UHP conditions and a hotter stage, subsequent to the peak pressure (“hot exhumation”), respectively. Garnet Lu?Hf ages (c. 238 to 235 Ma) record the initial prograde growth of garnet, while coupled Sm?Nd ages (c. 219 to 213 Ma) reflect cooling following hot exhumation. The maximum duration of UHP conditions is constrained by the age difference of these two systems in garnet (c. 235 to 220 Ma). Complementary zircon and titanite U?Pb ages of c. 235 ? 230 Ma and c. 216 ? 206 Ma provide further constraints on the timing of prograde metamorphism and the "cold exhumation", respectively. We demonstrate that timing of various metamorphic stages can thus be determined by employing complementary chronometers from the same samples. These age results, combined with published data from adjacent areas, show lateral diachroneity in the Dabie?Sulu orogeny. Three sub?blocks are thus defined by progressively younger garnet ages: western Dabie (243 ? 238 Ma), eastern Dabie?northern Sulu (238 ? 235 Ma,) and southern Sulu terranes (225 ? 220 Ma), which possibly correlate to different crustal slices in the recently proposed subduction channel model. These observed lateral chronologic variations in a large UHP terrane can possibly be extended to other suture zones.
DS201904-0719
2019
Boulard, E., Harmand, M., Guyot, F., Lelong, G., Morard, D., Cabaret, D., Boccato, S., Rosa, A.D., Briggs, R., Pascarelli, S., Fiquet, G.Ferrous iron under oxygen rich conditions in the deep mantle.Geophysical Research Letters, Vol. 46, 3, pp. 1348-1356.MantleUHP

Abstract: Iron oxides are important end?members of the complex materials that constitute the Earth's interior. Among them, FeO and Fe2O3 have long been considered as the main end?members of the ferrous (Fe2+) and ferric (Fe3+) states of iron, respectively. All geochemical models assume that high oxygen concentrations are systematically associated to the formation of ferric iron in minerals. The recent discovery of O22? peroxide ions in a phase of chemical formula FeO2Hx stable under high?pressure and high?temperature conditions challenges this general concept. However, up to now, the valences of iron and oxygen in FeO2Hx have only been indirectly inferred from a structural analogy with pyrite FeS2. Here we compressed goethite (FeOOH), an Fe3+?bearing mineral, at lower mantle pressure and temperature conditions by using laser?heated diamond?anvil cells, and we probed the iron oxidation state upon transformation of FeOOH in the pressure-temperature stability field of FeO2Hx using in situ X?ray absorption spectroscopy. The data demonstrate that upon this transformation iron has transformed into ferrous Fe2+. Such reduced iron despite high oxygen concentrations suggests that our current views of oxidized and reduced species in the lower mantle of the Earth should be reconsidered.
DS201905-1075
2019
Shchepetova, O.V., Korsakov, A.V., Zelemovskiy, P.S., Mikhailenko, D.S.The mechanism of disordered graphite formation in UHP diamond bearing complexes.Doklady Earth Sciences, Vol. 484, 1, pp. 84-88.RussiaUHP

Abstract: Kyanite gneiss from the “New Barchinsky” locality (Kokchetav Massif) was studied in detail. This rock is characterized by zonal distribution of the C and SiO2 polymorphs in kyanite porphyroblasts: (1) cores with graphite and quartz inclusions; (2) clean overgrowth zone with inclusions of cuboctahedral diamond crystals. The Raman mapping of SiO2 polymorphs originally showed the presence of an association of disordered graphite + coesite “prohibited” in HT diamond-bearing rocks. Graphitization of diamond is the only likely mechanism of the disordered graphite formation in HT diamond-bearing rocks. However, the absence of disordered graphite in association with diamond in kyanite porphyroblasts from kyanite gneiss from the “New Barchinsky” locality eliminates the process of diamond graphitization at the retrograde stage. Most likely, crystallization of disordered graphite occurred at the retrograde stage from the UHP C-O-H fluid.
DS201908-1826
2019
Yan, L-L., Zhang, K-J.Is exhumation of UHP terranes limited to low latitudes? ( coesite and diamond)Journal of Geodynamics, Vol. 130, pp. 41-56.GlobalUHP

Abstract: How the ultrahigh-pressure (UHP) terranes are exhumed to shallow levels but preserving intact relics of the UHP phase assemblages is among the most interesting but challenging topics in geosciences. We investigate all the paleolatitudes where the UHP terranes were exhumed. Our results show that all the UHP terranes in continental collision zones or oceanic accretionary wedges were exhumed within low latitudes (0°-30°), and the average paleolatitude for exhumations of the investigated 43 UHP terranes is ˜5.1° N. In contrast, those UHP xenoliths in mantle-derived igneous rocks could be brought to surface at higher paleolatitudes. Furthermore, the pattern of frequency for the UHP terranes exhumed at convergent boundaries is consistent with that of interglacial stages throughout the Earth history, indicating that the UHP exhumation is controlled by the climate and thus suggesting that the exhumed UHP terranes may be useful paleoclimate indicators.
DS201909-2019
2019
Bataleva, Y., Palyanov, Y., Borzdov, Y., Bayukov, O.Processes and conditions of the origin of Fe3+- bearing magnesiowustite under lithospheric mantle pressures and temperatures.Minerals, Vol. 9, 8, p. 474-MantleUHP

Abstract: An experimental study, implicated in the revealing of the conditions for the origin for Fe3+-bearing magnesiowüstite in the lithospheric mantle, was performed using Mössbauer spectroscopy of pre-synthesized samples. Experiments were carried out using a multi-anvil high-pressure split-sphere apparatus at 6.3-7.5 GPa, in the range of 1100-1650 °C in carbonate-metal, carbonate-oxide-metal, carbonate-oxide, carbide-oxide and carbonate-metal- sulphur systems. In three experimental series, oxygen fugacity gradient in the samples was created, which enabled the study of the processes of magnesiowüstite formation under oxidizing and reducing conditions (?logfO2 (FMQ) values from ?1 to ?5). It was established that Fe3+-bearing magnesiowüstite can form both in assemblage with oxidized phases, such as carbonate or with reduced ones—metal, carbides, sulphides, graphite and diamond. According to the Mössbauer spectroscopy, the composition of synthesized magnesiowüstite varied within a range of Fe3+/?Fe values from 0 to 0.3, with IV and VI coordination of Fe3+ depending on P, T, fO2, x-parameters. It was established that Fe3+-bearing magnesiowüstite formation processes under upper mantle P,T-conditions include redox reactions, with magnesiowüstite being (1) reductant or (2) product of interaction, (3) crystallization processes of magnesiowüstite from an oxidized melt, where magnesiowüstite acts as a sink for ferric iron and (4) iron disproportionation.
DS201909-2082
2019
Schonig, J., von Eynatten, H., Meinhold, G., Lunsdorf, N.K.Diamond and coesite inclusions in detrital garnet of the Saxonian Erzgebirge, Germany.Geology, Vol. 47, 8, pp. 715-718.Europe, GermanyUHP

Abstract: Local occurrences of coesite- and diamond-bearing rocks in the central Erzgebirge (northwestern Bohemian Massif, Germany) reveal ultrahigh-pressure (UHP) metamorphic conditions during the Variscan orogeny. Although UHP metamorphism supposedly affected a wider area, implying that rocks that equilibrated under UHP conditions occur dispersed in large volumes of high-pressure country-rock gneisses, mineralogical evidence is scarce. Here we have applied the new concept of capturing the distribution and characteristics of UHP rocks by analyzing inclusions in detrital garnet. Out of 700 inclusion-bearing garnets from seven modern sand samples from creeks draining the UHP area around the Saidenbach reservoir, we detected 26 garnets containing 46 mainly monomineralic coesite inclusions and 22 garnets containing 41 diamond inclusions. Combining these results with geochemical classification of the host garnets, we show (1) that coesite-bearing rocks are common and comprise eclogites as well as felsic gneisses, (2) that small inclusion size is a necessary precondition for the preservation of monomineralic coesite, and (3) for the first time, that diamond-bearing crustal rocks can be detected by analyzing the detrital record. Our results highlight the potential of this novel application of sedimentary provenance tools to UHP research, and the necessity of looking at the micrometer scale to find evidence in the form of preserved UHP minerals.
DS201909-2093
2019
Su, B., Chen, Y., Mao, Q., Zhang, D., Jia, L-H., Guo, S.Minor elements in olivine inspect the petrogenesis of orogenic peridotites. Dabie -SuluLithos, Vol. 344-345, pp. 207-216.ChinaUHP
DS201912-2826
2019
Sofonov, O.G., Butvina, V.G., Limanov, E.V., Kosova, S.A.Mineral indicators of reactions involving fluid salt components in the deep lithosphere. (eclogites and peridotites)Petrology, Vol. 27, pp. 489-515.MantleUHP, redox

Abstract: The salt components of aqueous and aqueous-carbonic fluids are very important agents of metasomatism and partial melting of crustal and mantle rocks. The paper presents examples and synthesized data on mineral associations in granulite- and amphibolite-facies rocks of various composition in the middle and lower crust and in upper-mantle eclogites and peridotites that provide evidence of reactions involving salt components of fluids. These data are analyzed together with results of model experiments that reproduce some of these associations and make it possible to more accurately determine their crystallization parameters.
DS202001-0045
2019
Tschauner, O.High pressure minerals.American Mineralogist, Vol. 104, pp. 1701-1731.MantleUHP

Abstract: This article is dedicated to the occurrence, relevance, and structure of minerals whose formation involves high pressure. This includes minerals that occur in the interior of the Earth as well as minerals that are found in shock-metamorphized meteorites and terrestrial impactites. I discuss the chemical and physical reasons that render the definition of high-pressure minerals meaningful, in distinction from minerals that occur under surface-near conditions on Earth or at high temperatures in space or on Earth. Pressure-induced structural transformations in rock-forming minerals define the basic divisions of Earth's mantle in the upper mantle, transition zone, and lower mantle. Moreover, the solubility of minor chemical components in these minerals and the occurrence of accessory phases are influential in mixing and segregating chemical elements in Earth as an evolving planet. Brief descriptions of the currently known high-pressure minerals are presented. Over the past 10 years more high-pressure minerals have been discovered than during the previous 50 years, based on the list of minerals accepted by the IMA. The previously unexpected richness in distinct high-pressure mineral species allows for assessment of differentiation processes in the deep Earth.
DS202002-0218
2019
Sonin, V., Leech, M., Chepurov, A., Zhimulev, E., Chepurov, A.Why are diamonds preserved in UHP metamorphic complexes? Experimental evidence for the effect of pressure on diamond graphitization.International Geology Review, Vol. 61, 4, pp. 504-519.Russia, Chinacoesite, UHP

Abstract: The preservation of metastable diamond in ultrahigh-pressure metamorphic (UHPM) complexes challenges our understanding of the processes taking place during exhumation of these subduction zone complexes. The presence of diamonds in UHPM rocks implies that diamonds remained metastable during exhumation, and within thermodynamic stability of graphite for an extended period. This work studies the influence of pressure on the surface graphitization rate of diamond monocrystals in carbonate systems to understand the preservation of microdiamond during exhumation of UHP subduction complexes. Experiments were performed with 2-3 mm synthetic diamond monocrystals at 2-4 GPa in ????3 (1550°?) and ?2??3 (1450°?) melts using a high-pressure multi-anvil apparatus. The highest rate of surface graphitization took place at 2 GPa; diamond crystals were almost completely enveloped by a graphite coating. At 4 GPa, only octahedron-shaped pits formed on flat {111} diamond crystal faces. Our results demonstrate that the surface graphitization rate of diamonds in the presence of carbonate melts at 1450-1550°C increases with decreasing pressure. Decreased pressure alone can graphitize diamond regardless of exhumation rate. Metastable diamond inclusions survive exhumation with little or no graphitization because of excess pressure up to 2 GPa acting on them, and because inclusions are protected from interaction with C-O-H fluid.
DS202005-0741
2020
Keller, D., Ague, J.J.Quartz, mica, and amphibole exsolution from majoritic garnet reveals ultra-deep sediment subduction, Appalachian region.Science Advances, doi. 10.1126/sciadv.aay5178 13p. PdfUnited States, ConnecticutUHT, HPG

Abstract: Diamond and coesite are classic indicators of ultrahigh-pressure (UHP; ?100-kilometer depth) metamorphism, but they readily recrystallize during exhumation. Crystallographically oriented pyroxene and amphibole exsolution lamellae in garnet document decomposed supersilicic UHP majoritic garnet originally stable at diamond-grade conditions, but majoritic precursors have only been quantitatively demonstrated in mafic and ultramafic rocks. Moreover, controversy persists regarding which silicates majoritic garnet breakdown produces. We present a method for reconstructing precursor majoritic garnet chemistry in metasedimentary Appalachian gneisses containing garnets preserving concentric zones of crystallographically oriented lamellae including quartz, amphibole, and sodium phlogopite. We link this to novel quartz-garnet crystallographic orientation data. The results reveal majoritic precursors stable at ?175-kilometer depth and that quartz and mica may exsolve from garnet. Large UHP terranes in the European Caledonides formed during collision of the paleocontinents Baltica and Laurentia; we demonstrate UHP metamorphism from the microcontinent-continent convergence characterizing the contiguous and coeval Appalachian orogen.
DS202005-0741
2020
Keller, D., Ague, J.J.Quartz, mica, and amphibole exsolution from majoritic garnet reveals ultra-deep sediment subduction, Appalachian region.Science Advances, doi. 10.1126/sciadv.aay5178 13p. PdfUnited States, ConnecticutUHT, HPG

Abstract: Diamond and coesite are classic indicators of ultrahigh-pressure (UHP; ?100-kilometer depth) metamorphism, but they readily recrystallize during exhumation. Crystallographically oriented pyroxene and amphibole exsolution lamellae in garnet document decomposed supersilicic UHP majoritic garnet originally stable at diamond-grade conditions, but majoritic precursors have only been quantitatively demonstrated in mafic and ultramafic rocks. Moreover, controversy persists regarding which silicates majoritic garnet breakdown produces. We present a method for reconstructing precursor majoritic garnet chemistry in metasedimentary Appalachian gneisses containing garnets preserving concentric zones of crystallographically oriented lamellae including quartz, amphibole, and sodium phlogopite. We link this to novel quartz-garnet crystallographic orientation data. The results reveal majoritic precursors stable at ?175-kilometer depth and that quartz and mica may exsolve from garnet. Large UHP terranes in the European Caledonides formed during collision of the paleocontinents Baltica and Laurentia; we demonstrate UHP metamorphism from the microcontinent-continent convergence characterizing the contiguous and coeval Appalachian orogen.
DS202008-1379
2020
Chepurov, A.I., Tomilenko, A.A., Sonin, V.M., Zhimulev, E.I., Bulbak, T.A., Cheperov, A.A., Sobolev, N.V.Interaction of an Fe-Ni melt with anthracene ( C14H10) in the presence of olivine at 3 Gpa: fluid phase composition.Doklady Earth Sciences, Vol. 492, pp. 333-337.MantleUHP, diamond

Abstract: The first results on the interaction between an Fe-Ni melt and anthracene (?14?10) in the presence of olivine at 3 GPa and 1500°? and on the study of the component composition of the fluid generated in this process are presented. The stability of aliphatic hydrocarbons in the implemented conditions is confirmed experimentally. It is established that, under these conditions, crystallization of high-magnesian olivines occurs (Fo = 97-98 mol %). The composition of the fluid is similar to the composition of the fluid from inclusions in synthetic diamonds. The conditions implemented in the experiment might have occurred at the early stages of the Earth’s evolution.
DS202009-1662
2020
Smith, E.How the biggest and best diamonds defy exploration.Ore Deposits Hub You Tube ODH029, https://youtu.be/vwt4FSESI84GlobalCLIPPER
DS202010-1880
2020
Sonin, V.M., Tomilenko, A.A., Zhimulev, E.I., Bulbak, T.A., Timina, T.Y., Chepurov, A.I., Pokhilenko, N.P.Diamond crystallization at high pressure: the relative efficiency of metal graphite and metal carbonate systems.Doklady Earth Sciences, Vol. 493, 1, pp. 508-512.RussiaUHP

Abstract: Data on the interaction of the Fe-Ni melt with CaCO3 and graphite at 5 GPa and 1400°? under the thermogradient conditions used in experiments on the growth of diamond on the BARS high-pressure apparatus are presented. The phase composition and component composition of the fluid captured by diamonds in the form of inclusions were studied by gas chromatography-mass spectrometry (GC-MS). Diamonds were synthesized from graphite. During the interaction of the Fe-Ni melt with CaCO3, Ca-Fe oxides and (Fe, Ni)3C carbide were formed. The stability of heavy hydrocarbons under the experimental conditions was confirmed. It was established that the composition of the fluid in synthesized diamonds is close to the composition of the fluid from inclusions in some natural diamonds. Nevertheless, it was concluded that crystallization of large diamonds under natural conditions is hardly possible due to the filling of the main crystallization volume with refractory oxide phases.
DS202102-0206
2020
Massonne, H-J., Li, B.Zoning of eclogitic garnet cores - a key pattern demonstrating the dominance of tectonic erosion as part of the burial process of worldwide occurring eclogites.Earth-Science Reviews, Vol. 210, doi.org/10.1016 /j.earscirev.2020. 103356 27p. Pdf MantleUHP, geodynamics

Abstract: Eclogites are witnesses of geodynamic processes that are commonly related to subduction of oceanic crust. Information on the part of these processes that refers to the burial of this rock type is rarely published but stored in the eclogitic garnet core and inclusions therein. To better understand general aspects of the burial process, a literature search on the chemical characteristics of garnet in worldwide occurrences of eclogite was undertaken. In most cases extended garnet cores show either a prograde growth zoning with increasing Mg, starting at a few percent of pyrope component, and decreasing Mn contents (type I eclogite) or a (nearly) constant chemical composition frequently with pyrope contents significantly above 10 percent (eclogites of types II and III). Only in minor cases, it is difficult to assign the reported garnet core to an eclogite type. The growth zoning of garnet was thermodynamically modelled for the chemical composition of a basalt following different burial paths. These paths are characterized either by a trajectory along a low geothermal gradient (type I eclogite), as expected for the subducting upper portion of oceanic crust, or a one characterized by nearly isothermal burial at temperatures above 500 °C reaching peak pressures up to 2.1 GPa (type III eclogite), as possibly due to crustal thickening during continent-continent collision, or more (type II eclogite) when basic rocks are tectonically eroded from the overriding continental plate before deep subduction. In addition, diffusion modelling was undertaken on mm-sized garnet demonstrating that the characteristics of the core zoning are not fully obliterated even during residence at temperatures of 800-850 °C within 10 million years. The scrutiny of more than 200 eclogites reported in the literature led to the following result: about half of them are type II eclogites; a third and a sixth can be related to type I and type III, respectively. Among type III are almost all of the few Proterozoic eclogites considered. To demonstrate the benefit of our study, we link the core zoning of eclogitic garnet from various (ultra)high-pressure terranes in Phanerozoic orogenic belts to the geodynamics shaping corresponding orogens. The eclogites in these belts are dominated by type II. Thus, we propose that some of the material of the lower portion of the overriding continental crust was tectonically eroded by a subducted oceanic plate and brought to great depth. Afterwards, this material was exhumed first in a deep subduction channel and then in an exhumation channel during continent-continent collision where a contact with the upper continental plate was re-established. Furthermore, we suggest that type II eclogite can also occur in extrusion wedges as far as oblique subduction took place.
DS202103-0415
2021
Taguchi, T., Kouketsu, Y., Igami, Y., Kobayashi, T., Miyake, A.Hidden intact coesite in deeply subducted rocks.Earth and Planetary Science Letters, Vol. 558, 115763, 6p. PdfEurope, ItalyUHP

Abstract: The stabilization of coesite is a diagnostic indicator of ultrahigh-pressure metamorphism and in many cases it implies that a rock has been subducted to a minimum depth of 80 km. Coesite typically occurs as rare relicts in rigid host minerals, but most commonly transforms into ?-quartz pseudomorphs during exhumation. The abundance of coesite-bearing rocks in orogens worldwide is a contentious issue in the petrological community, despite evidence from numerical modeling that suggests that coesite formation should be a common geological process during ultrahigh-pressure metamorphism. This knowledge gap must be addressed to improve the understanding of the geological aspects of subduction-zone geodynamics. Here we report that minuscule coesites (<20 ?m) occur as abundant inclusions in garnet-rich layers from the Italian Western Alps. The discovery of such intact inclusions may fill the gaps in the predicted and observed abundances of coesite worldwide. Through integrated approaches with resolutions down to the nano-scale, we show that these garnet-hosted inclusions are composed entirely of coesite. Our results suggest that common coesite-derived quartz pseudomorphs are less typical structures in ultrahigh-pressure metamorphic rocks and the minuscule coesite in many rocks may be overlooked because of its size. These findings open up new research directions for constraining the extent of deeply subducted rocks and their rheology.
DS202107-1117
2021
Nakanishi, N., Giuliani, A., Carlson, R.W., Horan, M.F., Woodhead, J., Pearson, D.G., Walker, R.J.Tungsten-182 evidence for an ancient kimberlite source.PNAS, Vol. 118, no. 23, doi.org/10.1073/pnas .e2020680118 8p. PdfMantledeep source, genesis

Abstract: Globally distributed kimberlites with broadly chondritic initial 143Nd-176Hf isotopic systematics may be derived from a chemically homogenous, relatively primitive mantle source that remained isolated from the convecting mantle for much of the Earth’s history. To assess whether this putative reservoir may have preserved remnants of an early Earth process, we report 182W/184W and 142Nd/144Nd data for "primitive" kimberlites from 10 localities worldwide, ranging in age from 1,153 to 89 Ma. Most are characterized by homogeneous ?182W and ?142Nd values averaging ?5.9 ± 3.6 ppm (2SD, n = 13) and +2.7 ± 2.9 ppm (2SD, n = 6), respectively. The remarkably uniform yet modestly negative ?182W values, coupled with chondritic to slightly suprachondritic initial 143Nd/144Nd and 176Hf/177Hf ratios over a span of nearly 1,000 Mya, provides permissive evidence that these kimberlites were derived from one or more long-lived, early formed mantle reservoirs. Possible causes for negative ?182W values among these kimberlites include the transfer of W with low ?182W from the core to the mantle source reservoir(s), creation of the source reservoir(s) as a result of early silicate fractionation, or an overabundance of late-accreted materials in the source reservoir(s). By contrast, two younger kimberlites emplaced at 72 and 52 Ma and characterized by distinctly subchondritic initial 176Hf/177Hf and 143Nd/144Nd have ?182W values consistent with the modern upper mantle. These isotopic compositions may reflect contamination of the ancient kimberlite source by recycled crustal components with ?182W ? 0.
DS202107-1133
2021
Smith, E.M., Nestola, F.Super-deep Diamonds: emerging mantle insights from the past decade.Mantle Convection and Surface Expressions, Geophysical Monograph, No. 263, Chapter 7, pp. 179- 14p. PdfMantleinclusions, subduction, CLIPPER

Abstract: Some rare diamonds originate below the lithosphere, from depths of 300-800 km and perhaps deeper. Ongoing sublithospheric or super-deep diamond research is providing new insight into the mantle and the hidden consequences of plate tectonics. Here we highlight several advances in the past decade, stemming from the discovery of inclusions from oceanic crust at lower mantle depths; inclusions having geochemical imprints of low-degree car-bonatitic melt, possibly from subducted slabs; hydrous ringwoodite and other signs of deep water; major mantle minerals preserved in their original crystal structure, including ringwoodite and CaSiO 3-perovskite; additional diamond varieties with a super-deep origin (CLIPPIR and type IIb diamonds), greatly increasing the known prevalence and diversity of super-deep diamonds; and consistent, recurring Fe-Ni-C-S metallic melt inclusions from depths of 360-750 km. Redox freezing of oxidized, slab-derived fluid/melt upon interaction with ambient metal-saturated mantle appears to be a phenomenon broadly recorded by many super-deep diamonds. Melting of car-bonate, as well as dehydration reactions, from subducted slabs are relevant mechanisms that may generate fluid/ melt contributing to diamond growth. Fe-Ni metal, with dissolved carbon, sulfur, and other elements is also indicated as a possible diamond-forming melt. These mobile and dynamic phases are agents of chemical mass-transfer in the deep mantle.
DS202108-1282
2019
Fedoraeva, A.S., Shatskiy, A., Litasov, K.D.The join CaCO3 -CaSiO3 at 6 Gpa with implication to Ca-rich lithologies trapped by kimberlitic diamonds. ** dateInternational Journal of High Pressure Research, Vol. 39, 4, pp. 547-560.RussiaUHP
DS202110-1605
2021
Chakaoumakos, B.C., Parise, J.B.Probing phase transitions and magnetism in minerals with neutrons.Elements, Vol. 17, pp. 181-188.Mantlegeophysics - magnetics, HP

Abstract: The development of sophisticated sample environments to control temperature, pressure, and magnetic field has grown in parallel with neutron source and instrumentation development. High-pressure apparatus, with high- and low-temperature capability, novel designs for diamond cells, and large volume presses are matched with next-generation neutron sources and moderator designs to provide unprecedented neutron beam brightness. Recent developments in sample environments are expanding the pressure-temperature space accessible to neutron scattering experiments. Researchers are using new capabilities and an increased understanding of the fundamentals of structural and magnetic transitions to explore new territories, including hydrogenous minerals (e.g., ices and hydrates) and magnetic structural phase diagrams.
DM202112-2021
2021
Jeffay, J.The deep, dark life of diamonds. ( Super-deep)idexonline.com, Nov. 18, 1/2p.GlobalNews item - Super-deep
DS202112-1950
2021
Smith, E., Nestola, F.Super-deep diamonds: emerging deep mantle insights from the past decade.In: Mantle Convection and Surface Expressions, Geophysical Monograph, editors Marquarte, H., Ballmer, M., Vottaar, S., Konter, J., no. 263, 14p. PdfMantleSuper-deep diamonds

Abstract: Some rare diamonds originate below the lithosphere, from depths of 300-800 km and perhaps deeper. Ongoing sublithospheric or super-deep diamond research is providing new insight into the mantle and the hidden consequences of plate tectonics. Here we highlight several advances in the past decade, stemming from the discovery of inclusions from oceanic crust at lower mantle depths; inclusions having geochemical imprints of low-degree car-bonatitic melt, possibly from subducted slabs; hydrous ringwoodite and other signs of deep water; major mantle minerals preserved in their original crystal structure, including ringwoodite and CaSiO 3-perovskite; additional diamond varieties with a super-deep origin (CLIPPIR and type IIb diamonds), greatly increasing the known prevalence and diversity of super-deep diamonds; and consistent, recurring Fe-Ni-C-S metallic melt inclusions from depths of 360-750 km. Redox freezing of oxidized, slab-derived fluid/melt upon interaction with ambient metal-saturated mantle appears to be a phenomenon broadly recorded by many super-deep diamonds. Melting of car-bonate, as well as dehydration reactions, from subducted slabs are relevant mechanisms that may generate fluid/ melt contributing to diamond growth. Fe-Ni metal, with dissolved carbon, sulfur, and other elements is also indicated as a possible diamond-forming melt. These mobile and dynamic phases are agents of chemical mass-transfer in the deep mantle.
DS202201-0008
2021
Celestian, A.JNew mineral names: diamonds, dumps and fumaroles.: crowningshieldite.American Mineralogist, Vol. 106, p. 208 1/4p.Africa, LesothoCLIPPIR - Letseng

Abstract: In this series of New Mineral Names, a thematic approach is used to help provide context for advances and discoveries in mineralogy. Planet Earth is ever-changing, and unique crystals are found in the tiniest of micro-geologic niches. With emerging analytical techniques, the formerly inaccessible becomes accessible. New minerals inspire creative approaches to overcoming chemical and technological challenges and can reveal what the Earth was like billions of years ago. In this issue, we look at recently described minerals that are associated with diamonds, dumps, and fumaroles: crowningshieldite, goldschmidtite, breyite, cardite, grimmite, hrabákite, freitalite, dioskouriite, dobrovolskyite, ferroefremovite, and vasilseverginite.
DS202201-0041
2021
Smith, E.Exploration implications of isotopically heavy iron in large gem type IIa diamonds.GAC/MAC Meeting UWO, 1p. Abstract p. 279.Africa, LesothoCLIPPIR - Letseng

Abstract: Large, high-quality type IIa diamonds such as the Cullinan and the Koh-i-Noor are among the most elusive of mined gem diamonds. These are called CLIPPIR diamonds, an acronym reflecting the distinguishing physical characteristics of this variety of diamonds (Cullinan-like, Large, Inclusion Poor, Pure, Irregular, Resorbed) [1]. There is currently no reliable method to predict the occurrence of CLIPPIR diamonds in a deposit, which remains a hurdle for exploration and mining [2]. Mineral inclusions reveal that these are sublithospheric diamonds [1], which explains why their occurrence is effectively independent from more common eclogitic and peridotitic lithospheric diamonds and their associated indicator minerals. More recently, an analysis of iron isotopes in the metallic inclusions sometimes found in CLIPPIR diamonds has provided additional insight into their formation, which may provide clues for exploration. Three measurements of metallic Fe-Ni-C-S inclusions from two diamonds from the Letseng mine, Lesotho reveal remarkably heavy iron isotopic compositions, ?56Fe = 0.79-0.90‰ [3]. These measurements lie far outside the range of known mantle compositions (near 0‰) or expected reaction products at depth. Instead, the heavy signature is ascribed to subducted iron sourced from magnetite and/or Fe-Ni alloys precipitated during seafloor serpentinization of oceanic peridotite. These metallic inclusions provide physical evidence that traces serpentinite subduction into the mantle transition zone. This finding is a step toward a genetic model for CLIPPIR diamonds. Their formation requires input from deeply subducted serpentinized peridotite. Furthermore, this input may come specifically from cold subducting slabs, whose serpentinized mantle portions can bypass the shallow sub-arc dehydration activity and instead transport serpentinite-derived components such as hydrous minerals and iron-rich phases to the transition zone/uppermost lower mantle [4]. The results suggest that geochemical signatures related to deeply subducted serpentinites may eventually provide a basis for targeting CLIPPIR diamonds in volcanic deposits at surface.

 
 

You can return to the Top of this page


Copyright © 2024 Kaiser Research Online, All Rights Reserved