Kaiser Bottom Fish OnlineFree trialNew StuffHow It WorksContact UsTerms of UseHome
Specializing in Canadian Stocks
SearchAdvanced Search
Welcome Guest User   (more...)
Home / Education
Education
 

SDLRC - Region: Canada - Technical - 2008 onwards


The Sheahan Diamond Literature Reference Compilation - Technical Articles based on Major Region - Canada: 2008 onwards
The Sheahan Diamond Literature Reference Compilation is compiled by Patricia Sheahan who publishes on a monthly basis a list of new scientific articles related to diamonds as well as media coverage and corporate announcements called the Sheahan Diamond Literature Service that is distributed as a free pdf to a list of followers. Pat has kindly agreed to allow her work to be made available as an online digital resource at Kaiser Research Online so that a broader community interested in diamonds and related geology can benefit. The references are for personal use information purposes only; when available a link is provided to an online location where the full article can be accessed or purchased directly. Reproduction of this compilation in part or in whole without permission from the Sheahan Diamond Literature Service is strictly prohibited. Return to Diamond Region Index
Sheahan Diamond Literature Reference Compilation - Scientific Articles by Author for all years
A-An Ao+ B-Bd Be-Bk Bl-Bq Br+ C-Cg Ch-Ck Cl+ D-Dd De-Dn Do+ E F-Fn Fo+ G-Gh Gi-Gq Gr+ H-Hd He-Hn Ho+ I J K-Kg Kh-Kn Ko-Kq Kr+ L-Lh
Li+ M-Maq Mar-Mc Md-Mn Mo+ N O P-Pd Pe-Pn Po+ Q R-Rh Ri-Rn Ro+ S-Sd Se-Sh Si-Sm Sn-Ss St+ T-Th Ti+ U V W-Wg Wh+ X Y Z
Sheahan Diamond Literature Reference Compilation - Media/Corporate References by Name for all years
A B C D-Diam Diamonds Diamr+ E F G H I J K L M N O P Q R S T U V W X Y Z
Each article reference in the SDLRC is tagged with one or more key words assigned by Pat Sheahan to highlight the main topics of the article. In addition most references have been tagged with one or more region words. In an effort to make it easier for users to track down articles related to a specific region, KRO has extracted these region words and developed a list of major region words presented in the Major Region Index to which individual region words used in the article reference have been assigned. Each individual Region Report contains in chronological order all the references with a region word associated with the Major Region word. Depending on the total for each reference type - technical, media and corporate - the references will be either in their own technical, media or corporate Region Report, or combined in a single report. Where there is a significant number of technical references there will be a technical report dedicated to the technical articles while the media and corporate references are combined in a separate region report. References that were added in the most recent monthly update are highlighted in yellow within the Region Report. The Major Region words have been defined by a scale system of "general", "continent", "country", "state or province" and "regional". Major Region words at the smaller scales have been created only when there are enough references to make isolating them worthwhile. References not tagged with a Region are excluded, and articles with a region word not matched with a Major Region show up in the "Unknown" report.
Kimberlite - diamondiferous Lamproite - diamondiferous Lamprophyre - diamondiferous Other - diamondiferous
Kimberlite - non diamondiferous Lamproite - non diamondiferous Lamprophyre - non diamondiferous Other - non diamondiferous
Kimberlite - unknown Lamproite - unknown Lamprophyre - unknown Other - unknown
Future Mine Current Mine Former Mine Click on icon for details about each occurrence. Works best with Google Chrome.
CITATION: Faure, S, 2010, World Kimberlites CONSOREM Database (Version 3), Consortium de Recherche en Exploration Minérale CONSOREM, Université du Québec à Montréal, Numerical Database on consorem.ca. NOTE: This publicly available database results of a compilation of other public databases, scientific and governmental publications and maps, and various data from exploration companies reports or Web sites, If you notice errors, have additional kimberlite localizations that should be included in this database, or have any comments and suggestions, please contact the author specifying the ID of the kimberlite: [email protected]
Canada: 2008 onwards - Technical
Posted/
Published
AuthorTitleSourceRegionKeywords
DS200812-0003
2008
Agashev, A.M., Kuligan, S.S., Orihashi, Y., Pokhilenko, N.P., Vavilov, M.A., Clarke, D.Ages of zircons from Jurassic sediments of Bluefish River slope, NWT and the possible age of kimberlite activity in the Lena West property.Doklady Earth Sciences, Vol. 421, 1, pp. 751-754.Canada, Northwest TerritoriesDeposit - Lena West, geochronology
DS200812-0004
2008
Agashev, A.M., Pokhilenko, N.P., Takazawa, E., McDonald, J.A., Vavilov, M.A., Watanabe, T., Sobolev, N.V.Primary melting sequence of a deep ( >250 km) lithospheric mantle as recorded in the geochemistry of kimberlite carbonatite assemblages, Snap Lake dyke system, Canada.Chemical Geology, Vol. 255, 3-4, pp. 317-328.Canada, Northwest TerritoriesDeposit - Snap Lake
DS200812-0024
2008
Alvey, A., Gaina, C.,Kusznir, N.J., Torsvik, T.H.Integrated crustal thickness mapping and plate reconstructions for the high Arctic.Earth and Planetary Science Letters, In press availableCanada, Arctic, GreenlandTectonics, plate, lithosphere
DS200812-0043
2007
Armstrong, J.P.An exploration update for the Aviat and Qilalugaq diamond projects, Melville Peninsula, Nunavut Stornoway35th. Yellowknife Geoscience Forum, Abstracts only p.1.Canada, NunavutExploration - brief overview
DS200812-0044
2007
Armstrong, J.P.The Renard kimberlites, Otish Mountains, Quebec: a development track project. Stornoway35th. Yellowknife Geoscience Forum, Abstracts only p.2.Canada, QuebecExploration - brief overview
DS200812-0045
2008
Armstrong, J.P.New advances in the geology of the Aviat kimberlites, Aviat project, Melville Peninsula, Nunavut.Northwest Territories Geoscience Office, p. 11. abstractCanada, Nunavut, Melville PeninsulaBrief overview - Stornoway
DS200812-0046
2008
Arndt, N.T., Coltice, N., Helstaedt, H., Gregoire, M.Origin of Archean subcontinental lithospheric mantle: some petrological constraints.Lithos, In press available 47p.CanadaArchean - craton
DS200812-0055
2007
Atkinson, B.T., et al.De Beers Canada Victor project... very brief one paragraph and photo of project area.Ontario Geological Survey Report of Activities, Timmins District - 2006., p. 19-20. ( 1/4p.)Canada, Ontario, AttawapiskatNews item - De Beers
DS200812-0056
2007
Atkinson, B.T., et al.Diamonds in Timiskaming conglomerate. Very brief one paragraph overview of Dianor.Ontario Geological Survey Report of Activities, Timmins District - 2006., p. 69 ( 1/4p.)Canada, Ontario, WawaNews item - Dianor
DS200812-0059
2008
Aulbach, S., Creaser, R.A.,Heaman, L.M., Simonetti, S.S., Griffin, W.L., Stachel, T.Sulfides, diamonds and eclogites: their link to peridotites and Slave Craton hydrothermal evolution.Goldschmidt Conference 2008, Abstract p.A36.Canada, Northwest TerritoriesDeposit - A 154, geochronology
DS200812-0073
2008
Bailey, B.L., Smith, L., Neuner, M., Gupton, M., Blowes, D.W., Smith, L., Sego, D.C., Gould, D.Diavik waste rock project: early stage geochemistry and microbiology of effluent from low sulfide content waste rock piles.Northwest Territories Geoscience Office, p. 11-12. abstractCanada, Northwest TerritoriesDeposit - Diavik
DS200812-0132
2008
Bowman, J.R., Moser, D.E., Wooden, J.L., Valley, J.W., Mazdab, F.K., Kita, N.Cathodluminescence CL isotopic Pb O and trace element zoning in lower crustal zircon documents growth of early continental lithosphere.Goldschmidt Conference 2008, Abstract p.A107.Canada, OntarioKapuskasing Uplift
DS200812-0137
2007
Brett, R.C., Russell, J.K.Origin of olivine in kimberlite: phenocryst or imposter?35th. Yellowknife Geoscience Forum, Abstracts only p.5-6 .Canada, Northwest TerritoriesPetrology - Diavik
DS200812-0138
2008
Brett, R.C., Russell, J.K., Moss, S.Origins of olivine in kimberlite: phenocryst or imposter?9IKC.com, 3p. extended abstractCanada, Northwest TerritoriesDeposit - Diavik
DS200812-0146
2008
Brown, R.J., Field, M., Gernon, T., Gilbertson, M., Sparks, R.S.J.Problems with in vent column collapse model for the emplacement of massive volcaniclastic kimberlite. Discussion of Porritt - Fox kimberliteJournal of Volcanology and Geothermal Research, in press available 8p.Canada, Northwest territoriesFox kimberlite petrology
DS200812-0163
2008
Burwash, R.A., Cavell, P., Simonetti, A., Chacko, T., Luth, R.W., Nelson, D.B.LA MC ICP MS dating of zircon using petrographic thin sections: an investigation of buried Archean basement in southern Alberta.Goldschmidt Conference 2008, Abstract p.A123.Canada, AlbertaGeochronology
DS200812-0176
2007
Campbell, S.Snap Lake diamond project extraction planning. De Beers35th. Yellowknife Geoscience Forum, Abstracts only p.8.Canada, Northwest TerritoriesMining - Snap Lake
DS200812-0177
2008
Canil, D.Canada's craton: a bottoms-up view.GSA Today, June pp. 4-10.CanadaCraton, overview
DS200812-0178
2008
Canil, D.Cratons and continents: a view from below.Goldschmidt Conference 2008, Abstract p.A134.CanadaCraton
DS200812-0185
2008
Cas, R.A.F., Hayman, P., Pittari, A., Porritt, L.Some major problems with existing models and terminology associated with kimberlite pipes from a volcanological perspective, and some suggestions.Journal of Volcanology and Geothermal Research, Vol. 174, 1-3, pp. 209-225.Africa, CanadaVolcanology, original textures, alteration, terminology
DS200812-0186
2008
Castor, S.B.Rare earth deposits of North America.Resource Geology, Vol. 58, 4, pp. 337-347.United States, CanadaCarbonatite
DS200812-0192
2008
Chakhmouradian, A.H., Bohm, C.O., Demeny, A., Reguir, E.P., Hegger, E., Halden, N.M., Yang, P.Kimberlite from Wekusko Lake, Manitoba: a diamond indicator bearing beforsite and not a kimberlite, after all.9IKC.com, 3p. extended abstractCanada, manitobaCarbonatite
DS200812-0194
2008
Chakhmouradian, A.R., Demeny, A., Reguir, E.P., Hegner, E., Halden, N.M., Yang, P.'Kimberlite' from Wekusko Lake, Manitoba: re-assessment and implications for further exploration. Beforsite ( primary dolomite carbonatite)... 'notion' could beManitoba Geological Survey, Nov. 21, 1p. abstract.Canada, ManitobaPetrology - potentially diamondiferous
DS200812-0195
2008
Chakhmouradian, A.R., Mitchell, R.H., Burns, P.C., Mikhailova, Yu., Reguir, E.P.Marianoite, a new member of the cuspidine group from the Prairie Lake silicocarbonatite.Canadian Mineralogist, Vol. 46, 4, August pp.Canada, OntarioCarbonatite
DS200812-0196
2008
Chakhmouradian, A.R., Mumin, A.H., Demeny, A., Elliott, B.Postorogenic carbonatites at Eden lake, Trans-Hudson Orogen ( northern Manitoba, Canada): geological setting, mineralogy and geochemistry.Lithos, Vol. 103, pp. 503-526.Canada, ManitobaCarbonatite
DS200812-0221
2008
CIM GuidelinesDiamonds: Estimation of mineral resources & mineral reserves - best practices guidelines.Canadian Institute of Mining and Metallurgy, 10 p. SummerCanada, GlobalGuidelines for resources and reserve reporting
DS200812-0248
2007
Coutts, B., Heimbach, J., Dyck, D.Panda, from pyrope to production ( now you've found a kimberlite, the work is just starting). BHP Billiton35th. Yellowknife Geoscience Forum, Abstracts only p. 11-12.Canada, Northwest TerritoriesMine planning - Panda
DS200812-0250
2007
Creighton, S., Stachel, T., McLean, H., Muehlenbachs, K., Simonett, A., Eichenberg, D., Luth, R.Diamondiferous peridotitic microxenoliths from the Diavik diamond mine, NT.Contributions to Mineralogy and Petrology, Vol.155, 5, pp. 541-554.Canada, Northwest TerritoriesDeposit - Diavik, mineral inclusions, chemistry
DS200812-0258
2008
Danielson, V.Rare purple diamonds add sizzle to Quebec discovery. Metalex Ventures - Fipke. Dianor - Ryder and Wawa area diamonds.Diamonds in Canada Magazine, Northern Miner, June, pp. 15-19.Canada, Quebec, OntarioDianor and Metalex projects
DS200812-0274
2007
De Rosemond, S., Irving, E., Liber, K.Benthic invertebrate colonization of kimberlite tailings from the Ekati diamond mine.Canadian Technical Report of Fisheries and Aquatic Sciences, No. 2746, p.27, Ingenta art1075288601Canada, Northwest TerritoriesDeposit - Ekati environmental
DS200812-0297
2008
Doyle, B.J., Gill, T.I., Thompson, V.The discovery of the Dharma kimberlite complex: evidence for a previously unknown Archean terrain north of Great Bear Lake.Northwest Territories Geoscience Office, p. 21. abstractCanada, Northwest TerritoriesBrief overview - Sanatana, Kennecott
DS200812-0298
2008
Doyle, M.'Fishing for Diamonds' Ontario's first diamond mine. VictorProspectors and Developers Association of Canada, March 3, 1/8p. abstract.Canada, Ontario, AttawapiskatVictor - overview
DS200812-0311
2008
Eccles, D.R., Creaser, R.A., Heaman, L.M., Ward, J.RbSr and UpB geochronology and setting of the Buffalo Head Hills kimberlite field, northern Alberta.Canadian Journal of Earth Sciences, Vol. 45, 5, pp. 513-529.Canada, AlbertaGeochronology
DS200812-0312
2008
Eccles, D.R., Heaman, L.M., Sweet, A.R.Kimberlite sourced bentonite; its paleoenvironment and implications for the Late Cretaceous K14 kimberlite cluster, northern Alberta.Canadian Journal of Earth Sciences, Vol. 45, 5, pp. 531-547.Canada, AlbertaK 14 project
DS200812-0314
2008
Eichenberg, D.The Diavik A154 open pit - geology and mining from start to finish.Northwest Territories Geoscience Office, p. 24. abstractCanada, Northwest TerritoriesBrief overview - Rio Tinto
DS200812-0335
2008
Fabbri, A.G., Chung, C-J.On blind tests and spatial prediction models. ( Lac de Gras diamond deposits)Natural Resources Research, Vol. 17, 2, June pp. 107-118.Canada, Northwest TerritoriesDiamond deposit - model
DS200812-0340
2008
Farrell, S., Clark, I., Bell, K.Sulphur isotopes in carbonatites and associated silicate rocks from the Superior Province Canada.Goldschmidt Conference 2008, Abstract p.A258.Canada, OntarioCarbonatite
DS200812-0343
2008
Fedortchouk, Y., Matveev, S., Charnell, C., Carlson, J.A.Kimberlitic fluid as recorded by dissolving diamonds and crystallizaing olivine phenocrysts in five Lac de Gras kimberlites, Northwest Territories, Canada.9IKC.com, 3p. extended abstractCanada, Northwest TerritoriesDeposit - Ekati
DS200812-0351
2007
Finlayson, D.Romancing the stone.... stubborn, hopeful miners won't abandon the search for diamonds in Alberta.... Brian Testo of Grizzly Diamonds.Edmonton Journal, Nov. 30, 3p.Canada, AlbertaNews item - Grizzly
DS200812-0356
2008
Flowers, R.M.High to low temperature geo and thermochronology and the reactivation and stability of continental lithosphere, western Canadian shield.Goldschmidt Conference 2008, Abstract p.A275.Canada, SaskatchewanGeothermometry
DS200812-0357
2008
Flowers, R.M., Bowring, S.A., Mahan, K.H., Williams, M.L., Wiliams, I.S.Stabilization and reactivation of cratonic lithosphere from the lower crustal record in the western Canadian Shield.Contributions to Mineralogy and Petrology, in press available, 21p.Canada, SaskatchewanCraton
DS200812-0358
2008
Flowers, R.M., Bowring, S.A., Mahan, K.H., Williams, M.L., Williams, I.S.Stabilization and reactivation of cratonic lithosphere from the lower crustal record in the western Canadian Shield.Contributions to Mineralogy and Petrology, Vol. 156, 4, pp. 529-549.Canada, Northwest TerritoriesCraton
DS200812-0359
2008
Flowers, R.M., Bowring, S.A., Mahan, K.H., Williams, M.L., Williams, I.S.Stabilization and reactivation of cratonic lithosphere from the lower crustal record in the western Canadian shield.Contributions to Mineralogy and Petrology, in press available, 21p.Canada, Alberta, Saskatchewan, ManitobaGeochronology, recycling
DS200812-0365
2008
Francis, D., Maurice, C.Ferropicrites and Archean crustal reworking in the northeastern Superior Provionce of Quebec.Goldschmidt Conference 2008, Abstract p.A281.Canada, QuebecPicrite
DS200812-0381
2007
Ganley, M.Target practice .. Government of NWT has suffered share of setbacks and blunders .. with new legislative assembly in place, might it improve its aim?Canadian Diamonds, Fall, pp.20-24.Canada, Northwest TerritoriesOverview - legal
DS200812-0382
2008
Ganley, M.Will Tahera make it?UpHere Business, Vol. 1, 1, pp. 32-33,34, 36,38.Canada, NunavutJericho mine
DS200812-0395
2008
Geological Society of AmericaGeologic map of North America.geosociety.org, CSM001R $ 35.00United States, CanadaMap - geology
DS200812-0422
2008
Goldstein, S.B., Francis, D.The petrogenesis and mantle source of Archean ferropicrite from the Western Superior Province, Ontario, Canada.Journal of Petrology, Vol. 49, 10, pp. 1729-1753.Canada, Ontario, ManitobaPicrite
DS200812-0433
2008
Grunsky, E.C., Kjarsgaard, B.A.Classification of distinct eruptive phases of the Diamondiferous Star kimberlite, Sask. based on statistical treatment whole rock geochemical analyses.Applied Geochemistry, in press available.Canada, SaskatchewanClassification - geochemistry - Star
DS200812-0434
2008
Grunsky, E.C., Kjarsgaard, B.A.Classification of distinct eruptive phases of the Diamondiferous Star kimberlite, Saskatchewan, Canada based on statistical treatment of whole rock geochemical analyses.Applied Geochemistry, Vol. 23, 12, pp. 3321-3336.Canada, SaskatchewanDeposit - Star
DS200812-0443
2008
Halls, H.C., Davis, D.W., Stott, G.M., Ernst, R.E., Hamilton, M.A.The Paleoproterozoic Marathon large igneous province: new evidence for a 2.1 Ga long lived mantle plume event along the southern margin of the N.A. Superior ProvincePrecambrian Research, Vol. 162, 3-4, pp. 327-353.Canada, OntarioMantle plume
DS200812-0454
2008
Hattori, K., Hamilton, S.Geochemistry of peat over kimberlites in the Attawapiskat area, James Bay Lowlands, northern Ontario.Applied Geochemistry, Vol. 23, 12, pp. 3767-3782.Canada, Ontario, Attawapiskat, James Bay LowlandsDeposit - Victor
DS200812-0458
2008
Hayman, P.C., Cas, R.F., Johnson, M.Difficulties in distinguishing coherent from fragmental kimberlite: a case study of the Muskox pipe ( northern Slave Province, Nunavut, Canada).Journal of Volcanology and Geothermal Research, Vol. 174, 1-3, pp. 139-151.Canada, NunavutCoherent hypabyssal, gradational contact, alteration
DS200812-0460
2007
Hefferman, V.Renard pre-feasibility hinges on access, diamond value.Diamonds in Canada Magazine, Northern Miner, November pp. 26-27.Canada, QuebecNews item - Renard
DS200812-0461
2007
Hefferman, V.It's the homestretch for De Beers at Victor.Diamonds in Canada Magazine, Northern Miner, November pp. 23-25.Canada, Ontario, AttawapiskatNews item - Victor
DS200812-0462
2008
Heffernan, V.Is Amaruk the real deal? Buoyed by early results, Diamonds North seeks size in Nunavut's most promising diamond camp.Northern Miner, Diamonds in Canada, June pp. 2-5.Canada, NunavutHistory, overview
DS200812-0463
2008
Heffernan, V.Taher-ible.... little room for error reality and then things get rough.Northern Miner, Mining Markets, Vol. 1, 1, pp. 32-36.Canada, NunavutJericho mine
DS200812-0469
2008
Hetman, C.M.Tuffisitic kimberlite ( TK): a Canadian perspective on a distinctive textural variety of kimberlite.Journal of Volcanology and Geothermal Research, Vol. 174, 1-3, pp. 57-67.Canada, Northwest Territories, QuebecTKB, breccia, volcaniclastic, MVK, diatreme,emplacement
DS200812-0478
2008
Hoefer, T.Diavik update: the first five years.Prospectors and Developers Association of Canada, March 3, 1/8p. abstract.Canada, Northwest TerritoriesDiavik overview
DS200812-0483
2008
Holmes, P.K., Grenon, H., Self, M.V., Pell, J., Neilson, S.The Chidliak property, a new diamond district on Baffin Island, Nunavut.Northwest Territories Geoscience Office, p. 35. abstractCanada, Nunavut, Baffin IslandBrief overview - Peregrine
DS200812-0490
2008
Huang, J., Veronneau, M., Mainville, A.Assessment of systematic errors in the surface gravity anomalies over North America using the GRACE gravity model.Geophysical Journal International, Vol. 175, 1, pp. 46-54.United States, CanadaGeophysics - gravity
DS200812-0492
2007
Hunt, L., Stachel, T., McCandless, T.A study on diamonds and their mineral inclusions from the Renard kimberlites, Quebec. Stornoway35th. Yellowknife Geoscience Forum, Abstracts only p. 25-26.Canada, QuebecDiamond inclusions - Renard
DS200812-0493
2008
Hunt, L., Stachel, T., Simonetti, T., Armstrong, J., McCandless, T.E.Microxenoliths from the Renard kimberlites, Quebec.Northwest Territories Geoscience Office, p. 35-36. abstractCanada, QuebecBrief overview - Stornoway
DS200812-0505
2007
Irving, M.So much room to grow... Canada's diamond industry and potential.Canadian Diamonds, Fall, p. 10, 46.CanadaBrief overview of diamond industry
DS200812-0506
2008
Irving, M.Canadian diamond industry - the future. Power point presentation... places and concepts... not much in info.Israel Diamond Industry Conference, 17p. ppt.CanadaBrief overview - diamond industry
DS200812-0507
2008
Irving, M.Made in Canada: Diamonds North.Idex Magazine, Sept. 7, 3p.Canada, NunavutNews item - Diamonds North
DS200812-0516
2007
Janson, G., Muehlenbachs, K., Stachel, T., Eichenberg, D.Cyclic growth conditions for Diavik diamonds? Insights from carbon isotopes.35th. Yellowknife Geoscience Forum, Abstracts only p. 28.Canada, Northwest TerritoriesDiamond morphology - Diavik
DS200812-0517
2008
Janson, G.F., Muehlenbachs, K., Stachel, T., Eichenber, D.Microscale variations in D13 C evidence for growth of coated Diavik diamonds from kimberlite derived fluid.Northwest Territories Geoscience Office, p. 38. abstractCanada, Northwest TerritoriesDeposit - Diavik
DS200812-0524
2007
Johnson, A., Stachel, T., Creighton, S.,Naher, U.Peridotite xenoliths from the Monument Property, Slave Craton, NWT, Canada. SouthernEra35th. Yellowknife Geoscience Forum, Abstracts only p. 29.Canada, Northwest TerritoriesMineralogy
DS200812-0526
2008
Johnston, S.T.The Cordilleran ribbon continent of North America.Annual Review of Earth and Planetary Sciences, Vol. 36, May, pp. 495-530.United States, CanadaTectonics
DS200812-0529
2008
Jreige, C.Discovering a real gem - 3 D modeling helps mine diamonds in Canada.Geo World ( Adams Business Media) Ingenta art 1084185019, Vol. 21, 9, pp. 28-33.CanadaTechnology
DS200812-0540
2008
Kamenetsky, V.S., Kamenetsky, M.B., Weiss, Y., Navon, O., Nielsen, T.F.D., Mernagh, T.P.Alkali carbonates and chlorine in kimberlites from Canada and Greenland: evidence from melt inclusions and serpentine.9IKC.com, 3p. extended abstractCanada, Northwest Territories, Greenland, RussiaMelting
DS200812-0548
2007
Katz, H.Diamond highway: the world's longest ice road is both supply route and engineering marvel.Canadian Geographer, Vol. 127, 6, pp. 90-96.Canada, Northwest Territories, NunavutNews item - ice highway
DS200812-0556
2008
Kent, A.J.R.Heterogeneous melt inclusions from heterogeous mantle: an example from Baffin Island, canada.Goldschmidt Conference 2008, Abstract p.A465.Canada, Nunavut, Baffin IslandMagmatism
DS200812-0558
2008
Kerr, R.A.Geologists find vestiges of Early Earth - maybe world's oldest rock. (Northern Quebec)Science, Vol. 321, 5807 Sept. 28, p. 1756.Canada, QuebecGeochronology
DS200812-0566
2007
Kienlen, B.Pelly Bay diamond district: update on discovery. Diamonds North35th. Yellowknife Geoscience Forum, Abstracts only p. 30-31.Canada, NunavutExploration - brief overview
DS200812-0568
2008
Killeen, P.G.Exploration trends and developments in 2007 .... outline of various geophysical technology and companies.PDAC Exploration and Developments Highlights, 21p.Canada, GlobalReview - Geophysical techniques and technology
DS200812-0575
2007
Kivi, K.R., Naher, U.New Nadin a explorations Ltd. drills and discovers more kimberlite at Lac de Gras.35th. Yellowknife Geoscience Forum, Abstracts only p. 31.Canada, Northwest TerritoriesExploration - brief overview
DS200812-0577
2008
Kjarsgaard, B.A., Pearson, D.G., Tappe, S., Nowell, G.M., Dowall, D.P.Kimberlites: high H2O/CO2, MgO rich and K poor silica undersaturated magmas. Lac de Gras9IKC.com, 3p. extended abstractAfrica, South Africa, Canada, Northwest TerritoriesGroup 1 kimberlites
DS200812-0588
2008
Kopylova, M.G., Hayman, P.Petrology and textural classification of the Jericho kimberlite, northern Slave Province.Canadian Journal of Earth Sciences, Vol. 45, 6, June 1, pp. 701-723.Canada, Northwest TerritoriesDeposit - Jericho
DS200812-0589
2008
Kopylova, M.G., Nowell, G.M., Pearson, D.G., Markovic, G.Crystallization of megacrysts from kimberlites: geochemical evidence from high Cr megacrysts in the Jericho kimberlite.9IKC.com, 3p. extended abstractCanada, NunavutDeposit - Jericho
DS200812-0618
2008
Kurszlaukis, S., Lorenz, V.Formation of tuffisitic kimberlites by phreatomagmatic processes.Journal of Volcanology and Geothermal Research, Vol. 174, 1-3, pp. 68-80.Africa, Canada, RussiaDiatreme,emplacement, phreatomagmatic
DS200812-0626
2008
Laing, T.Diamonds are forever.... Eira Thomas and Ellen Clements are interviewed.Mining and Exploration ( BC), Summer. p. 4-5.CanadaNews item - history
DS200812-0643
2008
Lefebvre, N., Kurszlaukis, S.Contrasting eruption styles of the 147 kimberlite, Fort a la Corne, Saskatchewan, canada.Journal of Volcanology and Geothermal Research, Vol. 174, 1-3, pp. 171-185.Canada, SaskatchewanVolcanic complex, emplacement, phreatomagmatic,turbidite
DS200812-0650
2007
Leslie, C.D., Sandeman, H.A., Mortensen, J.K.Diatremes and related volcanic rocks of the lower Palezoic Misty Creek Embayment, Mackenzie Mountains, NT.35th. Yellowknife Geoscience Forum, Abstracts only p. 34-35.Canada, Northwest TerritoriesMountain Diatreme - geology
DS200812-0651
2008
Leslie, C.D., Sandeman, H.A., Mortensen, J.K.Lower Paleozoic rift related alkaline volcanic rocks, Mackenzie Mountains, NWT.Northwest Territories Geoscience Office, p. 40. abstractCanada, Northwest TerritoriesBrief overview - Mountain diatreme
DS200812-0652
2008
Levson, V.Geology of the northeast British Columbia and northwest Alberta: diamonds, shallow gas, gravel and glaciers.Canadian Journal of Earth Sciences, Vol. 45, 5, pp. 509-512.Canada, British Columbia, AlbertaDiamonds
DS200812-0662
2007
Liber, K., Weber, L.P., Levesque, C.Sublethal toxicity of two wastewater treatment polymers used at Ekati diamond mine to lake trout fry.Canadian Technical Report of Fisheries and Aquatic Sciences, No. 2746, p.25 Ingenta art1075288604Canada, Northwest TerritoriesDeposit - Ekati environmental
DS200812-0677
2008
Liu, L., Spasojevi, S., Gurnis, M.Reconstructing Farallon plate subduction beneath North America back to the late Cretaceous.Science, Vol. 322, 5903, Nov. 7, pp. 934-937.United States, CanadaSubduction
DS200812-0691
2008
Luth, R.W.Phase relationships of carbonate bearing harzburgite: implications for migration of carbonate melt and diamond formation in the mantle.Goldschmidt Conference 2008, Abstract p.A575.Canada, Northwest TerritoriesDeposit - Diavik
DS200812-0697
2008
MacLeansA shiny piece of hope. Birks sells diamonds and a little peace of mind.Macleans Magazine, No. 24, June 23, p. 38.Canada, United StatesNews item - retail
DS200812-0705
2008
Malarkey, J., Pearson, D.J., Nowell, G.M., Davidson, J.P., Ottley, C.J., Kjarsgaard, B., Mitchell, R.H., Kopylova, M.Constraining the crust and mantle contributions to kimberlite - a multi phase micro sampling approach.9IKC.com, 3p. extended abstractCanada, OntarioDeposit - C 14 perovskite crystals
DS200812-0711
2007
Manson, M.The Renard project: Quebec's first diamond mine.Quebec Exploration Conference, Nov. 28, 1p. abstract onlyCanada, QuebecNews item - Stornoway
DS200812-0724
2008
Matveev, S., Stachel, T.Differences in FTIR spectra measured in olivines derived from depleted and metasomatised sections of the Earth's mantle.Goldschmidt Conference 2008, Abstract p.A606.Africa, South Africa, Canada, OntarioDeposit - Finsch, Victor
DS200812-0729
2007
McCandless, T.Kimberlites and other primary host rocks for diamonds in North America.Abstract 1p., 1p.Canada, United StatesGeochronology
DS200812-0740
2008
Mercier, J-P., Bostock, M.G., Audet, P., Gaherty, J.B., Garnero, E.J., Revenaugh, J.The teleseismic signature of fossil subduction: northwestern Canada. (part of Lithoprobe)Journal of Geophysical Research, Vol. 113, B 04308Canada, Northwest TerritoriesGeophysics - seismics
DS200812-0763
2008
Moore, M.L., Blowes, D.W., Ptacek, C.J., Gould, W.D., Smith, L.,Sego, D.Humidity cell analysis of waste rock from the Diavik diamond mine NWT, Canada.Goldschmidt Conference 2008, Abstract p.A647.Canada, Northwest TerritoriesDeposit - Diavik
DS200812-0767
2008
Moser, D.E., Bowman, J.R., Wooden, J., Valley, J.W., Mazdab, F., Kita, N.Creation of a continent recorded in zircon zoning.Geology, Vol. 36, 3 March pp. 239-242.Canada, OntarioGeochronology - Kapuskasing
DS200812-0768
2008
Moss, S., Russell, J.K., Andrews, G.D.M.Progressive infilling of a kimberlite pipe at Diavik, Northwest Territories, Canada: insights from volcanic facies architecture, textures and granulometry.Journal of Volcanology and Geothermal Research, Vol. 174, 1-3, pp. 103-116.Canada, Northwest TerritoriesPhysical volcanology, pyroclastic, crater lakes
DS200812-0775
2008
Mumford, T.R., Shaw, C.S.J., Lentz, D.R.Magmatic history of the Ice River alkaline complex, British Columbia, Canada.Goldschmidt Conference 2008, Abstract p.A663.Canada, British ColumbiaAlkalic
DS200812-0782
2007
Naher, U., Kivi, K.The DOGMAG, a low cost alternative to airborne magnetic surveys in diamond exploration. SouthernEra35th. Yellowknife Geoscience Forum, Abstracts only p. 44.Africa, Democratic Republic of Congo, Canada, Northwest TerritoriesGeophysics - DOGMAG
DS200812-0804
2008
Nowell, G.M., Pearson, D.G., Irving, A.J.Lu Hf and Re Os isotope studies of lamproite genesis.9IKC.com, 3p. extended abstractUnited States, Australia, CanadaLamproite - geochronology
DS200812-0807
2008
Nowicki, T., Porritt, L., Crawford, B., Kjarsgaard, B.Geochemical trends in kimberlites of the Ekati property, Northwest Territories, Canada: insight on volcanic and resedimentation processes.Journal of Volcanology and Geothermal Research, Vol. 174, 1-3, pp. 117-127.Canada, Northwest TerritoriesGeochemistry, volcaniclastic, coherent eruption,fractionation
DS200812-0808
2007
NWT Mineral Exploration OverviewMining highlights and exploration highlights for 2007.. brief overviews.Northwest Territories Geoscience Office, miningnorth.com ( printed 12 pages)Canada, Northwest TerritoriesOverview
DS200812-0819
2008
O'Neil, J., Carlson, R.W., Francis, D., Stevenson, R.Neodynium 142 evidence for Hadean mafic crust. (Northern Quebec)Science, Vol. 321, 5807 Sept. 28, pp. 1828-1831.Canada, QuebecGeochronology
DS200812-0823
2008
Ontario Geological SurbeyPrecambrian geology of the Hudson Bay and James Bay Lowlands region interpreted from aeromagnetic dat a . Three sheets West, east and South. REVISED editionsOntario Geological Survey, Maps P. 3597. 3598, 3599, Data 233Canada, OntarioMaps - Precambrian geology
DS200812-0824
2008
Ontario Geological SurveyDiamonds..... brief listing of active companies and locations in Ontario .. diamond projects.Ontario Geological Survey, PDAC 8p. handout.Canada, OntarioOverview
DS200812-0825
2007
Ontario Mineral Exploration ReviewDiamond prospects in Ontario: a common hope for the future.Ontario Mineral Exploration Review, pp. 20-22.Canada, OntarioOverview - areas and company names.
DS200812-0826
2007
Ontario Mining AssociationFinal report Ontario Mining: a partner in prosperity building.. economic impact of a representative mine in Ontario. * not diamond but interesting good resultsoma.on.ca, Dec. 30p.Canada, OntarioEconomics of a mine to a local community
DS200812-0827
2008
Ontario Ministry of Northern Development and MinesOntario cuts a deal for new diamond industry.Ontario Ministry of Northern Development and Mines, July 4, 1p,.Canada, OntarioNews item - De Beers
DS200812-0837
2008
Pakzad, S.Winter roads: pipelines of Canada's North. (Brief overview).Mining.com, September issue pp. 72-73.Canada, Northwest TerritoriesNews item - TCWR
DS200812-0861
2008
Patterson, M., Francis, D., McCandless, T.Autoliths as samples of kimberlite magma.Goldschmidt Conference 2008, Abstract p.A727.Canada, AlbertaDeposit - Buffalo Head Hills
DS200812-0862
2008
Patterson, M., Francis, D., McCandless, T.Kimberlite: magmas or mixtures? Hypabyssal dykes from Foxtrot.9IKC.com, 3p. extended abstractCanada, QuebecDeposit - Foxtrot
DS200812-0865
2008
PDAC Course NotesPower point slides of Mineral project disclosure standards: understanding NI 43-101.PDAC Short course, 17p. 6 power pt slides on each pageCanadaStandards
DS200812-0868
2008
Pearson, D.G., Nowell, G.M., Kjarsgaard, B.A., Dowall, D.P.The genesis of kimberlite: geochemical constraints.9IKC.com, 3p. extended abstractCanada, Northwest TerritoriesDeposit - Lac de Gras geochemistry
DS200812-0876
2007
Pell, J., Mathison, W., Friedland, E.V., Crawford, J.DO-27 and beyond: an update on Peregrine Diamonds programs in the Slave Province.35th. Yellowknife Geoscience Forum, Abstracts only p. 46-47.Canada, Northwest TerritoriesExploration - overview
DS200812-0882
2008
Perchuk, A.L., Yapaskurt, V.O., Davydova, V.V.Melt inclusions in eclogite garnet: experimental study of natural processes.Russian Geology and Geophysics, Vol. 49, 4, pp. 310-312.Canada, YukonEclogite - melting
DS200812-0894
2007
Phillips, P.Rising to the challenge: hunting for diamonds (arctic) De Beers, Mountain Province, GGL, Diamondex, Peregrine, New Nadina, Sanatana, Indicator, Shear, SouthernEraDiamonds in Canada Magazine, Northern Miner, November pp. 11-15.Canada, Northwest Territories, NunavutNews item - brief overview
DS200812-0895
2007
Phillips, P.Canada's sparkling gems: Ekati, Diavik and Jericho.Diamonds in Canada Magazine, Northern Miner, November pp. 4-6.Canada, Northwest Territories, NunavutNews item - brief overview
DS200812-0898
2008
Pietranik, A.B, Hawkesworth, C.J., Storey, C.D., Kemp, T.I.S., Sircombe, Whitehouse, BleekerEpisodic, mafic crust formation in the Slave Craton, Canada.Goldschmidt Conference 2008, Abstract p.A748.Canada, Northwest TerritoriesMantle zircons
DS200812-0899
2008
Pietranik, A.B., Hawkesworth, C.J., Storey, C.D., Kemp, A.I.S., Sircombe, K.N., Whitehouse, M.J., Bleeker, W.Episodic mafic crust formation from 4.5 to 2.8 Ga: new evidence from detrital zircons, Slave craton, Canada.Geology, Vol. 36, 11, pp. 875-878.Canada, Northwest TerritoriesGeochronology
DS200812-0901
2008
Pittari, A., Cas, R.A.F., Lefebvre, N., Robey, J., Kurszlaukis, S., Webb, K.Eruption processes and facies architecture of the Orion Central kimberlite volcanic complex, Fort a la Corne: kimberlite mass flow deposits in a sedimentary basin.Journal of Volcanology and Geothermal Research, Vol. 174, 1-3, pp. 152-170.Canada, SaskatchewanMegaturbidite, sedimentary basins, diatremes
DS200812-0902
2007
Plouffe, A., Paulen, R.C., Smith, I.R., Kjarsgaard, I.M.Sphalerite and kimberlite indicator minerals in till from the Zama Lake region, northwest Alberta NTS 84L and M).Geological Survey of Canada Open File, 5692, 32p.Canada, AlbertaGeochemistry
DS200812-0903
2008
Podolsky, M.H., Seller, M.H., Kryvoshlyk, I.N., Seghedi, I., Maicher, D.Whole rock geochemistry investigations of the 5034 and Tuzo kimberlites and potential applications to improving geology and resource models, Gahcho Kue project, NWTNorthwest Territories Geoscience Office, p. 72. abstractCanada, Northwest TerritoriesDeposit - Gahcho Kue
DS200812-0911
2008
Porrier, L.A., Cas, R.A.F., Crawford, B.B.Reply to discussion by Brown et al. In-vent column collapse as an alternative model for massive volcaniclastic kimberlite emplacement ( Fox at Ekati).Journal of Volcanology and Geothermal Research, in press available 4p.Canada, Northwest TerritoriesVolcanism
DS200812-0912
2008
Porritt, L.A., Cas, R.F., Crawford, B.B.In vent column collapse as an alternative model for massive volcaniclastic kimberlite emplacement: an example from the Fox kimberlite, Ekati diamond mine.Journal of Volcanology and Geothermal Research, Vol. 174, 1-3, pp. 90-102. reply in press 17p.Canada, Northwest TerritoriesVolcanology, eruption, column collapse.
DS200812-0925
2007
Prno, J.Have IBA's worked ( impact and benefit agreements).Canadian Diamonds, Fall, pp. 33-36, 38,40.CanadaLegal - IBA
DS200812-0944
2008
Reford, S.W., La Prairie, L.L.Exploring for metals and diamonds at Darnley Bay. NT.Northwest Territories Geoscience Office, p. 51. abstractCanada, NunavutBrief overview - Darnley Bay
DS200812-0946
2008
Reguir, E., Chakhmouradian, A., Halden, N., Malkovets, V., Yang, P.Major and trace element compositional variation of phlogopite from kimberlites and carbonatites as a petrogenetic indicator.9IKC.com, 3p. extended abstractCanada, AfricaGeochemistry - ferromagnesian micas
DS200812-0962
2007
Ritcey, D., Moul, F., Clarke, D., Kirkley, M.Diamond exploration on Brodeur Project, northwest Baffin Island. Diamondex35th. Yellowknife Geoscience Forum, Abstracts only p. 51-52.Canada, NunavutExploration - overview
DS200812-0968
2008
Rolleau, E., Stevenson, R.Contamination and heterogeneity in the mantle beneath the alkaline Montregian Province ( Quebec) evidence from geochemical and Nd Sr isotope data.Goldschmidt Conference 2008, Abstract p.A808.Canada, QuebecGeochronology
DS200812-0973
2007
Ross, M., Utting, D.J., Hodgson, D.A., James, D.T.Ice flow and dispersal patterns on Southampton Island Nunavut: a preliminary Assessment. ( KIMs)35th. Yellowknife Geoscience Forum, Abstracts only p. 52.Canada, NunavutGeochemistry - samples
DS200812-0993
2007
Sader, J.S., Hamilton, S.M., Hattori, K.H., Braundedr, K.Project unit: 07-32. Surface media geochemical sampling at the Victor kimberlite region, northern Ontario and the Kirkland Lake region northeastern Ontario.Ontario Geological Survey Open File, No. 6213, pp. 19-1-6.Canada, OntarioOverview field work
DS200812-0994
2008
Safonov, O., Perchuk, L., Litvin, Y., Chertkova, N., Butvina, V.Experimental modeling of chloride bearing diamond related liquids: a review.Goldschmidt Conference 2008, Abstract p.A817.Africa, Botswana, South America, Brazil, Russia, CanadaDiamond inclusions
DS200812-0995
2008
Sage, R.P.Prairie Lake carbonatite dat a - geochemical dat a new and unpublished.From author, CD available by his permission sent to me Dec 2007Canada, OntarioCarbonatite, geochemistry
DS200812-0998
2008
Sanborn-Barrie, M., Chakungal, J., James, D.T., Whalen, J., Rayner, N., Berman, R.G., Craven, J., Coyle, M.New understanding of the geology and diamond prospectivity of Southampton Island, central Nunavut.Northwest Territories Geoscience Office, p. 53-54. abstractCanada, NunavutDeposit - Qilalugaq
DS200812-1000
2008
Sandeman, H.A., Barnett, R.L., Laboucan, A.B.An overview of the Mud Lake kimberlite, SW Slave Craton, Northwest Territories, and implications of the presence of high Cr2O3, CaO rich green garnets.9IKC.com, 3p. extended abstractCanada, Northwest TerritoriesDeposit - Mud Lake petrography
DS200812-1001
2008
Sandeman, H.A., Ryan, J.J.Petrology of kimberlite debris from the GSC showing. Amaruk kimberlite field, Kiyikmeot region, Nunavut Canada. 57A03 NTSGeological Survey of Canada, Open File 5876, 23p.Canada, NunavutDeposit - Amaruk
DS200812-1002
2007
Sandeman, H.A., Udell, A.Whither the kimberlite indicator and diamond database (KIDD) and kimberlite indicator mineral chemistry Database ( KIMC): integration into GOMAP for on-line35th. Yellowknife Geoscience Forum, Abstracts only p. 55.Canada, Northwest TerritoriesDatabase - KIDD and KIMC
DS200812-1029
2007
Sciortino, M.A preliminary study of mantle derived xenoliths and xenocrysts from the DO 27 kimberlite, Slave Craton, Northwest Territories, Canada.Thesis, Bachelor University of Toronto at Mississauga, 37p.Canada, Northwest TerritoriesPetrology
DS200812-1030
2008
Scott Smith, B.H.The Fort a la Corne kimberlites, Saskatchewan Canada: geology, emplacement and economics.Journal of the Geological Society of India, Vol. 71, pp. 11-55.Canada, SaskatchewanDeposit - Fort a la Corne
DS200812-1031
2008
Scott Smith, B.H.Canadian kimberlites: geological characteristics relevant to emplacement.Journal of Volcanology and Geothermal Research, Vol. 174, 1-3, pp. 9-19.CanadaEmplacement,pyroclastic,tuffisitic,hypabyssal,diamond
DS200812-1034
2008
Sego,D.C., Pham, N., Blowes, D., Smith, L.Heat transfer in waste rock piles at Diavik diamond mine.Northwest Territories Geoscience Office, p. 55. abstractCanada, Northwest TerritoriesDeposit - Diavik
DS200812-1054
2008
Shilton, M.How to make it work - relations between First Nations and miners. PDAC MouCanadian Mining Journal, April pp. 38-39.Canada, OntarioAboriginal
DS200812-1082
2008
Smart, K.A., Heaman, L.M., Chocko, T., Simonetti, A., Kopylova, M., Mah, D., Daniels, D.The origin of diamond rich high MGO eclogite xenoliths from the Jericho kimberlite, Nunavut.Northwest Territories Geoscience Office, p. 56-57. abstractCanada, NunavutDeposit - Jericho
DS200812-1085
2008
Smith, L., Neuner, M., Gupton, M., Bailey, B.L., Blowes, D., Smith, L., Sego, D.Diavik test piles project: design and construction of large scale research waste rock piles in the Canadian Arctic.Northwest Territories Geoscience Office, p. 57-58. abstractCanada, Northwest TerritoriesDeposit - Diavik
DS200812-1086
2008
Snyder, D.B.Mantle structures in the Slave and Rae Cratons inferred from seismic discontinuities.Northwest Territories Geoscience Office, p. 58. abstractCanada, Northwest TerritoriesBrief overview - cratons
DS200812-1087
2008
Snyder, D.B.Stacked uppermost mantle layers within the Slave Craton of NW Canada as defined by anisotropic seismic discontinuities.Tectonics, Vol. 27, TC4006Canada, Northwest TerritoriesGeophysics - seismics
DS200812-1088
2008
Snyder, D.B.Stacked uppermost mantle layers within the Slave Craton of NW Canada as defined by anisotropic seismic discontinuities.Tectonics, Vol. 27, 4, TC4006Canada, Northwest TerritoriesGeophysics - seismics
DS200812-1115
2008
Staurt, F.M., Basu, S., Ellam, R., Fitton, G., Starkey, N.Is there a hidden primordial 3He rich reservoir in the deep Earth?Goldschmidt Conference 2008, Abstract p.A908.Europe, Iceland, Canada, Baffin IslandChemistry - basalts
DS200812-1134
2007
Strand, P., Banas, A., Burgess, J.Contrasting kimberlite types and dispersion trains at the Churchill diamond project Kivalliq region, Nunavut.35th. Yellowknife Geoscience Forum, Abstracts only p. 59-60.Canada, NunavutExploration - geochemistry
DS200812-1135
2008
Strand, P., Baumgartner, M., Banas, A., Burgess, J.Contrasting kimberlite types of the Churchill diamond project, Nunavut: implications for exploration and evaluation.Prospectors and Developers Association of Canada, March 3, 1p. abstract.Canada, NunavutChurchill overview
DS200812-1151
2008
Tappe, S.Alkaline and carbonatite intrusives help to unravel the temporal evolution of a cratonic rift in the North Atlantic region.Goldschmidt Conference 2008, Abstract p.A935.Canada, Labrador, Europe, GreenlandLamproite
DS200812-1152
2008
Tappe, S., Foley, S.F., Kjarsgaard, B.A, Romer, R.L., Heaman, L.M., Stracke, A., Jenner, G.A.Origin of Diamondiferous Torngat ultramafic lamprophyres and the role of multiple MARID type and carbonatitic vein metasomatized cratonic mantle ...9IKC.com, 3p. extended abstractCanada, Quebec, LabradorGenesis of SiO2 poor potassic melts
DS200812-1153
2008
Tappe, S., Foley, S.F., Kjarsgaard, B.A., Romer, R.L., Heaman, L.M., Stracke, A., Jenner, G.A.Between carbonatite and lamproite - Diamondiferous Torngat ultramafic lamprohyres formed by carbonate fluxed melting of cratonic Marid type metasomes.Geochimica et Cosmochimica Acta, Vol. 72, 13, pp. 3258-3286.Canada, Labrador, QuebecTorngat
DS200812-1161
2007
Tees, J.Diavik's aboriginal leadership development program.35th. Yellowknife Geoscience Forum, Abstracts only p. 60-61.Canada, Northwest TerritoriesSocial Responsibility
DS200812-1167
2008
Thomas, E.The Renard kimberlites: Quebec's first diamond mine?Prospectors and Developers Association of Canada, March 3, 1p. abstract.Canada, QuebecRenard overview
DS200812-1171
2008
Thurston, M.Meeting the Snap Lake challenge.Prospectors and Developers Association of Canada, March 3, 1/2p. abstract.Canada, Northwest TerritoriesSnap Lake overview
DS200812-1177
2007
Toman, S.Sit up and listen.... interview with Ian Smillie Chair of the Diamond Development Initiative.Canadian Diamonds, Fall, pp. 26-31.Canada, GlobalDiamond Development Inititative
DS200812-1179
2008
Tomlinson, E.I., Muller, W., Hinton, R.W., Klein Ben-David, O., Pearson, D.G., Harris, J.W.Metasomatic processes recorded in fibrous diamonds.Goldschmidt Conference 2008, Abstract p.A950.Canada, Northwest TerritoriesDeposit - Panda
DS200812-1206
2008
Van Straaten, B.I., Kopylova, M.G., Russell, J.K., Webb, K.J., Scott Smith, B.H.Discrimination of a diamond resource and non-resource domains in the Victor North pyroclastic kimberlite, Canada.Journal of Volcanology and Geothermal Research, Vol. 174, 1-3, pp. 128-138.Canada, Ontario, AttawapiskatPetrography, fugacity, spinel group
DS200812-1226
2008
Walker, E.C.MW-93 diamond discovery Courageous Lake, NWT.Northwest Territories Geoscience Office, p. 61-62. abstractCanada, Northwest TerritoriesBrief overview - Consolidated Global Diamonds
DS200812-1244
2008
Webb, K.J., Crawford, B., Nowicki, T.E., Hetman, C.M., Carlson, J.Coherent kimberlite at Ekati, NWT: textural and geochmeical variations and implications for emplacement.Northwest Territories Geoscience Office, p. 74. abstractCanada, Northwest TerritoriesDeposit - Ekati
DS200812-1251
2008
Werniuk, J.Making hige strides... Diavik's Tom Hoefer on community development.Canadian Mining Journal, August pp. 34-35.Canada, Northwest TerritoriesDiavik - environment
DS200812-1275
2008
Wylie, D.Comet theory proof found... blast over Canada?National Post, July 7, p. A6.Canada, United States, OhioNews item - comets and diamonds
DS200812-1298
2007
Yellowknife Geoscience Forum, 35th.Each diamond relevant abstract cited seperately35th. Yellowknife Geoscience Forum, Abstracts only p.CanadaAstracts only
DS200812-1301
2007
Yudelman, D.Canadian diamond production: peaking or just taking off? Province by province brief overviewDiamonds in Canada Magazine, Northern Miner, November pp. 16-22.CanadaNews item - brief overview
DS200812-1302
2008
Yudelman, D.De Beers opening Canadian mines and minds.Northern Miner Diamonds in Canada, November pp. 6-11, 15-16.Canada, Northwest Territories, OntarioOverview - Snap Lake, Victor, De Beers
DS200812-1326
2008
Zlotnikov, D.Frosty frontiers. The challenges of mining in Canada's territories.Canadian Institute of Mining and Metallurgy, November pp. 21-24.Canada, Northwest TerritoriesNews item - mining
DS200812-1327
2007
Zonneveld, J-P., Kjarsgaard, B.A., Harvey, S., McNeil, D.H.The influence of depositional setting and fluctuating accommodation space on kimberlite edifice preservation: implications for volcanological models Fort a la Corne.Geological Society of America Annual Meeting 2007, Denver Oct. 28, 1p. AbstractCanada, SaskatchewanFALC kimberlites
DS200812-1330
2008
Zurevinski, S., Heaman, L.M., Creaser, R.A., Strand, P.The newly discovered Churchill kimberlite field, Canada: petrography, mineral chemistry and geochronology.9IKC.com, 3p. extended abstractCanada, NunavutMineralogy
DS200812-1331
2008
Zurevinski, S.E., Heaman, L.M., Creaser, R.A., Strand, P.The Churchill kimberlite field, Nunavut, Canada: petrography, mineral chemistry, and geochronology.Canadian Journal of Earth Sciences, Vol. 45, 8, pp. 1039-1059.Canada, NunavutDeposit - Churchill district
DS200812-1332
2008
Zurevisnki, S., Heaman, L.M., Eichenberg, D.The geochemistry of Diavik kimberlites, Lac de Gras, NWT, Canada.9IKC.com, 3p. extended abstractCanada, Northwest TerritoriesDeposit - Diavik
DS200912-0007
2009
Araujo, D.P., Griffin, W.L., O'Reilly, S.Y.Mantle melts, metasomatism and diamond formation: insights from melt inclusions in xenoliths from Diavik, Slave Craton.Lithos, In press available, 34p.Canada, Northwest TerritoriesDeposit - Diavik
DS200912-0008
2009
Araujo, D.P., Griffin, W.L., O'Reilly, S.Y., Grant, K.J., Ireland, T., Van Achterbergh, E.Micro inclusions in monocrystalline octahedral diamonds and coated diamonds from Diavik, Slave Craton: clues to diamond genesis.Lithos, In press available 38p.Canada, Northwest TerritoriesDeposit - Diavik
DS200912-0012
2009
Armstrong, J.P.An update on the Hammer and Aviat projects, Nunavut.37th. Annual Yellowknife Geoscience Forum, Abstracts p. 1-2.Canada, Nunavut, Coronation GulfDiamond exploration
DS200912-0018
2009
Aulbach, S., Creaser, R.A., Pearson, N.J., Simonetti, S.S., Heaman, L.M., Griffin, W.L., Stachel, T.Sulfide and whole rock Re-Os systematics of eclogite and pyroxenite xenoliths from the Slave Craton, Canada.Earth and Planetary Science Letters, in press available,Canada, Northwest TerritoriesDeposit - Diavik
DS200912-0020
2008
Ault, A.K., Flowers, R.M., Bowring, S.A.Phanerozoic burial and unroofing of the western Slave Craton and Wopmay Orogen from apatite ( U Th/He thermochronometry, assessing links between surface/deepAmerican Geological Union, Fall meeting Dec. 15-19, Eos Trans. Vol. 89, no. 53, meeting supplement, 1p. abstractCanada, Northwest TerritoriesGeodynamic processes
DS200912-0039
2009
Beales, P.GOT kimberlite - NTGO is the custodian of a major kimberlite collection.37th. Annual Yellowknife Geoscience Forum, Abstracts p. 66-67.Canada, Northwest TerritoriesCore Library
DS200912-0061
2008
Bohm, C.O., Anderson, S.D., Matile, G.L.D., Keller, G.R.Geochemical and kimberlite indicator mineral results for till samples from Nejanilini, Kasmere and Putahow lakes areas, northern Manitoba NTS 64N 64 O 64 P.Manitoba Geological Survey, OF 2008-13, CDCanada, ManitobaGeochemistry
DS200912-0062
2009
Bokelmann, G.H.R., Wustefeld, A.Comparing crustal and mantle fabric from the North American Craton using magnetics and seismic anisotropy.Earth and Planetary Science Letters, Vol. 277, 3-4, Jan. 30, pp. 355-364.Canada, Northwest TerritoriesGeophysics - geochronology
DS200912-0066
2009
Bowes-Lyon, M.C., Richards, J.P., McGee, T.M.Socio-economic impacts of the Nanisivik and Polaris mines, Nunavut, Canada.Springer Richards, J.P.Editor Mining Society and a sustainable world, 36p. preprintCanada, NunavutCSR - not specific to diamonds
DS200912-0079
2009
Buchan, K.L., LeCheminant, A.N., Van Breeman, O.Paleomagnetism and UPb geochronology of the Lac de Gras diabase dyke swarm, Slave Province, Canada: implications for relative drift of Slave and SuperiorCanadian Journal of Earth Sciences, Vol. 46, 5, May pp.361-379.Canada, Northwest TerritoriesPaleproterozoic
DS200912-0080
2009
Buchan, K.L., LeCheminant, A.N., Van Breemen, O.Paleomagnetism and U-Pb geochronology of the Lac de Gras diabase dyke swarm, Slave Province Canada: implications for relative drift of Slave and Superior provinces in the Paleoproterozoic.Canadian Journal of Earth Sciences, Vol. 46, pp. 361-379.Canada, Northwest TerritoriesGeophysics
DS200912-0087
2009
Burgess, R., Cartigny, P., Harrison, D., Hobson, E., Harris, J.Volatile composition of Micro inclusions in diamonds from the PAnd a kimberlite, Canada: implications for chemical and isotopic heterogeneity in the mantle.Geochimica et Cosmochimica Acta, Vol. 73, 6, pp. 1779-1794.Canada, Northwest TerritoriesDeposit - Panda
DS200912-0088
2008
Burke, K., Khan, S.D., Mart, R.W.Grenville Province and Monteregian carbonatite and nepheline syenite distribution related to rifting, collision and plume passage.Geology, Vol. 36, 12, Dec. pp. 983-986.Canada, QuebecCarbonatite
DS200912-0099
2009
Cartigny, P., Farquar, J., Thomassot, E., Harris, J.W., Wing, B., Masterson, A., McKeegan, K., Stachel, T.A mantle origin for Paleoarchean peridotite diamonds from the PAnd a kimberlite, Slave Province: evidence from 13C, 15N and 34,34S stable isotope systematics.Lithos, In press - available 38p.Canada, Northwest TerritoriesDeposit - Panda
DS200912-0105
2009
Chalice Diamond CorporationOntario government purchases exploration dat a from Chalice.Chalice Diamond Corporation, April 25, 1/2p.Canada, Ontario, WawaNews item - Chalice
DS200912-0108
2009
Chen, C-W.Coincident geophysical and petrological evidence for a metasomatic boundary associated with subduction in the Slave cratonic lithosphere.GAC/MAC/AGU Meeting held May 23-27 Toronto, Abstract onlyCanada, Northwest TerritoriesGeophysics
DS200912-0117
2009
Clowes, R.M.The lithoprobe: trans-continental lithospheric cross section: imaging the internal structure of North America.GAC/MAC/AGU Meeting held May 23-27 Toronto, Abstract onlyCanada, United StatesGeophysics - seismics
DS200912-0134
2009
Crawford, B., Hetman, C., Nowicki, T., Baumgartner, M., Harrison, S.The geology and emplacement history of the Pigeon kimberlite, EKATI diamond mine, Northwest Territories, Canada.Lithos, In press - available 35p.Canada, Northwest TerritoriesDeposit - Pigeon
DS200912-0137
2009
Creighton, S., Stachel, T., Eichenberg, D., Luth, R.W.Oxidation state of the lithospheric mantle beneath Diavik diamond mine, central Slave craton, NWT, Canada.Contributions to Mineralogy and Petrology, in press available 13p.Canada, Northwest TerritoriesDeposit - Diavik
DS200912-0138
2009
Creighton, S., Stachel, T., Eichenberg, D., Luth, R.W.Oxidation state of the lithospheric mantle beneath Diavik diamond mine, central Slave craton, NWT, Canada.Mineralogy and Petrology, in press available format 13p.Canada, Northwest TerritoriesDeposit - Diavik
DS200912-0139
2009
Cross, J.D., Kopylova, M., Ritcey, D., Kirkley, M.The diamond potential of the Tuwawi kimberlite, Baffin Island, Nunavut.37th. Annual Yellowknife Geoscience Forum, Abstracts p. 70.Canada, Nunavut, Baffin IslandPetrology
DS200912-0141
2009
Currie, C.A., Beaumont, C.Are diamond nearing Cretaceous kimberlites related to shallow angle subduction beneath western North America?GAC/MAC/AGU Meeting held May 23-27 Toronto, Abstract onlyCanada, United StatesMagmatism
DS200912-0143
2009
Dale, C.W., Pearson, D.G., Starkey, N.A., Stuart, F.M., Ellam, Larsen, Fitton, MacPhersonOsmium isotope insights into high 3He4He mantle and convecting mantle in the North Atlantic.Goldschmidt Conference 2009, p. A260 Abstract.Canada, Nunavut, Baffin Island, Europe, GreenlandPicrite
DS200912-0149
2009
Darbyshire, F.Upper mantle structure and azimuthal anisotropy beneath Hudson Bay from rayleigh wave tomography.GAC/MAC/AGU Meeting held May 23-27 Toronto, Abstract onlyCanada, Ontario, ManitobaGeophysics - seismics
DS200912-0150
2009
Darbyshire, F., Lebedev, S.Rayleigh wave velocity heterogeneity and multilayered azimuthal anisotropy of the Superior Craton, Ontario.Geophysical Journal International, Vol.176, 1, pp. 215-234.Canada, OntarioGeophysics
DS200912-0159
2009
Dawes, P.R.Precambrian-Paleozoic geology of Smith Sound, Canada and Greenland: key constraint to paleogeographic reconstructions northern Laurentia and North Atlantic regionTerra Nova, Vol. 21, pp. 1-13.Canada, GreenlandNares Strait debate
DS200912-0162
2009
De Beers Canada Inc.Kitchenuhmaykoosib Inninuwug and De Beers Canada hold discussions.De Beers Canada Inc., August 25, 1/8p.Canada, OntarioNews item - legal
DS200912-0163
2009
De Stefano, A., Kopylova, M.C., Cartigny, P., Afanasiev, V.Diamonds and eclogites of the Jericho kimberlite ( Northern Canada).Contributions to Mineralogy and Petrology, Vol. 158, 3, Sept. pp. 295-315.Canada, NunavutDeposit - Jericho
DS200912-0181
2009
Donnkervoort, L.J., Southam, G.Microbial response in peat overlying kimberlite pipes in the Attawapiskat area, northern Ontario.EOS Transaction of AGU, Vol. 90, no. 22 1p. abstractCanada, Ontario, AttawapiskatGeochemistry
DS200912-0183
2009
Doornbos, C., Heaman, L.M., Doupe, J.P., England, J., Simonetti, A., Lejeunesse, P.The first integrated use of in situ U Pb geochronology and geochemical analyses to determine long distance transport of glacial erratics from maIn land Canada into western Arctic Archipelgo.Canadian Journal of Earth Sciences, Vol. 46, 2, pp. 101-122.Canada, Melville PeninsulaGeochronology - western Arctic Archipelago
DS200912-0190
2009
Duke, G.I.Black Hills - Alberta carbonatite - kimberlite linear trend: slab edge at depth?Tectonophysics, Vol. 464, pp. 186-194.Canada, Alberta, United States, MontanaKimberlite
DS200912-0196
2009
Eaton, D.Lithosphere architecture of the Hudson bay region.GAC/MAC/AGU Meeting held May 23-27 Toronto, Abstract onlyCanada, Ontario, ManitobaGeophysics
DS200912-0199
2008
Eccles, D.R.Alberta: driven by diamonds, propelled by potash.Canadian Institute of Mining and Metallurgy Magazine, Vol. 3, no. 8, pp. 68-69.Canada, AlbertaBrief overview
DS200912-0214
2009
Fedortchouk, Y.Diamond morphology: link to metasomatic events in the mantle or record of evolution of kimberlitic fluid?GAC/MAC/AGU Meeting held May 23-27 Toronto, Abstract onlyCanada, Northwest TerritoriesDeposit - Ekati
DS200912-0218
2009
Field, M., Gernon, T.M., Mock, A., Walters, A., Sparks, R.S.J., Jerram, D.A.Variations of olivine abundance and grain size in the Snap lake kimberlite intrusion, Northwest Territories, Canada: a possible proxy for diamonds.Lithos, In press available 13p.Canada, Northwest TerritoriesDeposit - Snap Lake
DS200912-0222
2009
Fitzgerald, C.E., Hetman, C.M., Lepine,I., Skelton, D.S., McCandless, T.E.The internal geology and emplacement history of the Renard 2 kimberlite, Superior Province, Quebec, Canada.Lithos, In press - available 29p.Canada, QuebecDeposit - Renard
DS200912-0228
2009
Francis, D., Patterson, M.Kimberlites and aillikites as probes of the continental lithospheric mantle.Lithos, Vol. 109, 1-2, pp. 72-80.Canadadiamond, carbonatite
DS200912-0245
2009
Gerlings, J., Funck, T., Jackson, R.H., Louden, K.E., Klingelhofer, F.Seismic evidence for plume derived volcanism during formation of the continental margin in southern Davis Strait and northern Labrador Sea.Geophysical Journal International, Vol. 176, 3, pp. 980-994.CanadaPlume
DS200912-0249
2009
Gernon, T.M., Sparks, R.S., Field, M., Ogilvie-Harris, R.C.Geological constraints on the emplacement of the Snap lake kimberlite dyke, NW Territories, Arctic Canada.GAC/MAC/AGU Meeting held May 23-27 Toronto, Abstract onlyCanada, Northwest TerritoriesDeposit - Snap Lake
DS200912-0265
2008
Graves, B.NI43-101 - some tricks and traps.Investing in Mining, mineweb.com, Vol. 2. pp. 16-17.CanadaLegal
DS200912-0270
2009
Groat, L.A., Laurs, B.M.Gem formation, production,and exploration: why gem deposits are rare and what is being done to find them.Elements, Vol. 5, 3, June pp. 153-158.Canada, GlobalOverview
DS200912-0279
2009
Harder, M., Scott Smith, B.H., Hetman, C.M., Pell, J.The evolution of geological models for the DO-27 kimberlite, NWT Canada: implications for evaluation.Lithos, In press - available 38p.Canada, Northwest TerritoriesDeposit - DO-27
DS200912-0283
2009
Harrison, S., Leuangthong, O., Crawford, B., Oshust, P.Uncertainty based grade modeling of kimberlite: a case study of the Jay kimberlite pipe, Ekati diamond mine, Canada.Lithos, In press available, 25p.Canada, Northwest TerritoriesSequential Gaussian Simulation - evaluation
DS200912-0285
2009
Harvey, S., Kjarsgaard, McClintock, M., Shimell, M., Fourie, L., Du Plessis, P., Read, G.Geology and evaluation strategy of the Star and Orion South kimberlites, Fort a la Corne, Canada.Lithos, In press availableCanada, SaskatchewanDeposit - Star, Orion
DS200912-0288
2009
Hayman, P., Cas, R.An unusual example of coherent kimberlite from the Muskox kimberlite ( Nunavut) Canada: a re-evaluation of the criteria for recognizing coherent kimberlite.GAC/MAC/AGU Meeting held May 23-27 Toronto, Abstract onlyCanada, NunavutDeposit - Muskox
DS200912-0289
2009
Hayman, P.C., Cas, R.A.F., Johnson, M.Characteristics and alteration origins of matrix minerals in volcaniclastic kimberlite of the Muskox pipe, Nunavut Canada.Lithos, In press - available 48p.Canada, NunavutDeposit - Muskox
DS200912-0295
2009
Helmstaedt, H.Crust mantle revisited: the Archean Slave Craton, N.W.T., Canada.Lithos, In press available, 33p.Canada, Northwest TerritoriesSlave Craton, structure
DS200912-0308
2008
Hoffman, C.The search for diamonds.... old story about Fipke.Wired Magazine, Dec. pp. 192-199.Canada, Northwest TerritoriesHistory
DS200912-0310
2009
Holmes, P., Pell, J., Clements, B., Grenon, H., Sell, M.The Chidliak diamond project, Baffin Island, one year after initial discovery.37th. Annual Yellowknife Geoscience Forum, Abstracts p. 24.Canada, Nunavut, Baffin IslandHistory
DS200912-0321
2009
Hunt, L., Stachel, T., Armstrong, J.Trace element systematics of microxenoliths and xenocrysts from the Renard kimberlites, Quebec.37th. Annual Yellowknife Geoscience Forum, Abstracts p. 26.Canada, QuebecGeothermometry
DS200912-0322
2009
Hunt, L., Stachel, T., Armstrong, J.P., Simonetti, A.The Diamondiferous lithospheric mantle underlying the eastern Superior Craton: evidence from mantle xenoliths from the Renard kimberlite, Quebec.GAC/MAC/AGU Meeting held May 23-27 Toronto, Abstract onlyCanada, QuebecDeposit - Renard
DS200912-0325
2009
Hutchison, A.Global impositioning systems.The Walrus, November pp.CanadaExploration - GPS hazards
DS200912-0333
2009
Jamasmie, C.Nunavut: the epicentre of a new diamond exploration boom in Canada. Peregrine features. Stornoway mentioned.Mining Magazine, July pp. 16-17.Canada, NunavutNews item - Peregrine
DS200912-0339
2009
Johnson, C., Stachel, T., Muehlenbachs, K., Armstrong, J.The micro-/macro diamond relationship: a preliminary case study on diamonds from Artemisia kimberlite ( northern Slave Craton), Canada.37th. Annual Yellowknife Geoscience Forum, Abstracts p. 74-75.Canada, Nunavut, Coronation Gulfmicrodiamonds
DS200912-0346
2009
Journal of the Geological Society of IndiaIdentification of nano diamonds in recent impact material.Journal of the Geological Society of India, Vol. 73, no. 3, March, p. 445 ( 1/8p.)United States, CanadaMeteorite - impacts
DS200912-0369
2009
Kerr, R.A.Scoping out unseen forces shaping North America.Science, Vol. 325, Sept. 25, pp. 1620-1621.United States, CanadaSlabs, subduction, plumes
DS200912-0376
2009
Kienlen, B.Unexplored potential of the Amaruk project.37th. Annual Yellowknife Geoscience Forum, Abstracts p. 30-31.Canada, NunavutDiamond exploration activity
DS200912-0381
2009
Kirwin, S.Surviving Harry's hairiest year. Luxury retailer-diamond miner delays underground development, cuts deals - stay afloat amid diamond price slump/costsDiamonds in Canada Magazine, Northern Miner, June, pp. 10-16.Global, Canada, Northwest TerritoriesHarry Winston overview
DS200912-0384
2009
Kjarsgaard, B.A., Harvey, S., McClintock, M., Zonneveld, J.P., Du Plessis, P., McNeil, D., Heaman, L.Geology of the Orion South kimberlite, Fort a la Corne, Canada.Lithos, In press - available formatted 15p.Canada, SaskatchewanDeposit - Orion South
DS200912-0385
2009
Kjarsgaard, B.A., Pearson, D.G., Tappe, S., Nowell, G.M., Dowall, D.P.Geochemistry of hypabyssal kimberlites from Lac de Gras Canada: comparisons to global database and implications to the parent magma problem.Lithos, In press available, 49p.Canada, Northwest TerritoriesGeochemical - whole rock database
DS200912-0386
2009
Kjarsgaard, B.A., Snyder, D.B.The GEM diamond project: an overview.37th. Annual Yellowknife Geoscience Forum, Abstracts p. 33-4.Canada, Northwest Territories, NunavutMantle lithosphere
DS200912-0388
2009
Klein-BenDavid, O., Pearson, D.G.Origins of subcalcic garnets and their relation to diamond forming fluids - case studies from Ekati (NWT-Canada) and Murowa ( Zimbabwe).Geochimica et Cosmochimica Acta, Vol. 73, pp. 837-855.Canada, Northwest Territories, Africa, ZimbabweDeposit - Ekati, Murowa
DS200912-0403
2009
Kopylova, M.G., De Stefano, A.Magnesian eclogite as a source for websteritic diamonds.GAC/MAC/AGU Meeting held May 23-27 Toronto, Abstract onlyCanada, NunavutDeposit - Jericho
DS200912-0405
2009
Kopylova, M.G., Nowell, G.M., Pearson, D.G., Markovic, G.Crystallization of megacrysts from protokimberlitic fluids: geochemical evidence from high - Cr megacrysts in the Jericho kimberlite.Lithos, In press - available 51p.Canada, NunavutDeposit - Jericho
DS200912-0414
2009
Kravchinsky, V.A., Eccles, D.R., Zhang, R., Cannon, M.Paleomagnetic dating of the northern Alberta kimberlites. K5, K6Canadian Journal of Earth Sciences, Vol. 46, pp. 231-245.Canada, AlbertaDeposit - Buffalo Head Hills - geochronology
DS200912-0467
2009
Malarkey, J., Pearson, D.G., Davidson, J.P., Nowell, G.M., Kjarsgaard, B., Ottley, C.J.Geochemical dissection of a kimberlite: What makes up a whole rock analysis?Goldschmidt Conference 2009, p. A820 Abstract.Canada, Nunavut, Somerset IslandDeposit - Jos
DS200912-0472
2009
Marcheggiani-Croden, V., Hunt, L., Stachel, T., Muehlenbachs, K., Eichenberg, D.Diavik boart - unrelated to gem diamond and fibrous coats?37th. Annual Yellowknife Geoscience Forum, Abstracts p. 81-2.Canada, Northwest TerritoriesBoart diamond
DS200912-0481
2009
Mather, K.A., Pearson, D.G., Kjarsgaard, B.A., Stachel, T.A new look at Slave lithosphere paleogeotherms and the 'diamond window'.37th. Annual Yellowknife Geoscience Forum, Abstracts p. 42-3.Canada, Northwest TerritoriesGeothermometry
DS200912-0483
2009
Matveev, S., Stachel,T.Evaluation of diamond potential using FTIR spectroscopy of xenocrystic olivine.Lithos, In press available, 18p.Africa, Ghana, Canada, Northwest TerritoriesDeposit - Birim, Diavik
DS200912-0484
2009
Maurice, C., Francis, D.Enriched crustal and mantle components and the role of the lithosphere in generating Paleoproterozoic dyke swarms of the Ungava Peninsula, Canada.Lithos, in press availableCanada, LabradorDykes
DS200912-0487
2009
McClenaghan, M.B., Gauvreau, D., Kjarsgaard, B.A.Mineral chemistry database for kimberlite surficial sediments and kimberlite boulders from Lake Timiskaming and Kirkland Lake kimberlite fields.Geological Survey of Canada Open File, No. 5833, $7.00 CDCanada, Ontario, QuebecGeochemistry
DS200912-0495
2009
Mercier, J.P., Bostock, M.G., Cassidy, J.F., Dueker, K., Gaherty, J.B., Garnero, E.J., Revenaugh, ZandtBody wave tomography of western Canada.Tectonophysics, Vol. 475, 2, pp. 480-492.Canada, Alberta, British Columbia, Northwest TerritoriesGeophysics - seismics
DS200912-0500
2009
Mills, S.E., Clarke, L.We will go side by side with you ... Labour union engagement with Aborginal peoples in Canada.Geoforum, Vol. 40, pp. 991-1001.CanadaAboriginal
DS200912-0507
2009
Mitchell, R.H., Kjarsgaard, B.A., McBride, J.Mineralogy of juvenile lapilli in Fort a la Corne pyroclastic kimberlites.GAC/MAC/AGU Meeting held May 23-27 Toronto, Abstract onlyCanada, SaskatchewanMagma volatiles
DS200912-0521
2009
Moss, S., Russell, J.K.Fragmentation of kimberlite: insights into eruption style and energy from Diavik, N>WT.GAC/MAC/AGU Meeting held May 23-27 Toronto, Abstract onlyCanada, Northwest TerritoriesDeposit - Diavik
DS200912-0527
2009
Murphy, J.B., Nance, R.D., Guterrez-Alfonso, G., Keppie, J.D.Supercontinent rconstruction from recognition of leading continental edges.Geology, Vol. 37, 7, July pp. 595-598.United States, CanadaSubduction
DS200912-0528
2009
Mustafa, J.Snap Lake diamond mine - update.37th. Annual Yellowknife Geoscience Forum, Abstracts p. 47-48.Canada, Northwest TerritoriesMining - dykes
DS200912-0529
2009
Nadolinny, V.A., Yurjeva, O.P., Pokhilenko, N.P.EPR and luminescence dat a on the nitrogen aggregation in diamonds from Snap Lake dyke system.Lithos, In press - available 19p.Canada, Northwest TerritoriesDeposit - Snap Lake
DS200912-0540
2009
NRCan Geological Survey of CanadaBuilding the Canadian advantage: a corporate social responsibility ( CSR) strategy for the Canadian International Extractive sector.international.gc.ca, March, 12p.CanadaCSR - social responsibility
DS200912-0541
2009
NWT Exploration OverviewHighlights of diamond activity and list of companies and their exploration operations.Northwest Territories Geoscience Office, pp. 6-11.Canada, Northwest TerritoriesExploration - brief overview
DS200912-0542
2008
NWT/Nunavut Chamber of Mines and Mining Association of CanadaNWT diamonds,Northwest Territories, Nunavut, March 5, 37p.Canada, Northwest Territories, NunavutContribution to the diamond industry
DS200912-0547
2009
Ogilvie-Harris, R.C., Sparks, R.S., Field, M., Gernon, T.M.The geochemistry of the Snap Lake kimberlite dyke, Northwest Territories: phlogopite and spinel.GAC/MAC/AGU Meeting held May 23-27 Toronto, Abstract onlyCanada, Northwest TerritoriesDeposit - Snap Lake
DS200912-0551
2009
Ontario Securities CommissionTechnical reports - navigating through NI 43-101 how to avoid running aground. Waldie, Whyte and Holland.PDAC Short course, 62 power point brief slidesCanadaTechnical reports
DS200912-0564
2009
Panayi, D.Caribou monitoring at the diamond mines and implications for effects mitigation.37th. Annual Yellowknife Geoscience Forum, Abstracts p. 51.Canada, Northwest TerritoriesEnvironment
DS200912-0565
2009
ParaviewGeoFree visualization software released.paraviewgeo.miraco.org, CanadaData integration
DS200912-0575
2009
Patterson, M., Francis, D., McCandless, T.Kimberlites: magmas or mixtures?Lithos, In press available, 20p.Canada, QuebecGeochemistry - whole rock, Foxtrot
DS200912-0578
2009
Pell, J.Chidliak: Canada's newest diamond district.PDAC 2009, 1p. abstractCanada, NunavutExploration overview
DS200912-0590
2009
Polat, A., Kerrich, R., Windley, R.Archean crustal growth processes in southern West Greenland and the southern Superior Province, geodynamic and magmatic constraints.Geological Society of London, Special Publication Earth Accretionary systems in Space and Time, No. 318, pp. 155-191.Canada, Ontario, Europe, GreenlandGeodynamics
DS200912-0591
2009
Porritt, L.A., Cas, R.A., Ailleres, L., Oshust, P.The influence of volcanological and sedimentalogical processes on diamond distribution: example from the Ekati diamond mine, NWT Canada.GAC/MAC/AGU Meeting held May 23-27 Toronto, Abstract onlyCanada, Northwest TerritoriesDeposit - Ekati
DS200912-0592
2009
Porritt, L.A., Cas, R.A.F.Reconstruction of a kimberlite eruption using an integrated volcanological geochemical and numerical approach: a case study of the Fox kimberlite, NWT CanadaJournal of Volcanology and Geothermal Research, Vol. 179, 3-4, pp. 241-254.Canada, Northwest TerritoriesDeposit - Fox
DS200912-0653
2009
Rukhlov, A.S., Bell, K.Geochronology of carbonatites from the Canadian and Baltic shields, and the Canadian Cordillera: clues to mantle evolution.Mineralogy and Petrology, in press availableCanada, Europe, Baltic ShieldMagmatism - carbonatites
DS200912-0654
2009
Rumpfhuber, E-M., Keller, R.G.An integrated analysis of controlled and passive source seismic dat a across an Archean-Proterozoic suture zone in the Rocky Mountains.Journal of Geophysical Research, Vol. 114, B8, B08305Canada, Alberta, British ColumbiaGeophysics - seismic
DS200912-0670
2009
Scales, M.What a gem! Story about Victor mine.Canadian Mining Journal, Jan. pp. 16-21.Canada, OntarioDeposit - Victor
DS200912-0679
2009
Scott Smith, B.H., Smith, S.C.S.The economic implications of kimberlite emplacement.Lithos, In press availableCanadaDiamond resource evaluation
DS200912-0682
2009
Seghedi, I., Kurzlaukis, S., Maicher, D.Basaltic diatreme to root zone volcanic processes in Tuzo kimberlite pipe (Gahcho Kue kimberlite field, NWT, Canada).GAC/MAC/AGU Meeting held May 23-27 Toronto, Abstract onlyCanada, Northwest TerritoriesDeposit - Tuzo
DS200912-0683
2009
Seghedi, I., Kurzlaukis, T., Ntaflos, S., Maicher, D.Mineralogy of digested wall rock xenoliths in transitional coherent kimberlites of Tuzo pipe, Gahcho Kue kimberlite field, NWT, Canada.Goldschmidt Conference 2009, p. A1190 Abstract.Canada, Northwest TerritoriesDeposit - Gacho Kue
DS200912-0684
2009
Seghedi, I., Maicher, D., Kurslaukis, S.Volcanology of Tuzo pipe ( Gahcho Kue cluster) root diatreme processes re-interpreted.Lithos, In press available 37p.Canada, Northwest TerritoriesDeposit - Gahcho Kue
DS200912-0688
2009
Shaben, C.Fly at your own risk.The Walrus, November pp.CanadaExploration - regulations
DS200912-0698
2009
Smart, K.A., Chacko, T., Heaman, L.M., Simoneti, A.Origin of diamond rich, high MGO eclogite xenoliths from the Jericho kimberlite, Nuanvut.GAC/MAC/AGU Meeting held May 23-27 Toronto, Abstract onlyCanada, NunavutDeposit - Jericho geochemistry
DS200912-0699
2009
Smart, K.A., Chacko, T., Heaman, L.M., Stachel, T., Muehlenbachs, K.Multiple origins of eclogitic diamonds from the Jericho kimberlite, Nunavut.37th. Annual Yellowknife Geoscience Forum, Abstracts p. 58-59.Canada, NunavutDiamond genesis
DS200912-0700
2009
Smart, K.A., Heaman, L.M., Chacko, T.Jericho eclogites of the Slave Craton record multiple subduction related crust formation events.Goldschmidt Conference 2009, p. A1238 Abstract.Canada, Northwest TerritoriesDeposit - Jericho
DS200912-0701
2009
Smart, K.A., Heaman, L.M., Chacko, T., Simonetti, A., Kopylova, M., Mah, D., Daniels, D.The origin of hig MgO diamond eclogites from the Jericho kimberlite, Canada.Earth and Planetary Science Letters, Vol. 284, 3-4, pp. 527-537.Canada, NunavutDeposit - Jericho
DS200912-0705
2009
Snyder, D.B., Kopylova, M.G.Seismically anisotropic subcontinental mantle lithosphere caused by metasomatic wehrlite pyroxenite dyke stockworks.GAC/MAC/AGU Meeting held May 23-27 Toronto, Abstract onlyCanada, Northwest TerritoriesLac de Gras field
DS200912-0707
2008
Sobolev, N., Wirth, R., Logvinova, A.M., Pokhilenko, N.P., Kuzmin, D.V.Retrograde phase transitions of majorite garnets included in diamonds: a case study of subcalcic Cr rich majorite pyrope from a Snap Lake diamond, Canada.American Geological Union, Fall meeting Dec. 15-19, Eos Trans. Vol. 89, no. 53, meeting supplement, 1p. abstractCanada, Northwest TerritoriesDeposit - Snap lake
DS200912-0723
2009
Spratt, J.E., Jones, A.G., Jackson, V.A., Collins, L., Avdeeva, A.Lithospheric geometry of the Wopmay orogen from a Slave Craton to Bear province magnetotelluric transect.Journal of Geophysical Research, Vol. 114, B1 B01101.CanadaGeophysics - magnetotellurics
DS200912-0727
2009
St.Onge, M.R., Van Gool, A.M., Garde, A.A., Scott, D.J.Correlation of Archean and paleoproterozoic units between northeastern Canada and western Greenland: constraining the pre-collisional upper plate accretionary historyGeological Society of London, Special Publication Earth Accretionary systems in Space and Time, No. 318, pp. 193-235.Canada, Ontario, Europe, GreenlandTrans-Hudson Orogen
DS200912-0728
2009
Stachel, T.Diamond treasures from the Canadian vault.PDAC 2009, 1p. abstractCanada, Northwest Territories, Ontario, QuebecCraton
DS200912-0736
2009
Stott, G.M.Revised: Map of the Precambrian geology of Hudson Bay and James Bay Lowland aeromagnetic data. South sheet.Ontario Geological Survey, Map 3599 Revised 1: 500,000 south sheet $ 11.00Canada, Ontario, James Bay LowlandsMap - geophysics
DS200912-0737
2009
Struzik, E.Diamonds lose lustre in global shutdown.. recession is pummelling the diamond industry and the NWT is feeling the pain.Canada.com, March 15, 4p.Canada, Northwest Territories, Nunavut, AlbertaNews item - economics
DS200912-0778
2009
Tukroglu, E., Unsworth, M., Pana, D.Deep electrical structure of northern Alberta ( Canada): implications for diamond exploration.Canadian Journal of Earth Sciences, Vol. 46, 2, pp. 139-154.Canada, AlbertaGeophysics - magnetotellurics
DS200912-0783
2009
Vaccaro, A.A bourse, of course Toron to based diamond bourse launches but remains addresss-less.Diamonds in Canada Magazine, Northern Miner, June, pp. 17-18.CanadaDiamond bourse - brief overview
DS200912-0786
2009
Van Rythoven, A., McCandless, T.E., Schulze, D.J.,Bellis, A., Taylor, I.A., Liu, Y.In-situ analysis of diamonds and their mineral inclusions from the Lynx kimberlite dyke complex, central Quebec.GAC/MAC/AGU Meeting held May 23-27 Toronto, Abstract onlyCanada, QuebecDeposit - Lynx
DS200912-0787
2009
Van Rythoven, A.D., Schulze, D.J.In-situ analysis of diamonds and their inclusions from the Diavik mine, Northwest Territories, Canada: mapping diamond growth.Lithos, In press available 44p.Canada, Northwest TerritoriesDeposit - Diavik
DS200912-0788
2009
Van Straaten, B.J., Kopylova, M.G., Russell, J.K., Webb, K.J., Scott Smith, B.H.Stratigraphy of the intra crater volcaniclastic deposits of the Victor northwest kimberlite, northern Ontario, Canada.Lithos, In press - available 30p.Canada, Ontario, AttawapiskatDeposit - Victor
DS200912-0789
2009
Van Stratten, B.I., Kopylova, M.B., Russell, J.K., Scott Smith, B.H.Welded kimberlite?GAC/MAC/AGU Meeting held May 23-27 Toronto, Abstract onlyCanada, OntarioDeposit - Victor
DS200912-0796
2009
Verigeanu, D., Hetman, C.M., Jellicoe, B., Baumgartner, M.C.Preliminary geology, mineral chemistry and diamond results from the C29/30 Candle Lake volcanic complex, Saskatchewan, Canada.Lithos, In press - available formatted 12p.Canada, SaskatchewanDeposit - Candle Lake
DS200912-0812
2009
Whitelaw, G.S., mcCarthy, D.D., Tsuji, L.J.S.The Victor diamond mine environmental assessment process: a critical first.Impact Assessment and Project Appraisal, Vol. 27, Sept, no. 3, pp. 205-215.Canada, OntarioDeposit - Victor
DS200912-0815
2009
Wilson, S.A., Raudsepp, M., Dipple, G.M.Quantifying carbon fixation in trace minerals from processed kimberlite: a comparative study of quantitative methods using X-ray powder diffraction dataApplied Geochemistry, Vol. 24, 12, pp. 2312-2331.Canada, Northwest TerritoriesDeposit - Diavik
DS200912-0825
2009
Wyman, D., Kerrich, R.Plume and arc magmatism in the Abitibi subprovince: implications for the origin of the Archean continental lithospheric mantle.Precambrian Research, Vol. 168, 1-2, pp. 4-22.Canada, Quebec, mantleMagmatism - not specific to diamonds
DS200912-0830
2009
Yakoleva, O.S., et al.Mineralogical and geochemical features of high alumin a fenites of the Mont Saint Hilaire alkaline complex, Quebec, Canada.alkaline09.narod.ru ENGLISH, May 10, 2p. abstractCanada, QuebecCarbonatite
DS200912-0856
2009
Zhao, D.Geothermobarometry for ultramafic assemblages from the Emeishan large igneous province, southwest Chin a and the Nikos and Zulu kimberlites, Nunavut, Canada.GAC/MAC/AGU Meeting held May 23-27 Toronto, Abstract onlyCanada, NunavutThermobarometry
DS201012-0023
2010
Atkinson, L.C., Keeping, P.G., Wright, J.C., Liu, H.The challenges of dewatering at the Victor diamond mine in northern Ontario, Canada.Mine Water and the Environment, Vol. 29, 2, pp. 99-107.Canada, OntarioDeposit - Victor
DS201012-0024
2009
Aulbach, S., Stachel, T., Craeser, R.A., Heaman, L.M., Shirey, S.B., MUehlenbachs, K., Eichenberg, D., HarrisSulphide survival and diamond genesis during formation and evolution of Archean subcontinental lithosphere: a comparison between the Slave and Kaapvaal cratons.Lithos, Vol. 112 S pp. 747-757.Canada, AfricaGeochronology
DS201012-0026
2010
Aulbach, S., Stachel, T., Heaman, L.M., Creaser, R.A., Shirey, S.B.Formation of cratonic subcontinental lithospheric mantle and complementary komatiite from hybrid plume sources.Contributions to Mineralogy and Petrology, In press available, 14p.Canada, Northwest TerritoriesPeridotitic sulphide inclusions in diamonds - SCLM
DS201012-0028
2009
Averill, S.A.Useful Ni Cu PGE versus kimberlite indicator minerals in surficial sediments: similarities and differences.Geological Association of Canada Short Course, No. 18, pp. 125-140.CanadaGeochemistry, technology
DS201012-0031
2010
Bailey, B.L., Smith, L.J.D., Blowes, D.W., Ptacek, C.J., Smith, L., Sego, D.C.Diavik waste rock project: blasting residuals in waste rock piles.38th. Geoscience Forum Northwest Territories, Abstract p. 30.Canada, Northwest TerritoriesDiavik
DS201012-0049
2010
Berman, R.G., Sandeman, H.A., Camacho, A.Diachronous Paleoproterozoic deformation and metamorphism in the Committee Bay belt, Rae Province, Nunavut: insights from 40Ar 39 Ar cooling agesJournal of Metamorphic Geology., Vol. 28, 5, pp. 439-457.Canada, NunavutGeothermometry - not specific to diamonds
DS201012-0066
2010
Bostock, M.G., Eaton, D.W., Snyder, D.B.Teleseismic studies of the Canadian landmass: lithoprobe and its legacy.Canadian Journal of Earth Sciences, Vol. 47, 4, pp. 445-461.CanadaGeophysics - seismic
DS201012-0077
2010
Buchan, K.L., Ernst, R.E., Bleeker, W., Davis, W.J., Villeneuve, M., Van Breeman, O., Hamilton, SoderlundMap of Proterozoic magmatic events in the Slave Craton, Wopmay Orogen and environs, Canadian Shield.International Dyke Conference Held Feb. 6, India, 1p. AbstractCanada, Northwest TerritoriesMagmatism
DS201012-0092
2010
Chakhmouradian, A.Manitoba: a hotspot of carbonatitic magmatism in the Precambrian.International Mineralogical Association meeting August Budapest, AbstractCanada, ManitobaCarbonatite
DS201012-0094
2009
Chakhmouradian, A.R., Bohm, C.O., Demeny, A., Reguir, E.P., Hegner, E., Creaser, R.A., Halden, N.M., Yang, P.'Kimberlite' from Wekusko Lake Manitoba: actually a diamond indicator bearing dolomite carbonatite.Lithos, Vol. 112 S pp. 347-357.Canada, ManitobaCarbonatite
DS201012-0095
2009
Chakhmouradian, A.R., Mitchell, R.H.Marianoite, a new member of the cuspidine group from the Prairie Lake silicocarbonatite, Ontario. Reply.The Canadian Mineralogist, Vol. 47, 5, pp. 1275-1282.Canada, OntarioCarbonatite
DS201012-0104
2010
Chiarenzelli, J., Lupulescu, M., Cousens, B., Thern, E., Coffin, L., Regan, S.Enriched Grenvillian lithospheric mantle as a consequence of long lived subduction beneath Laurentia.Geology, Vol. 38, 2, pp. 151-154.Canada, QuebecGeochronology, subduction
DS201012-0107
2010
Chudy, T.C., Groat, L.A.The origin of the tantalum bearing Upper Fir carbonatite, east central British Columbia, Canada: preliminary results.International Mineralogical Association meeting August Budapest, abstract p. 566.Canada, British ColumbiaCarbonatite
DS201012-0110
2010
Clowes, R.Initiation, development, and benefits of lithoprobe shaping the direction of Earth Science research in Canada and beyond.Canadian Journal of Earth Sciences, Vol. 47, 4, pp. 291-314.CanadaGeophysics - seismic
DS201012-0118
2010
Cook, F.A., White, D.J., Jones, A.G., Eaton, D.W.S., Hall, J., Clowes, R.M.How the crust meets the mantle: lithoprobe perspectives on the Mohorovicic.Canadian Journal of Earth Sciences, Vol. 47, 4, pp. 315-351.Mantle, CanadaGeophysics - seismic
DS201012-0125
2009
Corrigan, D., Pehsson, S., Wodicka, N., De Kemp, E.The Paleoproterozoic Trans Hudson Orogen: a prototype of modern accretionary processes.Ancient Orogens and Modern Analogues, Geological Society of London Special Publication, No. 327, pp. 457-479.CanadaCraton
DS201012-0128
2010
Courtier, A.M., Gaherty, J.B., Revenaugh, J., Bostock, M.G., Gamero, E.J.Seismic anisotropy associated with continental lithosphere accretion beneath the CANOE array, northwestern Canada.Geology, Vol. 38, 10, pp. 887-890.Canada, Alberta, Northwest TerritoriesGeophysics - seismics
DS201012-0130
2010
Creighton, S., Stachel, T., Eichenberg, D., Luth, R.W.Oxidation state of the lithospheric mantle beneath Diavik diamond mine, central Slave Craton, NWT, Canada.Contributions to Mineralogy and Petrology, Vol. 159, 5, pp. 645-659.Canada, Northwest TerritoriesDeposit - Diavik
DS201012-0136
2010
Darbyshire, F.A., Eaton, D.W.The lithospheric root beneath Hudson Bay, Canada from Rayleigh wave dispersion: no clear seismological distinction between Archean and Proterozoic mantle.Lithos, Vol. 120, 1-2, Nov. pp. 144-159.Canada, Ontario, Manitoba, QuebecGeophysics - seismics
DS201012-0150
2010
Dennis, K.J., Schrag, D.P.Clumped isotope thermometry of carbonatites as an indicator of diagenetic alteration.Geochimica et Cosmochimica Acta, Vol. 74, no. 14, pp. 4110-4122.Canada, United States, Africa, South America, BrazilOka, Bearpaw, McClure,Magnet Cove
DS201012-0157
2010
Dimitrakopoulos, R., Mustapha, H., Gloaguen, E.High order statistics of spatial random fields: exploring spatial cumulants for modeling complex non-gaussian and non-linear phenomena.Mathematical Geosciences, Vol. 42, 1., pp. 65-99.Canada, Northwest TerritoriesDeposit - Ekati
DS201012-0172
2010
Dransfield, M., Le Roux, T., Burrows, D.Airborne gravimetry and gravity gradiometry at Fugro airborne surveys.Australian Airborne Gravity Conference Extended Abstracts 2010, pp. 49-52.Canada, Northwest TerritoriesGeophysics - gravity, Ekati
DS201012-0175
2010
Dunlop, D.J., Ozdemir, O.,Costanzo-Alvarez, V.Magnetic properties of rocks of the Kapuskasing uplift ( Ontario, Canada) and origin of long wavelength magnetic anomalies.Geophysical Journal International, Vol. 183, 2, Nov. pp. 645-659.Canada, OntarioGeophysics - not specific to diamonds
DS201012-0177
2010
Eaton, D.W., Darbyshire, F.Lithospheric architecture and tectonic evolution of the Hudson Bay region.Tectonophysics, Vol. 480, 1-4, pp. 1-22.Canada, OntarioOrogen
DS201012-0179
2010
Eccles, D.R., Read, G.Kimberlites and related rocks in the Western Canadian Sedimentary Basin. SHORT COURSE GAC MAY 14.GAC Short Course, Registration geocanada2010.caCanada, AlbertaShort Course
DS201012-0180
2010
Eccles, D.R., Simonetti, S.S., Cox, R.Garnet pyroxenite and granulite xenoliths from northeastern Alberta: evidence of not vertical similarity 1.5 Ga lower crust and mantle w. LaurentiaPrecambrian Research, Vol. 177, 3-4, pp. 339-354.Canada, AlbertaXenoliths
DS201012-0181
2009
Edmonton JournalDe Beers polishes up Snap Lake site.Edmonton Journal, Dec. 5, 1p.Canada, Northwest TerritoriesNews item - De Beers
DS201012-0192
2010
Falck, H., Gochnauer, K., Irwin, D.2010 Northwest Territories mineral exploration overview.Northwest Territories Geoscience Office, Nov. 28, 21p.Canada, Northwest Territoriesdiamonds pp. 8-10.
DS201012-0194
2010
Farrell, S., Bell, K., Clark, I.Sulphur isotopes in carbonatites and associated silicate rocks from the Superior Province, Canada.Mineralogy and Petrology, Vol. 98, 1-4, pp. 209-226.Canada, OntarioGeochronology
DS201012-0195
2010
Fedortchuk, Y., Matveev, S., Carlson, J.A.H2O and CO2 in kimberlitic fluid as recorded by diamonds and olivines in several Ekati diamond mine kimberlites, Northwest Territories, Canada.Earth and Planetary Science Letters, Vol. 289, 3-4, pp. 549-559.Canada, Northwest TerritoriesDeposit - Ekati
DS201012-0206
2010
Forte, A.M., Moucha, R., Simmons, N.A., Grand, S.P., Mitrovica, J.X.Deep mantle contributions to the surface dynamics of the North American continent.Tectonophysics, Vol.481, 1-4, pp. 3-15.Canada, United StatesTectonics
DS201012-0209
2010
Francis, D., Minarik, W., Proenza, Y., Shi, L.An overview of the Canadian Cordilleran lithospheric mantle.Canadian Journal of Earth Sciences, Vol. 47, 4, pp. 353-368.Canada, British ColumbiaGeophysics - seismic
DS201012-0253
2009
Grutter, H.S.Pyroxene xenocryst geotherms: techniques and application.Lithos, Vol. 112 S pp. 1167-1178.Canada, Northwest TerritoriesThermobarometry
DS201012-0262
2010
Halls, H.C., Lovette, A., Soderlund, U., Hamilton, M.A.Paleomagnetism and U Pb geochronology from the western end of the Grenville dyke swarm and the question of true polar wander during the Ediacaran.International Dyke Conference Held Feb. 6, India, 1p. AbstractUnited States, CanadaAlkaline rocks, complexes
DS201012-0263
2010
Halpin, K., Ansdell, K., Pearson, J.The characteristics and origin of Great Western Minerals Group Ltd.'s Hoidas Lake REE deposit, Rae province, Northwestern Saskatchewan.International Workshop Geology of Rare Metals, held Nov9-10, Victoria BC, Open file 2010-10, extended abstract pp.45.Canada, SaskatchewanAlkalic
DS201012-0264
2010
Hammer, P.T.C., Clowes, R.M., Cook, F.A., Van der Velden, A.J., Vasudevan, K.The lithoprobe trans continental lithospheric cross sections: imaging the internal structure of the North American continent.Canadian Journal of Earth Sciences, Vol. 47, 5, pp. 821-957.Canada, United StatesGeophysics - seismics
DS201012-0274
2010
Heaman, L.M., Pearson, D.G.Nature and evolution of the Slave Province subcontinental lithospheric mantle.Canadian Journal of Earth Sciences, Vol. 47, 4, pp. 369-388.Canada, Northwest TerritoriesGeophysics - seismic
DS201012-0286
2010
Hood, W.C., Lee, J.E.Diamond exploration at Wekusko Lake.Manitoba Mining Review, pp. 29-31.Canada, ManitobaDikes
DS201012-0287
2010
Hou, G., Kusky, T.M., Wang, C., Wang, X.Mechanics of the giant radiating dyke swarm: a paleostress field modeling.Journal of Geophysical Research, Vol. 115, B2, B02402.Canada, Northwest TerritoriesDyke morphology
DS201012-0293
2009
Hozjan, D.J., Averil, S.A.Quality control in indicator mineral sampling and processing.Geological Association of Canada Short Course, No. 18, pp. 141-152.CanadaGeochemistry, technology
DS201012-0298
2010
Hunt, L., Stachel, T., Armstrong, J.Evolution of SCLM beneath the Renard kimberlites, SE Superior Craton: an integrated study of diamonds, xenoliths and xenocrysts.Goldschmidt 2010 abstracts, abstractCanada, QuebecDeposit - Renard
DS201012-0308
2010
Institute of Lake Superior GeologyStop 5 Diamonds in the Grassy Portage ultramafic pyroclastic - MetalCorp - GUP property.Institute of Lake Superior Geology, Field Trip Guidebook, Vol. 56, part 2, p.119 - 123.Canada, OntarioGeological description
DS201012-0328
2010
Johnson, C.N., Stern, R., Stachel, T., Muehlenbachs, K., Armstrong, J.The micro/macro diamond relationship: a case study from the Artemisia kimberlite northern Slave Craton ( Nunavut, Canada).38th. Geoscience Forum Northwest Territories, Abstract p. 52.Canada, NunavutDeposit - Artemisia
DS201012-0336
2009
Kamenetsky, V.S., Kamenetsky, M.B., Weiss, Y., Naov, O., Nielsen, T.F.D., Mernagh, T.P.How unique is the Udachnaya East kimberlite? Comparison with kimberlites from the Slave Craton (Canada) and SW Greenland.Lithos, Vol. 112 S pp. 334-346.Russia, Canada, Northwest Territories, Europe, GreenlandOlivine, phenocrysts
DS201012-0337
2010
Kaminski, V., Legault, J.M., Kumar, H.The Drybones kimberlite: a case study of VTEM and ZTEM airborne EM results.21st International Geophysical Conference and Exhibition Sydney NSW Australia, August 22-25, Extended abstract 5p.Canada, Northwest TerritoriesGeophysics - Drybones pipe
DS201012-0359
2010
Kienlen, B.Exploration in the Pelly Bay region. Amaruk project. Diamonds North.38th. Geoscience Forum Northwest Territories, Abstract pp. 54-55.Canada, NunavutAmaruk
DS201012-0377
2010
Kilalea, D.Harry Winston Diamond Corp. earnings preview.RBC Capital Markets, Aug. 25, 5p.Canada, Northwest TerritoriesNews item - Harry Winston Diamonds
DS201012-0385
2010
Kilalea, D.Stornoway Diamond Corp. Count down to a mine on Renard. In depth analysis.RBC Capital Markets, May 11, 24p.Canada, QuebecNews item - Stornoway
DS201012-0392
2010
Kjarsgaard, B.A., Snyder, D.B.The GEM diamond project: an update of 2010 activities and a view forward to 2011.38th. Geoscience Forum Northwest Territories, Abstract p. 56.Canada, Northwest TerritoriesGEM database
DS201012-0403
2010
Kopylova, M., Polozov, A.Petrography of kimberlites and mantle xenoliths: solid foundation or slippery ground?38th. Geoscience Forum Northwest Territories, Abstract pp. 58-59.Canada, Northwest TerritoriesDeposit - Gahcho Kue 5034
DS201012-0404
2010
Kopylova, M.G., Mogg, T., Scott Smith, B.Mineralogy of the Snap lake kimberlite, Northwest Territories, Canada, and compositions of phlogopite as records of its crystallization.The Canadian Mineralogist, Vol. 48, 3, pp. 549-570.Canada, Northwest TerritoriesDeposit - Snap Lake
DS201012-0413
2010
Kressall, R., McLeish, D.F., Crozier, Chakhmouradian, A.The Aley carbonatite complex - part 2 petrogenesis of a Cordilleran niobium deposit mine.International Workshop Geology of Rare Metals, held Nov9-10, Victoria BC, Open file 2010-10, extended abstract pp. 25-26.Canada, British ColumbiaCarbonatite
DS201012-0423
2010
Landry, F., Denholm, E., Hanks, C.Fish habitat compensation and mining in the North. Ekati has two compensation programs.38th. Geoscience Forum Northwest Territories, Abstract p. 60.Canada, Northwest TerritoriesEkati
DS201012-0436
2009
Lett, R.E.Regional geochemical surveys in British Columbia.Geological Association of Canada Short Course, No. 18, pp. 97-110.Canada, British ColumbiaGeochemistry, technology
DS201012-0437
2010
Levy, F., Jaupart, C., Mareschal, J-C., Bienfait, G., Limare, A.Low heat flux and large variations of lithospheric thickness in the Canadian Shield.Journal of Geophysical Research, Vol. 115, B6, B06404.CanadaGeophysics - seismics
DS201012-0445
2010
Linnen, R.L.Rare metal Li Cs Ta (Sn Nb) mineralization: what do we know and where are we going?International Workshop Geology of Rare Metals, held Nov9-10, Victoria BC, Open file 2010-10, extended abstract pp. 29-30.Australia, Canada, ManitobaGreenbushes, Tanco
DS201012-0469
2010
Malarkey, J., Pearson, D.G., Kjarsgaard, B.A., Davidson, J.P., Nowell, G.M., Ottley, C.J., Stammer, J.From source to crust: tracing magmatic evolution in a kimberlite and a melilitite using microsample geochemistry.Earth and Planetary Science Letters, Vol. 299, 1-2, Oct. 15, pp. 80-90.Canada, Northwest Territories, Africa, South AfricaGeochemistry - JOS
DS201012-0472
2010
Manthei, C.D., Ducea, M.N., Girardi, J.D., Patchett, P.Isotopic and geochemical evidence for a recent transition in mantle chemistry beneath the western Canadian Cordillera.Journal of Geophysical Research, Vol. 115, B2, B202204.Canada, Alberta, saskatchewan, Northwest TerritoriesGeochemistry
DS201012-0476
2010
Mather, K.A., Pearson, D.G., Kjarsgaard, B.A., Jackson, S.Understanding the lithosphere beneath Arctic Canada - an example from the N. Slave craton.38th. Geoscience Forum Northwest Territories, Abstract p. 65.Canada, Northwest TerritoriesDeposit - Artemisia
DS201012-0477
2010
Maurice, C.Rare metal occurrences and exploration potential in Quebec.International Workshop Geology of Rare Metals, held Nov9-10, Victoria BC, Open file 2010-10, extended abstract pp.67.Canada, QuebecClassification
DS201012-0478
2010
Maurice, C., Francis, D.Enriched crustal and mantle components and the role of the lithosphere in generating Paleoproterozoic dyke swarms of the Ungava Peninsula, Canada.Lithos, Vol. 114, pp. 95-108.Canada, Quebec, UngavaDykes
DS201012-0482
2010
McDonald, A.M., Chao, G.Y.Rogermitchellite, a new mineral species from Mont Hilaire Quebec: description, structure, determination and relationship with HFSE bearing cyclosilicates.Canadian Mineralogist, Vol. 48, 2, pp. 267-278.Canada, QuebecAlkalic
DS201012-0485
2010
McLeish, D.F., Kressall, R., Crozier, J., Johnston, S.T., Chakhmouradian, A., Mortensen, J.K.The Aley carbonatite complex - part 1 structural evolution of a Cordilleran niobium deposit mine.International Workshop Geology of Rare Metals, held Nov9-10, Victoria BC, Open file 2010-10, extended abstract pp. 21-24.Canada, British ColumbiaCarbonatite
DS201012-0486
2009
McMartin, I., Campbell, J.E.Near surface till sampling protocols in shield terrain, with examples from Western and northern Canada.Geological Association of Canada Short Course, No. 18, pp. 75-96.Canada, Northwest Territories, British ColumbiaGeochemistry, technology
DS201012-0487
2009
McMartin, I., Paulen, R.C.Ice flow indicators and the importance of ice-flow mapping for drift prospecting.Geological Association of Canada Short Course, No. 18, pp. 15-34.Canada, Northwest TerritoriesGeomorphology
DS201012-0495
2009
Merlino, S., Mellini, M.Marianoite, a new member of the cuspidine group from the Prairie Lake silicocarbonatite, Ontario. Discussion.Canadian Mineralogist, Vol. 47, 5, pp. 1275-1279.Canada, OntarioCarbonatite
DS201012-0511
2010
Mitchell, R.N., Van Breeman, O., Buchan, K.L., Le Cheminant, T.N., Bleeker, W., Evans, D.A.D.Supercratons at the ends of Early Proterozoic Earth: reconstruction of Slave, Superior, and Kaapvaal cratons at 2200-2000 Ma.International Dyke Conference Held Feb. 6, India, 1p. AbstractCanada, Africa, South AfricaKenorland
DS201012-0516
2010
Moss, S.Component distribution in kimberlite: a case study using olivine from Diavik, NWT.38th. Geoscience Forum Northwest Territories, Abstract pp. 66-67.Canada, Northwest TerritoriesMean stone size
DS201012-0517
2009
Moss, S., Russell, J.K., Brett, R.C., Andrews, G.D.M.Spatial and temporal evolution of kimberlite magma at A154N, Diavik, Northwest Territories, Canada.Lithos, Vol. 112 S pp. 541-552.Canada, Northwest TerritoriesEmplacement model
DS201012-0544
2010
Nuber, N., Gerdes, A., Brey, G., Grutter, H.Zircons from kimberlites at Lac de Gras, Canada - a section through the continental crust.International Mineralogical Association meeting August Budapest, abstract p. 561.Canada, Northwest TerritoriesDiamond morphology - size distribution
DS201012-0558
2010
Oueity, J., Clowes, R.M.Paleoproterozoic subduction in northwestern Canada from near vertical and wide angle seismic reflection data.Canadian Journal of Earth Sciences, Vol. 47,1, pp. 35-52.Canada, Alberta, Northwest TerritoriesGeophysics - seismics
DS201012-0566
2010
Patterson, M.V., Francis, D.High -Al kimberlite produced by monticellite fractionation. Renard Stornoway38th. Geoscience Forum Northwest Territories, Abstract p. 74.Canada, QuebecFoxtrot, Lynx, Hibou dykes
DS201012-0567
2009
Paulen, R.C.Sampling techniques in the western Canada sedimentary basin and the cordillera.Geological Association of Canada Short Course, No. 18, pp. 49-74.Canada, Northwest Territories, British ColumbiaGeochemistry
DS201012-0568
2009
Paulen, R.C.Drift prospecting in northern Alberta - a unique glacial train for exploration.Geological Association of Canada Short Course, No. 18, pp. 185-206.Canada, AlbertaGeochemistry, technology
DS201012-0569
2010
Paulen, R.C., Adcock, S.W., Spirito, W.A., Chorlton, L.B., McClenaghan, M.B., Oviatt, Budulan, RobinsonsInnovative methods to search, download and display indicator mineral data: a new Tri-Territorial Indicator Mineral Database.38th. Geoscience Forum Northwest Territories, Abstract pp. 75-76.Canada, Northwest TerritoriesGEM database
DS201012-0571
2010
Peats, J., Stachel, T., Stern, R., Muehlenbachs, K., Armstrong, J.Aviat diamonds as a window into the deep lithospheric mantle beneath the northern Churchill province.38th. Geoscience Forum Northwest Territories, Abstract pp.118-119.Canada, Northwest Territories, Melville PeninsulaGeochronology - nitrogen, CI
DS201012-0572
2010
Pell, J.The Chidliak diamond district, Nunavut: 50 kimberlites and counting. Peregrine38th. Geoscience Forum Northwest Territories, Abstract p. 77.Canada, Nunavut, Baffin IslandChidliak
DS201012-0574
2010
Perry, C., Rosieanu, C., Maraeschal, J-C., Jaupart, C.Thermal regime of the lithosphere in the Canadian shield.Canadian Journal of Earth Sciences, Vol. 47, 4, pp. 389-408.Canada, Northwest TerritoriesGeothermometry
DS201012-0590
2010
Pokhilenko, N.P., Afanasev, V.P., Vavilov, M.A.Behaviour of kimberlite indicator minerals during the formation of mechanical dispersion halos in glacial settings.Lithology and Mineral Resources, Vol. 45, 4, pp. 324-329.Canada, Northwest TerritoriesDeposit - CL 25
DS201012-0600
2009
Prior, G.J., McCurdy, M.W., Friske, P.W.B.Stream sediment sampling for kimberlite indicator minerals in the western Canada sedimentary basin: the Buffalo Head Hills Survey, north central Alberta.Geological Association of Canada Short Course, No. 18, pp. 111-124.Canada, AlbertaGeochemistry, technology
DS201012-0616
2010
Reford, S.W.Exploring for metals and diamonds at Darnley Bay, NT - a reality in 2010.38th. Geoscience Forum Northwest Territories, Abstract pp.120-121.Canada, NunavutGeophysics - geochemistry
DS201012-0619
2010
Reguir, E.P., Chakhmouradian, A.R., Halden, N.M., Yang, P.Trace element variations in clinopyroxene from calcite carbonatites.International Mineralogical Association meeting August Budapest, abstract p. 575.Canada, Ontario, Russia, Aldan Shield, Kola PeninsulaCarbonatite
DS201012-0620
2010
Reguir, E.P., Chakhmouradian, A.R., Halden, N.M., Yang, P.Contrasting trends of trace element zoning in phlogopite from calcite carbonatites.International Mineralogical Association meeting August Budapest, abstract p. 575.United States, Colorado Plateau, Russia, Canada, Ontario, QuebecCarbonatite
DS201012-0630
2010
Robertson, C., Roeland, L.Using a girl's best friend to grow a multi million dollar aboriginal corporation Tlicho Investment Corporation.38th. Geoscience Forum Northwest Territories, Abstract pp.80-81.Canada, Northwest TerritoriesTlicho
DS201012-0642
2010
Rukhlov, A.S., Bell, K.Geochronology of carbonatites from the Canadian and Baltic Shields, and the Canadian Cordillera: clues to mantle evolution.Mineralogy and Petrology, Vol. 98, 1-4, pp. 11-54.Canada, EuropeCarbonatite
DS201012-0668
2010
Schaeffer, A., Bostock, M.G.A low velocity zone atop the transition zone in northwestern Canada.Journal of Geophysical Research, Vol. 115, no. B6, B06302.Canada, Northwest TerritoriesGeophysics - seismics
DS201012-0677
2010
Scott Smith, B.H.KEYNOTE presentation: After the Canadian diamond rush: insights into kimberlites and their evaluation.38th. Geoscience Forum Northwest Territories, Abstract p. 18.Canada, Northwest TerritoriesGeologic models
DS201012-0692
2010
Shaw, J., Sharpe, D., Harris, J.A flowline map of glaciated Canada based on remote sensing data.Canadian Journal of Earth Sciences, Vol. 47, 1, pp. 89-101.CanadaGeomorphology
DS201012-0720
2010
Smart, K., Chacko, T., Heaman, L., Stachel, T., Muehlenbachs, K.13 C depleted diamonds in Jericho eclogites: diamond formation from ancient subducted organic matter.Goldschmidt 2010 abstracts, abstractCanada, NunavutDeposit - Jericho
DS201012-0728
2010
Smith, E., Kopylova, M., Dubrovinsky, L., Tomlinson, E.X-ray diffraction study of the mineral and fluid inclusions in fibrous diamond.38th. Geoscience Forum Northwest Territories, Abstract pp.124-125.Canada, Northwest Territories, Ontario, Africa, Democratic Republic of CongoMineral inclusions - Panda, Jericho
DS201012-0729
2010
Smith, E.M., Helmstaedt, H.H., Flemming, R.I.Survival of the brown colour in diamond during storage in the subcontinental lithospheric mantle.The Canadian Mineralogist, Vol. 48, 3, pp. 571-582.Canada, Northwest TerritoriesDiamond morphology - Ekati
DS201012-0730
2010
Smith, E.M., Helmstaedt, H.H., Flemming, R.I.Survival of the brown colour in diamond during storage in the subcontinental lithospheric mantle.The Canadian Mineralogist, Vol. 48, 3, pp. 571-582.Canada, Northwest TerritoriesDiamond morphology - Ekati
DS201012-0731
2010
Snyder, D.B., Grutter, H.S.Lithoprobes impact on the Canadian diamond exploration industry.Canadian Journal of Earth Sciences, Vol. 47, 5, pp. 783-800.CanadaGeophysics
DS201012-0732
2009
Snyder, D.B., Lockhart, G.Does seismically anisotropic subcontinental mantle lithosphere require metasomatic wehrlite pyroxenite dyke stockworks?Lithos, Vol. 112 S pp. 961-965.Canada, Northwest TerritoriesSlave Craton
DS201012-0752
2009
Stanley, C.R.Geochemical, mineralogical and lithological disposal methods in glacial till: physical process constraints and application in mineral exploration.Geological Association of Canada Short Course, No. 18, pp. 35-48.Canada, Northwest TerritoriesGeomorphology
DS201012-0754
2009
Stea, R.R., Johnson, M., Hanchar, D.The geometry of kimberlite indicator mineral dispersal fans in Nunavut, Canada.Geological Association of Canada Short Course, No. 18, pp. 1-14.Canada, NunavutGeomorphology, geochemistry
DS201012-0760
2010
Stornoway Diamond CorporationStornoway reports updated Renard preliminary assessment pre-tax NPV increases by 1,400% to $ C885 million.Stornoway Diamond Corporation, March 22, 2p.Canada, QuebecNews item - Stornoway
DS201012-0761
2009
Stott, G.M., Josey, S.D.Regional geology and mineral deposits of northern Ontario, north of latitude 49 30.Ontario Geological Survey, Open file 6242 and Data set 265, 1 DVD $ 25.00Canada, OntarioInventory of records on file
DS201012-0762
2009
Strand, P., Banas,A., Baumgartner, M., Burgess, J.Tracing kimberlite indicator mineral dispersal trains: an example from the Churchill diamond project, Kivalliq region, Nunavut.Geological Association of Canada Short Course, No. 18, pp. 167-176.Canada, NunavutGeochemistry, technology
DS201012-0763
2010
Strand, P., Lassonde, J., Burgess, J.Transforming a diamond mine: the Jericho diamond mine update.38th. Geoscience Forum Northwest Territories, Abstract pp.87-88.Canada, NunavutJericho project
DS201012-0776
2009
Sylvester, B.Wishing upon a Star .... comments on 209 page prefeasibility study on Star kimberlite.Diamonds in Canada Magazine, Northern Miner, November pp. 8-13.Canada, SaskatchewanBrief overview - Shore Gold
DS201012-0778
2010
Tappe, S., Heaman, L.M.Can alkaline magmatism destroy a craton? Lessons learned from the Greenland Labrador diamond province.International Dyke Conference Held Feb. 6, India, 1p. AbstractCanada, Labrador, Europe, GreenlandAlkaline rocks, magmatism
DS201012-0779
2010
Tappe, S., Pearson, D.G., Heaman, L., Nowell, G., Milstead, P.Relative roles of cratonic lithosphere and asthenosphere in controlling kimberlitic magma compositions: Sr Nd Hf isotope evidence fromGoldschmidt 2010 abstracts, abstractEurope, Greenland, Canada, LabradorGeochronology
DS201012-0784
2010
Thalenhorst, H., Dumka, D.Bulk sampling of mineral projects using a sample tower: lessons from the field. ( Strathcona Mineral Services)Canadian Institute of Mining and Metallurgy, Vol. 1, no. 1, pp. 44-54.Canada, NunavutDeposit - Meliadine gold
DS201012-0785
2010
Thomas, M.D., Ford, K.L., Keating, P.Exploration geophysics for intrusion hosted rare earth metals.International Workshop Geology of Rare Metals, held Nov9-10, Victoria BC, Open file 2010-10, extended abstract pp.59-61.Canada, Ontario, QuebecGeophysics - Alkaline and carbonatite
DS201012-0786
2010
Thompson, D.A., Bastow, I.D., Helffich, G., Kendall, J.M., Wookey, J., Snyder, D.B., Eaton, D.W.Precambrian crustal evolution: seismic constraints from the Canadian Shield.Earth and Planetary Science Letters, Vol. 297, 3-4, pp. 655-666.CanadaGeophysics - seismics
DS201012-0787
2009
Thorleifson, L.H.Overview of indicator mineral methods in mineral exploration.Geological Association of Canada Short Course, No. 18, pp. 215-CanadaGeochemistry, technology - review
DS201012-0797
2009
Tremblay, T., Ryan, J.J., James, D.T., Kjarsgaard, I.M.Kimberlite indicator mineral survey and ice flow studies in Boothia maIn land 57A,B,C,D. Kitikmeot region, Nunavut.Geological Survey of Canada, Open file 6040 31p. CD $ 9.10Canada, NunavutGeochemistry
DS201012-0803
2010
Trueman, D.L.Exploring for a Tanco type pegmatite.International Workshop Geology of Rare Metals, held Nov9-10, Victoria BC, Open file 2010-10, extended abstract pp. 31.Canada, ManitobaBernic lake
DS201012-0806
2010
Turner, D., Groat, L.A.Rare earth mineralization at the True Blue property, southern Yukon.International Workshop Geology of Rare Metals, held Nov9-10, Victoria BC, Open file 2010-10, extended abstract pp.47.Canada, YukonAlkalic
DS201012-0850
2010
Williams-Jones, A.E.The Nechalacho rare earth deposit, Thor Lake, Northwest Territories.International Workshop Geology of Rare Metals, held Nov9-10, Victoria BC, Open file 2010-10, extended abstract pp.41.Canada, Northwest TerritoriesAlkalic
DS201012-0861
2010
Wu, F.Y., Yang, Y-H., Mitchell, R.H., Li, J-H., Yang, J-H., Zhang, Y-B.In situ U Pb age determination and Nd isotopic analysis of perovskites from kimberlites in southern Africa and Somerset Island, Canada.Lithos, Vol. 115, pp. 205-222.Canada, Nunavut, Africa, South AfricaGeochronology
DS201012-0863
2010
Wyman, D., Kerrich, R.Mantle plume volcanic arc interaction: consequences for magmatism, metallogeny, and cratonization in the Abitibi and Wawa subprovinces, Canada.Canadian Journal of Earth Sciences, Vol. 47, 5, pp. 565-589.Canada, OntarioMagmatism
DS201012-0899
2010
Zurevinski, S.E., Mitchell, R.H.Highly evolved hypabyssal kimberlite sills from Wemindji, Quebec, Canada: insights into the process of flow differentiation in kimberlite magmas.Contributions to Mineralogy and Petrology, Vol. 161, 5, pp. 765-776.Canada, QuebecKimberlite sill petrology
DS201112-0041
2004
Aulbach, S.Evolution of the lithospheric mantle beneath the Slave Craton and Alberta Canada.Thesis: Macquarie University Phd. , Canada, Northwest Territories, AlbertaThesis: note availability based on request to author
DS201112-0042
2011
Aulbach, S., O'Reilly, S.Y., Pearson, N.J.Constraints from eclogite and MARID xenoliths on origins of mantle Zr/Hf-Nb/Ta variability.Contributions to Mineralogy and Petrology, Vol. 162, 5, pp. 1047-1062.Canada, Northwest Territories, Africa, South AfricaCarbonatite, kimberlites, Slave craton
DS201112-0044
2011
Aulbach, S., Stachel, T., Heaman, L.H., Carlson, J.A.Microxenoliths from the Slave Craton: archives of diamond formation along fluid conduits.Lithos, Vol. 126, pp. 419-434.Canada, Northwest TerritoriesEclogite, subduction, metasomatism, Ekati
DS201112-0046
2011
Aulbach, S., Stachel, T., Heaman, L.M., Creaser, R.A.,Thomassot, E., Shirey, S.B.C and S transfer in subduction zones: insight from diamonds.Goldschmidt Conference 2011, abstract p.462.Canada, Northwest TerritoriesDiavik, Ekati
DS201112-0058
2001
Banas, A.Diamonds and their formation. Characterization of diamonds from the Buffalo Head Hills, Alberta.Thesis: University of Alberta, Earth and Atmospheric Sciences Msc., 106p.Canada, AlbertaThesis - note availability based on request to author
DS201112-0066
2011
Bastow, I.D., Thompson, D.A., Wookey, J., Kendall, J-M., Helffrich, G., Snyder, D.B., Eaton, D.W., Darbyshire, F.A.Precambrian plate tectonics: seismic evidence from northern Hudson Bay, Canada.Geology, Vol. 39, 1, pp. 91-94.Canada, Ontario, Quebec, Manitoba, Northwest TerritoriesGeophysics - seismics
DS201112-0077
2011
Bell, K.Carbonatites and Pb isotopes- insights into terrestrial evolution.Goldschmidt Conference 2011, abstract p.510.Canada, FennoscandiaGeochronology
DS201112-0083
2011
Beranek, L.P., Mortensen, J.K.The timing and provenance record of the Late Permian Klondike Orogeny in northwestern Canada and arc continent collision along western North America.Tectonics, Vol. 30, 5, TC5017.United States, CanadaAccretion
DS201112-0086
2011
Betts, P.G., Giles, D., Aitken, A.Paleoproterozoic accretion processes of Australia and comparisons with Laurentia.International Geology Review, Vol. 53, no. 11-12, pp. 1357-1376.Australia, CanadaTectonics
DS201112-0092
2011
Bleeker, W.The Slave Craton of North America: an overview.Geological Society of America, Annual Meeting, Minneapolis, Oct. 9-12, abstractCanada, United StatesGeochronology, petrology
DS201112-0101
2005
Boyer, L.P.Kimberlite volcanic facies and eruption in the Buffalo Head Hills, Alberta Canada.Thesis: University of British Columbia Msc., 156p.Canada, AlbertaThesis - note availability based on request to author
DS201112-0105
2011
Braden, B.Frozen out! Why is NWT exploration slowing so drastically? grass roots explorers shun the NWT, discouraged by high cost, scant infrastructure, legalCanadian Mining Journal, May, pp. 38-42.Canada, Northwest TerritoriesHistory - legal
DS201112-0111
2011
Brin, L.E., Pearson, D.G., Riches, A.J.V., Miskovic, A., Kjarsgaard, B.A., Kienlen, B., Reford, S.W.Evaluating the northerly extent of the Slave Craton in the Canadian Arctic.Yellowknife Geoscience Forum Abstracts for 2011, Poster abstract p. 95.Canada, Northwest Territories, Nunavut, Victoria Island, Parry PeninsulaKimberlite borne - xenoliths -
DS201112-0115
2011
Brooker, R.A., Sparks, R.S.J., Kavanagh, J.L., Field, M.The volatile content of hypabyssal kimberlite magmas: some constraints from experiments on natural rock compositions.Bulletin Volcanology, in press available 23p.Canada, Nunavut, Northwest Territories, Africa, South AfricaDeposit - Jericho, Lac de Gras
DS201112-0121
2011
Bruce, L.F., Kopylova, M.G., Longo, M., Ryder, J., Dobrzhinetskaya, L.F.Luminescence of diamonds from metamorphic rocks.American Mineralogist, Vol. 96, 1, pp. 14-22.Canada, Ontario, Wawa, Russia, GermanyUHP, cathodluminescence
DS201112-0144
2011
Carlson, R.W., Jackson, M.G.Implications of a non-chrondritic primitive mantle for chemical geodynamics.Goldschmidt Conference 2011, abstract p.624.Canada, Nunavut, Baffin IslandTrace element characteristics
DS201112-0151
2011
Cas, R.Understanding the nature of kimberlite volcanoes.IUGG Held July 6, AbstractCanada, SaskatchewanFort a la Corne
DS201112-0156
2011
CBC.caFirst Nation wants cash for De Beers mine. Deninu K'ue says De Beers owes it money for the Snap Lake operation.CBC.ca, Jan. 24, 1p.Canada, Northwest TerritoriesNews item - De Beers
DS201112-0160
2011
Chakmouradian, A.R., Bohm, Coeslan, Mumin, Reguir, Demeny, Simonetti, Kressall, Martins, Kamenov, Creaser, LepekhinaPostorogenic carbonatites: more abundant than we realize and more important than given credit for.Peralk-Carb 2011... workshop June 16-18, Tubingen, Germany, Abstract p.17-19.Canada, ManitobaCinder Lake, Eden Lake, Paint Lake
DS201112-0161
2011
Chakmouradian, A.R., Bohm, Coeslan, Mumin, Reguir, Demeny, Simonetti, Kressall, Martins, Kamenov, Creaser, LepekhinaPostorogenic carbonatites: more abundant than we realize and more important than given credit for.Peralk-Carb 2011... workshop June 16-18, Tubingen, Germany, Abstract p.17-19.Canada, ManitobaCinder Lake, Eden Lake, Paint Lake
DS201112-0167
2011
Chalice Diamond CorporationAnnounces private placement.Chalice Diamond Corporation, May 4, 1p.Canada, Ontario, WawaNews item - press releae
DS201112-0188
2011
Chudy, T.Structures in metamorphic carbonatites: an example from the Upper Fir carbonatite, east-central British Columbia, Canada.Peralk-Carb 2011, workshop held Tubingen Germany June 16-18, AbstractCanada, British ColumbiaCarbonatite
DS201112-0189
2011
Chudy, T.C., Groat, L.A.Structures in metamorphic carbonatites: an example from the Upper Fir carbonatite east-central British Columbia, Canada.Peralk-Carb 2011... workshop June 16-18, Tubingen, Germany, Abstract p.20-21.Canada, British ColumbiaUpper Fir
DS201112-0190
2011
Chudy, T.C., Groat, L.A.Structures in metamorphic carbonatites: an example from the Upper Fir carbonatite east-central British Columbia, Canada.Peralk-Carb 2011... workshop June 16-18, Tubingen, Germany, Abstract p.20-21.Canada, British ColumbiaUpper Fir
DS201112-0204
2011
Coombs, S., Chacko, T.Age, composition and thermal history of lower crustal xenoliths from the Slave Craton. Artemesia, Ekati and Munn LakeYellowknife Geoscience Forum Abstracts for 2011, abstract p. 27-28.Canada, Northwest TerritoriesGeothermal, geochronology
DS201112-0216
2011
Coulton, D.W., Virgl, J.A., English, C.Raptor occupancy and productivity near a barren-ground diamond mine, Northwest Territories.Yellowknife Geoscience Forum Abstracts for 2011, abstract p. 30.Canada, Northwest TerritoriesDiavik mine
DS201112-0217
2011
Cox, B.Financing market trends - who's raising money in NWT and at what cost?Yellowknife Geoscience Forum Abstracts for 2011, abstract p. 30-31.Canada, Northwest TerritoriesEconomics
DS201112-0222
2009
Cross, J.The diamond potential of the Tuwawi kimberlite ( Baffin Island, Nunavut).University of British Columbia, Hon. thesis, 69p.Canada, NunavutThesis - note availability based on request via author
DS201112-0224
2011
Cummings, D.I., Broscoe, D., Kjarsgaard, B.A., Lesemann, J., Russell, H.A.J., Sharpe, D.R.Eskers as mineral exploration tools: how to sample eskers and interpret data.Yellowknife Geoscience Forum Abstracts for 2011, Poster abstract p. 95-96.Canada, Northwest TerritoriesEsker related literature
DS201112-0225
2011
Cummings, D.I., Kjarsgaard, B.A., Russell, H.A.J., Sharpe, D.R.Eskers as mineral exploration tools.Earth Science Reviews, Vol. 109, pp. 32-43.Canada, Northwest TerritoriesDrift prospecting, indicator minerals, dispersian trains
DS201112-0226
2010
Cummings, D.I., Russell, H.A.J., Sharpe, D.R., Kjarsgaard, B.A.Eskers as mineral exploration tools: an annotated bibliography.Geological Survey of Canada, Open File, no. 6560, 102p.Global, CanadaGeomorphology
DS201112-0227
2011
Cummings, D.I., Russell, H.A.J., Sharpe, D.R., Kjarsgaard, B.A.Abrasion of kimberlite pebbles in a tumbling mill: implications for diamond exploration.Geological Survey of Canada, Current Research 2011-7, 8p.CanadaKimberlite lithology
DS201112-0229
2011
Currie, C.A., Beaumont, C.Are diamond bearing Cretaceous kimberlites related to low-angle subduction beneath western North America?Earth and Planetary Science Letters, Vol. 303, 1-2, pp. 59-70.United States, Wyoming, Colorado Plateau, Canada, Northwest TerritoriesSubduction - Laramide Orogeny
DS201112-0235
2011
Danielson, V.Randy Turner: reflections of a diamond industry pioneer.Diamonds in Canada Magazine, Northern Miner, May pp. 5-10.Canada, Northwest TerritoriesHistory
DS201112-0237
2010
David Pescod's StocktalkAn interview with Eric Friedland CEO with Peregrine Diamonds.debbie.lewis @ canaccord.com, Dec. 13, 2p.Canada, Nunavut, Baffin IslandNews item - Peregrine
DS201112-0240
2011
Davies, A.W., Davies, R.Zone of anomalous mantle. Proterozoic lithosphere underplated an Archean Craton.Goldschmidt Conference 2011, abstract p.726.Canada, Northwest Territories, Russia, SiberiaLinear distribution of kimberlites
DS201112-0246
2011
Davies, R., Davies, A.W.Talmora Diamond Inc. - source of Lena West diamonds?Yellowknife Geoscience Forum Abstracts for 2011, abstract p. 32-33.Canada, Northwest TerritoriesIndicator Mineralogy
DS201112-0247
2011
Davies, R., Davies, A.W.Kimberlite indicator minerals and 'laterite', Canadian Arctic.Yellowknife Geoscience Forum Abstracts for 2011, Poster abstract p. 96-97.Canada, ArcticTalmora exploration
DS201112-0260
2011
De Stefano, A.Diamonds in cratonic and orogenic settings: a study of Jericho and Wawa diamonds.University of British Columbia, Phd Thesis, 180p.Canada, Nunavut, Ontario, WawaThesis - note availability based on request via author
DS201112-0282
2006
Donnelly, C.L.The characterization of diamonds and their mineral inclusions from the Diavik diamond mine, Lac de Gras, Northwest Territories, Canada.Thesis: University of Alberta, Earth and Atmospheric Sciences Msc., 187p.Canada, Northwest TerritoriesThesis - note availability based on request to author
DS201112-0288
2011
Drohan, M.Big country, small steps.. taking a critical look at the last decade of corporate social responsibility in Canada. Mentions KPCorporate Knights, No. 35, spring pp. 25-28.CanadaNews item - CSR
DS201112-0316
2011
Fedortchouk, Y., Zhang, Z.Diamond record of metasomatism.Goldschmidt Conference 2011, abstract p.833.Canada, Northwest TerritoriesEkati mine
DS201112-0339
2011
Funk, S.P., Luth, R.W.An experimental study of minettes and associated mica-clinopyroxenite xenoliths from the Milk River area, southern Alberta Canada.Goldschmidt Conference 2011, abstract p.875.Canada, Alberta, United States, WyomingSimilarities to Madupitic lamproites Leucite Hills
DS201112-0343
2011
Gao, C.Surficial geology mapping and till sampling in the Chapleau area, northern Ontario. ( Kapuskasing Structual Zone ) and potential for kimberlite.Ontario Summary of Field Work and Other Activities, Ontario Open File 6270, pp.20-1-20-5.Canada, OntarioGeochemistry
DS201112-0377
2007
Gofton, E.L.The Renard 4 kimberlite: implications for ascent of kimberlites in the shallow crust.Thesis: University of British Columbia Msc., 118p.Canada, QuebecThesis - note availability based on request to author
DS201112-0409
2011
Hannam, S., Bailey, B.L., Lindsay, M.B.J., Gibson, B., Blowes, D.W., Paktunc, A.D., Smith, L., Sego, D.C.Diavik waste rock project: geochemical and mineralogical characterization of waste rock weathering at the Diavik diamond mine.Yellowknife Geoscience Forum Abstracts for 2011, abstract p. 43-44.Canada, Northwest TerritoriesMining - waste rock
DS201112-0421
2002
Hay, S.Mineralogy of pyrochlore, perovskite and zirconolite in carbonatites from the Oka complex, Quebec.Thesis: Msc. Lakehead University, Canada, QuebecThesis - note availability based on request to author
DS201112-0424
2011
Hayman, P.C., Cas, R.A.F.Reconstruction of a multi-vent kimberlite eruption from deposit and host rock characteristics: Jericho kimberlite, Nunavut, Canada.Journal of Volcanology and Geothermal Research, Vol. 200, 3-4, March pp. 201-222.Canada, NunavutDeposit - Jericho , petrography, mineralogy
DS201112-0425
2011
Hayman, P.C., Cas, R.A.F.Criteriz for interpreting kimberlite as coherent: insights from the Muskox and Jericho kimberlites ( Nunavut Canada).Bulletin Volcanology, in press available 23p.Canada, NunavutDeposit - Muskox, Jericho
DS201112-0426
2011
Hefferman, V.The Point Lake 'epiphany' how a single discovery spawned an entire industry.Diamonds in Canada Magazine, Northern Miner, November pp. 12-19.Canada, Northwest TerritoriesHistory of companies
DS201112-0427
2010
Heffernan, V.A major gamble .. for metal miners dabbling in diamonds can mean a big payoff or dashed hopes. History of BHP, Rio, Teck, Newmont, Kinross.Diamonds in Canada Magazine, Northern Miner, Nov. pp. 18-20.CanadaNews item - history
DS201112-0429
2010
Helmstaedt, H.H., Gurney, J.J., Richardson, S.H.Ages of cratonic diamond and lithosphere evolution: constraints on Precambrian tectonics and diamond exploration.The Canadian Mineralogist, Vol. 48, 6, pp. 1385-1408.Canada, GlobalGeochronology, craton roots, UHP
DS201112-0435
2011
Hiyate, A.Peregrine preps Chidliak for bulk sampling.Diamonds in Canada Magazine, Northern Miner, November pp. 22-23.Canada, Nunavut, Baffin IslandHistory - Peregrine
DS201112-0437
2010
Hiyate, A.Peregrine's 'quantum leap' at Chidliak.Diamonds in Canada Magazine, Northern Miner, Nov. pp. 10-14.Canada, Nunavut, Baffin IslandNews item - Peregrine
DS201112-0449
2011
Hopkins, R.Renard: establishing a diamond resource in Quebec.PDAC 2011, Monday March 7, 1/2p. abstractCanada, QuebecGeology and overview
DS201112-0455
2011
Hu, S., Silver, P.A., Wolfe, A.P.Palynology and age of post-eruptive lake sediments from the Wombat kimberlite locality, Northwest Territories, Canada.Geological Society of America, Annual Meeting, Minneapolis, Oct. 9-12, abstractCanada, Northwest TerritoriesGeochronology
DS201112-0467
2010
Irving, M.Shear moxie: Jericho purchase marks a change in strategy for Shear Minerals.Diamonds in Canada Magazine, Northern Miner, Nov. pp. 6-9.Canada, NunavutNews item - Shear
DS201112-0473
1982
Jago, B.C.Mineralogy and petrology of the Ham kimberlite, Somerset Island, N.W.T. Canada.Thesis: Msc. Lakehead University, Canada, Northwest TerritoriesThesis - note availability based on request to author
DS201112-0474
2011
Jakusconek, T.Rough times behind - sparkle ahead. Harry Winston featured and recommended.Scotia Capital Equity Research Report, June 29, 38p.Canada, Northwest Territories, GlobalNews item - Harry Winston
DS201112-0496
2011
Kaminsky, F.V.Real composition of the Earth's lower mantle.Goldschmidt Conference 2011, abstract p.1139.Canada, South America, Brazil, Australia, Africa, GuineaEclogitic and carbonatitic analogues
DS201112-0536
2011
Kopylova, M.G., Afanasiev, V.P., Bruce, L.F., Thurston, P.C., Tyder, J.Metaconglomerate preserves evidence for kimberlite Diamondiferous root and medium grade terrane of a pre-2.7 Ga Southern Superior protocraton.Earth and Planetary Science Letters, Vol. 312, 1-2, Dec. 1, pp. 213-235.Canada, OntarioMetaconglomerates
DS201112-0537
2011
Kopylova, M.G., Afansiev, V.P., Bruce, L., Ryder, J.Diamondiferous conglomerate preserves evidence for kimberlite and the deep cratonic root of the Mesoarchean southern Superior Craton.Goldschmidt Conference 2011, abstract p.1221.Canada, OntarioWawa
DS201112-0538
2011
Kopylova, M.G., Afansiev, V.P., Bruce, L.F., Ryder, J.Diamond exploration in orogenic settings: lessons from Wawa metaconglomerate.Yellowknife Geoscience Forum Abstracts for 2011, abstract p. 52-53.Canada, Ontario, WawaHeavy minerals
DS201112-0575
2003
Lefebvre, N.Volcaniclastic breccia and diamonds of Wawa, N. Ontario.University of British Columbia, Msc. thesis, 230p.Canada, Ontario, WawaThesis - note availability based on request via author
DS201112-0576
2011
Legaree, A.Celebrating 20 years of diamonds at BHP Billiton.Diamonds in Canada Magazine, Northern Miner, November pp. 20-21.Canada, Northwest TerritoriesHistory - Ekati
DS201112-0588
2011
Levy, F., Jaupart, C.Temperature and rheological properties of the mantle beneath the North American craton from an analysis of heat flux and seismic data.Journal of Geophysical Research, Vol. 116, B01408, 25p.Canada, United StatesCraton, geothermometry
DS201112-0643
2007
Markovic, G.The age and origin of megacrysts in the Jericho kimberlite, Nunavut Canada.University of British Columbia, Msc. thesis, 100p.Canada, NunavutThesis - note availability based on request via author
DS201112-0651
1999
Masun, K.Kimberlites from the Lac de Gras region.Thesis: Msc. Lakehead University, Canada, Northwest TerritoriesThesis - note availability based on request to author
DS201112-0654
2011
Mather, K.A., Pearson, D.G., McKenzie, D., Kjarsgaard, B.A., Priestley, K.Constraints on the depth and thermal history of cratonic lithosphere from peridotite xenoliths, xenocrysts and seismology.Lithos, Vol. 125, pp. 729-742.Africa, South Africa, Canada, Somerset IslandGeothermometry, geophysics - seismics
DS201112-0655
2009
McBride, J.The petrography and mineralogy of the C29/30 Candle Lake kimberlite, Saskatchewan, Canada.Thesis: Msc. Lakehead University, Canada, SaskatchewanThesis - note availability based on request to author
DS201112-0661
2011
McKeon, L.Can these women resurrect Jericho? Pam Strand and Julie Lassonde bought the Jericho mine - left dead two years ago for $ 38 million. What were they thinking?UpHere Business, Vol. 3, 1, Nov. pp. 24,27-29,31.Canada, NunavutDeposit - Jericho history
DS201112-0678
2011
Miller, C.E., Kopylova, M., Ryder, J.Vanished Diamondiferous cratonic root below the southern Superior Province.Yellowknife Geoscience Forum Abstracts for 2011, abstract p. 63.Canada, Ontario, WawaDiamond Inclusions
DS201112-0679
2011
Millong, L.J., Gerdes, A., Groat, L.A.U-Pb geochronology and Lu-Hf isotope dat a from meta-carbonatites in the southern Canadian Cordillera.Goldschmidt Conference 2011, abstract p.1474.Canada, British ColumbiaCarbonatite
DS201112-0680
2011
Millonig, L., Groat, L.Carbonatites and alkaline rocks in the southern Canadian Cordillera.Peralk-Carb 2011, workshop held Tubingen Germany June 16-18, PosterCanada, British ColumbiaCarbonatite
DS201112-0681
2011
Millonig, L., Groat, L.Carbonatites and alkaline rocks in the southern Canadian Cordillera.Peralk-Carb 2011... workshop June 16-18, Tubingen, Germany, Abstract p.99.Canada, British ColumbiaGeochronology
DS201112-0682
2011
Millonig, L., Groat, L.Carbonatites and alkaline rocks in the southern Canadian Cordillera.Peralk-Carb 2011... workshop June 16-18, Tubingen, Germany, Abstract p.99.Canada, British ColumbiaGeochronology
DS201112-0684
2011
Miskovic, A., Ickert, R.B., Pearson, D.G., Stern, R.A.Oxygen isotope survey of the Northern Canadian lithospheric mantle: implications for the evolution of cratonic roots.Yellowknife Geoscience Forum Abstracts for 2011, abstract p. 64-65.Canada, Northwest TerritoriesSCLM - geodynamics
DS201112-0700
2010
Mooney, W.D., Kaban, M.K.The North American upper mantle: density, composition, and evolution.Journal of Geophysical Research, Vol. 115, B12424, (24p.)Mantle, Canada, United StatesGeophysics - seismics, gravity
DS201112-0702
2009
Moss, S.W.Volcanology of the A154N kimberlite at Diavik: implications for eruption dynamics.Thesis, University of British Columbia, Canada, Northwest TerritoriesThesis - note availability based on request to author
DS201112-0708
2011
Mumford, T.R., Cousens, B.L., Falck, H., Cairns, S.Blachford Lake intrusive suite; insight from carbonatites and other alkaline intrusive suites of the southern Slave Craton.Yellowknife Geoscience Forum Abstracts for 2011, Poster abstract p. 112.Canada, Northwest TerritoriesCarbonatite
DS201112-0739
2011
Nichols, K., Stachel, T., Hunt, L., McLean, H.A study on websterites from the Diavik diamond mine, Slave Craton, Canada.Yellowknife Geoscience Forum Abstracts for 2011, Poster abstract p. 114-115.Canada, Northwest TerritoriesGarnet mineralogy
DS201112-0742
2011
NNSL onlinePublic hearing on impact of Drybones exploration project.NNSL Online, Sept. 14, 1/8p.Canada, Northwest TerritoriesNews item - Encore Resources ( Cons. Goldwin)
DS201112-0743
2011
Noble, R.Big & beautiful ... diamond mine on target for world's market. Renard story.Canadian Mining Journal, Sept. pp. 12-15.Canada, QuebecNews item - Stornoway
DS201112-0745
2011
Northwest Territories Geoscience Office2010 NWT mineral exploration overview.. diamond company brief overviews.Northwest Territories Geoscience Office, March pp. 5-10.Canada, Northwest TerritoriesCompany activities
DS201112-0747
2011
NWT Mineral Exploration OverviewDiamond exploration: Archon, Arctic Star, Diadem, Mountain Province, GGL, North Arrow and Springbok.2011 NWT Exploration Overview, November pp.9-10.Canada, Northwest TerritoriesBrief - exploration overview
DS201112-0748
2011
NWT Mineral Exploration OverviewDiamond activities: De Beer's Snap Lake, Diavik mine, Ekati mine brief paragraphs on progress.2011 NWT Exploration Overview, November pp.6-7.Canada, Northwest TerritoriesBrief - mine(s) overview
DS201112-0759
2011
O'Neill, J., Francis, D., Carlson, R.W.Implications of the Nuvvuagittuq greenstone belt for the formation of Earth's early crust.Journal of Petrology, Vol. 52, 5, pp.985-1009.Canada, Ontario, Superior ProvinceGeochronology, magmatism
DS201112-0760
2010
Ontario Geological SurveyDiamonds in Ontario - brief one line listing and brief overview of companies set out in areas, James Bay Lowlands, Kirkland Lake area, Cobalt area, Wawa.Ontario Geological Survey, 9p. handout at Roundup.Canada, OntarioSummary of diamond action
DS201112-0772
2010
Pawlak, A., Eaton, D.W., Bastow, I.D., Kendall, J-M., Helffrich, G., Wookey, J., Snyder, D.Crustal structure beneath Hudson Bay from ambient noise tomography: implications for basin formation.Geophysical Journal International, Vol. 184, 1, pp. 65-82.Canada, Ontario, Quebec, James Bay LowlandsGeophysics -
DS201112-0773
2011
Pearson, D.G., Kjarsgaard, B.A.Diamonds and the mantle lithosphere in northern Canada.PDAC 2011, 1/2p. abstractCanada, Northwest TerritoriesGeochronology
DS201112-0776
2011
Pell, J.The Chidliak diamond district, Nunavut: 50 kimberlites and counting.PDAC 2011, Monday March 7, 1/2p. abstractCanada, NunavutGeology and overview
DS201112-0785
2010
Peterson, N.Carbonated mantle lithosphere in the western Canadian Cordillera.Thesis: University of British Columbia Msc., Canada, British ColumbiaThesis - note availability based on request to author
DS201112-0786
2011
Peterson, T.D., Scott, J.M.J., Jefferson, C.W.Uranium rich bostonite carbonatite dykes in Nunavut: recent observations. Deep Rose Lake area - minetteGeological Survey of Canada, Current Research 2011-11, 12p.Canada, NunavutCarbonatite
DS201112-0800
2011
Piper, J.D.A.SWEAT and the end of SWEAT: The Laurentia- Siberia configuration during Meso-Neoproterozoic times.International Geology Review, Vol. 53, 11-12, pp. 1265-1279.Canada, RussiaGondwana
DS201112-0804
2011
PittariDistribution and paragenesis of alteration styles at the Fort a la Corne kimberlite field, Saskatchewan Canada.IUGG Held July 6, AbstractCanada, SaskatchewanAlteration
DS201112-0814
2011
Porritt, L.Ash aggregates in kimberlites.IUGG Held July 6, AbstractCanada, Northwest TerritoriesDiavik
DS201112-0815
2011
Porritt, L.A., Cas, R.A.F.The influence of complex intra and extra vent processes on facies characteristics of the Koala kimberlite, NWT, Canada: volcanology, sedimentology, intrusive processesBulletin of Volcanology, Vol. 73, 6, pp. 717-735.Canada, Northwest TerritoriesDeposit - Koala
DS201112-0817
2002
Potter, E.Composition of spinel in some kimberlites from the Lac de Gras kimberlites.Thesis, 'BSc. Lakehead University, Canada, Northwest TerritoriesThesis - note availability based on request to author
DS201112-0818
2011
Potter, J.Unravelling the stable isotopic evidence for the origin of hydrocarbons in peralkaline complexes: new dat a from the Lovozero and Strange Lake peralkaline plutons.Peralk-Carb 2011, workshop held Tubingen Germany June 16-18, AbstractRussia, CanadaGeochronology
DS201112-0819
2007
Pourmalek, S.Chemical evolution of Jericho kimberlite magma, NWT.University of British Columbia, Hon. thesis, 94p.Canada, NunavutThesis - note availability based on request via author
DS201112-0828
2009
Price, S.E.Primitive kimberlite magmas from Jericho, N.W.T. Canada: constraints on primary magma chemistry.University of British Columbia, Thesis,Canada, NunavutDeposit - Jericho
DS201112-0833
2011
Purcell, W.Diamond summary for July 14, briefs on Harry Winston's Diavik production, Shore Gold's feasibility, Shear's progress on Jericho and their other properties .Stockwatch, July 14, 2p.Canada, Northwest Territories, Nunavut, SaskatchewanNews item - Diavik
DS201112-0834
2011
Purcell, W.Diamonds summary for June 30, 2011. Prices - companies mentioned BHP, Big Red Diamond, Metalex, Talmora, Ditem. 49 North Resources, KWG,Stockwatch, July 4, 1p.CanadaNews item - brief comments on companies listed above
DS201112-0835
2011
Purcell, W.Diamond summary for July 7, 2011 History related to Rex Mining ( Koidu); KWG Debut Diamonds; Harry Winston and speculation about interest in see list belowStockwatch, July 7, 1p.CanadaNews item - Shore, Mountain Prov.,Stornoway, Adroit
DS201112-0848
2011
Ray, A.J.Ethnohistorical geography and aboriginal rights litigation in Canada: memoir of an expert witness.Canadian Geographer, in press availableCanadaLegal - aboriginal history
DS201112-0855
2002
Reid, N.B., Naeth, A.Ekati diamond mine processed kimberlite reclamation.University of British Columbia, Thesis,Canada, Northwest TerritoriesDeposit - Ekati
DS201112-0862
2011
Riches, A.J.V., Pearson, D.G., Kjarsgaard, B.A., Jackson, S.E., Stachel, T., Armstrong, J.P.Deep lithosphere beneath the Rae Craton: peridotite xenoliths from Repulse Bay, Nunavut.Yellowknife Geoscience Forum Abstracts for 2011, abstract p. 74-75.Canada, Nunavut, Victoria Island, Parry PeninsulaMineralogy
DS201112-0897
2011
Sader, J.A., Hattori, K.H., Kong, J.M., Hamilton, S.M., Brauneder, K.Geochemical responses in peat groundwater over Attawapiskat kimberlites, James Bay Lowlands, Canada and their application to diamond exploration.Geochemistry, Exploration, Environment, Analysis:, Vol. 11, pp. 193-210.Canada, Ontario, James Bay LowlandsGeochemistry
DS201112-0924
2011
Schilling, J., Marks, m.A.W., Wenzel, T., Vennenmann, T., Horvth, L., Tarassof, P., Jacob, D.E., Markl, G.The magmatic to hydrothermal evolution of the intrusive Mont Sainte Hilaire Complex: insights into the late stage evolution of peralkaline rocks.Journal of Petrology, Vol. 52, 11. pp. 2147-2185.Canada, QuebecAlkaline rocks, carbonatite
DS201112-0930
2011
Schmidt, P., Smith, D.The Elder carbonatite complex, Canada, Quebec.Peralk-Carb 2011... workshop June 16-18, Tubingen, Germany, Abstract p.135.Canada, QuebecEldor
DS201112-0931
2011
Schmidt, P., Smith, D.The Elder carbonatite complex, Canada, Quebec.Peralk-Carb 2011... workshop June 16-18, Tubingen, Germany, Abstract p.135.Canada, QuebecEldor
DS201112-0932
2011
Schmidt, P., Smith, D., Markl, G.The Eldor carbonatite complex, Quebec, Canada.Peralk-Carb 2011, workshop held Tubingen Germany June 16-18, PosterCanada, QuebecCarbonatite
DS201112-0941
2011
Sharp, Z.D., Selverstone, J., Mercer, J.A.The Cl isotope composition of the mantle revisited.Goldschmidt Conference 2011, abstract p.1848.Canada, Northwest TerritoriesCl bearing diamonds
DS201112-0951
2011
Shire, S.B., Van Kranendonk, M., Richardson, S.H.SCLM and crustal evidence for 3 GA onset of plate tectonics with implications for the Superior Province.Geological Society of America, Annual Meeting, Minneapolis, Oct. 9-12, abstractCanada, Europe, GreenlandMelting
DS201112-0964
2011
Simandl, G.J., Fajber, R., Dunn, C.E.Biogeochemical footprint of the Ta and Nb bearing carbonatite Blue River area, British Columbia, Canada.Goldschmidt Conference 2011, abstract p.1877.Canada, British ColumbiaCarbonatite
DS201112-0965
2011
Simandl, G.J., Fajber, R., Dunn, C.E., Ulry, B., Dahrouge, J.Biogeochemical exploration vectors in search of carbonatite, Blue River British Columbia.British Columbia Geological Survey, BCGS GeoFile, 2011-05.Canada, British ColumbiaCarbonatite
DS201112-0974
2011
Smart, K.A., Chacko, T., Stachel, T., Muehlenbachs, K., Stern, R.A., Heaman, L.M.Diamond growth from oxidized carbon sources beneath the Northern Slave Craton, Canada: A delta 13 C-N study of eclogite hosted diamonds from the Jericho kimberlite.Geochimica et Cosmochimica Acta, Vol. 75, pp. 6027-6047.Canada, NunavutJericho - diamond morphology
DS201112-0975
2011
Smart, K.A., Chacko, T., Stachel, T., Stern, R.A., Muehlenbachs, K.Formation of diamond from oxidized fluids/melts: delta 13 C-N SIMS study of an eclogitic diamond from the Jericho kimberlite, Canada.Goldschmidt Conference 2011, abstract p.1894.Canada, NunavutDeposit - Jericho
DS201112-0979
2011
Smith, E.M., Kopylova, M.G., Dubrovinsky, L., Navon, O., Ryder, J.E., Tomlinson, L.Transmission X-ray diffraction as a new tool for diamond fluid inclusion studies.Mineralogical Magazine, Vol. 75, 5, Oct. pp. 2657-2675.Africa, Democratic Republic of Congo, Canada, Ontario, Wawa, Northwest Territories, NunavutDeposit - Mbuji-Mayi, Wawa, Panda, Jericho
DS201112-0995
2011
Stachel, T.Diamonds and cratons - does the relationship hold for Canadian deposits?GIA International Symposium 2011, Gems & Gemology, Summer abstract p. 112-114.CanadaCraton history
DS201112-1008
2011
StockwatchDiamond summary for June 15, by Will Purcell. Mountain Province, Vaaldiam, Adroit, Sunergy, African Queen ..... brief overviews.Stockwatch, June 15, 1p.Canada, South America, AfricaNews item - market summary
DS201112-1007
2011
Stockwatch NewsSEC launches administrative case against Bagley, Urban Casavant and John Edwards .. CMKM Diamonds Inc. Carolyn kimberlite pipe.Stockwatch , Nov. 7, 1p.Canada, SaskatchewanNews item - CKCM Diamonds
DS201112-1011
2011
Strand, P., Lassonde, J.Geological and project update: Jericho diamond mine, Nunavut.Yellowknife Geoscience Forum Abstracts for 2011, abstract p. 81-82.Canada, NunavutGeology - model
DS201112-1013
2011
Stubley, M.P.The Beniah fault zone: crustal response to protracted activity within the Slave's lithospheric mantle.Yellowknife Geoscience Forum Abstracts for 2011, abstract p. 82.Canada, Northwest TerritoriesCentral Slave Super Terrane
DS201112-1016
2011
Sudol, S.http://www.miningaustralia.com.au/news/top-ten-mining-blogsSudol, S. His blog is listed as one of the top ten in the world - respected mining opinions, www.republicofmining.comCanada, globalComments - timely comments on mining concerns
DS201112-1017
2011
Sudol, S.Mining Marshall plan for Northern Ontario..... perspective on Canada ( ie Quebec and other provinces and how they are enouraging mining). GOOD READCanadian Mining Journal , July 7, 8p.Canada, OntarioHistory - economics - legal
DS201112-1030
2005
Tappert, R.The nature of diamonds and their mineral inclusions: a study of diamonds from the PAnd a and Jagersfontein kimberlites and from placer deposits in Brazil.Thesis, University of Alberta, Earth and Atmospheric Sciences, 214p.Canada, Northwest Territories, Africa, South Africa, BrazilThesis - note availability based on request to author
DS201112-1039
2011
Thompson, D.A., Helffich, G., Bastow, L.D., Kendall, J-M., Wookey, J., Eaton, D.W., Snyder, D.B.Implications of a simple mantle transition zone beneath cratonic North America.Earth and Planetary Science Letters, Vol. 312, pp. 28-36.Canada, United StatesCraton, convective flow
DS201112-1054
2011
Toronto StarNorthern diamonds in the rough. Jericho history and future.Toronto Star, April 23, 2p.Canada, NunavutNews item - Shear
DS201112-1060
2011
Tsuji, L.J.S., McCarthy, D.D., Whitelaw, G.S., McEachren, J.Getting back to basics: the Victor diamond mine environmental assessment scoping process and the issue of family based traditional lands versus reg. traplinesImpact assessment and Project Appraisal, March Vol. 29, no. 1, pp. 37-47.Canada, Ontario, AttawapiskatLegal
DS201112-1077
2011
Van Rythoven, A.D., McCandless, T.E., Schulze, D.J., Bellis, A., Taylor, L.A., Liu, Y.Diamond crystals and their mineral inclusions from the Lynx kimberlite dyke complex, central Quebec.The Canadian Mineralogist, Vol. 49, 3, pp. 691-706.Canada, QuebecDiamond morphology - Lynx dyke
DS201112-1079
2011
Van Straaten, B.I.,Kopylova, M.G., Russeell, J.K., Scott Smith, B.H.A rare occurrence of a crater filling clastogenic extrusive coherent kimberlite, Victor Northwest, ( Ontario, Canada).Bulletin Volcanology, In press available, 18p.Canada, Ontario, AttawapiskatGeology - Victor Northwest
DS201112-1080
2010
Van Stratten, B.The eruption of kimberlite: insights from the Victor North kimberlite pipes, northern Ontario.University of British Columbia, Phd Thesis, 193p.Canada, Ontario, James bay Lowlands, AttawapiskatThesis - note availability based on request via author
DS201112-1083
2011
Vaughan, S.Corporate Social Responsibility and the mineral exploration and mining industry.Heenan Blaikie, November 9p.Canada, globalExplanatory - CSR and industry needs
DS201112-1088
2006
Verigeanu, E.D.A study of peridotite xenoliths from the Vogageur kimberlite, Slave Craton, Canada.Thesis: University of Alberta, Earth and Atmospheric Sciences Msc., 143p.Canada, Northwest TerritoriesThesis - note availability based on request to author
DS201112-1113
2011
White, J.D.L., Ross, P.S.Maar-diatreme volcanoes: a review ( includes kimberlites) extensive review.Journal of Volcanology and Geothermal Research, Vol. 201, 1-4, pp. 1-29.Africa, CanadaReview paper
DS201112-1117
2011
Wood, B.D.Victor: establishing Ontario's first diamond mine.PDAC 2011, Monday March 7, 1/2p. abstractCanada, OntarioHistory, environmental, mining
DS201112-1118
2011
Wood, P.B., Rossiter, D.A.Unstable properties: British Columbian aboriginal title, and the new relationship.Canadian Geographer, In press availableCanada, British ColumbiaLegal - CSR
DS201112-1146
2011
Yuan, H., Romanowicz, B., Fischer, K., Abt, D.3-D shear wave radially and azimuthally anisotropic velocity model of the North American upper mantle.Geophysical Journal International, in press Jan. 17Canada, United StatesGeophysics - seismics
DS201112-1177
2011
Zurevinski, S.E.,Heaman, L.M., Creaser, R.A.The origin of Triassic/Jurassic kimberlite magmatism, Canada: two mantle sources revealed from the Sr-Nd isotopic composition of groundmass perovskite.Geochemical, Geophysics, Geosystems: G3, Vol. 12, 10.1029Canada, Ontario, Quebec, LabradorCorridor - Timiskaming, Rankin, Attawapiskat, Kirkland
DS201201-0849
2011
Hoffman, P.F., Halverson, G.P.Neoproterozoic glacial record in the Mackenzie Mountains, northern Canadian Cordillera.The Geological Record of Neoproterozoic glaciations, Memoirs 2011; Vol. 36, pp. 397-412.CanadaGeomorphology
DS201201-0852
2011
Kaminsky, F.Mineralogy of the lower mantle: a review of 'super deep' mineral inclusions in diamond.Earth Science Reviews, in press available, 21p.Africa, South Africa, Guinea, Canada, South America, BrazilD layer, TAPP, ultramafic mineral associations
DS201201-0858
2011
Ozyer, C.A., Hicock, S.R.Identifying kimberlite indicator mineral dispersal trains in the Pelly Bay region, Nunavut, Canada using GIS interpolation.Geochemistry, Exploration, Environment, Analysis, Vol. 11, 4, Nov. pp. 335-350.Canada, NunavutGeochemistry - KIM
DS201212-0023
2012
Armstrong, J.P., Fitzgerald, C., Kjarsgaard, B.A., Herman, L., Tappe, S.Kimberlites of the Coronation Gulf field, northern Slave Craton, Nunavut, Canada.10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractCanada, NunavutDeposit - 26 kimberlites by name
DS201212-0040
2012
Aulbach, S., Stachel, T., Heaman, L.M., Creaser, R.A., Seitz, H.M., Shirey, S.B.Diamond formation in the slab and mantle wedge: examples from the Slave Craton.10th. International Kimberlite Conference Feb. 6-11, Bangalore India, AbstractCanada, Northwest TerritoriesDiamond genesis
DS201212-0041
2012
Aulbach, S., Stachel, T., Seitz, H-M., Brey, G.P.Chalcophile and siderophile elements in sulphide inclusions in eclogitic diamonds and metal cycling in a Paleoproterozoic subduction zone.Geochimica et Cosmochimica Acta, Vol 93, Sept. 15, pp. 278-299.Canada, Northwest TerritoriesDeposit - Diavik
DS201212-0046
2012
Bailey, B.L., Smith, L.J.D., Blowes, D.W.,Ptacek, C.J., Smith, L., Sego, D.C.The Diavik waste rock project: persistence of contaminants from blasting agents in waste rock effluent.Applied Geochemistry, in press availableCanada, Northwest TerritoriesDeposit - Diavik mining
DS201212-0059
2012
Bastow, I.D., et al.Upper mantle seismic structure of the Canadian shield: evidence from northern Hudson Bay.Geophysical Journal International, in preparationCanada, Ontario, QuebecGeophysics - seismics
DS201212-0060
2012
Bastow, I.D., Kendall, J.M., Brisbourne, A.M., Snyder, D.B., Thompson, D., Hawthorne, D., Hefffrich, G.R., Wookey, J., Horleston, A., Eaton, D.The Hudson Bay lithospheric experiment.Astronomy and Geophysics, pp. 6.21-6.24.Canada, Ontario, QuebecGeophysics - seismics
DS201212-0085
2012
Braden, B.Great gusto Diavik's wind project is world class in size and promise.Canadian Mining Journal, May pp. 44-49.Canada, Northwest TerritoriesDiavik - wind energy
DS201212-0109
2012
Canadian Mining JournalTailings management: new MEND (Mining Environment Neutral Drainage ) report for cold locations. available free.MEND-NEDEM website, 177p. Pdf fileCanadaMining - talings
DS201212-0144
2012
Davies, R., Davies, A.W.Kimberlite indicator minerals and 'laterite', Canadian Arctic.10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractCanada, Northwest TerritoriesGeochemistry - KIMS
DS201212-0145
2012
Davies, R., Davies, A.W.Zone of anomalous mantle.10th. International Kimberlite Conference Feb. 6-11, Bangalore India, AbstractCanada, Northwest TerritoriesMineralogy
DS201212-0155
2012
De Sousa, H.A.F., Fedikow, M.A.F., Ryder, J., Turner, N., Halliday, M.Application of weak leaches in kimberlite exploration.10th. International Kimberlite Conference Feb. 6-11, Bangalore India, AbstractCanada, OntarioGeochemistry
DS201212-0181
2011
Eccles, D.R.Northern Alberta kimberlite province: the first 20 years.Alberta Geological Survey, Bull. 65, 119p.Canada, AlbertaHistory - diamond exploration
DS201212-0202
2012
Fitzgerald, C.E., Lepine, I., Armstrong, J.Geology of the kimberlite pipes of the Renard cluster, Quebec, Canada.10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractCanada, QuebecDeposit - Renard
DS201212-0207
2012
Fowler, J.A., Biscaye, E., Metatawabin, S.H.A.Diamond mining and sustainability at De Beers Canadian mines.10th. International Kimberlite Conference Feb. 6-11, Bangalore India, AbstractCanada, Ontario, Northwest TerritoriesDebeers - CSR
DS201212-0211
2012
Fulop, A., Kurszlaukis, S., Winter, F.Factors controlling the internal facies architecture of kimberlite pipes.10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractCanada, Ontario, AttawapiskatDeposit - Victor area
DS201212-0212
2012
Funck, T., Gohl, K., Damm, V., Heyde, I.Tectonic evolution of southern Baffin Bay and Davis Strait: results from a seismic refraction transect between Canada and Greenland.Journal of Geophysical Research, Vol. 117, B04107, 24p.Canada, Nunavut, Baffin Island, Europe, GreenlandGeophysics - seismics
DS201212-0213
2012
Funk, S.P., Luth, R.W.An experimental study of a minette from the Milk River area, southern Alberta, Canada.Contributions to Mineralogy and Petrology, Vol. 164, 6, pp. 999-1009.Canada, AlbertaMinette
DS201212-0227
2012
Gao, C., McAndrews, J.H., Wang, X., Menzies, J., Turton, C.L., Wood, B.D., Pei, J., Kodors, C.Glaciation of North America in the James Bay Lowland, Canada, 3-5 Ma.Geology, Vol. 40, 11, pp. 975-978.Canada, Ontario, James Bay LowlandsGeomorphology
DS201212-0235
2012
Gernon, T.M., Field, M., Sparks, R.S.J.Geology of the Snap Lake kimberlite intrusion, NWT, Canada: field observations and their interpretation.Journal of the Geological Society, Vol. 169, pp. 1-16.Canada, Northwest TerritoriesDeposit - Snap Lake
DS201212-0236
2012
Gernon, T.M.I., Ogilvie-Harris, R.C., Sparks, R.S.J.,Field, M.Emplacement of the Snap Lake kimberlite intrusion, Northwest Territories, Canada.10th. International Kimberlite Conference Feb. 6-11, Bangalore India, AbstractCanada, Northwest TerritoriesDeposit - Snap Lake
DS201212-0258
2012
Gravelle, J.Examining flow through shares in the mining sector.Canadian Mining Journal, June/July p. 34.CanadaFlow thru
DS201212-0262
2012
Grimwood, B.S.R., Doubleday, N.C., Ljubicic, G.J., Donaldson, S.G., Blangy, S.Engaged acclimatization: towards responsible community based participatory research in Nunavut.Canadian Geographer, in press availableCanada, NunavutCSR - neologism
DS201212-0283
2012
Hardebol, N.J., Pysklywec, R.N., Stephenson, R.Small scale convection at a continental back arc to craton transition: application to the southern Canadian Cordillera.Journal of Geophysical Research,, Vol. 117, B1, B01408.Canada, British ColumbiaConvection
DS201212-0288
2012
Harvey, S., Read, G., DesGagnes, B., Shimell, M., Danoczi, J., Van Breugel, B., Fourie, L., Stilling, A.Utilization of olivine macrocryst grain size and abundance dat a as a proxy for diamond size and grade in pyroclastic deposits of the Orion South kimberlite Fort a la Corne, Sasakatchewan, Canada.10th. International Kimberlite Conference Feb. 6-11, Bangalore India, AbstractCanada, SaskatchewanDeposit - Orion South
DS201212-0290
2012
Heenan BlaikieCSA provides guidance to clarify use and disclosure od preliminary economic assessments.Heenan Blaikie, Aug. 16, 3p. SummaryCanadaLegal - PEA
DS201212-0295
2012
Herman, L.M., Grutter, H.S., Pell, J., Holmes, P., Grenon, H.U-Pb geochronology , SR and ND isotope compositions of groundmass perovskite from the Chidliak and Qilaq kimberlites, Baffin Island, Nunavut.10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractCanada, Nunavut, Baffin IslandDeposit - Chidliak, Qilaq
DS201212-0301
2012
Hiyate, A.Unable to go big .. BHP and Rio go home .. Mining giants declare diamond assets for sale.Diamonds in Canada Magazine, Northern Miner, May pp. 6-7, 22.Canada, Northwest TerritoriesEconomics
DS201212-0319
2012
Hunt, L., Marcheggliani-Croden, V., Stachel, T., Muehlenbachs, K., Eichenberg, D.Polycrystalline and fibrous diamonds from the Diavik mine, Canada.10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractCanada, Northwest TerritoriesDeposit - Diavik
DS201212-0320
2012
Hunt, L., Stachel, T., Grutter, H., Armstrong, J., McCandless, T.E., Simonetti, A., Tappe, S.Small mantle fragments from the Renard kimberlites, Quebec: powerful recorders of mantle lithosphere formation and modification beneath the eastern Superior Craton.Journal of Petrology, Vol. 53, 8, pp. 1597-1635.Canada, QuebecDeposit - Renard
DS201212-0321
2012
Hunt, L., Stachel, T., McCandless, T.E., Armstrong, J., Muelenbachs, K.Diamonds and their mineral inclusions from the Renard kimberlites in Quebec.Lithos, in press availableCanada, QuebecDeposit - Renard
DS201212-0318
2012
Hunt, L.,Stachel, T., Pearson, D.G., Jackson, S., McLean, H., Kjarsgaard, B.The origin of websterites at Diavik diamondmine, Canada, and the realationship to diamond growth.10th. International Kimberlite Conference Feb. 6-11, Bangalore India, AbstractCanada, Northwest TerritoriesDeposit - Diavik
DS201212-0338
2012
Januszcak, M.H., Seller, S., Kurzlaukis, C., Murphy, J., Delgaty, S., Tappe, K., Ali, J.Zhu, Ellemers, P.A multidisciplinary approach to the Attawapiskat kimberlite field, Canada Canada: accelerating the discovery to production pipeline.10th. International Kimberlite Conference Feb. 6-11, Bangalore India, AbstractCanada, Ontario, AttawapiskatDeposit - Victor
DS201212-0340
2012
Johnson, C.N., Stachel, T., Muehlenbachs, K., Stern, R.A., Armstrong, J.P., EIMFThe micro/macro diamond relationship: a case study from the Artemisia kimberlite ( northern Slave Craton), Canada.Lithos, Vol. 148, pp. 86-97.Canada, Northwest TerritoriesDeposit - Artemisia
DS201212-0355
2012
Kiflawi, I.,Weiss, Y., Navon, O.The IR absorption spectrum of water in Micro inclusions in diamonds.10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractAfrica, Lesotho, Canada, Northwest Territories, RussiaDiamond inclusions
DS201212-0361
2012
Kjarsgaard, B.A., Mather, D.G., Pearson, S., Jackson, D., Crabtree, D., Creighton, S.CR-diopside and Cr-pyrope xenocryst thermobarometry revisited: applications to lithosphere studies and diamond exploration.10th. International Kimberlite Conference Feb. 6-11, Bangalore India, AbstractCanadaGeobarometry
DS201212-0371
2012
Kopylova, M.G., Miller, C., Afanasiev, V.P., Bruce, L., Thurston, P., Ryder, J.Kimberlite derived harzburgitic diamonds from a >2.7 GA southern Superior Province, Protocraton.10th. International Kimberlite Conference Feb. 6-11, Bangalore India, AbstractCanada, Ontario, WawaDiamond morphology
DS201212-0388
2012
Kupsch, B.G., Armstrong, J.P.Exploration and geology of the Qilalugaq kimberlites, Rae Isthmus, Nunavut, Canada.10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractCanada, NunavutDeposit - Qilalugaq
DS201212-0443
2012
Mariano, A.N., Mariano, A.Jr.Rare earth mining and exploration in North America.Elements, Vol. 8, 5, Oct. pp. 369-376.Canada, United StatesEconomics - overview of mode of occurrence, mineralogy, history of exploration
DS201212-0448
2012
Martin, R.F., Sokolov, M., Magaji, S.S.Punctuated anorogenic magmatism.Lithos, Vol. 152, pp. 132-140.Canada, Greenland, Russia, AfricaMagmatism
DS201212-0462
2012
Melton, G., Stachel, T., Stern, R., Harris, J., Carlson, J.The micro and macrodiamond relationship at the PAnd a kimberlite (Ekati mine) Canada.GEM 2012, PPT. 19p.Canada, Northwest TerritoriesMicrodiamonds
DS201212-0472
2012
Miller, C.E., Kopylova, M.G., Ryder, J.Vanished Diamondiferous cratonic root beneath the southern Superior Province: evidence from diamond inclusions in the Wawa metaconglomerate.Contributions to Mineralogy and Petrology, in press available 18p.Canada, OntarioDeposit - Wawa
DS201212-0475
2012
Millonig, L.J., Gerdes, A., Groat, L.A.U Th Pb geochronology of meta-carbonatites and meta-alkaline rocks.Goldschmidt Conference 2012, abstract 1p.Canada, British ColumbiaMagmatism
DS201212-0476
2012
Millonig, L.J., Gerdes, A., Groat, L.A.U Th Pb geochronology of meta-carbonatites and meta-alkaline rocks in the southern Canadian Cordillera: a geodynamic perspective.Lithos, Vol. 152, pp. 202-217.Canada, British Columbia, AlbertaCarbonatite
DS201212-0501
2012
Muntener, C., Scott Smith, B.H.Economic geology of Renard 3, Quebec, Canada: a diamondiferous, multi phase pipe infilled with hypabyssal and tuffusitic kimberlite.10th. International Kimberlite Conference Feb. 6-11, Bangalore India, AbstractCanada, QuebecDeposit - Renard
DS201212-0506
2012
NACDGovernance challenges - 2012 and beyond.National Association of Corporate Directors, August 27p.CanadaCSR - governance
DS201212-0515
2012
Neilson, S., Grutter, H., Pell, J., Grenon, H.The evolution of kimberlite indicator mineral interpretation on the Chidliak project, Baffin Island, Nunavut.10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractCanada, Nunavut, Baffin IslandDeposit - Chidliak
DS201212-0520
2012
Nieuwenhuis3-D images of the Alberta lithosphere from magnetotelluric studies ( Buffalo Hills).GEM 2012, PPT. 32 p.Canada, AlbertaGeophysics - seismics
DS201212-0525
2012
Oakey, G.N., Chalmers, J.A. A new model for the Paleogene motion of Greenland relative to North America: plate reconstructions of the Davis Strait and Nares Strait regions between Canada and Greenland.Journal of Geophysical Research, Vol. 117, B 10, B10401.Canada, Europe, GreenlandTectonics
DS201212-0533
2012
Osler Hoskin & Harcourt LLPDirector's duties: an overview for mid and junior public mining company executives and directors.PDAC Short course, March 6, ppt manualCanadaLegal - corporate governance
DS201212-0544
2012
Pawlak, A., Eaton, D.W., Darbyshire, F., Lebedev, S., Bastow, I.D.Crustal anisotropy beneath Hudson Bay from ambient noise tomography: evidence for post-orogenic lower crustal flow?Journal of Geophysical Research, Vol. 117, B8 B08301Canada, Ontario, QuebecTomography
DS201212-0543
2012
Pawlak, A., Eaton, D.w.,Darbyshire, F., Lebedev, S., Bastow, I.D.Crustal anisotropy beneath Hudson Bay from ambient noise tomography: evidence for post-orogenic lower crustal flow?Journal of Geophysical Research, in preparationCanada, Ontario, QuebecGeophysics - seismics
DS201212-0547
2012
Peats, J., Stachel, T., Ster, R.A., Muehlenbachs, K., Armstrong, J.Aviat diamonds: a window into the deep lithospheric mantle beneath the Northern Churchill Province, Melville Peninsula, Canada.Canadian Mineralogist, Vol. 50, 3, June pp. 611-624.Canada, Nunavut, Melville PeninsulaDeposit - Aviat
DS201212-0548
2012
Pell, J., Grutter, H., Grenon, H., Dempsey, S., Neilson, S.Exploration and discovery of the Chidliak kimberlite province, Baffin Island, Nunavut: Canada's newest diamond district.10th. International Kimberlite Conference Feb. 6-11, Bangalore India, AbstractCanada, Nunavut, Baffin IslandDeposit - Chidliak
DS201212-0561
2012
Pokhilenko, N.P.Mineralogical and petrological evidences of lithosphere thickness variations inside ancient cratons.10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractRussia, Canada, Northwest TerritoriesCraton
DS201212-0562
2012
Pokhilenko, N.P., Afanasev, V.P., McDonald, J.A., Vavilov, M.A., Kulgin, S.S., Pokhilenko, L.N., Golovin, A.V., Agashev, A.M.Kimberlite indicator minerals in terrigene sediments of lower part of Mackenzie River Basin, NWT, Canada: evidence of new craton with thick lithosphere.10th. International Kimberlite Conference Feb. 6-11, Bangalore India, AbstractCanada, Northwest TerritoriesGeochemistry - KIMS
DS201212-0567
2012
Porritt, L.A., Cas, R.A.F., Ailleres, L., Oshust, P.The influence of volcanological and sedimentaological processes on diamond grade distribution in kimberlites: examples from the Ekati diamond mine, NWT, Canada.Bulletin of Volcanology, Vol. 73, 8, pp. 1085-1105.Canada, Northwest TerritoriesDiamond grade
DS201212-0568
2012
Porritt, L.A., Cas, R.A.F., Schaefer, B., McKnight, S.W.Textural analysis of strongly altered kimberlite: examples from the Ekati diamond mine, Northwest Territories, Canada.Canadian Mineralogist, Vol. 50, 3, June pp. 625-641.Canada, Northwest TerritoriesDeposit - Ekati
DS201212-0569
2012
Porritt, L.A., Russell, J.K., McLean, H., Fomrades, G., Eicheberg,D.Geology and volcanology of the A418 kimberlite pipe, NWT, Canada10th. International Kimberlite Conference Feb. 6-11, Bangalore India, AbstractCanada, Northwest TerritoriesDeposit - A418
DS201212-0584
2012
Rice, M.D., Tierney, S., O'Hagan, S., Lyons, D., Green, M.B.Knowledge, influence and firm level change: a geographic analysis of board membership associated with Canada's growing and declining businesses.Geoforum, Vol. 43, pp. 959-968.CanadaCSR - governance
DS201212-0587
2012
Roberts, G.G., White, N.J., Martin-Brandis, G.L., Crosby, A.G.An uplift history of the Colorado Plateau and its surroundings from the inverse modeling of longitudinal river profiles.Tectonics, Vol. 31, TC4022 26p.United States, CanadaGeomorphology
DS201212-0601
2012
Roulleau, E., Pinti, D.L., Stevenson, R.K., Takahata, N., Sano, Y., Pitre, F.N, Ar and Pb isotopic co-variation in magmatic minerals: discriminating fractionation processes from magmatic sources in Montregian Hills, Quebec, Canada.Chemical Geology, Vol. 326-327, pp. 123-131.Canada, QuebecAlkalic
DS201212-0608
2012
Rukhlov, A.S., Pawlowicz, J.G.Eocene potassic magmatism of the Milk River area southern Alberta NTS 72E and Sweet Grass Hills, northern Montana: overview and new dat a on mineralogy, geochemistry, petrology and economic potential.Alberta Geological Survey, Open file report 2012-01, 96p. Free pdfCanada, Alberta, United States, MontanaAlkaline rocks, magmatism
DS201212-0611
2012
Rutter, N., Coronato, A.,Helmens, K., Rabassa, J., Zarate, M.Glaciations in North and South America from the Miocene to the last glacial maximum.Springer, Book adUnited States, Canada, South AmericaGeomorphology
DS201212-0625
2012
Scales, M.Driven diamonds… Shore Gold set to build first diamond mine in Saskatchewan.Canadian Mining Journal, June/July pp. 20-23.Canada, SaskatchewanDeposit - Star
DS201212-0668
2012
Smart, K.A., Chacko, T., Stachel, T., Tappe, S., Muehlenbachs, K., Ickert, R.B., Stern, R.A.Jericho eclogite formation revealed by diamond inclusions: oceanic origin without crustal signature?10th. International Kimberlite Conference Feb. 6-11, Bangalore India, AbstractCanada, NunavutDeposit - Jericho
DS201212-0669
2012
Smart, K.A., Chacko, T., Stachel, T., Tappe, S., Stern, R.A., Ickert, R.B.Eclogite formation beneath the northern Slave Craton constrained by diamond inclusions: oceanic lithosphere origin without a crustal signature.Earth and Planetary Science Letters, Vol. 319-320, pp. 165-177.Canada, Northwest TerritoriesDiamond inclusions
DS201212-0672
2012
Smit, K.V., Stachel, T., Seller, M.Constraints on composition of possible diamond bearing lithosphere as sampled by the Victor kimberlite.10th. International Kimberlite Conference Feb. 6-11, Bangalore India, AbstractCanada, Ontario, AttawapiskatDeposit - Victor
DS201212-0677
2012
Smith, E.M., Kopylova, M.G., Nowell, G.M., Pearson, D.G., Ryder, J.Archean mantle fluids preserved in fibrous diamonds from Wawa, Superior Craton.Geology, Vol. 40, Dec. pp. 1071-74.Canada, OntarioDeposit - Wawa
DS201212-0678
2012
Smith, E.M., Kopylova, M.G., Nowell, G.M., Pearson, D.G., Ryder, J., Afanasev, V.P.D., Beeby, A.The contrast in trace element chemistry and volatile composition between fluid inclusions n fibrous and octahedral diamonds.10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractCanada, Ontario, WawaDiamond inclusions
DS201212-0679
2012
Smith, E.M., Kopylova, M.G., Nowell, G.M., Pearson, D.G., Ryder, J., Afanasiev, V.P.The contrast in trace element chemistry and volatile composition between fluid inclusions in fibrous and octahedral diamonds.10th. International Kimberlite Conference Feb. 6-11, Bangalore India, AbstractCanada, Ontario, WawaDiamond - inclusions
DS201212-0680
2012
Snyder, D.B., Berman, R.G., Kendall, J.M., Sanborn-Barrie, M.Seismic anisotropy and mantle structure of the Rae craton, central Canada, from joint interpretation of SKS splitting and receiver functions.10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractCanada, Saskatchewan, Northwest TerritoriesGeophysics - seismics
DS201212-0708
2012
Strand, P., Banas, A., Burgess, J., Baumgartner, M.Two distinct kimberlite types at the Churchill diamond project, Nunavut, Canada.10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractCanada, NunavutDeposit - Churchill area
DS201212-0711
2012
Suckro, S.K., Gohl, K., Funck, T., Heyde, I., Ehrardt, A., Schreckenberger, B., Gerlings, J., Damm, V., Jokat, W.The crustal structure of southern Baffin Bay: implications from a seismic refraction experiment.Geophysical Journal International, Vol. 190, 1, pp. 37-58.Canada, Nunavut, Baffin Island, Europe, GreenlandGeophysics - seismics
DS201212-0718
2012
Tappe, S., Nowell, G.M., Kurszlaukis, S., Kjarsgaard, B.A.Large igneous provinces and kimberlites? Origin of the Diamondiferous Amon kimberlites, Baffin Island, Arctic Canada.10th. International Kimberlite Conference Feb. 6-11, Bangalore India, AbstractCanada, Nunavut, Baffin IslandDeposit - Amon
DS201212-0736
2011
Tsuji, L.J.S., McCarthy, D.D., Whielaw, G.S., McEachren, J.Getting back to basics: the Victor diamond mine environmental assessment scoping process and the issue of family based traditional lands versus traplines.Impact Assessment and Project Aapraisal, Vol. 29, 1, pp. 37-47.Canada, Ontario, AttawapiskatEnvironment
DS201212-0757
2012
Villamaire, M., Darbyshire, F.A., Bastow, I.D.3D mantle structure of the eastern Canadian shield and northeastern Appalachians from P-wave travel time tomography.Earth and Planetary Science Letters, in preparationCanadaTomography
DS201212-0758
2012
Villemaire, M., Darbyshire, F.A., Bastow, I.D.P wave tomography of eastern North America: evidence for mantle evolution from Archean to Phanerozoic, and modification during subsequent hotspot tectonism.Journal of Geophysical Research, Vol. 117, B12302, 15p.Mantle, North America, CanadaTomography, plumes
DS201212-0759
2012
Waldie, C., Whyte, J., Holland, R.NI 43-101 The new version and what you need to know.PDAC Short course, March 7, ppt manualCanadaLegal - reports
DS201212-0765
2012
Webb, K.J., Hetman, C.M., Nowicki, T.E., Harrison, S., Carlson, J., Parson, S., Paul, J.L.The updated model of the Misery kimberlite complex, Ekati mine, Northwest Territories.10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractCanada, Northwest TerritoriesDeposit - Misery
DS201212-0775
2009
Whitelaw, G.S., McCarthy, D.D., Tsuji, L.J.S.The Victor diamond mine environmental assessment process: a critical First Nation perspective.Impact Assessment and Project Aapraisal, Vol. 27, 3, pp. 205-215.Canada, Ontario, AttawapiskatEnvironment
DS201212-0782
2012
Williams, A.Gahcho Kue project, Northwest Territories.PDAC 2012, abstractCanada, Northwest TerritoriesDeposit - Gahcho Kue
DS201212-0789
2012
Wirth, R.FIB, TEM and combined FIB/SEM systems: ideal tools for the investigation of diamonds and inclusions therein.KIEV Kimberlite conference, pp. 38-40. abstractGlobal, Africa, Russia, Canada, South AmericaCrystallography, carbonado
DS201212-0791
2012
Wood, B.D., Rameseder, B., Scott Smith, B.H.The Victor diamond mine, northern Ontario Canada: successful mining of a reliable resource.10th. International Kimberlite Conference Feb. 6-11, Bangalore India, AbstractCanada, Ontario, AttawapiskatDeposit - Victor
DS201212-0794
2012
Wyman, D.A.A critical assessment of Neoarchean "plume only" geodynamics: evidence from the Superior Province.Precambrian Research, in press available, 52p.CanadaCratonization
DS201212-0806
2012
Yelisseyev, A.P., Afanasiev, V.P., Kopylova, M.G., Bulbak, T.A.The effect of metamorphic annealing and Betairradiation in optical properties of type 1AA diamonds.10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractCanada, Ontario, RussiaDiamond - metamorphism
DS201212-0818
2012
Zhang, Z., Fedortchouk, Y.Records of mantle metasomatism in the morphology of diamonds from the Slave craton.European Journal of Mineralogy, Vol. 24, 4, pp. 619-632.Canada, Northwest TerritoriesDeposit -
DS201312-0039
2013
Aulbach, S., Griffin, W.L., Pearson, N.J., O'Reilly, S.Y.Nature and timing of metasomatism in the stratified mantle lithosphere beneath the Central Slave Craton ( Canada).Chemical Geology, Vol. 352, pp. 153-169.Canada, Northwest TerritoriesCraton
DS201312-0041
2013
Ault, A.K., Flowers, R.M., Bowring, S.A.Phanerozoic surface history of the Slave Craton.Tectonics, Vol. 32, 5, pp. 1066-1083.Canada, Northwest TerritoriesCraton
DS201312-0049
2013
Bailey, B.L., Norlund, K.L., Wen, M., Novy, l., Butler, H.Ekati diamond mine: Long Lake containment facility pore water geochemistry.2013 Yellowknife Geoscience Forum Abstracts, p. 9. abstractCanada, Northwest TerritoriesDeposit - Ekati
DS201312-0850
2013
Bailey, B.L., Smith, L.J.D., Blowes, D.W., Ptacek, C.J., Smith, L., Sego, D.C.The Diavik waste rock project: persistence of contaminants from blasting agents in waste rock effluent.Applied Geochemistry, Vol. 36, pp. 256-270.Canada, Northwest TerritoriesMining - Diavik
DS201312-0080
2013
Bezzola, M., Hrkac, C., Vivian, G.Kennady North property: potential with the complexity. Faraday and Kelvin2013 Yellowknife Geoscience Forum Abstracts, p. 11. abstractCanada, Northwest TerritoriesDeposit - Faraday, Kelvin
DS201312-0092
2013
Braden, B.Safety rules the road to diamond mines.Canadian Mining Journal, April pp. 18-21.Canada, Northwest TerritoriesIce road
DS201312-0093
2013
Bragagni, A., Luguet, A., Pearson, D.G., Fonseca, R.O.C., Kjarsgaard, B.A.Insight on formation and evolution of cratonic mantle: Re-Os dating of single sulfides from Somerset mantle xenoliths ( Rae Craton) Canada.Goldschmidt 2013, AbstractCanada, NunavutGeochronolgy
DS201312-0099
2013
Brin, L.Age and origin of lithospheric mantle beneath central Victoria Island and Darnley Bay.GEM Diamond Workshop Feb. 21-22, Noted onlyCanada, Northwest Territories, Nunavut, Victoria IslandGeochronology
DS201312-0104
2013
Bryksin, A.Project NA13: towards an updated tomographic model of the Canadian lithosphere.GEM Diamond Workshop Feb. 21-22, Noted onlyCanadaTomography
DS201312-0123
2013
Canadian Mining JournalThe road to riches .. New road connects diamond mine with other "plan nord" jobs.Canadian Mining Journal, October pp. 22-23.Canada, QuebecDeposit - Renard
DS201312-0127
2014
Caron, R.M., Samson, C., Straznicky, P., Ferguson, S., Sander, L.Aeromagnetic surveying using a simulated unmanned aircraft system. ( not specific to diamonds)Geophysical Prospecting, Vol. 62, 2, pp. 352-363.Canada, OntarioGeophysics - aeromagnetics
DS201312-0130
2013
Cavell, P., Burwash, R.A., Creaser, R.A., Luth, R.W.Minette bodies and cognate mica-clinopyroxenite xenoliths from the Milk River area, southern Alberta: records of a complex history of the northern most part of the Archean Wyoming craton.Canadian Journal of Earth Sciences, Vol. 37, 11, pp. 1629-1650.Canada, AlbertaMinette
DS201312-0146
2013
Chandler, G.New approach to basement studies. Profile on Henry LyatskyEarth Explorer, Jan. 24, 4p.Canada, AlbertaGeophysics
DS201312-0149
2013
Chen, W., Simonetti, A.In situ determination of major and trace elements in calcite and apatite, and U-Pb ages of apatite from the Oka carbonatite complex: insights into a complex crystallization history.Chemical Geology, Vol. 353, pp. 151-172.Canada, QuebecDeposit - Oka
DS201312-0150
2013
Chen, Wei, Simonetti, A.PB isotope evidence from the Oka carbonatite complex for a distinct mantle reservoir.Goldschmidt 2013, AbstractCanada, QuebecCarbonatite
DS201312-0157
2012
Chi, X., Amos, R.T., Stastna, M., Blowes, D.W., Sego, D.C., Smith, L.The Diavik waste rock project: implications of wind-induced gas transport.Applied Geochemistry, Vol. 36, pp. 246-255.Canada, Northwest TerritoriesDeposit - Diavik, environmental
DS201312-0163
2013
Chudy, T.C., Groat, L.A.A cathodluminescence study of calcite dolomite microstructures and Cal-Dol geothermometry in highly metamorphosed carbonatites: an example from the Fir carbonatites, east central British Columbia, Canada.GAC-MAC 2013: GS2: Igneous and Metamorphic Petrology and Volcanology, abstract onlyCanada, British ColumbiaCarbonatite
DS201312-0182
2013
Creighton, S., Read, G.H.Metasomatic overprinting of the lithospheric mantle of the Archean Saskatchewan Craton.GAC-MAC 2013 SS4: from birth to the mantle emplacement in kimberlite., abstract onlyCanada, SaskatchewanMetasomatism
DS201312-0183
2013
Dalton, C.A., Gaherty, J.B.Seismic anisotropy in the continental crust of northwestern Canada.Geophysical Journal International, Vol. 193, 1, pp. 338-348.Canada, Northwest TerritoriesGeophysics - seismics
DS201312-0188
2013
Davies, A., Davies, R.Source of Lena West KIMS & diamonds - Horton River area?2013 Yellowknife Geoscience Forum Abstracts, p. 16-17. abstractCanada, Northwest TerritoriesDeposit - Lena West
DS201312-0189
2013
Davies, R.Displaced extension of Slave diamond corridor - geophysical evidence.AEM-SAGA Conference, Poster title listedCanada, Northwest TerritoriesGeophysics
DS201312-0190
2013
Davies, R., Davies, A.W.Zone of anomalous mantle.Proceedings of the 10th. International Kimberlite Conference, Vol. 2, Special Issue of the Journal of the Geological Society of India,, Vol. 2, pp. 143-156.Canada, RussiaLineaments
DS201312-0227
2013
Doughty, M., Eyles, N., Eyles, C.High resolution seismic reflection profiling of neotectonic faults in Lake Timiskaming Graben, Ontario-Quebec, Canada.Sedimentology, Vol. 60, 4, pp. 983-1006.Canada, Ontario, QuebecGeophysics - seismics , Kimberlite mentioned
DS201312-0229
2013
Dube-Loubert, H., Roy, M., Allard, G., Lamothe, M., Veilette, J.J.Glacial and nonglacial events in the eastern James Bay lowlands, Canada.Canadian Journal of Earth Sciences, Vol. 50, 4, pp. 379-396.Canada, Ontario, QuebecGeomorphology
DS201312-0234
2013
Dziuba, F.A geophysical case history for kimberlite exploration, Kennady North, NT.2013 Yellowknife Geoscience Forum Abstracts, p. 17-18. abstractCanada, Northwest TerritoriesGeophysics - Kelvin
DS201312-0258
2013
Facts & FiguresFacts & Figures for 2012. Economy, activity, money, reserves, exploration, people, environment, world.Facts & Figures, 140p.CanadaSummary - economics
DS201312-0274
2013
Fowler, J.A., Biscaye, E.S.Diamond mining and sustainability at De Beers' Canadian mines.Proceedings of the 10th. International Kimberlite Conference, Vol. 2, Special Issue of the Journal of the Geological Society of India,, Vol. 2, pp. 289-294.Canada, Ontario, Northwest TerritoriesDeposit - Victor, Snap Lake, CRS
DS201312-0277
2013
Frederickson, A.A seismic image of the lithosphere beneath the western Superior Province and the mid-continent rift.GEM Diamond Workshop Feb. 21-22, Noted onlyCanada, United StatesGeophysics - seismics
DS201312-0278
2013
Frederiksen, A.W., Bollmann, T., Darbyshire, F., Van der Lee, S.Modification of continental lithosphere by tectonic processes: a tomographic image of central North America.Journal of Geophysical Research, 50060Canada, United StatesTomography - Laurentia, Superior
DS201312-0284
2013
Funk, S.P., Luth, R.W.Melting phase relations of a mica-clinopyroxenite from the Milk River area, southern Alberta, Canada.Contributions to Mineralogy and Petrology, Vol. 166, 2, pp. 393-409.Canada, AlbertaMinette
DS201312-0290
2013
Gallagher, W.Where have all the miners gone? Aboriginals are now masters of Canada's resource agenda says new book…. Bill Gallagher Resource rules: fortune and folly on Canada's road to resources.Canadian Mining Journal, Feb/March pp. 50-53. Gallagher's book is self published.CanadaCSR
DS201312-0309
2013
Ghosh, A., Becker, T.W., Humphreys, E.D.Dynamics of the North American continent.Geophysical Journal International, Vol. 194, 2, pp. 651-669.United States, CanadaGeodynamics
DS201312-0330
2013
Grant, J.Andrew.Commonwealth cousins combating conflict diamonds: an examination of South African and Canadian contributions to the Kimberley Process.Commonwealth and Comparative Politics ( Routledge Pub)., Vol. 51, 2, pp. 1466-2043. IngentaCanada, Africa, South AfricaKimberley Process
DS201312-0355
2013
Hall, R.Diamond mining in Canada's Northwest Territories: a colonial continuity.Antipode ( Blackwell Publishing), Vol. 45, 2, pp. 376-393.Canada, Northwest TerritoriesHistory
DS201312-0357
2014
Halls, H.Crustal shortening during the Paleoproterozoic: can it be accommodated by paleomagnetic data?Precambrian Research, Vol. 244, pp. 42-52.CanadaTrans-Hudson orogen, Slave craton
DS201312-0367
2013
Harvey, S., Read, G., DesGagnes, B., Shimell, M.Utilization of olivine macrocryst grain size and abundance dat a as a proxy for diamond size and grade in pyroclastic deposits of the Orion South kimberlite, Fort a la Corne, Saskatchewan, Canada.Proceedings of the 10th. International Kimberlite Conference, Vol. 2, Special Issue of the Journal of the Geological Society of India,, Vol. 2, pp. 79-95.Canada, SaskatchewanDeposit - Orion South
DS201312-0383
2013
Herzberg, C.Petrological evidence for deep lower mantle melting.Goldschmidt 2013, AbstractCanada, Nunavut, Baffin Island, GreenlandPicrite
DS201312-0391
2013
Hitchie, L., Pell, J., Scott Smith, B.H., Russell, J.K.The CH-6 kimberlite, Canada: textural and mineralogical features and their relevance to volcanic facies and magma batch interpretation.GAC-MAC 2013 SS4: Diamond: from birth in the mantle to emplacement in kimberlite, abstract onlyCanada, Nunavut, Baffin IslandDeposit - CH-6
DS201312-0392
2013
Hiyate, A.Bob Gannicott on Dominion Diamond's new vision.Diamonds in Canada Magazine, Northern Miner, May pp. 6-9.Canada, Northwest TerritoriesDeposit - Ekati
DS201312-0394
2013
Hoefer, T.Challenges and opportunities in the Northwest Territories and Nunavut Chamber of Mines, Yellowknife, Canada.PDAC 2013, abstract only.Canada, Northwest Territories, NunavutBrief overview
DS201312-0409
2013
Hunt, L.The complex growth of Diavik non-gem diamonds.GEM Diamond Workshop Feb. 21-22, Noted onlyCanada, Northwest TerritoriesDiamond morphology
DS201312-0410
2013
Hunt, L., Stachel, T., Pearson, D.G., Stern, R., Muehlenbachs, K., McLean, H.Multi-stage evolution of non-gem diamonds at the Diavik diamond mine, Canada.GAC-MAC 2013 SS4: Diamond: from birth in the mantle to emplacement in kimberlite, abstract onlyCanada, Northwest TerritoriesDeposit - Diavik
DS201312-0411
2013
Hunt, L., Stachel, T., Pearson, D.G., Stern, R., Muehlenbachs, K., McLean, H.The complex growth of non-gem diamonds at the Diavik diamond mine, Canada.Geoscience Forum 40 NWT, abstract only p. 19Canada, Northwest TerritoriesDiamond morphology
DS201312-0437
2013
Januszczak, N.A multidisciplinary approach to the Attawapiskat kimberlite field: accelerating the discovery to production pipeline.Toronto Geological Discussion Group, 1p. abstractCanada, Ontario, AttawapiskatDeposit - Victor/ area
DS201312-0438
2013
Januszczak, N., Seller, M.H., Kurszlaukis, S.A multidisciplinary approach to the Attawapiskat kimberlite field, Canada: accelerating discovery-to-production pipeline.Proceedings of the 10th. International Kimberlite Conference, Vol. 2, Special Issue of the Journal of the Geological Society of India,, Vol. 2, pp. 157-171.Canada, Ontario, AttawapiskatDeposit - Victor
DS201312-0442
2013
Johnson, C.L., Ross, M., Grunsky, E., Hodder, T.J.Fingerprinting glacial processes for diamond exploration on Baffin Island.Geoscience Forum 40 NWT, Poster abstract only p. 62Canada, Nunavut, Baffin IslandGeomorphology
DS201312-0451
2013
Kamenetsky, V.S., Grutter, H., Kamenetsky, M.B., Gomann, K.Parental carbonatitic melt of the kaola kimberlite ( Canada): constraints from melt inclusions in olivine and Cr-spinel, and groundmass carbonateChemical Geology, Vol. 353, pp. 96-111.Canada, Northwest TerritoriesDeposit - Kaola
DS201312-0488
2013
Kjarsgaard, B.A., Knight, R., Sharpe, D., Cummings, D., Lesenabb, J-E., Russell, H., Plourde, A., Kerr, D.Diverse indicator mineral and geochemical dispersal plumes in till and esker samples: East arm of Great Slave Lake to the The lon River, NT.2013 Yellowknife Geoscience Forum Abstracts, p. 33-34.Canada, Northwest TerritoriesGeochemistry - mentions kimberlites
DS201312-0489
2013
Klein-BenDavid, O., Pearson, D.G., Nowell, G.M., Ottley, C., McNeill, J.C.R., Logvinova, A., Sobolev, N.V.The sources and time integrated evolution of diamond forming fluid - trace elements and Sr isotopic evidence.Geochimica et Cosmochimica Acta, Vol. 125, pp. 146-169.Russia, Africa, Democratic Republic of Congo, Canada, Northwest TerritoriesFibrous diamonds, HDF, Diavik, Udachnaya
DS201312-0504
2013
Kopylova, M.M.G., Beausoleil, Y.Y.L.Distribution of eclogites in the Slave mantle: the effect of subduction and metasomatism.GAC-MAC 2013 SS4: from birth to the mantle emplacement in kimberlite., abstract onlyCanada, Northwest TerritoriesEclogite
DS201312-0516
2013
Krebs, M.Y., Pearson, D.G., Stachel, T., Stern, R.A., Nowicki, T., Cairns, S.Variability in diamond population characteristics across the size range 0.2- 2-4 mm - a case study based on diamonds from Misery ( Ekati mine).2013 Yellowknife Geoscience Forum Abstracts, p. 34-35.Canada, Northwest TerritoriesDeposit - Misery
DS201312-0517
2013
Kressall, R.D., Fedortchouk, Y.Major and trace element composition of Fe-Ti oxides from the Lac de Gras kimberlites.GAC-MAC 2013 SS4: Diamond: from birth to the mantle emplacement in kimberlite., abstract onlyCanada, Northwest TerritoriesDeposit - Lac de Gras
DS201312-0523
2013
Kupsch, B., Armstrong, J.P.Exploration and geology of the Qilalugaq kimberlites, Rae Isthmus, Nunavut, Canada.Proceedings of the 10th. International Kimberlite Conference, Vol. 2, Special Issue of the Journal of the Geological Society of India,, Vol. 2, pp. 67-78.Canada, NunavutDeposit - Qilalugaq
DS201312-0542
2013
Lisemann, J-E., Fuss, C., Jarvis, W., Russell, H.A.J., Kjarsgaard, B.A.K., Sharpe, D.R.As assessment of the structure, content and the usability of the kimberlite indicator and diamond database ( KIDD).2013 Yellowknife Geoscience Forum Abstracts, p. 39-40.CanadaDatabase - KIDD
DS201312-0563
2013
Machado, G., Bilodeau, C., Takpanie, R., St.Onge, M., Rayner, N., Skipton, D., From, R., MacKay, C., Young, M., Creason, G., Braden, Z.Regional bedrock mapping, Hall Peninsula, Nunavut.Geoscience Forum 40 NWT, abstract only p. 26Canada, NunavutMapping
DS201312-0594
2013
McCreary, T.Mining aboriginal success: the politics of difference in continuing education for industry needs.The Canadian Geographer, Vol. 57, 3, pp. 280-288.CanadaCSR
DS201312-0598
2013
Melton, G.L., Stachel, T., Stern, R.A., Carlson, J., Harris, J.W.Micro and macro diamond characteristics from the PAnd a kimberlite.Geoscience Forum 40 NWT, abstract only p. 29Canada, Northwest TerritoriesDeposit - Panda
DS201312-0599
2013
Melton, G.L., Stachel, T., Stern, R.A., Carlson, J., Harris, J.W.Infrared spectral and carbon isotopic characteristics of micro- and macro diamonds from the PAnd a kimberlite, Central Slave Craton, Canada).Lithos, Vol. 177, pp. 110-119.Canada, Northwest TerritoriesDeposit - Panda
DS201312-0604
2014
Miller, C.E., Kopylova, M., Smith, E.Mineral inclusions in fibrous diamonds: constraints on cratonic mantle refertilization and diamond formation.Mineralogy and Petrology, Vol. 108, 3, pp. 317-331.Canada, Ontario, Northwest TerritoriesWawa, Diavik
DS201312-0621
2013
Muntener, C., Scott Smith, B.H.Economic geology of Renard 3, Quebec, Canada: a diamondiferous, multi-phase pipe infilled with hypabyssal and tuffisitic kimberlite.Proceedings of the 10th. International Kimberlite Conference, Vol. 2, Special Issue of the Journal of the Geological Society of India,, Vol. 2, pp. 241-256.Canada, QuebecDeposit - Renard 3
DS201312-0623
2013
Nadeau, O., Stevenson, R., Jebrak, M.Petrosomatic evolution of Montveil alkaline system and rare earth carbonatites, Abitibi, Canada.Goldschmidt 2013, AbstractCanada, QuebecCarbonatite
DS201312-0644
2013
Neuner, M., Smith, L., Blowes, D.W., Sego, D.C., Smith, L.J.D., Fretz, N., Gupton, M.The Diavik waste rock project: water flow through mine waste rock in a permafrost terrain.Applied Geochemistry, Vol. 36, pp. 222-233.Canada, Northwest TerritoriesMining - Diavik
DS201312-0645
2013
Nichols, K., Stachel, T., Pell, J., Mate, D.Diamond sources beneath the Hall Peninsula, Nunavut: a preliminary assessment based on micro-diamonds.Geoscience Forum 40 NWT, Poster abstract only p. 64Canada, Nunavut, Baffin IslandDeposit - Chidliak
DS201312-0646
2013
Nichols, K., Stachel, T., Stern, R.A., Pell, J., Mate, D.Diamond sources beneath the Hall Peninsula, Nunavut: a preliminary assessment based on micro-diamonds.GAC-MAC 2013 SS4: Diamond: from birth in the mantle to emplacement in kimberlite, abstract onlyCanada, Nunavut, Hall PeninsulaMicrodiamonds
DS201312-0647
2013
Nichols, K.M.A., Stachel, T., Pell, J.A., Mate, D.J.Diamond sources beneath the Hall Peninsula, Baffin Island, Nunavut: preliminary assessment based on microdiamonds.Canada-Nunavut Geoscience Summary of Activities 2012, pp. 113-120.Canada, Nunavut, Baffin IslandDeposit - Chidliak
DS201312-0659
2013
NunavutMineral exploration overview: Kitikmeot p. 23; Kivalliq p. 35; Oikqtani pp. 56-57Nunavut Mineral Exploration Mining and Geoscience Overview 2012, p. 23, p. 35, p. 56.Canada, NunavutDiamond projects
DS201312-0663
2013
O'Faircheallaigh, C.CSR, the mining industry and indigenous peoples in Australia and Canada.Innovative CSR: From risk Management to value creation. Greenleaf Publishing Limited, Vol. 1, no. 46, pp. 398-418.Australia, CanadaCSR, aboriginals
DS201312-0672
2013
Osler, Hoskin, HarcourtDirector's duties: an overview for mid-sized public mining company executives and directors.PDAC Short course, 13p.CanadaDirectors interests - not very applicable to juniors!
DS201312-0673
2013
Osler, Hoskin, HarcourtCorporate Governance in Canada: a guide to the responsibilities of corporate directors in Canada.Osler Hoskin Harcourt publication, March 2009, 90p.CanadaGovernance - outline of function, standards, CSR
DS201312-0685
2012
Paterson, N., Fedortchouk, Y.Determining the presence of aqueous fluids in Canadian kimberlites.Atlantic Geology, Vol. 48, p. 43. 1p abstractCanada, Northwest TerritoriesLac de Gras, Ekati
DS201312-0688
2013
Paulen, R.C.A revised look at Canada's landscape: glacial process and dynamics.GSC Open file 7374 Ftp2.cits.rncan.gc.ca, pp. 5-12.CanadaGeomorphology
DS201312-0689
2013
Paulen, R.C., McClenaghan, M.B.New frontiers for exploration in glaciated terrain.GSC Open file 7374 Ftp2.cits.rncan.gc.ca, 85p.CanadaShort Course notes - individual papers cited under authors
DS201312-0692
2013
Pearson, D.G., Brin, L., Liu, J., Riches, A., Stachel, T., Mather, K.A., Kjarsgaard, B.A.Canada's Arctic cratons: how many, how old, how come?2013 Yellowknife Geoscience Forum Abstracts, p. 49-50.Canada, Northwest Territories, Nunavut, Victoria Island, Parry PeninsulaGeochronology - mantle peridotites
DS201312-0693
2013
Pearson, G.How much Archean lithospheric mantle is there in Arctic Canada?GEM Diamond Workshop Feb. 21-22, Noted onlyCanadaPetrology
DS201312-0694
2013
Pehrsson, S.J., Berman, R.G., Eglinton, B., Rainbird, R.Two Neoarchean supercontinents revisited: the case for a Rae family of cratons.Precambrian Research, Vol. 232, pp. 27-43.Canada, SaskatchewanKenoraland revised, Nunavutia
DS201312-0695
2013
Pell, J., Clements, B., Grutter, H., Neilson, S., Grenon, H.Following kimberlite indicator minerals to source in the Chidliak kimberlite province, Nunavut.PDAC 2013 , 6p.Canada, Nunavut, Baffin IslandIndicator Mineralogy
DS201312-0696
2013
Pell, J., Clements, B., Grutter, H., Neilson, S., Grenon, H.Following kimberlite indicator minerals to source in the Chidliak kimberlite province, Nunavut.GSC Open file 7374 Ftp2.cits.rncan.gc.ca, pp. 47-52.Canada, Nunavut, Baffin IslandDeposit - Chidliak
DS201312-0697
2013
Pell, J., Grutter, H., Neilson, S.Exploration and discovery of the Chidliak kimberlite province, Baffin Island, Nunavut: Canada's newest diamond district.Proceedings of the 10th. International Kimberlite Conference, Vol. 2, Special Issue of the Journal of the Geological Society of India,, Vol. 2, pp. 209-227.Canada, Nunavut, Baffin IslandDeposit - Chidliak
DS201312-0698
2013
Pell, J., Russell, K., Zhang, S.Kimberlite emplacement temperatures from conodont geothermometry; hotter than you might think.Vancouver Kimberlite Cluster, abstract talk Oct. 18, 1/2p.Canada, NunavutGeothermometry
DS201312-0699
2012
Percival, J.A., Cook, F.A., Clowes, R.M.Tectonic styles in Canada: the Lithoprobe.Geological Association of Canada Special Paper, No. 49, 498p. Approx $ 70.00 memberCanadaBook - Geophysics
DS201312-0705
2013
Pham, N.H., Sego, D.C., Arenson, L.U., Blowes, D.W., Amos, R.T., Smith, L.The Diavik waste rock project: measurement of the thermal regime of a waste rock test pile in a permafrost environment.Applied Geochemistry, Vol. 36, pp. 234-245.Canada, Northwest TerritoriesMining - Diavik
DS201312-0708
2013
Pinet, N., Lavoie, D., Dietrich, J., Hu, K., Keating, P.Architecture and subsidence history of the intracratonic Hudson Bay Basin, northern Canada.Earth Science Reviews, Vol. 125, pp. 1-23.CanadaTectonics
DS201312-0712
2013
Plouffe, A., McClenaghan, M.B., Paulen, R.C., McMartin, I., Campbell, J.E., Spirito, W.A.Quality assurance and quality control measures applied to indicator mineral studies at the Geological Survey of Canada.GSC Open file 7374 Ftp2.cits.rncan.gc.ca, pp. 13-20.CanadaQuality controls
DS201312-0717
2013
Porrit, L.A., Russell, J.K.A phreatomagmatic kimberlite: the A418 kimberlite pipe, Northwest Territories, Canada.Proceedings of the 10th. International Kimberlite Conference, Vol. 2, Special Issue of the Journal of the Geological Society of India,, Vol. 2, pp. 97-107.Canada, Northwest TerritoriesDeposit - A418
DS201312-0718
2013
Postlewaithe, B.Velocity structure of the crust across Canada.GEM Diamond Workshop Feb. 21-22, Noted onlyCanadaGeophysics - seismics
DS201312-0719
1989
Potapoff, P.The Martinson carbonatite deposit, Ontario CanadaPhosphate Deposits of the world, ed. Notholt, A.J.G., Sheldon, R.P., Davidson, D.F., Vol. 2, no. 10, pp. 71-79. copy donated by R. SageCanada, OntarioCarbonatite
DS201312-0724
2013
Quesnel, Y., Gattacceca, J., Osinski, G.R., Rochette, P.Origin of the central magnetic anomaly at the Haughton impact structure, Canada.Earth and Planetary Science Letters, Vol. 368, pp. 116-122.CanadaImpacts
DS201312-0738
2014
Refayee, H.A., Yang, B.B., Liu, K.H., Gao, S.S.Mantle flow and lithosphere asthenosphere coupling beneath the southwestern edge of the North American craton: constraints from shear wave splitting measurements.Earth and Planetary Science Letters, Vol. 402, pp. 209-220.CanadaAnisotropy
DS201312-0739
2013
Reiter, B.Directors' duties in Canada. 5th editionCCH Wolters Kluwer, in press available early 2013CanadaGovernance
DS201312-0740
2012
Reiter, B.Director's duties in Canada, 5th. Edition now 1045p. (ist ed. Had 350p. Times have changed!!!)CCH Canada 1 800-268-4522, 5th ed. Approx $ 170. plus taxCanadaDirectors duties - extensive chapters
DS201312-0742
2013
Rheaume, G., Caron-Vuotari, M.The future of mining in Canada's north.Conference Board of Canada, 96p.Canada, Northwest Territories, NunavutEconomics
DS201312-0761
2013
Rukhlov, A.S., Blinova, A.I., Pawlowicz, J.G.Geochemistry, mineralogy and petrology of the Eocene potassic magmatism from the Milk River area, southern Alberta and Sweet Grass Hills, northern Montana.Chemical Geology, Vol. 353, pp. 280-302.Canada, Alberta, United States, MontanaMilk River area
DS201312-0762
2013
Russell, H.A.J., Kjarsgaard, B.A., Lesemann, J-E., Sharpe, D.R.Developing an improved knowledge framework for indicator mineral interpretation.Geoscience Forum 40 NWT, Poster abstract only p. 68.Canada, Nunavut, Baffin IslandDeposit - Chidliak
DS201312-0769
2013
Sader, J.A., Hattori, K., Brauneder, K., Hamilton, S.M.The influence of buried kimberlite on methane production in overlying sediment, Attawapiskat region, James Bay lowlands, Ontario.Chemical Geology, Vol. 360-361, pp. 173-185.Canada, Ontario, AttawapiskatMethane
DS201312-0777
2013
Sarkar, C., Heaman, L., Pearson, D.G.Detailed geochemical studies of Lac de Gras kimberlites - redefining the 'diamond age window'?Geoscience Forum 40 NWT, abstract only p. 43Canada, Northwest TerritoriesDeposit - Lac de gras ones
DS201312-0781
2013
Schaeffer, A.Heterogeneity and anisotropy of the North American upper mantle, imaged using multimode waveform tomography.GEM Diamond Workshop Feb. 21-22, Noted onlyCanadaTomography
DS201312-0793
2013
Schulze, D.Still sparkling - layman's overview of Canadian diamond projects and techniques.University of Toronto Alumni News, Earth Sciences, No. 22, pp. 12-13.CanadaBrief - technology
DS201312-0808
2013
Shephard, G., Muller, R.D., Seton, M.The tectonic evolution of the Arctic since Pangea breakup: integrating constraints from surface geology and geophysics with mantle structure.Earth Science Reviews, Vol. 124, pp. 148-183.Mantle, Circum-Arctic, Russia, CanadaTectonics
DS201312-0836
2013
Smit, K.Mantle composition & diamond sources, Superior craton.GEM Diamond Workshop Feb. 21-22, Noted onlyCanadaPetrology
DS201312-0837
2013
Smit, K.V.Age, origin and composition of the Attawapiskat lithospheric mantle and its diamonds ( western Superior craton, Canada).University of Alberta, Phd. Thesis 365p. Available pdfCanada, OntarioPeridotitic and eclogitic xenoliths, Victor
DS201312-0838
2013
Smit, K.V., Stachel, T., Creaser, R.A., Ickert, R.B., Dufrane, S.A., Stern, R.A., Seller, M.Origin of eclogite and pyroxenite xenoliths from the Victor kimberlite, Canada, and implications for Superior Craton formation.Geochimica et Cosmochimica Acta, Vol. 125, pp. 308-337.Canada, OntarioDeposit - Victor
DS201312-0849
2013
Smith, L.J.D., Blowes, D.W., Jambor, J.L., Smith, L., Sego, D.C., Neuner, M.The Diavik waste rock project: initial geochemical response from a low sulfide waste rock pile.Applied Geochemistry, Vol. 36, pp. 200-209.Canada, Northwest TerritoriesMining - Diavik
DS201312-0852
2013
Smith, L.J.D., Moncur, M.C., Neuner, M., Gupton, M., Blowes, D.W., Smith, L., Sego, D.C.The Diavik waste rock project: particle size distribution and sulfur characteristics of low- sulfide waste rock.Applied Geochemistry, Vol. 36, pp. 187-199.Canada, Northwest TerritoriesMining - Diavik
DS201312-0856
2013
Snyder, D.Integrated 3-D models of the Slave & Rae cratons.GEM Diamond Workshop Feb. 21-22, Noted onlyCanada, Northwest Territories, AlbertaGeophysics - seismics
DS201312-0857
2013
Snyder, D.Lithospheric structure and diamond potential of northern Canada.PDAC 2013, 27 ppt slidesCanada, Nunavut, Northwest TerritoriesTectonics
DS201312-0858
2013
Snyder, D.Imaging Archean -age whole mineral systems.Precambrian Research, Vol. 229, pp. 125-132.Canada, Northwest TerritoriesSlave craton, metasomatism
DS201312-0859
2013
Snyder, D.B., Berman, R.G., Kendall, J-M., Sanborn-Barrie, M.Seismic anisotropy and mantle structure of the Rae craton, central Canada, from joint interpretation of SKS splitting and receiver functions.Precambrian Research, Vol. 232, pp. 189-208.Canada, Ontario, Hudson Bay, Baffin IslandMantle discontinuities
DS201312-0860
2013
Snyder, D.B., Hillier, M., Kjarsgaard, B.A.3-D structural model of the Slave craton mantle lithosphere, Northwest Territories.Geoscience Forum 40 NWT, abstract only p. 47.Canada, Northwest TerritoriesTectonics
DS201312-0861
2013
Snyder, D.B., Kjarsgaard, B.A.Mantle roots of major Precambrian shear zones inferred from structure of the Great Slave Lake shear zone, northwest Canada.Lithosphere, Vol. 5, 6, pp. 539-546.Canada, Northwest TerritoriesStructure - craton
DS201312-0876
2013
Spratt, J.Electrical resistivity of the Rae craton lithosphere.GEM Diamond Workshop Feb. 21-22, Noted onlyCanadaGeophysics
DS201312-0885
2013
Stevenson, R.Geochemical and isotopic (Nd-Sr-Hf-Pb) evidence for a lithospheric mantle source in the formation of the alkaline Montregian Province ( Quebec).Canadian Journal of Earth Sciences, Vol. 50, 6, pp. 650-666.Canada, QuebecAlkalic
DS201312-0901
2013
Tappe, S., Pearson, D.G., Kjarsgaard, B.A., Nowell, G., Dowall, D.Mantle transition zone input to kimberlite magmatism near a subduction zone: origin of anomalous Nd-Hf isotope systematics at Lac de Gras, Canada.Earth and Planetary Science Letters, Vol. 371-372, pp. 235-251.Canada, Northwest TerritoriesGeochronology, convection
DS201312-0913
2013
Thorleifson, L.H.History and status of till geochemical and indicator mineral methods in mineral exploration.GSC Open file 7374 Ftp2.cits.rncan.gc.ca, pp. 1-4.CanadaGeochemistry - till
DS201312-0941
2013
Vivian, G., Hrkac, C., Kalkowski, T.3D till sampling: a committed strategy for the hidden kimberlite. 2013 Yellowknife Geoscience Forum Abstracts, p. 30. abstractCanada, Northwest TerritoriesGeophysics - North Arrow
DS201312-0961
2013
Weiss, Y., Griffin, W.L., Navon, O.Diamond forming fluids in fibrous diamonds: the trace element perspective.Earth and Planetary Science Letters, Vol. 376, pp. 110-125.Canada, Northwest Territories, Africa, Guinea, South AfricaHDFs
DS201312-0966
2013
Wescott, P., Nichols, K., Stachel, T., Muehlenbachs, K., Kong, J.Infrared spectroscopy and carbon isotopic analyses of Victor mine diamonds.2013 Yellowknife Geoscience Forum Abstracts, p. 82-83.Canada, OntarioDeposit - Victor
DS201312-0967
2012
White, D.J., Kjarsgaard, B.A.Seismic delineation of the Orion South kimberlite, Fort a la Corne.Geophysics, Vol. 77, WC 191-WC201.Canada, SaskatchewanDeposit - Orion South
DS201312-0977
2013
Wilson, G.C., McCausland, P.J.A.Canadian meteorites: a brief review.Canadian Journal of Earth Sciences, Vol. 50, pp. 4-13.CanadaMeteorite
DS201312-0982
2013
Wood, B.D., Scott Smith, B.H., Rameseder, B.The Victor diamond mine, northern Ontario, Canada: successful mining of a reliable resource.Proceedings of the 10th. International Kimberlite Conference, Vol. 2, Special Issue of the Journal of the Geological Society of India,, Vol. 2, pp. 19-33.Canada, Ontario, AttawapiskatDeposit - Victor
DS201312-1001
2013
Yuan, H.Anisotropic velocity model of North America.GEM Diamond Workshop Feb. 21-22, Noted onlyCanadaGeophysics - seismics
DS201312-1011
2013
Zhang, S., Pell, J.Study of sedimentary rock xenoliths from kimberlites on Hall Peninsula, Baffin Island, Nunavut.Canada-Nunavut Geoscience Summary of Activities 2012, pp. 107-112.Canada, Nunavut, Baffin IslandDeposit - Chidliak
DS201312-1025
2013
Zurevinski, S.E., Crabtree, D.C.Mineralogical analyses of ijolites and related rocks, Mesoproterozoic Prairie Lake carbonatite Complex, northwestern Ontario.Ontario Geological Survey, Misc. Release - Data 310 10 worksheets excel $ 20.00Canada, OntarioDeposit - Prairie Lake
DS201412-0028
2013
Ault, A.K., Flowers, R.M., Bowling, S.A.Phanerozoic surface history of the Slave craton.Tectonics, Vol. 32, 5, pp. 1066-1083.Canada, Northwest TerritoriesGeodynamics
DS201412-0046
2014
Bedard, J.H., Harris, L.B.Neoarchean disaggregation and reassembly of the Superior Craton.Geology, Vol. 42, 11, pp. 951-954.Canada, Ontario, QuebecCraton, geodynamics
DS201412-0047
2014
Belcourt, G., Hrkac, C., Vivian, G.Kennady North property: 2014 geophysical update.2014 Yellowknife Geoscience Forum, P. 14, abstractCanada, Northwest TerritoriesGeophysics
DS201412-0055
2014
Bezzola, M., Hrkac, C., Vivian, G.A tunnel to the future: the preliminary geology of the Kelvin kimberlite. ( Kennady)2014 Yellowknife Geoscience Forum, p. 17, abstractCanada, Northwest TerritoriesDeposit - Kelvin
DS201412-0065
2014
Braden, B.Sask Rocks…. Veteran gem hunters get rewarded at remote North Arrow's Pikoo project… Canad's newest diamond district.Canadian Mining Journal, June/July pp. 14-17.Canada, SaskatchewanDeposit - Pikoo
DS201412-0086
2014
Bussweiler, Y., Foley, S.F., Prelevic, D., Jacob, D.E., Pearson, D.G., Stachel, T.Olivine as a petrogenetic and exploration indicator in Lac de Gras kimberlites.2014 Yellowknife Geoscience Forum, p. 20, 21 abstractCanada, Northwest TerritoriesDeposit - Ekati
DS201412-0112
2014
Chakhmouradian, A.R., Reguir, E.P., Kressal, R.D., Crozier, J., Pisiak, L.K., Sidhu, R., Yang, P.Carbonatite hosted niobium deposit at Aley, northern British Columbia ( Canada): mineralogy, geochemistry and petrogenesis.Ore Geology Reviews, Vol. 64, pp. 642-666.Canada, British ColumbiaCarbonatite
DS201412-0142
2012
Cook, F.A., Percival, J.A., Clowes, R.M.Tectonic styles in Canada: lithoprobe perspectives on the evolution of the North American continent.Tectonic styles in Canada: the lithoprobe perspective, eds. Percival, Cook, Clowes, Geological Survey of Canada, Special Paper, 49, pp. 489-Canada, United StatesTectonics - lithoprobe
DS201412-0143
2014
Cookenboo, H.O.A new source of diamonds discovered in Canada - northern Saskatchewan Pikoo discovery.6 Simposio Brasileiro de Geologia do Diamante, Aug. 3-7, 1p. AbstractCanada, SaskatchewanDeposit - Pikoo
DS201412-0153
2013
Cross, L.D.Treasure under the tundra: Canada's Archean diamonds.Amazon.com, Heritage House available as a ebook about $ 9.00CanadaBook - history
DS201412-0154
2014
Cummings, D.I., Prowse, N.Till in Arctic Canada is not till.2014 Yellowknife Geoscience Forum Poster, p. 84, abstractCanada, Northwest TerritoriesDiamicton
DS201412-0155
2014
Cummings, Kjarsgaard, B.A., Knight, R., Russell, H.A.J., Sharpe, D.R.Dispersal trains in eskers versus till east of Great Slave Lake.2014 Yellowknife Geoscience Forum Poster, p. 84, abstractCanada, Northwest TerritoriesEskers
DS201412-0160
2014
Dalsin, M.L., Groat, L.A., Creighton, S., Evans, R.J.The mineralogy and geochemistry of the Wicheeda carbonatite complex, British Columbia, Canada.Ore Geology Reviews, Vol. 64, pp. 523-542.Canada, British ColumbiaCarbonatite
DS201412-0167
2014
Davies, A.Mn-ilmenites associated with standard KIMS, Lena West, NWT Canada.GSSA Kimberley Diamond Symposium and Trade Show provisional programme, Sept. 10-12, POSTERCanada, Northwest TerritoriesIlmenite, chemistry
DS201412-0170
2014
Davies, R.Mn-ilmenites associated with standard KIMS, Lena West, NWT Canada.ima2014.co.za, AbstractCanada, Northwest TerritoriesIlmenite, chemistry
DS201412-0171
2013
Davies, R., Davies, A.W.Zone of anomalous mantle.Proceedings of the 10th. International Kimberlite Conference, Vol. 2, pp. 143-156.Canada, Northwest TerritoriesLineaments ( zones)
DS201412-0172
2014
Davies, R., Davies, A.W.Kimberlite pathfinder elements down ice of Talmora.2014 Yellowknife Geoscience Forum Poster, p. 86, abstractCanada, Northwest TerritoriesDeposit - Dharma
DS201412-0181
2013
Dept of Earth & Atmospheric SciencesArctic Resources Geochemistry Laboratory. State of the Art instrumentation. Aim to determine diamond age, process of formation and place of origin.University of Alberta, 1p.Canada, AlbertaLaboratory
DS201412-0184
2014
Devriese, S.G.R., Corcoran, N., Cowan, D., Davis, K., Bild-Enkin, D., Fournier, D., Heagy, L., Kang, S., Marchant, D., McMillan, M.S., Mitchell, M., Rosenkjar, G., Yang, D., Oldenburg, D.W.Magnetic inversion of three airborne dat a sets over the Tli Kwi Cho kimberlite complex.SEG Annual Meeting Denver, pp. 1790-1794 extended abstractCanada, Northwest TerritoriesGeophysics - Tli Kwi Cho
DS201412-0190
2014
Diamonds in CanadaStornoway lands $ 944 million financing for Renard; Lucara's Karowe proves to be a gem.Diamonds in Canada Magazine, Northern Miner, May p. 20Canada, QuebecDeposit - Renard
DS201412-0192
2014
Diamonds in CanadaConstruction nears halfway mark at Gahcho Kue.Diamonds in Canada Magazine, Northern Miner, November p. 18.Canada, Northwest TerritoriesDeposit - Gahcho Kue
DS201412-0213
2014
Duke, G.I., Carlson, R.W., Frost, C.D., Hearn, B.C.Jr., Eby, G.N.Continental scale linearity of kimberlite-carbonatite magmatism, mid-continent North America.Earth and Planetary Science Letters, Vol. 403, pp. 157-163.Canada, United StatesLineaments
DS201412-0215
2014
Dunlop, D.P.Grenvillia and Laurentia - a Precambrian Wilson cycle?Canadian Journal of Earth Sciences, Vol. 51, 3, pp. 187-196.Canada, OntarioWilson cycle
DS201412-0250
2014
Fournier, D., Heagy, L., Corcoran, N., Devriese, S.G.R., Bild-Enkin, D., Davis, K., Kang, S., Marchant, D., McMillan, M.S., Mitchell, M., Rosenkjar, G., Yang, D., Oldenburg, D.W.Multi-EM systems inversion - towards a common conductivity model for Tli Kwi Cho complex.SEG Annual Meeting Denver, pp. 1795-1798. Extended abstractCanada, Northwest TerritoriesGeophysics - Tli Kwi Cho complex
DS201412-0251
2013
Fowler, J.A., Biscaye, E.S., Metatawabin, S.H.A.Diamond mining and sustainability at De Beers' Canadian mines.Proceedings of the 10th. International Kimberlite Conference, Vol. 2, pp. 289-293.Canada, Ontario, Northwest TerritoriesEconomics - social responsibility
DS201412-0272
2014
Garven, E.A., Novy, L., Koop, G.2013 geotechnical investigation at the Long Lake containment facility, at Ekati diamond mine.2014 Yellowknife Geoscience Forum, p. 40, abstractCanada, Northwest TerritoriesDeposit - Ekati
DS201412-0284
2014
Ghose, T.Comet strike to blame for Canada's iconic Sudbury Basin.Scientific American, 2p.Canada, OntarioImpacts
DS201412-0293
2014
Giuliani, A., Phillips, D., Kamenetsky, V.S., Fiorentini, M.L., Farqukar, J., Kendrick, M.A.Stable isotope ( C,O,S) compositions of volatile rich minerals in kimberlites: a review.Chemical Geology, Vol. 374-375, pp. 61-83.Africa, South Africa, Canada, Northwest Territories, RussiaDeposit - Kimberley, Lac de Gras, Udachnaya
DS201412-0317
2014
Groat, L.A.Gem production and potential in Canada. Diamond and other gem stonesGeological Society of America Conference Vancouver Oct. 19-22, 1p. AbstractCanadaGemstones
DS201412-0321
2014
Groulier, P.A., Andre-Mayer, A.S., Ohnenstetter, D., Zeh, A., Moukhsil, A., Solgadi, F., El Basbas, A.Petrology, geochemistry and age of the Crevier alkaline intrusion.GAC-MAC Annual Meeting May, abstract 1p.Canada, QuebecAlkalic
DS201412-0323
2011
Grunsky, E.C., Kjarsgaard, B.A., Kurzlaukis, S., Seller, M.The use of statistical methods applied to multi-element geochemistry for phase discrimination in kimberlites - examples from the Star and Whiskey kimberlites.GAC/MAC joint annual meeting, Vol. 36, p. 1. abstractCanada, Saskatchewan, OntarioGeochemistry - whole rock
DS201412-0322
2013
Grunsky, EC., Kjarsgaard, B.A., Kurzlaukis, S., Seller, M., Knight, R., Moroz, M.Classification of whole rock geochemistry based on statistical treatment of whole rock geochemical analyses and portable XRF analyses at the Attawapiskat kimberlite field of Ontario.Geological Survey of Canada, Scientific Presentation 15,, 1 sheet 10.4095/292446Canada, Ontario, AttawapiskatGeochemistry - whole rock
DS201412-0344
2013
Harvey, S., Read, G., DesGagnes, B., Shimell, M., van Breugel, B., Fourie, L.Utilization of olivine macrocryst grain size and abundance dat a as a proxy for diamond size and grade in pyroclastic deposits of the Orion South kimberlite, Fort a la Corne, Saskatchewan, Canada.Proceedings of the 10th. International Kimberlite Conference, Vol. 2, pp. 79-96.Canada, SaskatchewanDeposit - Orion South
DS201412-0350
2014
Heffernan, V.Rediscovering its swagger. A look at how Canada's minerals industry can adapt in the face of uncertainty. Core Magazine , Fall, pp. 4,5,6,8,9.CanadaDiscoveries - costs, mine-life trends, reglatories
DS201412-0352
2012
Helmstaedt, H., Pehrsson, S.J.Geology and tectonic evolution of the Slave Province, Canada: a post lithoprobe perspective.Tectonics, Geological Survey of Canada, Special Paper, 49, pp. 381-468.Canada, Northwest TerritoriesTectonics - lithoprobe
DS201412-0356
2014
Hilchie, L., Fedortchouk, Y., Matveev, S., Kopylova, M.G.The origin of high hydrogen content in kimberlitic olivine: evidence from hydroxyl zonation in olivine from kimberlites and mantle xenoliths.Lithos, Vol. 202-203, pp. 429-441.Canada, Nunavut, Northwest Territories, Africa, LesothoDeposit - Jericho, Beartooth, Pipe 200, Matsoku
DS201412-0361
2014
Hiyate, A.Dominion Diamond banks on Ekati. Diamond pureplay…Diamonds in Canada Magazine, Northern Miner, May pp. 8-11, 22.Canada, Northwest TerritoriesDeposit - Ekati
DS201412-0363
2014
Hiyate, A.Canada's mini staking rush…. Kennady Diamonds, Proxima, Canterra, Margaret Lake, North Arrow, Prima, Denendah, Arctic Star, Alto, Strike, Gem Oil, Diamonds in Canada Magazine, Northern Miner, November pp. 14-17, 22CanadaCompanies - brief overview
DS201412-0365
2014
Hoffman, P.The origin of Laurentia:Rae Craton as the backstop for Proto-Laurentian amalgamation by slab suction.Geoscience Canada, Vol. 41, 3, pp. 313-320.CanadaSubduction
DS201412-0424
2013
Januszczak, N., Seller, M.H., Kurzlaukis, S., Murphy, C., Delgaty, J., Tappe, S., Ali, K., Zhu, J., Ellemers, P.A multidisciplinary approach to the Attwapiskat kimberlite field, Canada: accelerating the discovery-to-production pipeline.Proceedings of the 10th. International Kimberlite Conference, Vol. 2, pp. 157-172.Canada, Ontario, AttawapiskatDeposit - Victor area
DS201412-0434
2014
Jones, A.G., Ledo, J., Ferguson, I.J., Craven, J.A., Unswrth, M.J., Chouteau, M., Spratt, J.E., Enkin, R.The electrical resistivity of Canada's lithosphere and correlation with other parameters: contributions from lithoprobe and other programmes.Canadian Journal of Earth Sciences, Vol. 51, 6, pp. 573-617.CanadaGeophysics
DS201412-0448
2014
Keevil, M.Dominion unearths plenty of upside at Ekati. JayDiamonds in Canada Magazine, Northern Miner, November pp. 19-21.Canada, Northwest TerritoriesDeposit - Ekati, Jay
DS201412-0450
2014
Kemp, A.I.S.Early Earth: a new recipe for old crust.Nature Geoscience, Vol. 7, pp. 482-483.CanadaMagmatism, upwelling mantle rocks
DS201412-0461
2014
Kirby, J., Swain, C.J.The long wave length admittance and effective elastic thickness of the Canadian Shield.Journal of Geophysical Research, Vol. 119, no. 6, pp. 5187-5214.CanadaGeophysics - seismics
DS201412-0463
2014
Kitayama, Y.C., Francis, D.Iron rich alkaline magmatism in the Archean Wawa greenstone belts ( Ontario, Canada).Precambrian Research, Vol. 252, pp. 53-70.Canada, OntarioNot specific to diamonds
DS201412-0464
2014
Klocking, M., White, N., Maclennan, J.A magmatic probe of lithospheric thickness variations beneath western North America.Volcanic and Magmatic Studies Group meeting, Poster Held Jan. 6-8. See minsoc websiteUnited States, CanadaMagmatism
DS201412-0479
2014
Krebs, M.Y., Pearson, D.G., Stachel, T., Stern, R.A., Nowicki, T., Cairns, S.Variability in diamond population characteristics across the size range 0.2-3.4 MM - a case study based on diamonds from Misery ( Ekati mine).Geological Society of America Conference Vancouver Oct. 19-22, 1p. AbstractCanada, Northwest TerritoriesDiavik mine - Misery
DS201412-0480
2014
Kressall, R.D., Fedortchouk, Y., McCammon, C., Elliott, B.Fe-Ti oxides in kimberlites: implications for kimberlites from the Ekati diamond mine, Northwest Territories.2014 Yellowknife Geoscience Forum Poster, p. 87, abstractCanada, Northwest TerritoriesDeposit - Ekati
DS201412-0489
2013
Kupsch, B., Armstrong, J.P.Exploration and geology of the Qilalugaq kimberlites, Rae Isthmus, Nunavut, Canada.Proceedings of the 10th. International Kimberlite Conference, Vol. 2, pp. 67-78.Canada, NunavutDeposit - Qilalugaq
DS201412-0492
2014
Kusky, T.M., Li, X., Wang, Z., Fu, J., Ze, L., Zhu, P.Are Wilson cycles preserved in Archean cratons? A comparison of the North Chin and Slave cratons.Canadian Journal of Earth Sciences, Vol. 51, 3, pp. 297-311.China, Canada, Northwest TerritoriesWilson cycle
DS201412-0506
2013
Leroux, D.C.Geology, mineral chemistry and diamond potential of the "K" property, Knicely Township Northwestern Ontario - prospectivity for diamonds in an Archean geological environment.Thesis: Msc. Lakehead University, 102p. Available as pdf from authorCanada, OntarioThesis
DS201412-0585
2014
Miller, C.E., Kopylova, M., Smith, E.Mineral inclusions in fibrous diamonds: constraints on cratonic mantle refertilization and diamond formation.Mineralogy and Petrology, Vol. 108, 3, pp. 317-331.Canada, Ontario, Northwest TerritoriesWawa and Diavik
DS201412-0588
2014
Mining, environmentWind innovation - The Diavik diamond mine is the site of the world's large scale wind diesel hybrid power facility.mpe-magazine.com, 2 page photograph onlyCanada, Northwest TerritoriesDeposit - Diavik
DS201412-0589
2014
Mitchell, R.H.Primary and secondary niobium mineral deposits associated with carbonatites.Ore Geology Reviews, Vol. 64, pp. 626-641.South America, Brazil, CanadaReview - Carbonatites
DS201412-0603
2013
Muntener, C., Scott Smith, B.H.Economic geology of Renard 3, Quebec, Canada: a Diamondiferous multi-phase pipe infilled with hypabyssal and tuffisitic kimberlite.Proceedings of the 10th. International Kimberlite Conference, Vol. 2, pp. 241-256.Canada, QuebecDeposit - Renard 3
DS201412-0610
2014
Nadeau, O., Stevenson, R., Jebrak, M.The geology, petrology and geochemistry of the Montviel alkaline-carbonatite hosted lanthanide-Nb ore deposit, Abitibi, Canada.GAC-MAC Annual Meeting May, abstract 1p.Canada, QuebecCarbonatite
DS201412-0611
2014
Naeth, A.M., Wilkinson, S.R.Establishment of restoration trajectories for Up land Tundra Communities on diamond mine wastes in the Canadian Arctic.Restoration Ecology, Vol. 22, 4, pp. 534-543.Canada, Northwest TerritoriesDeposit - Ekati
DS201412-0619
2014
Nelson, L., Bezzola, M., Hrkac, C., Vivian, G.Kennady North property: 2014 field season update.2014 Yellowknife Geoscience Forum, p. 50, abstractCanada, Northwest TerritoriesDeposit - Kennady North
DS201412-0622
2014
Newton, D., Kopylova, M.G.Lithological column of the mantle below the Muskox kimberlite , N Slave Province.Geological Society of America Conference Vancouver Oct. 19-22, 1p. AbstractCanada, Northwest TerritoriesMuskox xenoliths
DS201412-0626
2014
Nichols, K.M.A.Diamond sources beneath the Hall Peninsula, Baffin Island, Nunavut: a preliminary assessment based on Chidliak diamonds.University of Alberta, Msc. Thesis 184p. Available courtesy of StachelCanada, Nunavut, Baffin IslandDeposit - Chidliak
DS201412-0636
2014
Normandeau, P.X., Mcmartin, L., Jackson, V.A., Corriveau, L., Paquette, J.Kimberlite indicator minerals and gold grains in till from the Great Bear magmatic zone and Wopmay metamorphic zone, Northwest Territories, Canada.2014 Yellowknife Geoscience Forum Poster, p. 97, abstractCanada, Northwest TerritoriesKIMs in till
DS201412-0654
2002
Paganelli, F., Richards, J.P., Grunsky, E.C.Integration of structural, gravity and magnetic dat a using the weights of evidence method as a tool for kimberlite exploration in the Buffalo Head Hills, northern central Alberta CanadaNatural Resources Research, Vol. 11, 3, pp. 219-Canada, AlbertaGeophysics
DS201412-0670
2013
Pell, J., Grutter, H., Neilson, S., Lockhart, G., Dempsey, S., Grenon, H.Exploration and discovery of the Chidliak kimberlite province, Baffin Island, Nunavut: Canada's newest diamond district.Proceedings of the 10th. International Kimberlite Conference, Vol. 2, pp. 209-228.Canada, Nunavut, Baffin IslandDeposit - Chidliak area
DS201412-0684
2015
Petrus, J.A., Ames, D.E., Kamber, B.S.On the track of the elusive Sudbury impact: geochemical evidence for a chondrite or comet bolide.Terra Nova, Vol. 27, pp. 9-20.Canada, OntarioMeteorite
DS201412-0686
2013
Petts, D.C., Davis, W.J., Moser, D.E., Longstaffe, F.J.Age and evolution of the lower crust beneath the western Churchill Province: U-Pb zircon geochronology of kimberlite hosted granulite xenoliths, Nunavut.Precambrian Research, Vol. 241, pp. 129-145.Canada, NunavutGeochronology
DS201412-0687
2014
Petts, D.C., Moser, D.E., Longstaffe, F.J., Davis, W.J., Stern, R.A.1.8 billion years of fluid-crust interaction: a zircon oxygen isotope record for the lower crust, western Churchill Province, Canadian Shield.Lithos, Vol. 192-195, pp. 259-270.CanadaArchean - craton
DS201412-0695
2014
Poikhilenko, N.P., Afanasiev, V.P., Agashev, A.M., Malkovets, V.G., Poikhilenko, L.N.New archean terranes with thick lithosphere of arctic regions of Siberia and North American ancient platforms: are they prospective for Diamondiferous kimberlites?30th. International Conference on Ore Potential of alkaline, kimberlite and carbonatite magmatism. Sept. 29-, Russia, CanadaKimberlite
DS201412-0699
2014
Pokhilenko, N.Kimberlite indicator minerals in terrigine sediments of Arctic regions of Siberian and North American ancient platforms: evidence of new cratons with thick lithosphere.ima2014.co.za, PosterRussia, CanadaGeochemistry
DS201412-0704
2013
Porrit, L-A., Russell, J.K., McLean, H., Fomradas, G., Eichenberg, D.A phreatomagmatic kimberlite: the 418A kimberlite pipe, Northwest Territories, Canada.Proceedings of the 10th. International Kimberlite Conference, Vol. 2, pp. 97-108.Canada, Northwest TerritoriesDeposit - 418A
DS201412-0734
2014
Remshardt, W.J., Shurgot, C., Coolen, R., Clipperton, K., Chisholm, V.Kennady Lake Lue T'E Halye ( Fish-out).2014 Yellowknife Geoscience Forum, p. 66, abstractCanada, Northwest TerritoriesFish removal - permit
DS201412-0739
2013
Rippe, D., Unsworth, M.J., Currie, C.A.Magnetotelluric constraints on the fluid content in the upper mantle beneath the southern Canadian Cordillera: implications for rheology.Journal of Geophysical Research, Vol. 118, 10, pp. 5601-5624.Canada, British ColumbiaGeophysics - tellurics
DS201412-0774
2014
Saywell, T.Gahcho Kue takes shape.. Diamonds in Canada Magazine, Northern Miner, May pp. 12-14.Canada, Northwest TerritoriesDeposit - Gahcho Kue
DS201412-0775
2014
Scales, M.Stornoway tames Renard. Quebec's first diamond mine prepares for 2016 start.Canadian Mining Journal, October pp. 22-27.Canada, QuebecDeposit - Renard
DS201412-0777
2014
Schiller, E.NWT diamond developments. ( originally appeared in Resource World in Dec 2013)Idex Magazine, No. 286, Feb. pp. 118-121.Canada, Northwest TerritoriesHistory and brief overview
DS201412-0832
2014
Simandl, G.J., Paradis, S., Stone, R.S., Fajber, R., Kressall, R.D., Grattan, K., Crozier, J., Simandl, L.J.Applicablity of handheld X-ray fluroescence spectrometry in the exploration and development of carbonatite related niobium deposits: a case study of the Aley carbonatite, British Columbia, Canada.Geochemistry: Exploration, Environment, Analysis, Vol. 14, 3, pp. 211-221.Canada, British ColumbiaCarbonatite
DS201412-0841
2014
Smart, K.A., Chacko, T., Simonetti, A., Sharp, Z.D., Heaman, L.M.A record of Paleoproterozoic subduction preserved in the northern Slave cratonic mantle: Sr-Pb-O isotope and trace element investigations of eclogite xenoliths from the Jericho and Muskox kimberlites.Journal of Petrology, Vol. 55, 3, pp. 549-583.Canada, NunavutDeposit - Jericho, Muskox
DS201412-0842
2014
Smit, K.Diamond formation at Attawapiskat ( Superior Craton ) Post dating the 1.1 Ga Midcontinent Rift.ima2014.co.za, AbstractCanada, OntarioGeochronology
DS201412-0844
2014
Smit, K.V., Pearson, D.G., Stachel, T., Seller, M.Peridotites from Attawapiskat, Canada: Mesoproterozoic reworking of Paleoarchean lithospheric mantle beneath the northern Superior Superterrane.Journal of Petrology, Vol. 55, 9, pp. 1829-1863.Canada, Ontario, AttawapiskatDeposit - Victor arena
DS201412-0845
2014
Smit, K.V., Stachel, T., Creaser, R.A., Ickert, R.B., DuFrane, S.A., Stern, R.A., Seller, M.Origin of eclogite and pyroxenite xenoliths from the Victor kimberlite, Canada, and implications for Superior craton formation.Geochimica et Cosmochimica Acta, Vol. 125, pp. 308-337.Canada, Ontario, AttawapiskatDeposit - Victor
DS201412-0846
2014
Smit, K.V., Stachel, T., Stern, R.A.Diamonds in the Attawapiskat area of the Superior craton ( Canada): evidence for a major diamond forming event younger than 1.1 Ga.Contributions to Mineralogy and Petrology, in press availableCanada, Ontario, AttawapiskatNitrogen aggregation
DS201412-0849
2014
Smith, E.Fluid inclusions in fibrous and octahedrally-grown diamonds.Thesis, University of British Columbia, 195p. Available from smithevanm @gmail.comCanada, Ontario, WawaDiamond formation
DS201412-0851
2014
Smith, E.M., Kopylova, M.G., Frezzotti, M.L., Afansiev, V.P.N-rich fluid inclusions in octahedrally-grown diamond.Earth and Planetary Science Letters, Vol. 393, pp. 39-48.Canada, Ontario, WawaDiamond inclusions
DS201412-0857
2014
Snyder, D.B.Lithospheric structure and diamond potential of northern Canada.2014 Yellowknife Geoscience Forum, p. 71, abstractCanada, Northwest TerritoriesGeophysics - seismic
DS201412-0858
2014
Snyder, D.B., Hillier, M.J., Kjarsgaard, B.A., de Kemp, E.A., Craven, J.A.Lithospheric architecture of the Slave Craton, northwest Canada, as determined from an inter disciplinary 3-D model.Geochemistry, Geophysics, Geosystems: G3, Vol. 15, DOI: 10:1002/2013 GC005168Canada, Northwest TerritoriesTectonics
DS201412-0860
2013
Snyder, D.B., Kjarsgaard, B.A.Mantle roots of major Precambrian shear zones inferred from structure of the Great Slave Lake shear zone.Lithosphere, Vol. 5, no. 6, pp. 539-546.Canada, Northwest TerritoriesGeophysics - seismics
DS201412-0878
2013
Spratt, J.E., Skulski, T., Craven, J.A., Jones, A.G., Snyder, D.B., Kiyan, D.Magnetotelluric investigations of the lithosphere beneath the central Rae craton, maIn land Nunavut, Canada.Journal of Geophysical Research, Vol. 119, pp. 2415-2439.Canada, NunavutGeophysics - magnetotellurics
DS201412-0888
2014
Stubley, M.P.The rise and stall of kimberlite magma.2014 Yellowknife Geoscience Forum, p. 74, abstractCanada, Northwest TerritoriesKimberlite morphology
DS201412-0917
2014
Tappe, S., Kjarsgaard, B.A., Kurszlaukis, S., Nowell, G.M., Phillips, D.Petrology and Nd-Hf isotope geochemistry of the Neoproterozoic Amon kimberlite sills, Baffin Island ( Canada): evidence of deep mantle magmatic activity linked to Supercontinent cycles.Journal of Petrology, Vol. 55, 10, pp. 2003-2042.Canada, Nunavut, Baffin IslandDeposit - Amon sills
DS201412-0918
2014
Tappert, M.C., Rivard, B., Layton-Matthews, D., Tappert, R.High-spatial resolution hyper spectral imagery: a new analytical technique for obtaining compositional information from kimberlites ( Snap Lake, NT) and kimberlite indicator minerals.2014 Yellowknife Geoscience Forum, p. 75, abstractCanada, Northwest TerritoriesDeposit - Snap Lake
DS201412-0920
2014
Tarikh, S.Stornoway CEO Matt Manson's path to Renard. Quebec's first diamond mine slated to open in 2017.Diamonds in Canada Magazine, Northern Miner, November pp. 8-11.Canada, QuebecHistory of Renard
DS201412-0926
2014
Tesauro, M., Kaban, M.K., Mooney, W.D., Cloetingh, S.NACr14: a 3D model for the crustal structure of the North American continent.Tectonophysics, Vol. 631, pp. 65-86.Canada, United StatesGeophysics - seismics
DS201412-0931
2014
Thomson, I.More than a girl's best friend…. Ian Thomson highlights how diamond mining has brought positive changes within Africa and Canada.International Resource Journal, Jan. pp. 76-81.Canada, AfricaCorporate social responsibility - economics
DS201412-0935
2014
Turner, R.Unearthing secrets of the southern Slave. Canterra exploration project2014 Yellowknife Geoscience Forum, p. 76, abstractCanada, Northwest TerritoriesCanterra exploration
DS201412-0946
2014
Vasyukova, O., Williams-Jones, A.E.Fluoride-silicate melt immiscibility and its role in REE ore formation: evidence from the Strange Lake rare metal deposit, Quebec-Labrador, Canada.Geochimica et Cosmochimica Acta, Vol. 139, pp. 110-130.Canada, QuebecDeposit - Strange Lake
DS201412-0970
2014
Weiss, Y.Subduction related diamond forming fluids: evidence from Micro inclusion bearing diamonds from Ekati, central Slave Craton.ima2014.co.za, AbstractCanada, Northwest TerritoriesDeposit - Ekati
DS201412-0988
2013
Wood, B.D., Scott Smith, B.H., Rameseder, B.The Victor diamond mine, northern Ontario, Canada: successful mining of a reliable resource.Proceedings of the 10th. International Kimberlite Conference, Vol. 2, pp. 19-34.Canada, Ontario, AttawapiskatDeposit - Victor
DS201412-1025
2014
Zhang, S., Pell, J.Conodonts recovered from the carbonate xenoliths in the kimberlites confirm the Paleozoic cover on the Hall Peninsula.Canadian Journal of Earth Sciences, Vol. 51, pp. 142-155.Canada, Nunavut, Baffin IslandDeposit - Chidliak
DS201412-1030
2014
Zhu, Y., Cuma, M., Kinakin, Y., Zhdanov, M.S.Joint inversion airborne gravity gradiometry and magnetic dat a from the Lac de Gras region of the Northwest Territories of Canada.SEG Annual Meeting Denver, pp. 1709-1713.Canada, Northwest TerritoriesGeophysics - Lac de Gras
DS201412-1031
2014
Zimmer, C.The oldest rocks on Earth. Nuvvuagittuq greenstone belt.Scientific American, Vol. 310, 3, March pp.Canada, NunavutDiscussion - true or false
DS201412-1033
2014
Zimnisky, P.Canadian production on the rise.Diamonds in Canada Magazine, Northern Miner, November pp. 12-13.CanadaDiamond production brief overview
DS201412-1036
2014
Zurevinski, S.E., Mitchell, R.H.Mineralogy and petrology of orbicular ijolite from the Prairie Lake carbonatite complex, Marathon, Ontario.GAC-MAC Annual Meeting May, abstract 1p.Canada, OntarioCarbonatite
DS201501-0003
2015
Ault, A.K., Flowers, R.M., Bowlring, S.A.Synchroneity of cratonic burial phases and gaps in kimberlite record: episodic magmatism or preservational bias?Earth and Planetary Science Letters, Vol. 410, pp. 97-104.Global, CanadaThermochronology - Slave craton

Abstract: A variety of models are used to explain an apparent episodicity in kimberlite emplacement. Implicit in these models is the assumption that the preserved kimberlite record is largely complete. However, some cratons now mostly devoid of Phanerozoic cover underwent substantial Phanerozoic burial and erosion episodes that should be considered when evaluating models for global kimberlite distributions. Here we show a broad temporal coincidence between regional burial phases inferred from thermochronology and gaps in the kimberlite record in the Slave craton, Superior craton, and cratonic western Australia. A similar pattern exists in the Kaapvaal craton, although its magmatic, deposition, and erosion history differs in key ways from the other localities. One explanation for these observations is that there is a common cause of cratonic subsidence and suppression of kimberlite magmatism. Another possibility is that some apparent gaps in kimberlite magmatism are preservational artifacts. Even if kimberlites occurred during cratonic burial phases, the largest uppermost portions of the pipes would have been subsequently eroded along with the sedimentary rocks into which they were emplaced. In this model, kimberlite magmatism was more continuous than the preserved record suggests, implying that evidence for episodicity in kimberlite genesis should be carefully evaluated in light of potential preservational bias effects. Either way, the correlation between burial and kimberlite gaps suggests that cratonic surface histories are important for understanding global kimberlite patterns.
DS201501-0006
2014
Devriese, S.G.R., Corcoran, N., Cowan, D., Davis, K., Bild-Enkin, D., Fournier, D., Heagy, L., Kang, S., Marchant, D., McMillan, M.S., Mitchell, M., Rosenkjar, G., Yang, D., Oldenburg, D.W.Magnetic inversion of three airborne dat a sets over the Tli Kwi Cho kimberlite complex.SEG Annual Meeting Denver, 5p. Extended abstractCanada, Northwest TerritoriesDeposit - Tli Kwi Cho, geophysics

Abstract: The magnetic and electromagnetic responses from airborne systems at Tli Kwi Cho, a kimberlite complex in the Northwest Territories, Canada, have received considerable attention over the last two decades but a complete understanding of the causative physical properties is not yet at hand. Our analysis is distributed among three papers. In the first, we find a 3D magnetic susceptibility model for the area; in the second, we find a 3D conductivity model; and in the third paper, we find a 3D chargeability model. Our goal is to explain all the geophysical results within a geologic framework. In this first paper, we invert three independent airborne magnetic data sets flown over the Tli Kwi Cho kimberlite complex located in the Lac de Gras kimberlite field in Northwest Territories, Canada. The complex consists of two kimberlites known as DO-27 and DO-18. An initial airborne DIGHEM survey was flown in 1992 and AeroTEM and VTEM data subsequently acquired in 2003 and 2004, respectively. In this paper, we invert each magnetic data set in three dimensions. Both kimberlites are recovered in each model, with DO-27 as a more susceptible body than DO-18. Our goal is to simultaneously invert the three data sets to generate a single susceptibility model for Tli Kwi Cho. This project is part of a larger, on-going investigation by UBC-GIF on inverting magnetic, electromagnetic, and induced polarization data from the Tli Kwi Cho area.
DS201501-0009
2014
Fournier, D., Heagy, L., Corcoran, N., Cowan, D., Devriese, S.G.R., Bild-Enkin, D., Davis, K., Kang, S., Marchant, D., McMillan, M.S., Mitchell, M., Rosenkjar, G., Yang, D., Oldenburg, D.W.Multi-EM systems inversion - towards a common conductivity model for Tli Kwi Cho complex.SEG Annual Meeting Denver, 5p. Extended abstractCanada, Northwest TerritoriesDeposit - Tli Kwi Cho, geophysics

Abstract: The magnetic and electromagnetic responses from airborne systems at Tli Kwi Cho, a kimberlite complex in the Northwest Territories, Canada, have received considerable attention over the last two decades but a complete understanding of the causative physical properties is not yet at hand. Our analysis is distributed among three posters. In the first we find a 3D magnetic susceptibility model for the area; in the second we find a 3D conductivity model; and in the third we find a 3D chargeability model that can explain the negative transient responses measured over the kimberlite pipes. In this second paper we focus upon the task of finding a conductivity model that is compatible with three airborne data sets flown between 1992 and 2004: one frequency-domain data set (DIGHEM) and two time-domain systems (AeroTEM and VTEM). The goal is to obtain a 3D model from which geologic questions can be answered, but even more importantly, to provide a background conductivity needed to complete the 3D IP inversion of airborne EM data. We begin by modifying our pre-existing 1D frequency and time domain inversion codes to produce models that have more lateral continuity. The results are useful in their own right but we have also found that 1D analysis is often very effective in bringing to light erroneous data, assisting in estimating noise floors, and providing some starting information for developing a background model for the 3D EM inversion. Here we show some results from our Laterally Constrained Inversion (LCI) framework. The recovered conductivity models seem to agree on the general location of the kimberlite pipes but disagree on the geometry and conductivity values at depth. The complete 3D inversions in time and frequency, needed to resolved these issues, are currently in progress.
DS201501-0010
2003
FulgroHeliFALCONtm gravity gradiometer Gahcho Kue kimberlite pipes. ( Kennady Lake JV)fugro.com, 2p.Canada, Northwest TerritoriesDeposit - Gahcho Kue geophysics
DS201501-0011
2015
Fusciardi, L.De Beers Canada - technology and innovation across the diamond value chain.PDAC 2015, 1/4p. AbstractCanadaDe Beers
DS201501-0014
2015
Hetman, C.Canadian diamonds: past, present and future.PDAC 2015, 1p. AbstractCanadaHistory
DS201501-0018
2015
Manson, M.Jacques Cartier's legacy: the Renard diamond project under construction.PDAC 2015, 1p. AbstractCanada, QuebecDeposit - Renard
DS201501-0020
2014
Mildragovic, D., Francis, D., Weis, D., Constantin, M.Neoarchean ( c.2.7Ga) plutons of the Ungava craton, Quebec, Canada: parental magma compositions and implications for Fe-rich mantle source regions.Journal of Petrology, Vol. 55, 12, pp. 2481-2512.Canada, QuebecMelting
DS201501-0021
2014
Montsion, J.M.Disrupting Canadian sovereignty? The First Nations & Chin a strategy revisited.Geoforum, Vol. 58, pp. 114-121.CanadaLegal - CSR
DS201501-0025
2015
Pell, J.Building the diamond resource at Chidliak, Baffin Island, Nunavut.PDAC 2015, 1p. AbstractCanada, Nunavut, Baffin IslandDeposit - Chidliak
DS201501-0024
2015
Pell, J., Russell, J.K., Zhang, S.Kimberlite emplacement temperatures from conodont geothermometry.Earth and Planetary Science Letters, Vol. 411, pp. 131-141.Canada, Nunavut, Baffin IslandDeposit - Chidliak
DS201501-0026
2015
Pittari, A., Cas, R.A.F., Lefebvre, N., Kurszlaukis, S.Alteration styles in the Orion Central Volcanic Complex, Fort a la Corne kimberlite field, Saskatchewan, and their effects on primary volcaniclastic textures: implications for facies mapping and diamond exploration.Economic Geology, Vol. 110, pp. 146-171.Canada, SaskatchewanDeposit - Orion Central Volcanics
DS201501-0027
2015
Read, G.Star-Orion South diamond project: optimizing a feasibility study.PDAC 2015, 1p. AbstractCanada, SaskatchewanDeposit - Star-Orion South
DS201501-0029
2014
Saskatchewan Mining AssociationWhere do diamonds come from and how can we find them? Overview of companies working in Saskatchewan ( Shore Gold, North Arrow, Stornoway)Saskatchewan Mining Association, Fall,Winter p. 5,6.Canada, SaskatchewanBrief overview
DS201501-0035
2014
Zhu, Y., Cuma, M., Kinakin, Y., Zhdanov, M.S.Joint inversion of airborne gravity gradiometry and magnetic dat a from the Lac de Gras region of the Northwest Territories.SEG Annual Meeting Denver, 5p. Extended abstractCanada, Northwest TerritoriesDeposit - Lac de Gras region
DS201502-0075
2014
Lollar, S.Ancient, hydrogen rich waters discovered deep underground at locations around the world.Nature, Vol. 516, pp. 379-382.Canada, Africa, South Africa, Europe, ScandinaviaChemistry - water
DS201502-0084
2015
Nadeau, O., Cayer, A., Pelletier, M., Stevenson, R., Jebrak, M.The Paleoproterozoic Montviel carbonatite hosted REE-Nb deposit, Abitibi, Canada: Geology, Mineralogy, Geochemistry and Genesis.Ore Geology Reviews, Vol. 67, pp. 314-335.Canada, QuebecCarbonatite
DS201502-0090
2015
Petrus, J.A., Ames, D.E., Kamber, B.S.On the track of the elusive Sudbury impact: geochemical evidence for a chondrite or comet bolide.Terra Nova, Vol. 27, 1, pp. 9-20.Canada, OntarioMeteorite
DS201503-0136
2015
Bastow, I.D., Eaton, D.W., Kendall, J-M., Helffrich, G., Snyder, D.B., Thompson, D.A., Wookey, J., Darbyshire, F.A., Pawlak, A.E.The Hudson Bay lithospheric experiment ( HuBLE): insights into Precambrian plate tectonics and the development of mantle keels.Geological Society of London Special Publication: Continent formation through time., No. 389, pp. 41-67.Canada, Ontario, QuebecGeotectonics

Abstract: Hudson Bay Lithospheric Experiment (HuBLE) was designed to understand the processes that formed Laurentia and the Hudson Bay basin within it. Receiver function analysis shows that Archaean terranes display structurally simple, uniform thickness, felsic crust. Beneath the Palaeoproterozoic Trans-Hudson Orogen (THO), thicker, more complex crust is interpreted as evidence for a secular evolution in crustal formation from non-plate-tectonic in the Palaeoarchaean to fully developed plate tectonics by the Palaeoproterozoic. Corroborating this hypothesis, anisotropy studies reveal 1.8 Ga plate-scale THO-age fabrics. Seismic tomography shows that the Proterozoic mantle has lower wavespeeds than surrounding Archaean blocks; the Laurentian keel thus formed partly in post-Archaean times. A mantle transition zone study indicates ‘normal’ temperatures beneath the Laurentian keel, so any cold mantle down-welling associated with the regional free-air gravity anomaly is probably confined to the upper mantle. Focal mechanisms from earthquakes indicate that present-day crustal stresses are influenced by glacial rebound and pre-existing faults. Ambient-noise tomography reveals a low-velocity anomaly, coincident with a previously inferred zone of crustal stretching, eliminating eclogitization of lower crustal rocks as a basin formation mechanism. Hudson Bay is an ephemeral feature, caused principally by incomplete glacial rebound. Plate stretching is the primary mechanism responsible for the formation of the basin itself.
DS201503-0151
2015
Jakubec, J., Johnson, M.The Jericho diamond mine - what happened?Vancouver Kimberlite Cluster, Feb. 20, 1p. AbstractCanada, NunavutDeposit - Jericho
DS201503-0169
2015
Poirier, G.Renard: Quebec's first diamond mine.PDAC 2015, Abstract, 1p.Canada, QuebecDeposit - Renard
DS201504-0187
2015
Bussweiler, Y., Foley, S.F., Prelevic, D., Jacob, D.E.The olivine macrocryst problem: new insights from minor and trace element compositions of olivine from Lac de Gras kimberlites, Canada.Lithos, Vol. 220-223, pp. 238-252.Canada, Northwest TerritoriesDeposit - Ekati field

Abstract: This study presents detailed petrographical and geochemical investigations on remarkably fresh olivines in kimberlites from the EKATI Diamond Mine- located in the Tertiary/Cretaceous Lac de Gras kimberlite field within the Slave craton of Canada. Olivine, constituting about 42 vol.% of the analyzed samples, can be divided into two textural groups: (i) macrocrystic olivines, > 100 ?m sub-rounded crystals and (ii) groundmass olivines, < 100 ?m subhedral crystals. Olivines from both populations define two distinct chemical trends; a “ "mantle trend" with angular cores, showing low Ca (< 0.1 wt.% CaO) and high Ni (0.3-0.4 wt.% NiO) at varying Mg# (0.86-0.93), contrasts with a "melt trend" typified by thin (< 100 ?m) rims with increasing Ca (up to 1.0 wt.% CaO) and decreasing Ni (down to 0.1 wt.% NiO) contents at constant Mg# (~ 0.915). These findings are in agreement with recent studies suggesting that virtually all olivine is composed of xenocrystic (i.e. mantle-related) cores with phenocrystic (i.e. melt-related) overgrowths, thereby challenging the traditional view that the origin of kimberlitic olivine can be distinguished based on size and morphology. The two main trends can be further resolved into sub-groups refining the crystallization history of olivine; the mantle trend indicates a multi-source origin that samples the layered lithosphere below the Slave craton, whereas the melt trend represents multi-stage crystallization comprising a differentiation trend starting at mantle conditions and a second trend controlled by the crystallization of additional phases (e.g. chromite) and changing magma conditions (e.g. oxidation). These trends are also seen in the concentrations of trace elements not routinely measured in olivine (e.g. Na, P, Ti, Co, Sc, Zr). Trace element mapping with LA-ICP-MS reveals the distribution of these elements within olivine grains. The trace element distribution between the two trends appears to be consistent with phenocrystic olivine overgrowths mainly originating from dissolved orthopyroxene, showing enrichment in Zr, Ga, Nb, Sc, V, P, Al, Ti, Cr, Ca and Mn in the melt trend. In a sample of magmatic kimberlite from the Leslie pipe, the amount of xenocrystic and phenocrystic olivine is estimated to be around 23 vol.% and 19 vol.%, respectively. Subtraction of this xenocrystic olivine from the Leslie bulk composition, aimed at estimating the parental kimberlite melt, results in a minor decrease of Mg# (by about 0.01) and SiO2 content (by about 3 wt.%), whereas CaO increases (by about 3 wt.%).
DS201504-0195
2015
Ewing, I.Ice, ice baby A frigid winter paves the way for Gahcho Kue.Canadian Institute of Mining and Metallurgy, March-April 2p.Canada, Northwest TerritoriesDeposit - Gahcho Kue
DS201504-0201
2015
Heaman, L.M., Pell, J., Grutter, H.S., Creaser, R.A.U-Pb geochronology and Sr/Nd isotope compositions of groundmass perovskite from the newly discovered Jurassic Chidliak kimberlite field, Baffin Island, Canada.Earth and Planetary Science Letters, Vol. 415, April pp. 183-189.Canada, Nunavut, Baffin IslandDeposit - Chidliak
DS201504-0215
2015
Sarkar, C., Heaman, L.M., Pearson, D.G.Duration and periodicity of kimberlite volcanic activity in the Lac de Gras kimberlite field, Canada and some recommendations for kimberlite geochronology.Lithos, Vol. 218-219, pp. 155-166.Canada, Northwest TerritoriesDeposit - Eddie
DS201505-0240
2015
Kalnins, L.M., Simons, F.J., Kirby, J.F., Wang, D.V., Olhede, S.C.On the robustness of estimates of mechanical anisotropy in the continental lithosphere: a North American case study and global reanalysis.Earth and Planetary Science Letters, Vol. 419, pp. 43-51.United States, CanadaTectonics
DS201506-0263
2015
DeStefano, A., Shiroki, A., Zhuk, V., Gaudet, M.Detailed studies of Renard 2 kimberlite - some practical aspects.Vancouver Kimberlite Cluster, May 27, 1/4p. AbstractCanada, QuebecDeposit - Renard
DS201506-0281
2015
Kent, D.V., Kjarsgaard, B.A., Gee, J.S., Muttoni, G., Heaman, L.M.Tracking the Late Jurassic apparent ( or true) polar shift in U-Pb-dated kimberlites from cratonic North America ( Superior Province of Canada).Geochemistry, Geophysics, Geosystems: G3, Vol. 16, 4, pp. 983-994.Canada, Ontario, TimiskamingDeposit - Peddie
DS201506-0301
2015
Zedgenizov, D.A., Pokhilenko, N.P., Griffin, W.L.Carbonate- silicate composition of diamond forming media of fibrous diamonds from Snap Lake area, Canada.Doklady Earth Sciences, Vol. 461, 1, pp. 297-300.Canada, Northwest TerritoriesMicro-inclusions
DS201507-0303
2015
Bailey, B.L., Blowes, D.W., Smith, L., Sego, D.C.The Diavik waste rock project: geochemical and microbiological characterization of drainage from low sulfide waste rock: active zone field experiments.Applied Geochemistry, Vol. 36, pp. 187-199.Canada, Northwest TerritoriesDeposit - Diavik
DS201507-0305
2015
Brett, R.C.The ascent of kimberlite: insights from olivine.Earth and Planetary Science Letters, Vol. 424, pp. 119-131.Canada, Northwest Territories, Africa, TanzaniaDeposit - Diavik, Igwisi Hills

Abstract: Olivine xenocrysts are ubiquitous in kimberlite deposits worldwide and derive from the disaggregation of mantle-derived peridotitic xenoliths. Here, we provide descriptions of textural features in xenocrystic olivine from kimberlite deposits at the Diavik Diamond Mine, Canada and at Igwisi Hills volcano, Tanzania. We establish a relative sequence of textural events recorded by olivine during magma ascent through the cratonic mantle lithosphere, including: xenolith disaggregation, decompression fracturing expressed as mineral- and fluid-inclusion-rich sealed and healed cracks, grain size and shape modification by chemical dissolution and abrasion, late-stage crystallization of overgrowths on olivine xenocrysts, and lastly, mechanical milling and rounding of the olivine cargo prior to emplacement. Ascent through the lithosphere operates as a "kimberlite factory" wherein progressive upward dyke propagation of the initial carbonatitic melt fractures the overlying mantle to entrain and disaggregate mantle xenoliths. Preferential assimilation of orthopyroxene (Opx) xenocrysts by the silica-undersaturated carbonatitic melt leads to deep-seated exsolution of CO2-rich fluid generating buoyancy and supporting rapid ascent. Concomitant dissolution of olivine produces irregular-shaped relict grains preserved as cores to most kimberlitic olivine. Multiple generations of decompression cracks in olivine provide evidence for a progression in ambient fluid compositions (e.g., from carbonatitic to silicic) during ascent. Numerical modelling predicts tensile failure of xenoliths (disaggregation) and olivine (cracks) over ascent distances of 2-7 km and 15-25 km, respectively, at velocities of 0.1 to >4 m?s?1. Efficient assimilation of Opx during ascent results in a silica-enriched, olivine-saturated kimberlitic melt (i.e. SiO2 >20 wt.%) that crystallizes overgrowths on partially digested and abraded olivine xenocrysts. Olivine saturation is constrained to occur at pressures <1 GPa; an absence of decompression cracks within olivine overgrowths suggests depths <25 km. Late stage (<25 km) resurfacing and reshaping of olivine by particle-particle milling is indicative of turbulent flow conditions within a fully fluidized, gas-charged, crystal-rich magma.
DS201507-0331
2015
Persikov, E.S., Bukhtiyarov, P.G., Sokol, A.G.Change in the viscosity of kimberlite and basaltic magmas during their origin and evolution ( prediction).Russian Geology and Geophysics, Vol. 56, pp. 885-892.Canada, Northwest Territories, RussiaDeposit - Jericho, Udachnaya
DS201507-0341
2015
Wyman, D.A., Hollings, P., Conceicao, R.V.Geochemistry and radiogenic isotope characteristics of xenoliths in Archean Diamondiferous lamprophyres: implications for the Superior Province cratonic keel.Lithos, Vol. 233, pp. 111-130.Canada, OntarioLamprophyre
DS201508-0377
2015
Tappert, M.C., Rivard, B., Fulop, A., Rogge, D., Feng, J., Tappert, R., Stalder, R.Characterizing kimberlite dilution by crustal rocks at the Snap Lake diamond mine ( Northwest Territories, Canada) using SWIR ( 1.90-2.36 um) and LWIR ( 8.1-11.1um) hypersprectal imagery collected from drill core.Economic Geology, Vol. 110, 6, Sept-Oct. pp. 1375-1387.Canada, Northwest TerritoriesDeposit - Snap Lake
DS201509-0405
2015
Kamenetsky, V.S., Mitchell, R.H., Maas, R., Giuliani, A., Gaboury, D., Zhitova, L.Chlorine in mantle derived carbonatite melts revealed by halite in the St. Honore intrusion ( Quebec, Canada).Geology, Vol. 43, 8, pp. 687-690.Canada, QuebecCarbonatite

Abstract: Mantle-derived carbonatites are igneous rocks dominated by carbonate minerals. Intrusive carbonatites typically contain calcite and, less commonly, dolomite and siderite as the only carbonate minerals. In contrast, lavas erupted by the only active carbonatite volcano on Earth, Oldoinyo Lengai, Tanzania, are enriched in Na-rich carbonate phenocrysts (nyerereite and gregoryite) and Na-K halides in the groundmass. The apparent paradox between the compositions of intrusive and extrusive carbonatites has not been satisfactorily resolved. This study records the fortuitous preservation of halite in the intrusive dolomitic carbonatite of the St.-Honoré carbonatite complex (Québec, Canada), more than 490 m below the present surface. Halite occurs intergrown with, and included in, magmatic minerals typical of intrusive carbonatites; i.e., dolomite, calcite, apatite, rare earth element fluorocarbonates, pyrochlore, fluorite, and phlogopite. Halite is also a major daughter phase of melt inclusions hosted in early magmatic minerals, apatite and pyrochlore. The carbon isotope composition of dolomite (?13C = –5.2‰) and Sr-Nd isotope compositions of individual minerals (87Sr/86Sri = 0.70287 in apatite, to 0.70443 in halite; ?Nd = +3.2 to +4.0) indicate a mantle origin for the St.-Honoré carbonatite parental melt. More radiogenic Sr compositions of dolomite and dolomite-hosted halite and heavy oxygen isotope composition of dolomite (?18O = +23‰) suggest their formation at some time after magma emplacement by recrystallization of original magmatic components in the presence of ambient fluids. Our observations indicate that water-soluble chloride minerals, common in the modern natrocarbonatite lavas, can be significant but ephemeral components of intrusive carbonatite complexes. We therefore infer that the parental magmas that produce primary carbonatite melts might be enriched in Na and Cl. This conclusion affects existing models for mantle source compositions, melting scenarios, temperature, rheological properties, and crystallization path of carbonatite melts.
DS201509-0410
2015
Klein, G.New theory adds salt and water to diamond formation recipe. Ekati field Resource Clips, Aug. 19, 1/2p.Canada, Northwest TerritoriesDeposit - Fox

Abstract: Happening as it does deep within the Earth’s mantle, the process of creating diamonds has always been a bit murky. Laypeople understand the explanation has something to do with enormous pressure exerted on carbon. Hollywood once portrayed the process, perhaps just a tad simplistically, when it showed Superman producing a diamond by squeezing a lump of coal in his hand. But a paper published by the academic journal Nature on August 19 suggests ancient seawater played a key role, at least in the diamonds of the Northwest Territories’ Slave Craton.
DS201510-1793
2015
Nutman, A.P., Bennett, V.C., Friend, C.R.L.Proposal for a continent 'Itsaqia' amalgamted at 3.66 Ga and rifted apart from 3.53 Ga: initiation of a Wilson Cycle near the start of the rock record.American Journal of Science, Vol. 315, 6, pp. 509-536.CanadaAcasta Gneiss

Abstract: A synthesis of the geological record of Earth's ten remaining oldest surviving gneiss complexes, each containing >3.6 Ga rocks, reveals a common history. We propose that the simplest scenario compatible with all observations is that of formation of an ancient continental mass, here named Itsaqia, by 3.66 Ga from amalgamation of earlier quartzofeldspathic crust, followed by initiation of continental break-up at 3.53 Ga by rifting. Evidence for this is reconstructed from the remaining oldest rock record (only ca. 10,000 km2 globally). Dominating the surviving fragments of the proposed Itsaqia continent are 3.9 to 3.66 Ga tonalites that represent juvenile crustal additions with whole-rock initial ?Nd >+1 and zircon initial ?Hf ? 0. Their trace element chemistry shows that they were derived by ca. 30 percent partial melting of garnetiferous, mostly eclogitized basic rocks, leaving behind a subcrustal garnet-rich restite. The tonalites contain inclusions of mafic rocks with chemical signatures diagnostic of mantle wedge fluxing, such as enrichment in the light rare earths and depletion of Nb and Ti. We interpret that this juvenile crust formed repeatedly in arc-like constructs at convergent plate boundaries. The Acasta Gneiss of Canada is the only undisputed surviving rock record of the proposed Itsaqia continent where crust formation extends back to the Hadean. Before ca. 3.66 Ga, individual gneiss complexes show distinct chronologies of crust formation, yet despite their present-day isolation, they underwent identical 3.66 to 3.6 Ga high temperature orogenic events (Isukasian orogeny) – which we contend indicates that from 3.66 Ga these complexes had amalgamated into a single continental mass. Rare surviving 3.66 Ga high-pressure granulite rocks that underwent rapid decompression indicate tectonic crustal thickening then collapse during amalgamation. This was followed by almost 50 million years of high heat flow and lower pressure metamorphism, most probably in an extensional setting. Starting from ca. 3.53 Ga, we propose that komatiite and basalt eruption and dike emplacement marked the start of Itsaqia's dismemberment by rifting. We further speculate that the deep mantle upwelling responsible for this plume-related magmatism was triggered by either the cascade of pre-3.66 Ga sub-Itsaqia high density garnet-rich restitic subduction graveyards into the lower mantle or the thermal insulation effect of Itsaqia. This resembles the mechanisms of supercontinent breakup throughout Earth's history. Hence we propose that Wilson Cycles of continent amalgamation and breakup were already initiated by the Eoarchean, near the start of the rock record. Australia's East Pilbara region was over the top of the plume, where the thermal impact destroyed Itsaqia by melting to give rise to felsic igneous rocks coeval with komatiites. Greenland's Itsaq Gneiss Complex was peripheral to the plume, and hence was heavily diked at ca. 3.5 Ga, but was not melted.
DS201510-1804
2015
Smith, L.j.D., Ptacek, C.J., Blowes, D.W., Groza, L.G., Moncur, M.C.Perchlorate in lake water from an operating mine. DiavikEnvironmental Science and Technology, Vol. 49, 13, pp. 7589-7596.Canada, Northwest TerritoriesDeposit - Diavik

Abstract: Mining-related perchlorate [ClO4(-)] in the receiving environment was investigated at the operating open-pit and underground Diavik diamond mine, Northwest Territories, Canada. Samples were collected over four years and ClO4(-) was measured in various mine waters, the 560 km(2) ultraoligotrophic receiving lake, background lake water and snow distal from the mine. Groundwaters from the underground mine had variable ClO4(-) concentrations, up to 157 ?g L(-1), and were typically an order of magnitude higher than concentrations in combined mine waters prior to treatment and discharge to the lake. Snow core samples had a mean ClO4(-) concentration of 0.021 ?g L(-1) (n=16). Snow and lake water Cl(-)/ClO4(-) ratios suggest evapoconcentration was not an important process affecting lake ClO4(-) concentrations. The multiyear mean ClO4(-) concentrations in the lake were 0.30 ?g L(-1) (n = 114) in open water and 0.24 ?g L(-1) (n = 107) under ice, much below the Canadian drinking water guideline of 6 ?g L(-1). Receiving lake concentrations of ClO4(-) generally decreased year over year and ClO4(-) was not likely [biogeo]chemically attenuated within the receiving lake. The discharge of treated mine water was shown to contribute mining-related ClO4(-) to the lake and the low concentrations after 12 years of mining were attributed to the large volume of the receiving lake.
DS201510-1809
2015
Tappert, M.Advancements in hyderspectral drill core imaging of kimberlites: examples from Snap Lake and Tango Extension.Vancouver Kimberlite Cluster, Sept. 23, 1p. AbstractCanada, Northwest TerritoriesDeposit - Snap Lake, Tango Extension
DS201510-1811
2015
Vandenberg, J.A., Herrell, M., Faithful, J.W., Snow, A.M., Lacrampe, J., Bieber, C., Dayyani, S., Chisholm, V.Multiple modeling approach for the aquatic effects assessment of a proposed northern diamond mine development. Gahcho KueMine Water and the Environment, in press available, 19p.Canada, Northwest TerritoriesDeposit - Gahcho Kue

Abstract: Eight water models were used to assess potential aquatic environmental effects of the proposed Gahcho Kué diamond mine on groundwater and surface water flow and quality in the Northwest Territories, Canada. This sequence of models was required to cover different spatial and temporal domains, as well as specific physico-chemical processes that could not be simulated by a single model. Where their domains overlapped, the models were interlinked. Feedback mechanisms amongst models were addressed through iterative simulations of linked models. The models were used to test and refine mitigation plans, and in the development of aquatic component monitoring programs. Key findings generated by each model are presented here as testable hypotheses that can be evaluated after the mine is operational. This paper therefore offers a record of assumptions and predictions that can be used as a basis for post-validation.
DS201511-1837
2015
Gu, Y.J., Shen, L.Noise correlation tomography of southwest western Canada sedimentary basin. Geophysical Journal International, Vol. 202, pp. 142-162.Canada, AlbertaGeophysics - seismics

Abstract: We analyse continuous recordings from 23 broadband seismic stations near Alberta, the southwestern sector of the Western Canada Sedimentary Basin. Noise correlation tomo-graphy based on vertical-component seismograms reveals below-average shear velocities at shallow and middle crustal depths in central Alberta, spanning across Proterozoic accreted terranes and Archean microcontinents. This observation likely results from extensive plate convergence and crustal melting during the Proterozoic eon. The overall correlation between the crustal velocities and presumed basement domains is lower than expected, however. In the lower crust, the main pattern of shear velocities is relatively concordant with the reported domain boundaries and key Precambrian structures appear to be intact. The shear velocities beneath the Loverna Block, the largest constituent of the Hearne craton, are 10?per?cent higher than the regional average. This prominent northeast striking seismic anomaly is moderately correlated with the regional heat flow and potentially represents the remnant core of the Archean Hearne province. The associated high velocities extend into the western part of the Medicine Hat Block, a possible Archean microcontinent with a debatable origin, and contribute to a strong east-west structural gradient in the lower crust. The presence and the continuity of this anomalous structure imply extensive communications among the various basement domains in southern Alberta during the assembly of the North American continent.
DS201511-1841
2015
Harris, J.R., Grunsky, E., Behnia, P., Corrigan, D.Dat a and knowledge-driven mineral prospectivity maps for Canada's north. (**note for Au )Ore Geology Reviews, Vol. 71, pp. 788-803.Canada, Nunavut, Melville PeninsulaGIS. IAS

Abstract: Data- and knowledge-driven techniques are used to produce regional Au prospectivity maps of a portion of Melville Peninsula, Northern Canada using geophysical and geochemical data. These basic datasets typically exist for large portions of Canada's North and are suitable for a "greenfields" exploration programme. The data-driven method involves the use of the Random Forest (RF) supervised classifier, a relatively new technique that has recently been applied to mineral potential modelling while the knowledge-driven technique makes use of weighted-index overlay, commonly used in GIS spatial modelling studies. We use the location of known Au occurrences to train the RF classifier and calculate the signature of Au occurrences as a group from non-occurrences using the basic geoscience dataset. The RF classification outperformed the knowledge-based model with respect to prediction of the known Au occurrences. The geochemical data in general were more predictive of the known Au occurrences than the geophysical data. A data-driven approach such as RF for the production of regional Au prospectivity maps is recommended provided that a sufficient number of training areas (known Au occurrences) exist.
DS201511-1846
2012
Johnson, C.N., Stachel, T., Muehlenbachs, K., Stern, R.A., Armstrong, J.P.The micro/macro diamond relationship: a case study from the Artemisia kimberlite ( Northern Slave Craton) Canada.Lithos, Vol. 148, pp. 86-97. Available pdfCanada, Northwest TerritoriesMicrodiamonds - responses

Abstract: Size frequency distributions are the principal tool for predicting the macro-diamond grade of new kimberlite discoveries, based on micro-diamonds (i.e., diamond ? 0.5 mm) recovered from small exploration samples. Lognormal size frequency distributions – as observed for the Artemisia kimberlite (Slave Craton, Canada) – suggest a common source for micro- and macro-diamonds recovered from single samples, an implication that has never been conclusively tested. We analyzed 209 diamonds between 0.2 and 2 mm in size from the Artemisia kimberlite for their carbon isotopic compositions and nitrogen characteristics to determine the nature of the micro-/macro-diamond relationship.-Despite overall similarity in the ?13C distributions of micro- and macro-diamonds – both are bimodal with peaks in classes ? 5.0 to ? 4.5‰ and ? 3.5 to ? 3.0‰ – rare diamonds with ?13C between ? 14.2 and ? 24.5‰ of presumed eclogitic origin are restricted to macro-diamonds, whereas positive values are only observed for micro-diamonds. In addition, a shift in main mode and median value in ?13C of about +1‰ is observed for micro- relative to macro-diamonds. Fundamental differences between micro- and macro-diamonds at Artemisia were revealed through the analysis of nitrogen concentrations: 68% of micro-diamonds are Type II (“nitrogen free”) versus 21% of macro-diamonds, and only 19% of micro-diamonds have nitrogen contents > 100 atomic ppm versus 43% of macro-diamonds. Similarly, the presence of a detectable hydrogen related peak (at 3107 cm? 1) increases from 40% for micro-diamonds to 94% for macro-diamonds.-Previous studies on diamond populations from individual deposits have documented that single batches of ascending kimberlite or lamproite magma sample multiple diamond subpopulations formed during distinct growth events in compositionally variable sources and at various depth levels. The Artemisia data clearly show that even over a fairly narrow size interval, spanning the micro- to macro-diamond transition, the specific diamond subpopulations present and their relative proportions may vary significantly with diamond size. At Artemisia, we conclude that the observed lognormal size distribution is not a reflection of an entirely common origin of micro- and macro-diamonds.
DS201511-1848
2015
Kaban, M.K., Mooney, W.D., Petrunin, A.G.Cratonic root beneath North America shifted by basal drag from the convecting mantle.Nature Geoscience, Vol. 8, 10, pp. 797-800.United States, CanadaGeophysics - seismics

Abstract: Stable continental cratons are the oldest geologic features on the planet. They have survived 3.8 to 2.5 billion years of Earth’s evolution1, 2. The key to the preservation of cratons lies in their strong and thick lithospheric roots, which are neutrally or positively buoyant with respect to surrounding mantle3, 4. Most of these Archaean-aged cratonic roots are thought to have remained stable since their formation and to be too viscous to be affected by mantle convection2, 3, 5. Here we use a combination of gravity, topography, crustal structure and seismic tomography data to show that the deepest part of the craton root beneath the North American Superior Province has shifted about 850?km to the west-southwest relative to the centre of the craton. We use numerical model simulations to show that this shift could have been caused by basal drag induced by mantle flow, implying that mantle flow can alter craton structure. Our observations contradict the conventional view of cratons as static, non-evolving geologic features. We conclude that there could be significant interaction between deep continental roots and the convecting mantle.
DS201511-1861
2015
Liu, L.The ups and downs of North America: evaluating the role of mantle dynamic topography since the Mesozoic.Reviews of Geophysics, Vol. 53, 3, pp. 1022-1049.Canada, United StatesGeodynamics

Abstract: The driving force for transient vertical motions of Earth's surface remains an outstanding question. A main difficulty lies in the uncertain role of the underlying mantle, especially during the geological past. Here I review previous studies on both observational constraints and physical mechanisms of North American topographic evolution since the Mesozoic. I first summarize the North American vertical motion history using proxies from structural geology, geochronology, sedimentary stratigraphy, and geomorphology, based on which I then discuss the published physical models. Overall, there is a progressive consensus on the contribution of mantle dynamic topography due to buoyancy structures associated with the past subduction. At the continental scale, a largely west-to-east migrating deformation pattern suggests an eastward translation of mantle dynamic effects, consistent with models involving an eastward subduction and sinking of former Farallon slabs since the Cretaceous. Among the existing models, the inverse model based on an adjoint algorithm and time-dependent data constraints provides the most extensive explanations for the temporal changes of North American topography since the Mesozoic. At regional scales, debates still exist on the predicted surface subsidence and uplift within both the western and eastern United States, where discrepancies are likely due to differences in model setup (e.g., mantle dynamic properties and boundary conditions) and the amount of time-dependent observational constraints. Toward the development of the next-generation predictive geodynamic models, new research directions may include (1) development of enhanced data assimilation capabilities, (2) exploration of multiscale and multiphysics processes, and (3) cross-disciplinary code coupling.
DS201511-1864
2015
Milidragovic, D., Francis, D.Ca. 2.7 Ga ferropicrite magmatism: a record of Fe-rich heterogeneities during Neoarchean global mantle melting.Geochimica et Cosmochimica Acta, in press available 20p.Canada, Ontario, QuebecUngava craton

Abstract: Although terrestrial picritic magmas with FeOTOT ?13 wt.% are rare in the geological record, they were relatively common ca. 2.7 Ga during the Neoarchean episode of enhanced global growth of continental crust. Recent evidence that ferropicritic underplating played an important role in the ca. 2.74–2.70 Ga reworking of the Ungava craton provides the impetus for a comparison of ca. 2.7 Ga ferropicrite occurrences in the global Neoarchean magmatic record. In addition to the Fe-rich plutons of the Ungava craton, volumetrically minor ferropicritic flows, pyroclastic deposits, and intrusive rocks form parts of the Neoarchean greenstone belt stratigraphy of the Abitibi, Wawa, Wabigoon and Vermillion domains of the southern and western Superior Province. Neoarchean ferropicritic rocks also occur on five other Archean cratons: West Churchill, Slave, Yilgarn, Kaapvaal, and Karelia; suggesting that ca. 2.7 Ga Fe-rich magmatism was globally widespread. Neoarchean ferropicrites form two distinct groups in terms of their trace element geochemistry. Alkaline ferropicrites have fractionated REE profiles and show no systematic HFSE anomalies, broadly resembling the trace element character of modern-day ocean island basalt (OIB) magmas. Magmas parental to ca. 2.7 Ga alkaline ferropicrites also had high Nb/YPM (>2), low Al2O3/TiO2 (<8) and Sc/Fe (-3 × 10?4) ratios, and were enriched in Ni relative to primary pyrolite mantle-derived melts. The high Ni contents of the alkaline ferropicrites coupled with the low Sc/Fe ratios are consistent with derivation from olivine-free garnet-pyroxenite sources. The second ferropicrite group is characterized by decisively non-alkaline primary trace element profiles that range from flat to LREE-depleted, resembling Archean tholeiitic basalts and komatiites. In contrast to the alkaline ferropicrites, the magmas parental to the subalkaline ferropicrites had flat HREE, lower Nb/YPM (<2), higher Al2O3/TiO2 (8-25) and Sc/Fe (-4 × 10?4) ratios, and were depleted in Ni relative to melts of pyrolitic peridotite; suggesting they were derived from garnet-free peridotite sources. Neodymium isotopic evidence indicates that the source of alkaline ferropicrites was metasomatically enriched shortly before magma generation (-3.0 Ga), but the subalkaline ferropicrites do not show evidence of precursor metasomatism. The metasomatic enrichment of the alkaline ferropicrite sources may have been accompanied by conversion of Fe-rich peridotite to secondary garnet-pyroxenite. Melting experiments on "pyrolitic" compositions and consideration of the dependence of the density of silicate liquids on pressure and temperature, suggest that ferropicrites cannot originate by melting of normal terrestrial mantle (Mg-number = 0.88-0.92) at high pressures and temperatures. The geochemical similarity between the subalkaline ferropicrites and the shergottite-nakhlite-chassigny (SNC) and howardite-eucrite-diogenite (HED) differentiated meteorites suggests, however, that the Fe-rich mantle may originate from the infall of Fe-rich chondritic meteorites. The occurrence of ca. 2.7 Ga Fe-rich rocks on at least six cratons that are commonly coeval with the more ubiquitous komatiites and Mg-tholeiites is consistent with the existence of heterogeneous Fe-rich "plums" throughout the Neoarchean mantle. The paucity of ferropicrites in the post-2.7 Ga geological record suggests that majority of these Fe-rich plums have been melted out during the global Neoarchean melting of the mantle.
DS201511-1865
2015
Nadeau, O., Stevenson, R., Jebrak, M.Evolution of Montviel alkaline-carbonatite complex by coupled fractional crystallization, fluid mixing and metasomatism. Pts. 1 and 2.Ore Geology Reviews, Vol. 72, pp. 1143-1162.Canada, QuebecCarbonatite

Abstract: Magmatic volatiles are critically important in the petrogenesis of igneous rocks but their inherent transience hampers the identification of their role in magmatic and mineralization processes. We present evidence that magmatic volatiles played a critical role in the formation of the 1894 Ma Paleoproterozoic Montviel alkaline-carbonatite complex, Canada, and the related carbonatite-hosted REE-Nb deposit. Field and drill core relationships indicate that lithological units of the complex were emplaced in the following order: clinopyroxenites, melteigites, ijolites, melanosyenites, leucosyenites, granites, lamprophyric silicocarbonatites, rare magnesiocarbonatites, calciocarbonatites, ferrocarbonatites, late mixed carbonatites, kimberlitic silicocarbonatites and polygenic breccias. Magmatic minerals within these units were systematically metasomatized. In undersaturated silicate rocks, augite recrystallized to aegirine–augite and aegirine, plagioclase recrystallized to albite, and nepheline recrystallized with analcime, cancrinite and albite. Primary biotite was replaced by secondary, REE-rich metasomatic biotite, particularly along fractures and alteration pockets. In carbonatites, liquidus phases consisted of calcite and dolomite and were recrystallized to ferroan dolomite, ankerite, siderite, barytocalcite, witherite and strontianite, which are intimately related to the REE-bearing carbonates and fluorocarbonates. Biotite is common to all lithologies, ranges in REE concentrations from 1.5 to 230 ppm and yielded subsolidus crystallization temperatures ranging from 770 °C to 370 °C. Sm-Nd isotope analyses from biotite and aegirine-augite yield a range of ?Nd values (+ 3.4 to ? 3.0) that suggests mixing of fluids from three sources during the crystallization of the Montviel magmas. The clinopyroxenites to melteigite, ijolites and melanosyenites crystallized augite and biotite with initial ?Nd value ? 3.4 and these minerals were metasomatized by a 1st fluid, lowering their ?Nd to values comprised between 0.8 and 3.4. Silicocarbonatites and carbonatites subsequently crystallized aegirine-augite and biotite with initial ?Nd value ? 2.6 and a 2nd fluid metasomatized the minerals to lower ? values. Both the 1st and the 2nd fluids eventually mixed with a 3rd recrystallizing aegirine-augite and biotite and lower their ?Nd values down to ? 3.0. The results presented herein suggest that the mantle magmas evolved through 4 distinct mantle pulses by fractional crystallization, mixing of depleted mantle fluids with crustal fluids, and metasomatism. Some of the silicate rocks also show evidence of assimilation of wall rock as part of their petrogenetic evolution. During the last stages of its evolution in carbonatites, the fluid source transited from the depleted mantle to the crust and we speculate that this resulted in a violent explosive eruption creating the diatreme-shaped, HREE-rich polygenic breccia.
DS201511-1890
2015
Yip, C.K., Thompson, K.S.Diavik Diamond Mines Inc. NI 43-101 Technical Report.Diavik Diamond Mines Inc., March 18, 128p. Available pdfCanada, Northwest TerritoriesMicrodiamonds - responses
DS201512-1896
2015
Bailey, B.L., Blowes, D.W., Smith, L., Sego, D.C.The Diavik waste rock project: geochemical and microbiological characterization of low sulfide content large-scale waste rock test piles.Applied Geochemistry, Vol. 62, pp. 18-34.Canada, Northwest TerritoriesDeposit - Diavik

Abstract: Two experimental waste-rock piles (test piles), each 15 m in height × 60 m × 50 m, were constructed at the Diavik diamond mine in Northern Canada to study the behavior of low-sulfide content waste rock, with a similarly low acid-neutralization potential, in a continuous permafrost region. One test pile with an average of 0.035 wt.% S (<50 mm fraction; referred to as Type I) and a second test pile with an average of 0.053 wt.% S (<50 mm fraction; referred to as Type III) were constructed in 2006. The average carbon content in the <50 mm fraction of waste rock in the Type I test pile was 0.031 wt.% as C and in the Type III test pile was 0.030 wt.% as C. The NP:AP ratio, based on the arithmetic mean of particle-size weighted NP and AP values, for the Type I test pile was 12.2, suggesting this test pile was non-acid generating and for the Type III test pile was 2.2, suggesting an uncertain acid-generating potential. The Type I test pile maintained near-neutral pH for the 4-year duration of the study. Sulfate and dissolved metal concentrations were low, with the exception of Ni, Zn, Cd, and Co in the fourth year following construction. The pore water in the Type III test pile contained higher concentrations of SO42? and dissolved metals, with a decrease in pH to <4.7 and an annual depletion of alkalinity. Maximum concentrations of dissolved metals (20 mg L?1 Ni, 2.3 mg L?1 Cu, 3.7 mg L?1 Zn, 35 ?g L?1 Cd, and 3.8 mg L?1 Co) corresponded to decreases in flow rate, which were observed at the end of each field season when the contribution of the total outflow from the central portion of the test pile was greatest. Bacteria were present each year in spite of annual freeze/thaw cycles. The microbial community within the Type I test pile included a population of neutrophilic S-oxidizing bacteria. Each year, changes in the water quality of the Type III test-pile effluent were accompanied by changes in the microbial populations. Populations of acidophilic S-oxidizing bacteria and Fe-oxidizing bacteria became more abundant as the pH decreased and internal test pile temperatures increased. Irrespective of the cold-climate conditions and low S content of the waste rock, the geochemical and microbiological results of this study are consistent with other acid mine drainage studies; indicating that a series of mineral dissolution-precipitation reactions controls pH and metal mobility, and transport is controlled by matrix-dominated flow and internal temperatures.
DS201512-1897
2015
Belcourt, G.A 2015 geophysical update for Kennady North project, NT.43rd Annual Yellowknife Geoscience Forum Abstracts, abstract p. 16.Canada, Northwest TerritoriesDeposit - Kennady North

Abstract: This presentation will provide an update of geophysical surveys performed in 2015. These surveys were undertaken to aid in the delineation of known kimberlites and discovery of potential kimberlite targets on Kennady Diamonds Inc.'s Kennady North Property. In 2015, Kennady Diamonds Inc. focused most of their geophysical budget on expansion of the known kimberlites. Previous OhmMapper surveys were expanded in the Doyle & MZ Areas in order to provide locations for exploration drilling. Ground based Gravity surveys were completed using an increased sample density in key areas. This increased density in the gravity data proved to be very helpful in the detailed drilling of the Kelvin and Faraday kimberlite bodies. Late in the summer season, a small scale marine seismic system was utilized on the Kelvin and Faraday lakes. This data will hopefully be used to discover potential areas of new or thicker kimberlite under the lake. As the Kelvin and Faraday kimberlites are not the typical pipe-like bodies, many different geophysical tools from our toolbox must be utilized.
DS201512-1898
2015
Blacklock, S.Ekati diamond mine UAVs.43rd Annual Yellowknife Geoscience Forum Abstracts, abstract p. 18.Canada, Northwest TerritoriesDeposit - Ekati

Abstract: Dominion Diamond Ekati Corporation (DDEC) purchased two unmanned aerial vehicles (UAV's) in 2014 to assist in surveying the active open pits and kimberlite stockpiles at the mine. UAV technology has allowed the team to survey various aspects of the mine in a safer and more accurate. manner. Along with making day to day work more efficient, DDEC surveying now has the ability to complete various other requests from departments at the mine. These include; large area photographs of lay downs, new road alignments, projects and environmental areas of interest.
DS201512-1902
2015
Cayer, E.M., Winterburn, P.A., Elliott, B.Development of geochemical exploration technologies for the discovery of concealed kimberlites under glacial overburden, NWT.43rd Annual Yellowknife Geoscience Forum Abstracts, abstract p. 22.Canada, Northwest TerritoriesGeochemistry

Abstract: Attention is being focused on the development of deep penetrating geochemical exploration methods as the discovery rate of world class deposits decreases. Diamondiferous kimberlites located in the Lac de Gras region of the Northwest Territories are one of the many deposit types in Canada covered by glacial overburden, and are therefore challenging to detect. This paper presents initial results from an investigation of the DO-18 kimberlite (Peregrine Diamonds), buried under 5-20m of glacial cover, to identify surface geochemical responses directly related to the buried kimberlite and differentiate between physical and chemical transport mechanisms. A detailed grid of 150 samples over an area of 0.5km2 sampled the oxidized upper B soil horizon in till above and off the DO-18 kimberlite into background. Regolith mapping was conducted and included surficial soil type and rock fragments, topographic variation and physical features, e.g. bogs, swamps, vegetation and glacial direction indicators. This allows an assessment of surface controls on the geochemistry, including the generation of false anomalies from chemical traps such as swamps. Multi-element geochemistry comprising 4-acid, Aqua-Regia and distilled water extraction coupled with ICP-MS was undertaken using commercial techniques to identify and differentiate between those elements migrating by chemical process from those migrating by physical transportation. Hydrocarbons were analysed using the SGH-technique (ActLabs) and the Gore-sorber technique (AGI) to characterize type and abundance of complex hydrocarbons above the kimberlite relative to the host granite gneiss. Preliminary results from the 4-acid digestion data show a clastic dispersion of Nb, Ni, Mg, Co, Cr and Cs from directly above the kimberlite to the edge of the sampling grid 500 metres northwest of the buried kimberlite. Surface material exhibits a strong control on geochemistry with trace elements being controlled by major elements (Al, Fe, Mn) found within each surface material type, and in some cases are heavily influenced by the presence of organic carbon. Evaluation of these relationships allows clarification of the natural background noise and enhancement of the geochemical responses and contrasts.
DS201512-1904
2015
Chen, W., Leblanc, S.G., White, H.P., Milkovic, B., O'Keefe, H., Croft, B., Gunn, A., Boulanger, J.Caribou relevant environmental changes around the Ekati diamond mine measured in 2015.43rd Annual Yellowknife Geoscience Forum Abstracts, abstract p. 24.Canada, Northwest TerritoriesDeposit - Ekati

Abstract: How would a large open pit mine on caribou range (e.g., the Ekati Diamond Mine in the Bathurst caribou’s summer range) have influenced caribou? A traditional knowledge study on the cumulative impacts on the Bathurst caribou herd qualitatively described how mining activities might have influenced the herd (Mackenzie et al. 2013): caribou migration routes deflected away from the mines probably due to seeing mining activities or hearing the noises; and skinny caribou or abnormal smells and materials in caribou meat, liver, or the hide linings probably related to changes in caribou forage and quality of water and air. In other words, the potential influences of mining operations on caribou were most likely through altering what caribou can see, hear, smell (e.g., dusts and fine particle matter < 2.5 ?m (PM2.5) in the air, and from acidity in the soil), and taste (e.g., dust on foliage, vegetation composition change). Boulanger et al. (2012) estimated the size of a zone of influence (ZOI) of the Ekati-Diavik mining complex in the Bathurst caribou summer range, using caribou presence dataset. They also explored the mechanisms of ZOI using the spatial distribution of the total suspended particles, which was simulated with an atmospheric transport and dispersion model (Rescan, 2006). While these studies have added to our understanding of the possible impacts of mining operations on caribou, knowledge gaps remain. One outstanding gap is the lack of direct measurements about the caribou relevant environmental changes caused by mining operations. For example, exactly from how far away can caribou clearly see the vehicles driving on a mining road, or the buildings and the elevated waste piles in a camp? From how far away might caribou hear the noise caused by mining operations? To what spatial extent had the dusts and PM2.5 from mining operations influenced the tundra ecosystems? And how the dusts and PM2.5 from mining operations might have influenced caribou forage quality? Potentially these questions can be answered by in-situ measurements and satellite remote sensing. For example, studies have showed that it is possible to remotely sense PM2.5 distribution using twice-daily MODIS data at a spatial resolution of 1 km (Lyapustin et al., 2011; Chudnovsky et al., 2013; Hu et al., 2014). The objective of this study is thus to quantitatively measure these changes around the Ekati Diamond Mine, by means of in-situ surveys and satellite remote sensing. We conducted field surveys at more than 100 sites around the Ekati Diamond Mine during August 14-23, 2015, a collaborative effort of the NWT CIMP project entitled “Satellite Monitoring for Assessing Resource Development’s Impact on Bathurst Caribou (SMART)”, and the Dominion Diamond Ekati Corporation. In this presentation, we will report preliminary results and lessons learned from our first year’s study.
DS201512-1906
2015
Counts, B., Power, M.Proxima Diamonds Corp.: exploring for diamonds in the fertile Slave craton.43rd Annual Yellowknife Geoscience Forum Abstracts, abstract p. 33.Canada, Northwest TerritoriesProspect - Sancy

Abstract: Proxima Diamonds Corp. is a private Canadian diamond exploration company exploring diamond targets in the heart of the diamond producing region of the Slave Geological Province. The company holds 17 target-rich properties that were selected based on a review of publicly available data, a proprietary kimberlite indicator mineral sample database and a wealth of experience exploring for diamonds in Canada's north. Focused kimberlite indicator mineral (KIM) sampling conducted by Proxima in 2014 identified a potential source area on the Sancy Property, located near the northern boundary of the Ekati Diamond Mine. Follow-up ground geophysical surveys completed over the area in spring 2015 have returned compelling results. Ground gravity, total magnetic field and capacitively coupled resistivity surveys identified a large, new target approximately 300 m from the diamondiferous T-10 kimberlite pipe. On this and other Proxima properties, focused KIM till sampling is defining likely source areas which will be surveyed with ground geophysical methods this winter.
DS201512-1911
2015
Diamonds in CanadaBig changes at De Beers Canada.. New CEO discusses HQ move to Calgary.Diamonds in Canada Magazine, Northern Miner, Nov. pp. 18-19.Canada, AlbertaDe Beers Headquarters
DS201512-1912
2015
Diamonds in CanadaStornoway benefits from 'good timing'. Renard on track for commercial production in 2017.Diamonds in Canada Magazine, Northern Miner, Nov. pp. 20-21.Canada, QuebecDeposit - Renard
DS201512-1913
2015
Diamonds in CanadaSable PEA sweetens Ekati. Dominion works to add mine life to operation.Diamonds in Canada Magazine, Northern Miner, Nov. 22-23.Canada, Northwest TerritoriesDeposit - Sable
DS201512-1915
2015
Ebert, K., Brodaric, B.GIS analyses of ice-sheet erosional impacts on the exposed shield of Baffin Island, eastern Canadian Arctic.Canadian Journal of Earth Sciences, Vol. 52, 11, pp. 966-979.Canada, Nunavut, Baffin IslandGeomorphology

Abstract: The erosional impacts of former ice sheets on the low-relief bedrock surfaces of Northern Hemisphere shields are not well understood. This paper assesses the variable impacts of glacial erosion on a portion of Baffin Island, eastern Canadian Arctic, between 68° and 72°N and 66° and 80°W. This tilted shield block was covered repeatedly by the Laurentide Ice Sheet during the late Cenozoic. The impact of ice-sheet erosion is examined with GIS analyses using two geomorphic parameters: lake density and terrain ruggedness. The resulting patterns generally conform to published data from other remote sensing studies, geological observations, cosmogenic exposure ages, and the distribution of the chemical index of alteration for tills. Lake density and terrain ruggedness are thereby demonstrated to be useful quantitative indicators of variable ice-sheet erosional impacts across Baffin Island. Ice-sheet erosion was most effective in the lower western parts of the lowlands, in a west-east-oriented band at around 350-400 m a.s.l., and in fjord-onset zones in the uplifted eastern region. Above the 350-400 m a.s.l. band and between the fjord-onset zones, ice-sheet erosion was not sufficient to create extensive ice-roughened or streamlined bedrock surfaces. The exception — where lake density and terrain ruggedness indicate that ice-sheet erosion had a scouring effect all across the study area — was in an area from Foxe Basin to Home Bay with elevations <400 m a.s.l. These morphological contrasts link to former ice-sheet basal thermal regimes during the Pleistocene. The zone of low glacial erosion surrounding the cold-based Barnes Ice Cap probably represents the ice cap’s greater extent during successive Pleistocene cold stages. Inter-fjord plateaus with few ice-sheet bedforms remained cold-based throughout multiple Pleistocene glaciations. In contrast, zones of high lake density and high terrain ruggedness are a result of the repeated development of fast-flowing, erosive ice in warm-based zones beneath the Laurentide Ice Sheet. These zones are linked to greater ice thickness over western lowland Baffin Island. However, adjacent lowland surfaces with similar elevations of non-eroded, weakly eroded, and ice-scoured shield bedrock indicate that—even in areas of high lake density and terrain ruggedness—the total depth of ice sheet erosion did not exceed 50 m.
DS201512-1917
2015
Fajber, R., Simandl, G.J., Luck, P., Neetz, M.Biogeochemical methods to explore for carbonatites and related mineral deposits: an orientation survey, Blue River area, British Columbia, Canada.Symposium on critical and strategic materials, British Columbia Geological Survey Paper 2015-3, held Nov. 13-14, pp. 241-244.Canada, British ColumbiaCarbonatite

Abstract: Carbonatites host economic deposits of niobium (Nb), rare earth elements (REE), phosphate, baddeleyite (natural zirconia), vermiculite, and fl uorspar, and historically, supplied copper, uranium, carbonate (for cement industries) and sodalite (Pell, 1994 and Simandl, this volume). The Upper Fir carbonatite is in southeastern British Columbia, approximately 200 km north of Kamloops (Fig. 1). It is one ofmany known carbonatite occurrences in the British Columbia alkaline province, which follows the Rocky Mountain Trench and extends from the southeastern tip of British Columbia to its northern boundaries with the Yukon and Northwest Territories (Pell, 1994). The Upper Fir is a strongly deformed carbonatite with an indicated mineral resource of 48.4 million tonnes at 197 ppm of Ta2O5 and 1,610 ppm of Nb2O5, and an inferred resource of 5.4 million tonnes at 191 ppm of Ta2O5 and 1760 ppm of Nb2O5 (Kulla et al. 2013). The Nb, Ta, and vermiculite mineralization is described by Simandl et al. (2002, 2010), Chong, et al, (2012), and Chudy (2014). In this document we present the results of an orientation survey designed to determine the biogechemical signature of a typical carbonatite in the Canadian Cordillera. This survey suggests that needles and twigs of White Spruce (Picea glauca) and Subalpine Fir (Abies lasio carpa) are suitable sampling media to explore for carbonatites and carbonatite-related rare earth elements (REE), niobium (Nb), and tantalum (Ta) deposits.
DS201512-1918
2015
Feng, J., Tappert, M.C., Rivard, B.A., Fulop, A., Rogge, D., Tappert, R.Acquiring crustal dilution dat a and kimberlite compositional information from drill core using SWIR hyper spectral imagery from the Tango extension kimberlite.43rd Annual Yellowknife Geoscience Forum Abstracts, abstract p. 39.Canada, Northwest TerritoriesDeposit - Tango

Abstract: Short-wave infrared (SWIR, 1.90-2.36 µm) hyperspectral imagery collected from 171 meters of drill core from the diamondiferous Tango Extension kimberlite using a high spatial resolution imaging system (pixel size: 1.43 x 1.43 µm) was analyzed to create compositional maps that show the distribution of different crustal (dilution) components and different kimberlite types along the drill core. Three types of crustal dilution components were identified in the compositional maps: carbonate, a carbonate-mudstone mixture, and mudstone. Five spectrally distinct types of kimberlite were identified, which differ mainly in their level of hydration and the amount of crustal micro-dilution they contain. Accompanying the compositional maps are depth profiles that provide quantitative abundance information for each compositional component (dilution and kimberlite). These profiles show the abundance of macro-dilution relative to kimberlite and the spatial distribution of the different kimberlite types. Using depth profiles, compositional boundaries along the length of the drill core were identified and compared to the unit boundaries from the visual lithological log. The boundaries identified using the hyperspectral imagery correlate well with the boundaries recorded during visual logging. This study demonstrates that hyperspectral imagery is well suited to the task of mapping the distribution of spectrally distinct kimberlite types, and quantifying kimberlite micro- and macro-dilution by crustal rocks.
DS201512-1923
2015
Haiblen, A.M., Ward, B.C., Normandeau, P.X., Prowse, N.D.Glacial history and landform genesis in the Lac de Gras area and implications for kimberlite drift prospecting.43rd Annual Yellowknife Geoscience Forum Abstracts, abstract p. 43.Canada, Northwest TerritoriesGeomorphology

Abstract: During the last glaciation, bedrock was eroded, transported and deposited by the Laurentide Ice Sheet across much of Canada. The complex ice and meltwater processes that resulted in sediment deposition are not completely understood. In the central Slave Craton, Northwest Territories, glacial sediments overly many diamond-bearing kimberlites. Diamond deposits in the Lac de Gras area were discovered in the early 1990s by drift prospecting. To better interpret drift prospecting datasets a more thorough understanding of the detailed glacial history of the area is required. We spent six weeks in the Lac de Gras area in summer 2015. Field mapping was complimented by a number of other techniques to elucidate the glacial history of the area. Enigmatic landforms were examined in detail and pits were dug to examine their sedimentology. Samples of matrix material were collected to compare grain size distribution between different sediment types. Pebble counts were done to consider sediment provenance. We also collected ground-penetrating radar profiles to look for stratified sediments within enigmatic mounds. High-resolution orthophotos and a one metre LiDAR digital elevation model of the area, obtained by Dominion Diamond Ekati Corporation, have also been used to investigate landform genesis and the glacial history of the area. In the Lac de Gras area many meltwater corridors can be identified in the high-resolution imagery. These corridors are typically 300-1500 m wide and form dendritic networks. Between the corridors, sandy till of varying thickness overlies bedrock. Within corridors, glaciofluvial landforms and scoured bedrock are common. Also associated with corridors are many mounds of enigmatic origin. These mounds commonly occur in groups and are typically 20-100 m wide and rise 5-15 m above the surrounding area. They are usually composed of an unstratified to poorly-stratified sandy diamicton containing no clay and minor silt. Matrix grain size distribution and pebble lithology results from some mounds are similar to those of nearby regional till. However, patches of well-stratified sediments, exhibiting laminated silts as well as climbing ripples in sand, do exist on parts of some mounds. GPR data suggests that these patches are discontinuous, and that the majority of mounds are composed largely of sandy diamicton. Variation in the sedimentology of the mounds does not appear to be related to variations in mound morphology. It is likely that the majority of the glaciofluvial sediments in the Lac de Gras area were deposited during the final stages of ice retreat across the area when meltwater volumes were high. We suggest that the corridors were formed by subglacial meltwater flow. This is because glaciofluvial deposition almost exclusively occurs within corridors, very little till is found within corridors and the corridors have an undulating elevation profile in the direction of ice flow. Water must have played a role in the deposition of the well-stratified patches of sediment found on some mounds, however, the mounds may not be solely the product of subglacial meltwater flow. A thorough understanding of sediment transport and depositional processes is critical if kimberlite indicator mineral data is to be accurately interpreted.
DS201512-1926
2015
Hardman, M.F., Stachel, T., Pearson, D.G., Kinakin, Y.B., Bellinger, J.Improving the utility of eclogitic garnet in diamond exploration - examples from Lac de Gras and worldwide localities.43rd Annual Yellowknife Geoscience Forum Abstracts, abstract p. 47.Canada, Northwest TerritoriesGarnet chemistry

Abstract: In diamond exploration, the use of compositional data to identify diamond-related peridotitic xenocrysts has long been a widely used and powerful tool. In contrast, the application of similar methods to eclogitic garnet chemistry remains a challenge. The inability to unequivocally classify certain “eclogitic” garnet compositions as either mantle- or crust-derived implies that a high abundance of lower-crustal garnets will increase diamond-exploration expenditures by introducing a number of “false positives.” Revising existing classification schemes (e.g., Schulze, 2003) to reduce the abundance of “false positives” may, however, increase the number of “false negatives” through the misclassification of mantle-derived garnets as crustal. This study presents new geochemical and petrographical data for garnet and clinopyroxene from 724 kimberlite-hosted, crust- and mantle-derived xenoliths from localities worldwide, with a focus on samples whose lithology is constrained petrographically, rather than single mineral grains from concentrate. Mantle samples are primarily eclogitic and pyroxenitic, as constrained by mineral assemblage and garnet and clinopyroxene mineral chemistry, while crustal samples are dominantly plagioclase-bearing garnet-granulites. For those localities where an established geothermal gradient is available from literature resources, garnet-clinopyroxene pairs are employed in the estimation of pressure-temperature conditions of equilibration through the iterative coupling of the Krogh (1988) geothermometer and the relevant geothermal gradient. Our preliminary results suggest that closure temperatures for Fe-Mg exchange exceed the temperatures of residence of many lower-crustal samples, as geotherm-based calculated pressures of equilibration exceed the apparent stability of plagioclase (see Green and Ringwood, 1972). Comparison of equilibration pressures with sodium contents in garnet for mantle-derived samples (the diamond-facies criterion of Gurney, 1984) shows a positive correlation at localities for which an adequate range of pressures is observed (e.g., the Diavik mine). Other populations, such as mantle eclogitic garnets from Roberts Victor, plot at a much more restricted range of pressures and hence fail to demonstrate this correlation; instead, these samples may reflect the influence of a broader range of bulk-compositions, providing varying amounts of sodium to their constituent garnets. The results presented here demonstrate clearly that garnets from mantle- and crust-derived samples show significant overlap in geochemical character, for example in garnet Ca# vs. Mg# space (discrimination diagram of Schulze, 2003), where approximately 66% of our crust-derived garnet analyses plot in the “mantle” field. This percentage varies among locations. A selection of particularly high-Mg#, low-Ca# garnets derived from crustal, plagioclase-bearing lithologies in this study highlights the potential for crust-mantle confusion, as these garnets have Mg# in-excess of many mantle-derived eclogitic/pyroxenitic garnets. As a consequence, Fe-Mg-Ca-based classifications alone cannot reliably discriminate mantle and crustal garnets. The next step in this project will be to obtain trace element data for the entire sample suite. This will allow us to test the Li-geobarometer of Hanrahan et al. (2009) for eclogites and to search for trace element signatures that can be used as robust indicators of a diamond-facies origin of eclogitic garnets. Trace element data will also be employed in the refinement of the crust/mantle division discussed above.
DS201512-1945
2015
McKillop, R.J., Sacco, D.A.Using property scale surficial geology mapping to refine kimberlite indicator mineral dispersal patterns at the Redemption project, NWT.43rd Annual Yellowknife Geoscience Forum Abstracts, abstract p. 64.Canada, Northwest TerritoriesDeposit - Redemption

Abstract: Surficial sediment (e.g., till) sampling is an effective tool for mineral exploration in the glaciated landscapes of Canada. Dispersal patterns identified through surficial sampling are studied and used to identify their smaller, mineralized bedrock sources. Data compiled from multiple sampling programs, such as those included in the Kimberlite Indicator and Diamond Database (KIDD), can produce misleading dispersal patterns due to variability in sampling and analysis protocols. The accurate delineation of dispersal patterns requires an understanding of the genesis, comparability and distribution of sediment samples on which the dispersal patterns are based. Using an example from a recent study of the South Coppermine indicator mineral train on the Redemption Project, we demonstrate a method for reducing the variability in the data set that utilizes property-scale surficial geology mapping to systematically filter and normalize the data. The surficial geology mapping identified the nature and distribution of sediments, as well as specific till units that have been reworked to differing degrees by a combination of glacial meltwater, modern drainage and periglacial processes, which can affect the concentration of kimberlite indicator minerals (KIMs). A derivative map depicting till sampling suitability based on basal till potential and the level of reworking was used to classify and group samples into subset populations, from which less-favourable samples were filtered. KIM counts in the remaining sample data were then leveled (normalized) according to the thickness of the sampled till unit to reduce the bias produced by higher anomalies common to thin till units. The filtered and normalized data produced a sharper, more accurate KIM dispersal pattern and a new basis for interpreting possible provenance envelopes, from which lower-risk exploration targets can be identified.
DS201512-1946
2015
McKillop, R.J., Turner, D.G., Sacco, D.A.Quaternary geology interpretation for the Slave surficial materials and permafrost study.43rd Annual Yellowknife Geoscience Forum Abstracts, abstract p. 65.Canada, Northwest TerritoriesGeomorphology

Abstract: The Northwest Territories Geological Survey recently funded a strategic overburden drilling program in the Lac de Gras (NTS 076D) and Alymer Lake (NTS 076C) map areas of the Slave Province, Northwest Territories. This program was designed to help stimulate mineral exploration, and to collect permafrost and geotechnical data required for future infrastructure development. To provide guidance for the drill program and a basis for interpreting the results, we compiled, analyzed and interpreted an unprecedented collection of privately-collected and public data. The data set included extensive LiDAR-derived hillshade models; regional surficial and bedrock geology mapping; and mineralogical, geochemical, grain size and sample description data from surface sediment (till) samples. Our systematic mapping of the LiDAR coverage area resulted in the identification of 649 linear features, including eskers, meltwater channels, moraines, paleo-shorelines and streamlined bedforms, which strengthened understanding of local ice flow histories and patterns of deglaciation. Based on a comprehensive review and re-evaluation of the data, we identified six important trends: (1) samples collected from till blankets have lower indicator mineral counts than those collected from till veneers and thick, hummocky till deposits; (2) indicator mineral counts from glaciofluvial sediments were lower and show more subtle anomalies than those from till; (3) the =0.5 mm size-fraction in the mineralogy data set has ~25-40% higher indicator mineral counts than the >0.5 mm size-fraction; (4) when comparing the analytical results of different size fractions, Cr and La concentrations are higher in the clay-sized fraction, while Ba concentrations are higher in the silt- and clay-sized fraction; (5) anomalous Au concentrations in the northern portion of the study area likely represent a lithological change and subsequent glacial dispersion, rather than significant mineralization; and (6) local variations in pyrope and Cr-diopside counts in the study area may affect interpretations of kimberlite indicator mineral dispersal plumes. We also delineated 60 areas of interest that present unique research opportunities, or represent important data gaps that compromise the understanding of glacial history, mineral dispersal and permafrost conditions within the region.
DS201512-1947
2015
McLachlan, C.Diavik mine operational update.43rd Annual Yellowknife Geoscience Forum Abstracts, abstract p. 66.Canada, Northwest TerritoriesDeposit - Diavik

Abstract: Since 2003 Diavik Diamond Mines Inc. has been mining diamonds from kimberlite pipes located below the waters of Lac de Gras. Diavik produces 6-7 million carats annually and in 2012 Diavik transitioned to a fully underground mine. Diavik’s 9.2 megawatt award winning wind farm has confirmed Diavik as a leader in cold climate, off grid renewable energy. Diavik recently began construction on its A21 project, which will bring its fourth kimberlite pipe into production in 2018. This presentation will provide an operational update on the amazing Diavik operation.
DS201512-1948
2015
McLeod, W., Coyne, P.Challenges and triumps on the Inuvik to Tuktoyaktuk highway.43rd Annual Yellowknife Geoscience Forum Abstracts, abstract p. 66.Canada, Northwest TerritoriesIce road

Abstract: The Inuvik to Tuktoyaktuk Highway (ITH) has been an idea for over 50 years. It was only in the past decade that the project gained traction towards becoming a reality. Once constructed, the ITH will be an all-weather link between these two communities in the Mackenzie Delta region of the Northwest Territories. Working collaboratively with our aboriginal partnership company KAVIK-STANTEC in Inuvik, Stantec has completed a variety of tasks ranging from baseline environmental assessment (wildlife, vegetation, and terrain), regulatory support and civil engineering design services. Crews hit the ground in the winter of 2013/2014 and the project is now entering its third and final winter construction season. The project team (designers, constructors and the Owner) contended with several challenges in bringing the project to fruition. Some of these included: • Fast track schedule • Weather constraints • Data refinements • Climate change considerations • Large complexity of the project (requiring collaborative approach) When completed, the ITH will span over 140 km and provide a vital access route for industry and the public. Stantec will discuss the challenges and triumphs in working on this diverse project working in this remote landscape.
DS201512-1950
2015
Miller, R.R.Pantellerite hosted rare earth element mineralization in southeast Labrador: the Foxtrot deposit.Symposium on critical and strategic materials, British Columbia Geological Survey Paper 2015-3, held Nov. 13-14, pp. 109-118.Canada, LabradorRare earths

Abstract: The Foxtrot rare earth element (REE) deposit is hosted by peralkaline volcanic rocks, primarily pantellerite and commendite fl ows and ash-fl ow tuffs, of the Fox Harbour Volcanic belt in southeast Labrador, near the coastal community of St Lewis (Fig. 1). Search Minerals personnel discovered the deposit in 2010 as a result of a REE exploration program in southeast Labrador. Exploration diamond drilling in late 2010, 2011, and early 2012, totalling 72 diamond-drill holes and 18,855 metres, outlined a Dy-Nd-Y-Tb deposit of 9.2 million tonnes indicated resource (cut-off 130 ppm Dy), grading 189 ppm Dy, 1442 ppm Nd and 1040 ppm Y, and, 5.2 million tonnes inferred resource, grading 176 ppm Dy, 1233 ppm Nd, and 974 ppm Y (Table 1; Srivastava et al., 2012, 2013). A smaller highgrade resource (HGC) was also defi ned (Table 1) and was the subject of a Preliminary Economic Assessment (Srivastava et al., 2013). The Foxtrot deposit and the Fox Harbour Volcanic belt have been the target of continued REE exploration and the subject of engineering and metallurgical studies (Srivastava et al., 2012, 2013; Search Minerals 2014, 2015b) to evaluate the possibility of developing a REE mine at Foxtrot and a REE processing plant in the St. Lewis area (Fig. 1). Herein we outline the geology and mineralization of the Foxtrot REE deposit and develop a preliminary exploration model for REE mineralization in the Fox Harbour Volcanic belt and related belts in southeast Labrador.
DS201512-1951
2015
Miller, V.S., Naeth, M.A.Development of soils and plant communities for reclamation in northern diamond mines.43rd Annual Yellowknife Geoscience Forum Abstracts, abstract p. 68.Canada, Northwest TerritoriesReclamation

Abstract: Reclamation research in the north over the past 30 years has primarily focused on oil and gas and transportation corridor disturbances. Among industries, disturbances caused by infrastructure and transportation corridors are similar. However, each industry has its unique by products that determine which reclamation methods are most appropriate to achieve end land use goals and the relative ease of reclamation. The purpose of this research program is to develop methods to enhance revegetation of disturbed sites at diamond mines in the north, in particular to create soil like substrates on sites where soil has been removed with the use of onsite and commercial materials and to reestablish a diverse native plant community. Reclamation substrates include by products from the diamond mining process like crushed rock, till/lake sediment, processed kimberlite and various combinations of till/lake sediment and processed kimberlite. Greenhouse experiments were also conducted at the University of Alberta to test a range of substrates and amendments with potential to aid reclamation in the field. In 2013 and 2014, research sites were established at Diavik Diamond Mine using the best performing substrates to determine the effect of micro topography, addition of organic matter and erosion control on native grass and forb establishment; effective moss propagation techniques and; effective lichen propagation methods. Preliminary results and observations from completed greenhouse experiments and the first two growing seasons will be discussed. This research directly enhances knowledge and sustainability of northern regions. It will lead to recommendations for enhanced reclamation protocols to be used by industry and government in the north.
DS201512-1952
2015
Milligan, R., Fedortchouk, Y., Normandeau, P.X., Fulop, A.Comparative study of composition and occurrence of apatite in Snap Lake and Ekati kimberlites.43rd Annual Yellowknife Geoscience Forum Abstracts, abstract p. 69.Canada, Northwest TerritoriesDeposit - Snap Lake, Ekati

Abstract: Kimberlites are volcanic ultra-potassic rocks present mostly in cratonic settings and some are diamond bearing. Kimberlite magma is derived from the upper mantle, however, its primary composition is still unknown. Assimilation of mantle and crustal material, loss of volatiles during eruption and high degree of alteration all result in variable compositions of kimberlite magma reaching the surface. Studies have shown that kimberlitic fluid has a significant effect on the quality and preservation of diamonds carried to the surface. By better understanding the primary composition of kimberlites, and the processes that drive kimberlite eruption, we can attempt to gain some diagnostic knowledge of the economic viability of a particular kimberlite. Apatite is a common mineral in kimberlite, which composition is sensitive to volatiles and the presence of magmatic fluid. This study will look at the variation of apatite in kimberlites, how different geology indicates their different fluid histories, and the potential for using apatite as an indicator of fluid content and composition in kimberlite magma. The study uses polished sections from different kimberlite lithologies within the Snap Lake kimberlite and from six Ekati Mine kimberlites. Apatite grains were examined using scanning electron microscope (back scatter imaging) and composition was obtained with wavelength-dispersive spectroscopy mode of electron-microprobe analyzes. Snap Lake is a single dyke of coherent kimberlite facies. The dyke intruded in a near-horizontal orientation, and has an average vertical thickness of 2.5 m. There is significant incorporation of crustal material, and the kimberlite is highly altered, possibly a result of interaction with abundant xenoliths. The studied Ekati kimberlites include: two coherent kimberlites - Grizzly and Leslie, and four kimberlites with resedimented volcaniclastic kimberlite facies – Misery, Koala, Panda, and Beartooth. These kimberlites show significant variations in the apatite crystallizing from the melts. At Snap Lake apatite occurs late, interstitially in the groundmass. These anhedral apatites appear to have no zonation, and crystallize around microphenocrysts of olivine and phlogopite. There is also a late component of apatite, possibly associated with carbonate veins that fracture olivine macrocrysts. Sub- to euhedral apatite grains (max 50 µm) crystalize in a carbonate host within a fracture or crack in olivine macrocrysts. In the Ekati kimberlites, apatite is extremely rare to absent in Misery, Panda, and Beartooth kimberlites, but abundant in Grizzly, Koala, and Leslie. Leslie has plenty of euhedral zoned and unzoned apatite associated with monticellite set in carbonate matrix. Grizzly has abundant small (~10 µm) anhedral apatite. Koala contains both anhedral and euhedral apatite, some of which is zoned. The presentation will report the initial results of this study and possible applications for the behavior of volatiles in the studied kimberlite magmas and examine their relationship with the features of the diamond population.
DS201512-1955
2015
Novy, L., Petherbridge, W.Ekati Long Lake containment facility reclamation research.43rd Annual Yellowknife Geoscience Forum Abstracts, abstract p. 76.Canada, Northwest TerritoriesDeposit - Ekati

Abstract: The Ekati Diamond Mine is a surface and underground diamond mine operated by Dominion Diamond Ekati Corporation. It is located near the Lac de Gras Northwest Territories, Canada approximately 300 km north of Yellowknife and roughly 200 km south of the Arctic Circle. The Ekati Long Lake Containment Facility (LLCF) is a five celled containment area for storage of processed kimberlite generated during the processing and extraction of diamonds from kimberlite ore. The LLCF has been in operation since 1998 and deposition of processed kimberlite has occurred within the three northern cells with the remaining two cells being used for water quality “polishing” to help meet discharge criteria. The Interim Closure and Reclamation Plan for Ekati outlines a plan to cover the LLCF kimberlite surface with a combination of rock and vegetation. The cover system looks to fulfill the closure objective of physically stabilizing the processed kimberlite and creating a landscape safe for wildlife and human use. Cell B of the LLCF has reached its capacity and is being used as a reclamation research area. The purpose of the reclamation research is to identify a long term cover design that can be expanded to the whole LLCF. A winter drilling investigation in Cell B of the LLCF was undertaken in 2013. The objective of the investigation was to characterize the processed kimberlite and its porewater chemistry. Results from the investigation indicated that permafrost has aggraded into the kimberlite and surface zone pore water concentrations were higher when compared to process plant discharge. In fall of 2013 various areas of Cell B were seeded with annual and perennial vegetation ground covers. Further seeding of Cell B was completed in the summer of 2014. Seed from a variety of sources that includes locally harvested and commercially available native plants and farm crops was applied at different rates using different seeding techniques. In the winter of 2013 rock was placed in various configurations within the seeded areas to evaluate its effects on vegetation growth and erosion control. A total of 25 hectares has been seeded in Cell B since the fall of 2013 and the results of initial monitoring are positive regarding establishment of long term ground cover on the kimberlite.
DS201512-1956
2015
O'Keefe, M.Rough year creates opportunity in diamonds.Diamonds in Canada Magazine, Northern Miner, Nov. pp. 5-9.Global, CanadaDiamond industry
DS201512-1957
2015
Paget, M., Chiaramello, P.Goldsim water balance modeling of waste rock piles, Ekati waste rock storage area ( Ekati WRSA).43rd Annual Yellowknife Geoscience Forum Abstracts, abstract p. 77.Canada, Northwest TerritoriesDeposit - Ekati

Abstract: The Ekati Waste Rock Storage Piles (WRSA) water balance model was developed in Goldsim as a module designed to support water quality estimates. The water balance module accounts for direct precipitation, snowmelt, seepage, runoff, and delays to flow within the WRSA. As the Ekati Mine is located within a climate zone of continuous permafrost, a portion of the water infiltrating the WRSA’s becomes trapped within the waste rock as ice when it encounters sub-freezing internal temperatures. Seepage leaching from the WRSAs is thus limited to the outer surface of the WRSAs (active layer) where water produced by melting of seasonal surficial ice and snow. The active layer was modeled by detaining all water in the WRSA from October to the end of June. After June the water was released from the layer using a delay function, which is described below. The model divides seepage and runoff into three physically-based flow paths. ? The primary flow path is of water that falls infiltrates vertically through the waste rock until it encounters an impermeable lens of ice-saturate rock, and travels horizontally, to ultimately emerge at the toe of the WRSAs. ? The secondary flow path is water that falls on the outer slopes of the WRSAs and seeps under the outer slopes to the toe. ? The third flow path is also of water that falls on the outer slopes of the WRSAs and travels along the surface of the WRSA to the toe as runoff. Water losses were accounted at the surface of the pile prior to infiltration and within the pile as follows; ? water losses from evaporation is represented by a runoff coefficients; and ? water loss to the pile is modeled based on a percentage of volume of waste rock. As each WRSA is saturation flows exiting the pile increase. Flat infiltration is the slowest flow path and creates base flows that maintain flows out of the WRSAs during late summer and early winter periods. The slopes seepage is released more slowly over several days or weeks. While slopes runoff is the fastest flow path creating storm peaks during rainfall events. Results of the total WRSA discharge are a constant slow outflow at the toe with small increases due to precipitation events and the freshet, which is consistent with observations of waste rock drainage. Flows are attenuated using a time delay, which was simulated for each flow path using an Erlang function. The Erlang function refers to a two-parameter Gaussian distribution, where the shape parameter n is an integer. Hydrologically, the parameter n corresponds to the number of hypothetical linear reservoirs (Nash 1957). For the slopes runoff, n = 1 is assumed, which gives an exponential distribution. For the flats infiltration and slope seepage n = 2 is assumed, which gives a typical unit hydrograph shape with a delayed peak flow. The value of the lag parameter for each component was determined through model calibration.
DS201512-1958
2015
Poitras, S.P.A geochemical study of diamond indicator minerals from the NWT interior platform.43rd Annual Yellowknife Geoscience Forum Abstracts, abstract p. 86.Canada, Northwest TerritoriesGeochemistry

Abstract: The Central Mackenzie Valley (CMV) area of the Northwest Territories (NWT) comprises a Phanerozoic sedimentary basin that lies between the western margin of the Slave craton and the Cordillera. Although the region is considerably outside the bounds of the exposed Slave craton, both LITHOPROBE and more recent regional-scale surface wave studies (e.g., Priestley and McKenzie, 2006) indicate the likely presence of lithospheric mantle extending into the diamond stability field. Recent work conducted by Olivut Resources Ltd. led to the discovery of 29 kimberlites in the CMV. However, the indicator mineral chemistry of discovered kimberlites does not appear to be a good match (www.olivut.ca) with those during regional till and stream sediment sampling by the Geologic Survey of Canada (GSC) and Northwest Territories Geologic Survey (NTGS) in August 2003 and July 2005. We present new geochemical data on the regional indicator minerals with the aim of obtaining geotherm and depth of mantle sampling constraints on those indicator minerals discovered to date. A statistical evaluation of the data will compare the similarities to indicator mineral chemistry with parts of the Slave craton to evaluate whether the CMV indicators may ultimately be derived from that region. In total 3600 kimberlite indicator mineral grains were picked from the 0.25-2.0 mm size fractions. Peridotitic garnet grains dominate (46%), followed by magnesium ilmenite (26%), with decreasing individual proportions >15% of chromite, low-chrome diopside, olivine, chrome-diopside and eclogitic garnet. A sub-sample of these grains (3143) were analysed by EPMA. Garnet grains classify (after Grütter et al., 2004) as 1015 (62.1%) G9, 270 (16.5%) G11, 113 (6.9%) G10, 103 (6.3%) G12, 57 (3.5%) G1, 46 (2.8%) G10D, and the remaining 31 (1.9%) as G0, G3, G3D, G4, and G5. A sub-set of garnet grains (~700) were selected for LA-ICP-MS trace element analysis. Of the grains selected 74% G9, 14% G10 (and G10D), and 8% G11, with only 4% G12 and G0 (Grütter et al., 2004). Nickel concentrations from these grains range from 2.6-168.2 ppm, with the majority (>80%) between 20-100 ppm, yielding TNi (Canil, 1999) values ranging from 643-1348°C, with the majority between ~1000-1200°C. Using a central Slave craton geothermal gradient (Hasterok and Chapman, 2011), equilibration pressures for these garnet grains range from 20-80 kbars with the majority between 40-60 kbars (120-185 km). Preliminary analysis has 581 (81%) of the erupted peridotitic mantle garnet grains plotting within the diamond stability field (Kennedy and Kennedy, 1976). Of the 128 clinopyroxene grains analysed, only a few represent garnet peridotite (lherzolite) facies KIM clinopyroxene grains following compositional screening. Thermobarometry of these grains (Nimis and Taylor, 2000), assuming they were all derived from the same lithospheric section, yields P-T arrays identical to the central Slave geotherm that was 220 km thick at the time of eruption. These results are encouraging for diamond exploration. We thank Overburden Drilling Management Ltd. for grain picking and recovery of the small diamond, SGS Lakefield Research for mounting grains, and the GSC for probing of the grains.
DS201512-1963
2015
Sappin, A-A., Beaudoin, G.Rare earth elements in Quebec, Canada: main deposit types and their economic potential.Symposium on critical and strategic materials, British Columbia Geological Survey Paper 2015-3, held Nov. 13-14, pp. 265-Canada, QuebecRare earths

Abstract: Rare earth elements (REE) are strategic metals vital to global economic growth because they are used in a wide range of high-technology industries (e.g., energy, transport, and telecommunications; Walters et al., 2011). The world production and reserves are mainly owned by China. In 2008, the Chinese government introduced export quotas on rare metals, which led to a global search for new sources of REE. Québec has substantial REE resources (Simandl et al., 2012), which may contribute to future production. Gosselin et al. (2003) and Boily and Gosselin (2004) inventoried rare metals (REE, Zr, Nb, Ta, Be, and Li) occurrences and deposits in Québec and, based mainly on lithological association, subdivided them into seven types: 1) deposits associated with peraluminous granitic complexes; 2) deposits associated with carbonatite complexes; 3) deposits associated with peralkaline complexes; 4) deposits associated with placers and paleoplacers; 5) iron oxide, Cu, REE, and U deposits; 6) deposits associated with granitic pegmatites, migmatites, and peraluminous to metaluminous granites; and 7) deposits associated with calc-silicate and metasomatized rocks or skarns. Herein we review REE mineralization in the province, adopting a more genetic scheme based on the classifi cation of Walters et al. (2011). The REE occurrences and deposits are subdivided into primary deposits, formed by magmatic and/ or hydrothermal processes, and secondary deposits, formed by sedimentary processes and leaching. Primary deposits are then subdivided into four types: 1) carbonatite complex-associated; 2) peralkaline igneous rock-associated; 3) REE-bearing Iron- Oxide-Copper-Gold (IOCG) deposits; and 4) hyperaluminous/ metaluminous granitic pegmatite-, granite-, and migmatiteassociated deposits, and skarns. Secondary deposits are subdivided into two deposit types: 1) placers and paleoplacers and 2) REE-bearing ion-adsorption clays.
DS201512-1965
2015
Schmidt, N., Kramers, P.The Gahcho Kue mine dewatering experience, winter 2014-2015.43rd Annual Yellowknife Geoscience Forum Abstracts, abstract p. 93.Canada, Northwest TerritoriesDeposit - Gahcho Kue

Abstract: Construction of the De Beers Gahcho Kué Mine required that a portion of Kennady Lake be dewatered to provide access to kimberlite pipes on the lakebed. The Construction Water Management Plan considered an initial dewatering volume of approximately 18.7 Mm3, to be discharged to two downstream waterbodies (Lake N11 and Kennady Lake Area 8). This dewatering was originally planned to occur during the open water season, after the spring freshet peak. The project received its Type A Water Licence from the Mackenzie Valley Land and Water Board on September 24, 2014, and before that date it had become apparent that winter dewatering would be required to prevent a significant delay in the project development. Potential adverse impacts related to winter dewatering were identified and were primarily related to aufeis development. Aufeis is defined as an ice deposit, formed by vertical growth of layers as thin flows of water are exposed to freezing temperatures. These may have adverse effects on erosion, fish and fish habitat. Action levels for winter dewatering were developed, based on site-specific hydrological characteristics, and were included in the Aquatic Effects Monitoring Program for the Mine. This allowed field measurements to be compared to action levels during the dewatering program. Field measurements included telemetry to monitor lake hydrostatic water surface elevations, as well as periodic visits to the receiving lake outlets and downstream areas to examine ice and flow conditions. Winter dewatering commenced on December 20, 2014, with pumping to Kennady Lake Area 8. Pumping was suspended on January 4, 2015, as the action level for that location was approached. Approximately 779,000 m3 of water was released over 16 days. Dewatering discharges were then pumped to Lake N11, with pumping commencing on February 1, 2015 and continuing through the winter period, as the action level for that location was not exceeded. Over the 103 day period through May 14, 2015, approximately 6,021,000 m3 of water was released. A total of 6,800,000 m3 of water was discharged from Kennady Lake over the winter dewatering period, or about 36% of the planned initial dewatering volume. Winter and subsequent open-water season reconnaissance did not identify any adverse effects due to winter dewatering. This presentation will discuss winter dewatering risks, action level development, field program observations, and factors contributing to the overall success of the program.
DS201512-1971
2015
Solgadi, F., Groulier, P.A, Moukhsil, A., Ohnenstetter, D., Andre-Mayer, A.S., Zeh, A.Nb-Ta-REE mineralization associated with the Crevier alkaline intrusion.Symposium on critical and strategic materials, British Columbia Geological Survey Paper 2015-3, held Nov. 13-14, pp. 69-74.Canada, QuebecAlkalic

Abstract: The Crevier alkaline intrusion is in the Grenville Province, north of the Lac Saint-Jean region of Québec (Fig. 1). It covers ~25 km2 (Bergeron, 1980) and intrudes charnockitic suites in the allochthon belt defi ned by Rivers et al. (1989). This intrusion has a U-Pb zircon age of 957.5 ± 2.9 Ma (Groulier et al., 2014) and is oriented N320°, along the axis of crustal weakness known as the Waswanipi-Saguenay corridor (Bernier and Moorhead, 2000). This corridor is related to the Saguenay graben, which hosts the Saint-Honoré (Niobec) Nb-Ta-REE deposit and Montviel REE deposit. The age of the Saint-Honoré carbonatite was estimated at 584 to 650 Ma (K-Ar whole rock; Vallée and Dubuc, 1970; Boily and Gosselin, 2004). The Montviel intrusion has a U-Pb zircon age of 1894 ± 3.5 Ma (David et al., 2006; Goutier, 2006). These crystallization ages are very different and cannot be related to a single event for the injection of alkaline intrusions. As mapped by Bergeron (1980), the Crevier alkaline intrusion is broadly composed of syenite and carbonatite rocks (Fig. 2). The Nb- Ta mineralization consists of pyrochlore hosted by a nepheline syenite dike swarm in the centre of the intrusion. The highest REE concentrations, up to 729 ppm La and 1465 ppm Ce, are at the edge of the Crevier alkaline intrusion (Niotaz sud showing; Fig. 2).
DS201512-1973
2015
Stokes, L.Kennady causes a commotion. A visit to the 'exciting' Kennady North project.Diamonds in Canada Magazine, Northern Miner, Nov. pp. 10-13.Canada, Northwest TerritoriesDeposit - Kennady North
DS201512-1977
2015
Tappert, R., Tappert, M.C.hyper spectral imagery: a novel way to analyze kimberlite indicator minerals and to detect kimberlite micro-float.43rd Annual Yellowknife Geoscience Forum Abstracts, abstract p. 102.Canada, Northwest TerritoriesHyperspectral imagery

Abstract: The collection and analysis of kimberlite indicator minerals from heavy mineral concentrates is an integral part of the diamond exploration process. However, surficial sampling programs are often restricted by time-consuming mineral collection, processing, and analysis procedures. To facilitate the development of a technique that can simplify and accelerate the identification and classification of kimberlite indicator minerals, we explored the usage of hyperspectral imagery, which is based on the analysis of reflected radiation in the visible and infrared parts of the electromagnetic spectrum. The investigation was focused on the identification of indicator garnets. Hyperspectral imagery was collected directly from heavy mineral concentrates, and these images were de-noised and processed to isolate the spectral absorption features relating to mineral composition. These images were then analyzed to identify individual garnets. This portion of the analysis was complemented by the results of 1000+ high-resolution spectra collected from well-characterized crust- and mantle-derived garnets to ensure that the garnets in the heavy mineral concentrates were accurately identified. Preliminary results indicate that garnets can be readily distinguished from other concentrate minerals using hyperspectral imagery, and that the garnets can also be compositionally classified. The compositional classification allows crust- and mantle-derived garnets to be distinguished accurately, while providing concentration information about certain transition elements, like chromium and titanium. In addition to the garnet analysis, hyperspectral imagery was also used to identify millimeter-sized fragments of kimberlite (kimberlite micro-float) in heavy mineral concentrates and unprocessed sediment samples. Preliminary results indicate that kimberlite micro-float can be readily distinguished from other rock and mineral fragments due to its distinct spectrum. Pending additional testing, analytical techniques using hyperspectral imagery may serve as an alternative to the costly and time-consuming indicator mineral identification methods currently being used.
DS201512-1979
2015
Tremblay, J., Bedard, L.P., Matton, G.A petrographic study of Nb-bearing minerals at the Saint-Honore niobium deposit.Symposium on critical and strategic materials, British Columbia Geological Survey Paper 2015-3, held Nov. 13-14, pp. 75-82.Canada, QuebecNiobium

Abstract: The mineralogy of rare earth element (REE) ore deposits is critical in understanding their petrogenesis but also has signifi cant implications for metallurgy. Like many ore deposits, high-grade rocks do not necessarily equate to positive economic viability and this is especially true for REE deposits. Consequently, knowledge of sample mineralogy acquired early in a project’s life can lead to more effi cient exploration programs through confi rmation of either ‘good’ or ‘bad’ mineralogy. Many REE minerals show fi ne grain sizes and their accumulation can be diffi cult to recognize in hand sample or drill core with an unaided eye. Knowledge of their distribution before sampling can ensure that the best rocks or core lengths are sampled for petrographic or detailed study. REE minerals generally have complex yet diagnostic absorption patterns in visible to shortwave infrared (VNIRSWIR) refl ectance spectra that are driven primarily by REErelated 4f-4f intraconfi gurational electronic transitions. Our recent research (Turner et al., 2014, Turner 2015) has focused on three important mineral classes: REE fl uorocarbonates (bastnaesite, synchysite, and parisite), REE phosphates (monazite, xenotime, and britholite), and REE-bearing silicates (cerite, mosandrite, kainosite, zircon and eudialyte). Refl ectance spectra were acquired in the visible to short wave infrared regions (500 nm to 2500 nm) and samples were characterized using scanning electron microscopy and electron microprobe analysis. The results of our work and publications from other research groups (e.g., Rowan et al., 1986, Swayze et al., 2013, Hoefen et al., 2014, Boesche et al., 2015) have shown the strong applicability of refl ectance spectroscopy and hyperspectral imaging to understanding, exploring, and exploiting rare earth element ore deposits and their associated rocks.
DS201512-1981
2015
Van Wychen, W., Copland, L., Burgess, D.O., Gray, L., Schaffer, N., Fisher, T.Glacier velocities and dynamic discharge from the ice masses of Baffin Island and Bylot Island, Nunavut, Canada.Canadian Journal of Earth Sciences, Vol. 52, 11, pp. 980-989.Canada, Nunavut, Baffin IslandGeomorphology

Abstract: Speckle tracking of ALOS PALSAR fine beam data from 2007-2011 are used to determine the surface motion of major ice masses on Baffin Island and Bylot Island in the southern Canadian Arctic Archipelago. Glacier velocities are low overall, with peaks of ?100 m a?1 and means of ?20-60 m a?1 common along the main trunk of many outlet glaciers. Peak velocities on Penny and Bylot Island ice caps tend to occur near the mid-sections of their primary outlet glaciers, while the fastest velocities on all other glaciers usually occur near their termini due to relatively large accumulation areas draining through narrow outlets. Estimates of ice thickness at the fronts of tidewater-terminating glaciers are combined with the velocity measurements to determine a regional dynamic discharge rate of between ?17 Mt a?1 and ?108 Mt a?1, with a mid-point estimate of ?55 Mt a?1, revising downward previous approximations. These velocities can be used as inputs for glacier flow models, and provide a baseline dataset against which future changes in ice dynamics can be detected.
DS201512-1986
2015
Weiss, Y., Pearson, D.G., Mcneill, J., Nowell, G.M., Ottley, C.J.Salty fluids, subducted slabs and NWT diamonds.43rd Annual Yellowknife Geoscience Forum Abstracts, abstract p. 108.Canada, Northwest TerritoriesDiamond genesis

Abstract: Diamonds from the Ekati and Diavik mines have provided a wealth of information on diamond forming processes beneath the Slave craton. Fluid-rich “fibrous” diamonds trap some of the fluid from which the diamond is growing and hence provide a unique means to characterize directly the fluids that percolate through the deep continental lithospheric mantle. On a world-wide basis, Ekatic and Diavik fluid-rich diamonds trap an anomalously high proportion of fuids that are “salty” or high saline in composition, with high Na and Cl contents. The origin of these “salty” fluids has been something of a mystery. Here we show the first clear chemical evolutionary trend identifying saline fluids as parental to silicic and carbonatitic deep mantle melts, in diamonds from the Northwest Territories, Canada. Fluid-rock interaction along with in-situ melting cause compositional transitions, as the saline fluids traverse mixed peridotite-eclogite lithosphere. Moreover, the chemistry of the parental saline fluids - especially their Sr isotopic compositions - and the timing of host diamond formation suggest a subducting Mesozoic plate under western North America to be the source of the fluids. Our results imply a strong association between subduction, mantle metasomatism and fluid-rich diamond formation, emphasizing the importance of subduction-derived fluids in impacting the composition of the deep lithospheric mantle
DS201512-1987
2015
Wells, D.Diavik mine environment update,43rd Annual Yellowknife Geoscience Forum Abstracts, abstract p. 108.Canada, Northwest TerritoriesDeposit - Diavik

Abstract: Since 2003 Diavik Diamond Mines Inc. has been mining diamonds from kimberlite pipes located below the waters of Lac de Gras. Monitoring and mitigating our impact on the local environment has been a core value at Diavik since our initial discovery. The mine was designed, and is operated, in a manner to reduce our overall environmental footprint and ultimately allow for a safe and efficient closure. A core team of scientists and technicians are responsible for monitoring the air, water, wildlife and regulatory compliance at the mine site. This presentation will focus on the work of this dedicated team.
DS201512-1988
2015
White, D., Bezzola, M., Hrkac, C., Vivian, G.Kennady North property: 2015 field season update.43rd Annual Yellowknife Geoscience Forum Abstracts, abstract p. 109.Canada, Northwest TerritoriesDeposit - Kennady North

Abstract: The Kennady North Property, wholly owned by Kennady Diamonds Inc. (KDI) is located 300 km northeast of Yellowknife adjacent to the DeBeers/Mountain Province Gahcho Kué mine site. Exploration on the property dates back to the early 90’s, during which time several kimberlites were discovered. Since 2012 Kennady Diamonds has completed a number of geophysical, hand and RC till sampling and diamond drill programs. In 2015, KDI completed a large diameter reverse circulation drill program to bulk sample the southern lobe of the Kelvin kimberlite. Following the RC program, diamond drilling and ground geophysical surveys continued in the Kelvin-Faraday Corridor (KFC) and at various exploration targets on the property including the MZ Dyke and Doyle Sill. The field season started in January with the completion of the Kelvin camp and the construction of the RC drill icepad on Kelvin Lake. The pad and a seasonal spur road off the Gahcho Kue seasonal road were completed to coincide with the opening of the Tibbit-Contwoyto winter road and facilitated the mobilization of two large diameter RC rigs operated by Midnight Sun Drilling Inc. to the property. A total of 446 tonnes of the Kelvin kimberlite were obtained via RC drilling between February 19 and April 2. The bulk sample was processed via DMS at the Saskatchewan Research Council in Saskatoon. One diamond drill commenced drilling prior to the RC program and two other drills commenced on the heels of the RC program. A total of 31,000 meters of NQ and HQ core have been drilled during 2015 to the end of October. Drilling at Kelvin has focused on geotechnical and related environmental baseline work as well as further delineation of the pipe-like body with the aim of generating a NI43-101 compliant resource in early 2016. Diamond drilling at the Faraday group of kimberlites delineated the Faraday 1 and Faraday 2 kimberlites. These pipe-like bodies share a similar pipe-like structure and internal geology to the Kelvin kimberlite. Aurora conducted 8848 stations of ground gravity and 521.32 line-kilometers of OhmmapperTM capacitively coupled resistivity in the KFC, MZ dyke, and Doyle Sill during March and April. A 87 line-kilometer bubble seismic survey over the Kelvin, Faraday and MZ complexes was conducted in September. Kennady Diamond Inc. is very encouraged by the exploration results to date and anticipates a successful and exciting 2016.
DS201512-1990
2015
Williams-Jones, A.E., Vasyukova, O.Fluoride-silicate melt immisicibility and the formation of the pegmatite-hosted Strange Lake REE deposit, Quebec-Labrador.Symposium on critical and strategic materials, British Columbia Geological Survey Paper 2015-3, held Nov. 13-14, pp. 91-96.Canada, Quebec, LabradorRare earths
DS201512-1998
2015
Zorzi, L., Crawford, B., Ferguson, K.Geological and structural interpretation of the Jay kimberlite host rocks.43rd Annual Yellowknife Geoscience Forum Abstracts, abstract p. 110.Canada, Northwest TerritoriesDeposit - Jay

Abstract: The Ekati property is located above an eastward-dipping Archean suture in the central part of the Slave Structural Province of the Canadian Shield. The bedrock geology comprises supracrustal rocks (metamorphosed greywacke-mudstone turbidites) of the Neoarchean post-Yellowknife Supergroup that are intruded by syn to post-tectonic plutons, made up predominantly of granite, granodiorite, and tonalite. In addition, five mafic Proterozoic dyke swarms, ranging in age from ca. 2.23 to 1.27 Ga, intrude the area. The area is intersected by several mafic dykes, belonging mainly to the Malley, MacKenzie, and Lac de Gras dyke swarms. To date, approximately 150 kimberlites have been discovered at Ekati ranging in age from ca. 45 to 75 Ma, intruding Archean metasediments and granitoids of the Salve Craton. In addition to the 150 kimberlites on the Ekati property, more than 240 confirmed kimberlites have been discovered to date in the region known as the Lac de Gras kimberlite field. The kimberlites represent the only evidence for Phanerozoic igneous activity within the area. Kimberlites on the Ekati property show an apparent bias in the type of host rock they intrude and are commonly associated with faults or dykes of various orientations. The Jay kimberlite pipe is located in the southeastern quadrant of the Ekati property. It is approximately 25 km southeast of the Koala cluster (including Panda, Koala, Koala North and Beartooth kimberlite pipes), and 7 km north-northeast of the Misery Main pipe. Based on available geological data consisting of geophysical surveys, geological maps and borehole data, the Jay kimberlite pipe appears to be hosted within post- Yellowknife Supergroup granitic rocks, ranging from granite to granodiorite in composition. It is interpreted to be emplaced along a regional lithological contact between granitoid rocks and Yellowknife Supergroup metasedimentary rocks that were covered by a now eroded veneer of poorly consolidated muddy sediments. A diabase dyke trending approximately east-west occurs to the north of the Jay kimberlite pipe. Despite the available data, geological and structural settings of the Jay host rocks were still not well understood. This work represents the first comprehensive geological interpretation of the host rocks within the Jay pipe setting. The proposed interpretation will be based on the following: • a detailed review, compilation, and interpretation of previously published geological work in the area; • interpretation of high-resolution light detection and ranging (LiDAR) data; • high-resolution orthophotos and airborne geophysical data; • geological data from delineation and geotechnical boreholes drilled between 2005 and 2007, and the recent 2014 and 2015 drilling programs at the Jay pipe area. An implicit modelling approach has been used to develop a three dimensional geological and structural model of the Jay pipe host rocks based on the preliminary interpretation. Ongoing studies aim to decode the geological and structural controls on the Jay kimberlite emplacement, along with its relationship with the nearby Misery kimberlite cluster.
DS201601-0002
2016
Bailey, B.L., Blowes, D.W., Smith, L., Sego, D.C.The Diavik waste rock project: geochemical and microbiological characterization of low sulfide content large-scale waste rock test piles.Applied Geochemistry, Vol. 65, pp. 54-72.Canada, Northwest TerritoriesDeposit - Diavik

Abstract: Two experimental waste-rock piles (test piles), each 15 m in height × 60 m × 50 m, were constructed at the Diavik diamond mine in Northern Canada to study the behavior of low-sulfide content waste rock, with a similarly low acid-neutralization potential, in a continuous permafrost region. One test pile with an average of 0.035 wt.% S (<50 mm fraction; referred to as Type I) and a second test pile with an average of 0.053 wt.% S (<50 mm fraction; referred to as Type III) were constructed in 2006. The average carbon content in the <50 mm fraction of waste rock in the Type I test pile was 0.031 wt.% as C and in the Type III test pile was 0.030 wt.% as C. The NP:AP ratio, based on the arithmetic mean of particle-size weighted NP and AP values, for the Type I test pile was 12.2, suggesting this test pile was non-acid generating and for the Type III test pile was 2.2, suggesting an uncertain acid-generating potential. The Type I test pile maintained near-neutral pH for the 4-year duration of the study. Sulfate and dissolved metal concentrations were low, with the exception of Ni, Zn, Cd, and Co in the fourth year following construction. The pore water in the Type III test pile contained higher concentrations of SO42? and dissolved metals, with a decrease in pH to <4.7 and an annual depletion of alkalinity. Maximum concentrations of dissolved metals (20 mg L?1 Ni, 2.3 mg L?1 Cu, 3.7 mg L?1 Zn, 35 ?g L?1 Cd, and 3.8 mg L?1 Co) corresponded to decreases in flow rate, which were observed at the end of each field season when the contribution of the total outflow from the central portion of the test pile was greatest. Bacteria were present each year in spite of annual freeze/thaw cycles. The microbial community within the Type I test pile included a population of neutrophilic S-oxidizing bacteria. Each year, changes in the water quality of the Type III test-pile effluent were accompanied by changes in the microbial populations. Populations of acidophilic S-oxidizing bacteria and Fe-oxidizing bacteria became more abundant as the pH decreased and internal test pile temperatures increased. Irrespective of the cold-climate conditions and low S content of the waste rock, the geochemical and microbiological results of this study are consistent with other acid mine drainage studies; indicating that a series of mineral dissolution-precipitation reactions controls pH and metal mobility, and transport is controlled by matrix-dominated flow and internal temperatures.
DS201601-0004
2015
Bancroft, A.M., Brunton, F.R., Kleffner, M.A., Jin, J.Silurian condodont biostratigraphy and carbon isotope stratigraphy of the Victor mine core in the Moose River basin.Canadian Journal of Earth Sciences, Vol. 52, 12, pp. 1169-1181.Canada, Ontario, AttawapiskatDeposit - Victor

Abstract: The Moose River Basin in Ontario, Canada, contains nearly 1 km of Silurian marine strata, and although it has been studied for more than a century, its precise correlation globally has not been constrained. Herein, a core from the Victor Mine in the Moose River Basin was examined for conodont biostratigraphy and carbonate carbon (?13Ccarb) isotope chemostratigraphy to provide a detailed chronostratigraphic framework for the Silurian strata (Severn River, Ekwan River, and Attawapiskat formations) in the Moose River Basin. The recovery of Aspelundia expansa, Aspelundia fluegeli fluegeli, Distomodus staurognathoides, Ozarkodina polinclinata estonica, Pterospathodus eopennatus, and Aulacognathus bullatus, as well as the lower Aeronian, upper Aeronian, lower Telychian (Valgu), and ascending limb of the Sheinwoodian (Ireviken) positive carbonate carbon (?13Ccarb) isotope excursions provide significantly improved chronostratigraphic correlation of Llandovery strata in the Moose River Basin. Silurian Conodont Biostratigraphy and Carbon (?13Ccarb) Isotope Stratigraphy of the Victor Mine (V-03-270-AH) Core in the Moose River Basin.
DS201601-0028
2016
Liu, J., Riches, A.J.V., Pearson, D.G., Luo, Y., Kienlen, B., Kjarsgaard, B.A., Stachel, T., Armstrong, J.P.Age and evolution of the deep continental root beneath the central Rae craton, northern Canada.Precambrian Research, Vol. 272, pp. 168-174.CanadaGeocronology, metasomatism, tectonics

Abstract: Canada is host to at least six separate cratons that comprise a significant proportion of its crustal extent. Of these cratons, we possess knowledge of the cratonic lithospheric roots beneath only the Slave craton and, to a lesser extent, the Superior craton, despite the discovery of many new diamond-bearing kimberlites in Canada's North. Here we present the first age, composition and geothermal information for kimberlite-borne peridotite xenoliths from two localities within the central Rae craton: Pelly Bay and Repulse Bay. Our aim is to investigate the nature and evolution of the deep lithosphere in these regions and to examine how events recorded in the mantle may or may not correlate with the complex history of crustal evolution across the craton. Peridotite xenoliths are commonly altered by secondary processes including serpentinization, silicification and carbonation, which have variably affected the major element compositions. These secondary processes, as well as mantle metasomatism recorded in pristine silicate minerals, however, did not significantly modify the relative compositions of platinum-group elements (PGE) and Os isotope ratios in the majority of our samples from Pelly Bay and Repulse Bay, as indicated by the generally high absolute PGE concentrations and mantle-like melt-depleted PGE patterns. The observed PGE signatures are consistent with the low bulk Al2O3 contents (mostly lower than 2.5%) of the peridotites, as well as the compositions of the silicate and oxide minerals. Based on PGE patterns and Os model ages, the peridotites from both localities can be categorized into three age groups: Archean (3.0-2.6 Ga overall; 2.8-2.6 Ga for Pelly Bay and 3.0-2.7 Ga for Repulse Bay), Paleoproterozoic (2.1-1.7 Ga), and "Recent" (<1 Ga, with model ages similar to the ca. 546 Ma kimberlite eruption age). The Archean group provides the first direct evidence of depleted Archean lithospheric mantle forming coevally with the overlying Archean crustal basement, indicating cratonization of the Rae during the Archean. The subtle difference in Os model ages between Pelly Bay and Repulse Bay coincides with the age difference between crustal basement rocks beneath these two areas, supporting the suggestion that the Rae craton was assembled by collision of separate two Archean blocks at 2.7-2.6 Ga. The Paleoproterozoic peridotites are interpreted to represent newly formed lithospheric mantle, most likely associated with regional-scale underplating during the 1.77-1.70 Ga Kivalliq-Nueltin event via removal of the lower portion of Archean lithospheric mantle followed by replacement with juvenile Paleoproterozoic lithospheric mantle. The existence of multiple age clusters in the lithosphere at each locality is consistent with the observation of present-day seismic lithospheric discontinuities (0540 and 0545) that indicate two or more layers of fossil lithospheric mantle fabric beneath this region. Our data define a shallow mantle lithosphere layer dominated by Archean depletion ages underlain by a layer of mixed Archean and Paleoproterozoic ages. This lithospheric mantle structure is probably a response to complex tectonic displacement of portions of the lithospheric mantle during Paleoproterozoic orogeny/underplating. The best equilibrated Archean and Paleoproterozoic peridotites at both Pelly Bay and Repulse Bay define a typical cratonic geotherm at the time of kimberlite eruption, with a ?200 km thick lithospheric root extending well into the diamond stability field, in keeping with the diamondiferous nature of the kimberlites. Such thick lithosphere remains in place to the present day as suggested by seismic and magnetotelluric studies (0540, 0545 and 0550). The metasomatically disturbed peridotites in the Rae lithospheric mantle, yielding model ages indistinguishable from kimberlite eruption, may represent parts of the Rae craton mantle root that show anomalous magnetotelluric signatures.
DS201601-0029
2015
Milidragovic, D., Francis, D.Ca 2.7 Ga ferropicrite magmatism: a record of Fe-rich heterogeneities during Neoarchean global mantle melting.Geochimica et Cosmochimica Acta, in press available, 14p.Canada, Africa, RussiaMelting

Abstract: Although terrestrial picritic magmas with FeOTOT ?13 wt.% are rare in the geological record, they were relatively common ca. 2.7 Ga during the Neoarchean episode of enhanced global growth of continental crust. Recent evidence that ferropicritic underplating played an important role in the ca. 2.74-2.70 Ga reworking of the Ungava craton provides the impetus for a comparison of ca. 2.7 Ga ferropicrite occurrences in the global Neoarchean magmatic record. In addition to the Fe-rich plutons of the Ungava craton, volumetrically minor ferropicritic flows, pyroclastic deposits, and intrusive rocks form parts of the Neoarchean greenstone belt stratigraphy of the Abitibi, Wawa, Wabigoon and Vermillion domains of the southern and western Superior Province. Neoarchean ferropicritic rocks also occur on five other Archean cratons: West Churchill, Slave, Yilgarn, Kaapvaal, and Karelia; suggesting that ca. 2.7 Ga Fe-rich magmatism was globally widespread.
DS201601-0031
2015
Mining MagazineNext Jay milestone in sight… proposed C$760 million open pit mine early in 2017.Mining Magazine, Dec. 13, 1/4p.Canada, Northwest TerritoriesMining - Dominion
DS201601-0045
2015
Snyder, D.B., Craven, J.A., Pilkington, M., Hillier, M.J.The three dimensional construction of the Rae craton, central Canada.Geochemistry, Geophysics, Geosystems: G3, Vol. 16, 10, pp. 3555-3574.Canada, Saskatchewan, AlbertaRae Craton

Abstract: Reconstruction of the 3-dimensional tectonic assembly of early continents, first as Archean cratons and then Proterozoic shields, remains poorly understood. In this paper, all readily available geophysical and geochemical data are assembled in a 3-D model with the most accurate bedrock geology in order to understand better the geometry of major structures within the Rae craton of central Canada. Analysis of geophysical observations of gravity and seismic wave speed variations revealed several lithospheric-scale discontinuities in physical properties. Where these discontinuities project upward to correlate with mapped upper crustal geological structures, the discontinuities can be interpreted as shear zones. Radiometric dating of xenoliths provides estimates of rock types and ages at depth beneath sparse kimberlite occurrences. These ages can also be correlated to surface rocks. The 3.6-2.6 Ga Rae craton comprises at least three smaller continental terranes, which "cratonized" during a granitic bloom. Cratonization probably represents final differentiation of early crust into a relatively homogeneous, uniformly thin (35-42 km), tonalite-trondhjemite-granodiorite crust with pyroxenite layers near the Moho. The peak thermotectonic event at 1.86-1.7 Ga was associated with the Hudsonian orogeny that assembled several cratons and lesser continental blocks into the Canadian Shield using a number of southeast-dipping megathrusts. This orogeny metasomatized, mineralized, and recrystallized mantle and lower crustal rocks, apparently making them more conductive by introducing or concentrating sulfides or graphite. Little evidence exists of thin slabs similar to modern oceanic lithosphere in this Precambrian construction history whereas underthrusting and wedging of continental lithosphere is inferred from multiple dipping discontinuities.
DS201601-0052
2015
Zurevinski, S.E., Mitchell, R.H.Petrogenesis of orbicular ijolites from the Prairie Lake complex, Marathon, Ontario: textural evidence from rare processes of carbonatitic magmatism.Lithos, Vol. 239, pp. 234-244.Canada, OntarioIjolite

Abstract: A unique occurrence of orbicular ijolite is hosted in a matrix of contemporaneous holocrystalline ijolite at the 1.1 Ga Prairie Lake Carbonatite Complex (Marathon, Ontario, Canada), and is the only known occurrence of this textural type in a rock of ijolitic composition. This mineralogical and petrological study of this orbicular ijolite highlights many of the differences from other rare occurrences of orbicular rocks described from carbonatites, granites, diorites and lamprophyres. The orbicules occur along distinct, densely packed bands in equigranular nepheline-rich ijolite and range up to 6 cm in diameter. Macroscopically, the orbicules show variability in the mineralogy of their cores. Detailed imaging of the cores shows evidence of quench textures. Radial outward zoning is common near the cores with concentric banding occurring toward the margins of the orbicules. The mineralogy of the orbicules consists of: nepheline; diopside; calcite; apatite; andradite-melanite garnet; titanite; Fe-rich phlogopite; titaniferous magnetite; perovskite; with secondary natrolite, calcite and cancrinite. The mineralogy of the host ijolite is similar to that of the orbicules. Mineral compositions from the orbicular ijolite and the host ijolite are similar. Within the orbicules, anhedral minerals are found occurring in a ‘matrix’ of garnet throughout the distinct concentric bands. The textures within the concentric bands of the orbicules are best described as annealing recrystallization textures. The rims of the orbicules form interlocking crystals with the host ijolite resulting in near-indistinguishable boundaries. The orbicules are interpreted to represent interaction of a partially-crystallized quenched ijolitic melt, which was in contact with a second pulse of consanguineous ijolite magma. Immersion in the latter resulted in sub-solidus diffusion and annealing recrystallization. Orbicular textures were produced from previously formed quenched ijolite, which was recrystallized producing the monominerallic concentric layers sequentially from the margins toward the center of the orbicule. This proposed model for the formation of orbicular ijolite from Prairie Lake highlights the complexities of these rock types, and supports previous models of magma mixing during the later stages of carbonatite emplacement and crystallization.
DS201602-0192
2015
Bancroft, A.M., Brunton, F.R., Kleffner, M.A.Silurian conodont biostratigraphy and carbon ( delta 13 C carb) isotope stratigraphy of the Victor mine ( V-03-270-AH) core in the Moose River Basin.Canadian Journal of Earth Sciences, Vol. 52, pp. 1169-1181.Canada, Ontario, AttawapiskatDeposit - Victor

Abstract: The Moose River Basin in Ontario, Canada, contains nearly 1 km of Silurian marine strata, and although it has been studied for more than a century, its precise correlation globally has not been constrained. Herein, a core from the Victor Mine in the Moose River Basin was examined for conodont biostratigraphy and carbonate carbon (13Ccarb) isotope chemostratigraphy to provide a detailed chronostratigraphic framework for the Silurian strata (Severn River, Ekwan River, and Attawapiskat formations) in the Moose River Basin. The recovery of Aspelundia expansa, Aspelundia fluegeli fluegeli, Distomodus staurognathoides, Ozarkodina polinclinata estonica, Pterospathodus eopennatus, and Aulacognathus bullatus, as well as the lower Aeronian, upper Aeronian, lower Telychian (Valgu), and ascending limb of the Sheinwoodian (Ireviken) positive carbonate carbon (13Ccarb) isotope excursions provide significantly improved chronostratigraphic correlation of Llandovery strata in the Moose River Basin.
DS201602-0198
2015
Chen, Y., Gu, Y.J., Dokht, R.M.H., Sacchi, M.D.Crustal imprints of Precambrian orogenesis in western Laurentia.Journal of Geophysical Research, Vol. 120, 10, pp. 6993-7012.Canada, AlbertaGeophysics - seismics LVZs

Abstract: Crustal low-velocity zones (LVZs) have been reported in active orogens such as the Himalayas and the Andes but rarely in stable cratonic regions. In this study, we provide compelling evidence for a significant midcrustal LVZ beneath eastern-central Alberta, an integral part of the Precambrian Canadian Shield covered by thick Phanerozoic sedimentary deposits. This 200?km wide, over 10?km thick midcrustal LVZ is well resolved by shear velocity inversions using P-to-S receiver functions from more than 4600 earthquakes. It is generally overlain by a high-velocity upper crust in the depth range of 8-15?km, especially in western-central Alberta, which coincides with the previously documented Winagami reflection sequence. We interpret the LVZ to be of granitic composition, potentially in connection with the crystallization of partially molten crust during the Paleoproterozoic eon. In addition to the Precambrian tectonic history of western Laurentia, which featured plate convergence conducive to crustal melting, our crustal model is further supported by (1) a moderate spatial correlation between the LVZ and heat flow, and (2) shear velocities consistent with that of granite. The well preserved Winagami reflection sequence and the LVZ are potential evidence of distinct episodes of magmatism and crust modification in the Precambrian basement of the Western Canada Sedimentary Basin. The existence of a broad crustal LVZ suggests extensive subduction, orogenesis, and crustal melting during the Precambrian assembly of the North American craton.
DS201602-0219
2016
Liu, J., Riches, A.J.V., Pearson, D.G., Luo, Y., Kienlen, B., Kjarsgaard, B.A., Stachel, T., Armstrong, J.P.Age and evolution of the deep continental root beneath the central Rae craton, northern Canada.Precambrian Research, Vol. 272, pp. 168-184.Canada, Northwest TerritoriesGeochronology

Abstract: Canada is host to at least six separate cratons that comprise a significant proportion of its crustal extent. Of these cratons, we possess knowledge of the cratonic lithospheric roots beneath only the Slave craton and, to a lesser extent, the Superior craton, despite the discovery of many new diamond-bearing kimberlites in Canada's North. Here we present the first age, composition and geothermal information for kimberlite-borne peridotite xenoliths from two localities within the central Rae craton: Pelly Bay and Repulse Bay. Our aim is to investigate the nature and evolution of the deep lithosphere in these regions and to examine how events recorded in the mantle may or may not correlate with the complex history of crustal evolution across the craton. Peridotite xenoliths are commonly altered by secondary processes including serpentinization, silicification and carbonation, which have variably affected the major element compositions. These secondary processes, as well as mantle metasomatism recorded in pristine silicate minerals, however, did not significantly modify the relative compositions of platinum-group elements (PGE) and Os isotope ratios in the majority of our samples from Pelly Bay and Repulse Bay, as indicated by the generally high absolute PGE concentrations and mantle-like melt-depleted PGE patterns. The observed PGE signatures are consistent with the low bulk Al2O3 contents (mostly lower than 2.5%) of the peridotites, as well as the compositions of the silicate and oxide minerals. Based on PGE patterns and Os model ages, the peridotites from both localities can be categorized into three age groups: Archean (3.0-2.6 Ga overall; 2.8-2.6 Ga for Pelly Bay and 3.0-2.7 Ga for Repulse Bay), Paleoproterozoic (2.1-1.7 Ga), and “Recent” (<1 Ga, with model ages similar to the ca. 546 Ma kimberlite eruption age). The Archean group provides the first direct evidence of depleted Archean lithospheric mantle forming coevally with the overlying Archean crustal basement, indicating cratonization of the Rae during the Archean. The subtle difference in Os model ages between Pelly Bay and Repulse Bay coincides with the age difference between crustal basement rocks beneath these two areas, supporting the suggestion that the Rae craton was assembled by collision of separate two Archean blocks at 2.7-2.6 Ga. The Paleoproterozoic peridotites are interpreted to represent newly formed lithospheric mantle, most likely associated with regional-scale underplating during the 1.77-1.70 Ga Kivalliq-Nueltin event via removal of the lower portion of Archean lithospheric mantle followed by replacement with juvenile Paleoproterozoic lithospheric mantle. The existence of multiple age clusters in the lithosphere at each locality is consistent with the observation of present-day seismic lithospheric discontinuities (0540 and 0545) that indicate two or more layers of fossil lithospheric mantle fabric beneath this region. Our data define a shallow mantle lithosphere layer dominated by Archean depletion ages underlain by a layer of mixed Archean and Paleoproterozoic ages. This lithospheric mantle structure is probably a response to complex tectonic displacement of portions of the lithospheric mantle during Paleoproterozoic orogeny/underplating. The best equilibrated Archean and Paleoproterozoic peridotites at both Pelly Bay and Repulse Bay define a typical cratonic geotherm at the time of kimberlite eruption, with a ?200 km thick lithospheric root extending well into the diamond stability field, in keeping with the diamondiferous nature of the kimberlites. Such thick lithosphere remains in place to the present day as suggested by seismic and magnetotelluric studies (0540, 0545 and 0550). The metasomatically disturbed peridotites in the Rae lithospheric mantle, yielding model ages indistinguishable from kimberlite eruption, may represent parts of the Rae craton mantle root that show anomalous magnetotelluric signatures.
DS201602-0224
2016
McCandless, T.Perspectives on the Buffalo Head Hills kimberlites from 'new' data.Vancouver Kimberlite Cluster, Jan. 20, 1p. AbstractCanada, AlbertaDeposit - BHH
DS201602-0231
2016
Petts, D.C., Stachel, T., Stern, R.A., Hunt, L., Fomradas, G.Multiple carbon and nitrogen sources associated with the parental mantle fluids of fibrous diamonds from Diavik, Canada revealed by SIMS microanalysis.Contributions to Mineralogy and Petrology, Vol. 171, 15p.Canada, Northwest TerritoriesDeposit - Diavik

Abstract: Fibrous diamonds are often interpreted as direct precipitates of primary carbonate-bearing fluids in the lithospheric mantle, sourced directly from common reservoirs of “mantle” carbon and nitrogen. Here we have examined fibrous growth layers in five diamonds (as three rims or “coats” and two whole-crystal cuboids) from the Diavik Diamond Mine, Canada, using in situ C- and N-isotope and N-abundance measurements to investigate the origin and evolution of their parental fluids, and in particular, to test for isotopic variability within a suite of fibrous diamonds. High-resolution growth structure information was gleaned from cathodoluminescence (CL) imaging and, in combination with the isotopic data, was used to assess the nature of the transition from gem to fibrous growth in the coated diamonds. The two cuboids are characterized by fine concentric bands of fibrous and/or milky opaque diamond, with one sample (S1719) having intermittent gem-like growth layers that are transparent and colourless. The three coated diamonds comprise octahedral gem cores mantled by massive or weakly zoned fibrous rims, with sharp and well-defined gem-fibrous boundaries. For the two cuboid samples, ? 13C and ? 15N values were ?7.7 to ?3.2 ‰ (mean ?6.3 ± 1.3 ‰; 1 SD; n = 84) and ?5.6 to ?2.1 ‰ (mean ?4.0 ± 0.8 ‰; 1 SD; n = 48), respectively. The three fibrous rims have combined ? 13C values of ?8.3 to ?4.8 ‰ (mean ?6.9 ± 0.7 ‰; 1 SD; n = 113) and ? 15N values of ?3.8 to ?1.9 ‰ (mean ?2.7 ± 0.4 ‰; 1 SD; n = 43). N-abundances of the combined cuboid-fibrous rim dataset range from 339 to 1714 at. ppm. The gem cores have ? 13C and ? 15N values of ?5.4 to ?3.5 ‰ and ?17.7 to +4.5 ‰, respectively, and N-abundances of 480 to 1699 at. ppm. Broadly uniform C- and N-isotope compositions were observed in each of the gem cores (variations of ~<1 ‰ for carbon and ~<3 ‰ for nitrogen). This limited C- and N- isotope variability implies that the gem cores formed from separate pulses of fluid that remained isotopically uniform throughout the duration of growth. Significant isotopic and abundance differences were observed between the gem and fibrous growth zones, including in one detailed isotopic profile ? 13C and ? 15N offsets of ~?2.4 and ~?3.7 ‰, respectively, and a ~230 at. ppm increase in N-abundance. Combined with the well-defined gem-fibrous boundaries in plane light and CL, these sharp isotopic differences indicate separate parental fluid histories. Notably, in the combined fibrous diamond dataset prominent C- and N-isotope differences between the whole-crystal cuboid and fibrous rim data were observed, including a consistent ~1.3 ‰ offset in ? 15N values between the two growth types. This bimodal N-isotope distribution is interpreted as formation from separate parental fluids, associated with distinct nitrogen sources. The bimodal N-isotope distribution could also be explained by differences in N-speciation between the respective parental fluids, which would largely be controlled by the oxidation state of the fibrous rim and cuboid growth environments (i.e., N2 vs. NH4 + or NH3). We also note that this C- and N-isotope variability could indicate temporal changes to the source(s) of the respective parental fluids, such that each stage of fibrous diamond growth reflects the emplacement of separate pulses of proto-kimberlitic fluid—from distinct carbon and nitrogen sources, and/or with varying N-species—into the lithospheric mantle.
DS201602-0232
2016
Pounds, J.The diamond market.PDAC 2016, 1p. AbstractGlobal, Canada, Northwest TerritoriesMarkets
DS201602-0248
2016
Trofanenko, J., Williams-Jones, A.E., Simandl, G.J., Migdisov, A.A.The nature and origin of the REE mineralization in the Wicheeda carbonatite, British Columbia, Canada.Economic Geology, Vol. 111, 1, pp. 199-223.Canada, British ColumbiaCarbonatite

Abstract: In response to rising demand of the rare earth elements (REE), recent exploration of the British Columbia alkaline province has identified the Wicheeda Carbonatite, which contains an estimated 11.3 million tons of light REE-enriched ore grading 1.95 wt.% TREO, to be the highest-grade prospect known in British Columbia. However, research of the deposit is restricted to one paper describing mineralization in carbonatite dikes adjacent to the main plug. This study describes the nature and origin of REEmineralization in the Wicheeda plug. The carbonatite was emplaced in metasedimentary limestone and argillaceous limestone belonging to the Kechika Group, which has been altered to potassic fenite immediately adjacent to the carbonatite and to sodic fenite at greater distances from it. The carbonatite comprises a ferroan dolomite core, which passes outwards gradationally into calcite carbonatite. Three texturally distinct varieties of dolomite have been recognized. Dolomite 1 constitutes most of the carbonatite; Dolomite 2 replaced Dolomite 1 near veins and vugs; Dolomite 3 occurs as a fracture and vug-lining phase with the REE mineralization. Stable carbon and oxygen isotopic ratios indicate that the calcite carbonatite is of mantle origin, that Dolomite 1 is of primary igneous origin, that Dolomite 2 is largely primary igneous with minor hydrothermal signature contamination, and that Dolomite 3 is of hydrothermal origin. Rare-metal mineralization in the deposit is, with the exception of pyrochlore, which occurs in the calcite carbonatite, restricted to veins and vugs in the dolomite carbonatite. There it occurs as hydrothermal veins and in vugs infilled by REE-fluorocarbonates, i.e., bastnäsite-(Ce), ancylite-(Ce), and monazite- (Ce) together with accessory pyrite, barite, molybdenite, and thorite. A model is proposed in which calcite carbonatite was the earliest magmatic phase to crystallize. The calcite carbonatite magma saturated with niobium relatively early, precipitating pyrochlore. The magma later evolved to a dolomite carbonatite composition which, upon cooling exsolved an aqueous carbonic fluid, which altered the Kechika metasediments to potassic fenite and mixed with formational waters further from the carbonatite to produce sodic fenite. This fluid mobilized the REE as chloride complexes into vugs and fractures in the dolomite carbonatite. Upon progressive fluid-rock interaction, the REE precipitated largely in response to cooling and pH. Hydrothermal concentration led to remarkable grade consistency, with virtually all of the dolomite carbonatite containing >1 wt.% TREO, making the Wicheeda Carbonatite a very attractive exploration target.
DS201603-0377
2015
Friedman, E., Polat, A., Thorkelson, D.J., Frei, R.Lithospheric mantle xenoliths sampled by melts from upwelling asthenosphere: the Quaternary Tasse alkaline basalts of southeastern British Columbia, Canada.Gondwana Research, In press available 22p.Canada, British ColumbiaAlkaline rocks, basalts

Abstract: The Quaternary Tasse basalts are exposed near the north shore of Quesnel Lake in southeastern British Columbia. They host a variety of mantle xenoliths consisting predominantly of spinel lherzolite with minor dunite and pyroxenite. Mineralogically, the xenoliths are composed of olivine, orthopyroxene, clinopyroxene and spinel characterized by forsterite (Fo87-93), enstatite (En90-92), diopside (En45-50-Wo40-45-Fs5), and Cr-spinel (6 ? 11 wt.% Cr), respectively. All of the mantle xenoliths are coarse-grained and show granoblastic textures. Clinopyroxene and spinel display textural evidence for chemical reactions with percolating melts. The mantle xenoliths are characterized by restricted Mg-numbers (89 ? 92) and low abundances of incompatible elements (Ba = 2 ? 11 ppm; Sr = 3 ? 31 ppm) and Yttrium (1 ? 3 ppm). On the basis of REE patterns, the xenoliths are divided into three groups reflecting the various degrees of mantle metasomatism: (1) Group 1 consists of concave-up LREE patterns (La/Smcn = 0.48 ? 1.16; Gd/Ybcn = 0.71 ? 0.92); (2) Group 2 possesses flat to moderately LREE-enriched patterns (La/Smcn = 1.14 ? 1.92; Gd/Ybcn = 0.87 ? 1.09); and (3) Group 3 is characterized by strongly LREE-enriched patterns (La/Smcn = 1.53 ? 2.45; Gd/Ybcn = 1.00 ? 1.32). On MORB-normalized trace element diagrams, the majority of the xenolith samples share the enrichment of LILE (Rb, Ba, K), U, Th, Pb, Sr and the depletion of HFSE (Nb, Ta, Ti, Y) relative to REE. These geochemical characteristics are consistent with a compositionally heterogeneous subcontinental lithospheric mantle source that originated as subarc mantle wedge peridotite at a convergent plate margin. The Tasse basalts have alkaline compositions characterized by low SiO2 (44 ? 46 wt.%) and high alkali (Na2O + K2O = 5.1 ? 6.6 wt.%) contents. They are strongly enriched in incompatible elements (TiO2 = 2.4 ? 3.1 wt.%; Ba = 580 ? 797 ppm; Sr = 872 ? 993 ppm) and, display OIB-like trace element patterns (La/Smn = 3.15 ? 3.85; Gd/Ybn = 3.42 ? 4.61). They have positive ?Nd (+ 3.8 to + 5.5) values, with 338 ? 426 Ma depleted mantle model ages, and display uniform OIB-like Sr (87Sr/86Sr = 0.703346 ? 0.703591) and Pb (206Pb/204Pb = 19.40 ? 19.58; 207Pb/204Pb = 15.57 ? 15.60; 208Pb/204Pb = 38.99 ? 39.14) isotopic compositions. The basalts erupted discontinuously along a > 1000 km long SE-NW-trending linear belt with minimal compositional variation indicative of a homogenous mantle source. The Sr ? Nd ? Pb isotope and trace element systematics of the alkaline basalts suggests that they originated from partial melting of an upwelling asthenospheric mantle source. Melting of the asthenospheric mantle might have stemmed from extension of the overlying lithosphere in response to the early stages of back-arc basin opening in the Omineca and Intermontane belts. Ridge subduction beneath the Canadian Cordillera might have played an important role in the weakening of the lithospheric mantle prior to its extension. Alternatively, melting of the upwelling asthenosphere in response to the delamination of the lithospheric mantle beneath the Rocky Mountain Trench might have generated the alkaline lavas.
DS201603-0383
2016
Hamilton, M.A., Buchan, K.L.A 2169 Ma U-Pb baddeleyite age for the Otish gabbro, Quebec: implications for correlation of Proterozoic magmatic events and sedimentary seuences in the eastern Superior province.Canadian Journal of Earth Sciences, Vol. 53, 2, pp. 119-128.Canada, QuebecGeochronology
DS201603-0400
2015
Mining Association of CanadaMining Facts and Figures 2015Mining Association of Canada, 112p. PdfCanadaEconomics of industry
DS201603-0411
2016
Pinet, N.Far-field effects of Appalachian orogenesis: a view from the craton. Hudson Bay central high.Geology, Vol. 44, 2, pp. 83-86.CanadaHudson Bay Basin

Abstract: The sedimentary cover of the North American craton preserved little evidence of the Paleozoic tectonic events that shaped the Appalachian orogen on its eastern side. A notable exception is the NNW-trending Hudson Bay central high, which corresponds to a normal-fault array extending for a minimum length of 500 km. A working hypothesis is proposed in which stresses applied to the continental margin during the Silurian earliest Devonian Salinian orogeny were transmitted over a distance of >1400 km in the continental interior, where they induced the normal-fault reactivation of older structural discontinuities. The shutdown of tectonic activity along the Hudson Bay central high during the latest Early Devonian to earliest Middle Devonian is interpreted as resulting from a change in the direction of plate convergence during the Acadian orogeny.
DS201603-0415
2016
Presser, J.Ultra-deep diamonds truly exist? Or are they lithospheric diamonds suffering from shock metamorphism? Slave Craton[email protected], 2p. PdfCanada, Northwest TerritoriesDeposit - Diavik arena
DS201604-0596
2016
Bussweiler, Y., Pearson, D.G., Luth, R.W., Kjarsgaard, B.A., Stachel, T.The evolution of calcite-bearing kimberlite by rock-melt reaction during ascent - evidence from polymineralic inclusions within Cr- diopside and Cr-pyrope megacrysts from Lac de Gras kimberlites, Northwest Territories, Canada.GAC MAC Meeting Special Session SS11: Cratons, kimberlites and diamonds., abstract 1/4p.Canada, Northwest TerritoriesDeposit - Lac de Gras
DS201604-0599
2016
Czas, J., Stachel, T., Morton, R.Diamond genesis and evolution of the FALC area of Saskatchewan Craton.GAC MAC Meeting Special Session SS11: Cratons, kimberlites and diamonds., abstract 1/4p.Canada, SaskatchewanFort a la Corne area
DS201604-0610
2016
Hall, E.M.G., McClenaghan, M.B., Page, L.Application of portable XRF to the direct analysis of till samples from various deposit types in Canada.Geochemistry, Exploration, Environment, Analysis, Vol. 16, pp. 62-84.Canada, Northwest TerritoriesKimberlite - Triple B mentioned

Abstract: In this study, results by direct portable XRF (‘pXRF’) on unsieved till samples were compared with those by established laboratory methods (aqua regia or fusion ICP-MS and ICP-ES) on the <0.063-mm fraction to determine if the application of direct pXRF in the field would serve as an acceptable guide for immediate follow-up work. Four test sites in Canada were chosen: the Halfmile Lake Cu-Pb-Zn VMS deposit; the intrusion-hosted W-Mo Sisson deposit; a Pb-Zn Mississippi Valley-type (MVT) deposit in the Pine Point district; and the Triple B kimberlite. Unsieved till samples from the GSC archive collection were used for this study and included samples from background areas, immediately overlying, and at various distances down-ice of each deposit. Ziploc® and Whirl-Pak® bags that were used to contain the samples in the field were tested for their properties of X-ray attenuation and contamination. In general, the performance of pXRF in the four test areas was very good where concentrations of elements of interest (indicator or pathfinder elements) were substantially above detection limits by this technique (in the low ppm range for many elements). The following elements, shown to be useful indicator elements (important constituents of the ore/commodity) or pathfinder elements (those associated with the commodity elements) by the established methodology, showed similar patterns by pXRF on the unsieved material: Zn, Cu, Pb, and As at Halfmile Lake; W, Mo, Cu, Zn, Pb, and As at the Sisson deposit; Zn, Pb, and Fe at Pine Point; and Ca, Sr, Cr, and Ni at Triple B. Pathfinder elements whose concentrations were too low for determination by pXRF include: Ag and Sb at Halfmile Lake; Ag and Cd at Sisson; Cd, S, and Se at Pine Point; and Co, Mg, P, U, and Th at Triple B. The high background for Bi by pXRF, equivalent to c. 50?ppm, and its noisy signal precluded its use at Halfmile Lake and Sisson. Elements which tended to show poor precision (three analyses each sample) by pXRF in some samples due to sample heterogeneity include Sn, V, and W. Mercury was erroneously reported for the majority of samples in the low ppm range by pXRF whereas its concentration in fact was in the low ppb range. Several Pb-, Zn- (c. 1% Pb, Zn) and Fe-rich (up to 16% Fe) samples demonstrated spectral interferences by: Pb on As, Th and Se; Zn on Cu; and Fe on Co. Results for six till samples analysed in Ziploc® and Whirl-Pak® bags showed that Ziploc® absorbs fewer low-energy photons and hence is preferable for determining light elements such as Si, K and Ca.
DS201604-0616
2016
Krebs, M.Y., Pearson, D.G., Stachel, T., Stern, R.A., Nowicki, T., Cairns, S.Using microdiamonds in kimberlite diamond grade prediction: a case study of the variability in diamond population characteristics across the size range 0.2 to 3.4 mm in Misery kimberlite, Ekati mine, NWT, Canada.Economic Geology, Vol. 111, 2, pp. 503-525.Canada, Northwest TerritoriesMicrodiamonds - Misery

Abstract: First predictions of the macrodiamond grade of newly discovered kimberlites are commonly obtained using size frequency distributions of microdiamonds. The success of this approach suggests a common origin of microdiamonds and macrodiamonds, an implication not yet conclusively established or disproved. In contrast to previous comparative studies on microdiamonds and macrodiamonds from single deposits, here all diamonds analyzed originate from the same microdiamond samples (558 diamonds, ranging from 0.212 to 3.35 mm). The diamonds were analyzed for their carbon isotope compositions and nitrogen characteristics, and, based on this dataset, statistical comparisons were conducted across the size range to assess cogenesis. As a whole, the Misery diamond suite shows high nitrogen contents (median = 850 at. ppm), a bimodal distribution in time-averaged mantle residence temperatures (two distinct subpopulations in mantle residence temperatures: ?1,125° and ?1,175°C), a high degree of platelet degradation, and ?13C compositions that are isotopically slightly heavier (median = ?4.4‰) than the global median. Statistical comparisons of the various size classes indicate the presence of subtly different subpopulations at Misery; however, the nature and magnitude of these geochemical differences are very small in the context of the global diamond database and are viewed as petrogenetically insignificant. The general geochemical similarity of diamonds from different size fractions at Misery reinforces the use of size-frequency analysis to predict diamond grade in kimberlite diamond deposits.
DS201604-0622
2016
Poitras, S., Pearson, D.G., Stachel, T., Cairns, S., Day, S.A geochemical study of diamond indicator minerals from the NWT Interior Platform.GAC MAC Meeting Special Session SS11: Cratons, kimberlites and diamonds., abstract 1/4p.Canada, Northwest TerritoriesDiamond indicators

Abstract: The Central Mackenzie Valley (CMV) area of the Northwest Territories (NWT) comprises a Phanerozoic sedimentary basin that lies between the western margin of the Slave craton and the Cordillera. Although the region is considerably outside the bounds of the exposed Slave craton, both LITHOPROBE and more recent regional-scale surface wave studies (e.g., Priestley and McKenzie, 2006) indicate the likely presence of lithospheric mantle extending into the diamond stability field. Recent work conducted by Olivut Resources Ltd. led to the discovery of 29 kimberlites in the CMV. However, the indicator mineral chemistry of discovered kimberlites does not appear to be a good match (www.olivut.ca) with those during regional till and stream sediment sampling by the Geologic Survey of Canada (GSC) and Northwest Territories Geologic Survey (NTGS) in August 2003 and July 2005. We present new geochemical data on the regional indicator minerals with the aim of obtaining geotherm and depth of mantle sampling constraints on those indicator minerals discovered to date. A statistical evaluation of the data will compare the similarities to indicator mineral chemistry with parts of the Slave craton to evaluate whether the CMV indicators may ultimately be derived from that region. In total 3600 kimberlite indicator mineral grains were picked from the 0.25-2.0 mm size fractions. Peridotitic garnet grains dominate (46%), followed by magnesium ilmenite (26%), with decreasing individual proportions >15% of chromite, low-chrome diopside, olivine, chrome-diopside and eclogitic garnet. A sub-sample of these grains (3143) were analysed by EPMA. Garnet grains classify (after Grütter et al., 2004) as 1015 (62.1%) G9, 270 (16.5%) G11, 113 (6.9%) G10, 103 (6.3%) G12, 57 (3.5%) G1, 46 (2.8%) G10D, and the remaining 31 (1.9%) as G0, G3, G3D, G4, and G5. A sub-set of garnet grains (~700) were selected for LA-ICP-MS trace element analysis. Of the grains selected 74% G9, 14% G10 (and G10D), and 8% G11, with only 4% G12 and G0 (Grütter et al., 2004). Nickel concentrations from these grains range from 2.6-168.2 ppm, with the majority (>80%) between 20-100 ppm, yielding TNi (Canil, 1999) values ranging from 643-1348°C, with the majority between ~1000-1200°C. Using a central Slave craton geothermal gradient (Hasterok and Chapman, 2011), equilibration pressures for these garnet grains range from 20-80 kbars with the majority between 40-60 kbars (120-185 km). Preliminary analysis has 581 (81%) of the erupted peridotitic mantle garnet grains plotting within the diamond stability field (Kennedy and Kennedy, 1976). Of the 128 clinopyroxene grains analysed, only a few represent garnet peridotite (lherzolite) facies KIM clinopyroxene grains following compositional screening. Thermobarometry of these grains (Nimis and Taylor, 2000), assuming they were all derived from the same lithospheric section, yields P-T arrays identical to the central Slave geotherm that was 220 km thick at the time of eruption. These results are encouraging for diamond exploration. We thank Overburden Drilling Management Ltd. for grain picking and recovery of the small diamond, SGS Lakefield Research for mounting grains, and the GSC for probing of the grains.
DS201604-0627
2016
Sheng, A.R., Reguir, E.P., Chakmouradian, A.R., Elliott, B.Mud Lake dyke ( Northwest Territories, Canada) revisited: a mid-Ordovician oxidized dolomite kimberlite.GAC MAC Meeting Special Session SS11: Cratons, kimberlites and diamonds., abstract 1/4p.Canada, Northwest TerritoriesDeposit - Mud Lake
DS201604-0638
2016
Weiss, Y., Pearson, D.G.Subduction-related Mesozoic metasomatism and diamond formation in the continental lithosphere under the Northwest Territories, Canada.GAC MAC Meeting Special Session SS11: Cratons, kimberlites and diamonds., abstract 1/4p.Canada, Northwest TerritoriesSubduction
DS201605-0822
2016
Currie, C.A., vanWijk, J.How craton margins are preserved: insights into geodynamic models.Journal of Geodynamics, in press available 48p.CanadaNorth American craton
DS201605-0823
2016
Czas, J.Diamond formation and evolution beneath the Sask craton, Canada.DCO Edmonton Diamond Workshop, June 8-10Canada, SaskatchewanDiamond genesis
DS201605-0829
2016
Dostal, J.Rare metal deposits associated with alkaline/peralkaline igneous rocks.SEG Reviews in Economic Geology, editors Verplanck, P.L., Hitzman, M.W., No. 18, pp. 33-54.Canada, Northwest Territories, Ontario, Europe, Greenland, Russia, Sweden, Africa, South AfricaThor, Nechalacho, Ilmmassaq, Loverzero, Kipawa, Noira Karr, Planesberg
DS201605-0833
2016
Elliott. B.Slave province surficial materials and permafrost study.DCO Edmonton Diamond Workshop, June 8-10Canada, Northwest TerritoriesGeomorphology

Abstract: The Slave Province is a geological formation that lies between Great Slave Lake and Coronation Gulf. The area contains some of the oldest known igneous and metamorphic rocks on Earth, and has a long history of mining. This project examines the surface sediment deposited during a number of past glaciations, as well as permafrost. Minerals of economic interest are found within the surface sediment and can be used to locate economic mineral deposits in the underlying bedrock. This project will improve our understanding of glacial sediments, stimulate exploration of diamond and metals in the Slave Province, and will determine permafrost conditions to inform future infrastructure development.
DS201605-0837
2016
Gao, C., Crabtree, D.C., Dyer, R.D.Indicator mineral and geochemistry dat a for a till and alluvium sampling survey in the McFaulds Lake ( Ring of Fire) area, northern Ontario. Mentions KIMS.Ontario Geological Survey Report and Data, Report 6309, Data release 322.Canada, OntarioGeochemistry - KIMS
DS201605-0839
2016
Gaudet, M.Renard 65: a multi phase pipe infilled with hypabyssal and Kimberley-type pyroclastic kimberlite.DCO Edmonton Diamond Workshop, June 8-10Canada, QuebecDeposit - Renard65
DS201605-0843
2016
Harris, G.Mantle chemistry and age beneath the Darby kimberlite, NW Rae Craton.DCO Edmonton Diamond Workshop, June 8-10Canada, Northwest TerritoriesDeposit - Darby
DS201605-0854
2016
Kjarsgaard, B.A 4000 km long Jurassic kimberlite corridor in North America.DCO Edmonton Diamond Workshop, June 8-10Canada, United StatesPetrology
DS201605-0856
2016
Kopylova, M.Proto -kimberlite formation and local fertilization of the mantle.DCO Edmonton Diamond Workshop, June 8-10Canada, Northwest TerritoriesMantle metasomatism
DS201605-0857
2016
Krebs, M.The geochemical link between micro-and macro-diamonds, an example from Misery, NWT.DCO Edmonton Diamond Workshop, June 8-10Canada, Northwest TerritoriesDeposit - Misery, microdiamonds
DS201605-0859
2016
Levin, V., Van Tongeren, J.A., Servali, A.How sharp is the sharp Archean Moho? Example from eastern Superior Province.Geophysical Research Letters, Vol. 43, 5, pp. 1928-1933.Canada, OntarioGeophysics - seismics

Abstract: The Superior Province of North America has not experienced major internal deformation for nearly 2.8?Gyr, preserving the Archean crust in its likely original state. We present seismological evidence for a sharp (less than 1?km) crust-mantle boundary beneath three distinct Archean terranes and for a more vertically extensive boundary at sites likely affected by the 1.2-0.9?Ga Grenville orogeny. At all sites crustal thickness is smaller than expected for the primary crust produced by melting under higher mantle potential temperature conditions of Archean time. Reduced thickness and an abrupt contrast in seismic properties at the base of the undisturbed Archean crust are consistent with density sorting and loss of the residues through gravitational instability facilitated by higher temperatures in the upper mantle at the time of formation. Similar sharpness of crust-mantle boundary in disparate Archean terranes suggests that it is a universal feature of the Archean crustal evolution.
DS201605-0860
2016
Liu, J.Age and evolution of the mantle lithosphere beneath Chidliak, Baffin Island.DCO Edmonton Diamond Workshop, June 8-10Canada, NunavutDeposit - Chidliak
DS201605-0864
2016
Mackay, D.A.R., Simandl, G.J., Ma, W., Redfearn, M., Gravel, J.Indicator mineral-based exploration for carbonatites and related specialty metal deposits - a QEMSCAN orientation survey, British Columbia. Aley, Lonnie, WicheedaJournal of Geochemical Exploration, Vol. 165, pp. 159-173.Canada, British ColumbiaGeochemistry - carbonatites

Abstract: This orientation survey indicates that Quantitative Evaluation of Materials by Scanning electron microscopy (QEMSCAN®) is a viable alternative to traditional indicator mineral exploration approaches which involve complex processing followed by visual indicator mineral hand-picking with a binocular microscope. Representative polished smear sections of the 125-250 ?m fraction (dry sieved and otherwise unprocessed) and corresponding Mozley C800 table concentrates from the drainages of three carbonatites (Aley, Lonnie, and Wicheeda) in the British Columbia Alkaline Province of the Canadian Cordillera were studied. Polished smear sections (26 × 46 mm slide size) contained an average of 20,000 exposed particles. A single section can be analyzed in detail using the Particle Mineral Analysis routine in approximately 3.5-4.5 h. If only mineral identification and mineral concentrations are required, the Bulk Mineral Analysis routine reduces the analytical time to 30 min. The most useful carbonatite indicator minerals are niobates (pyrochlore and columbite), REE-fluorocarbonates, monazite, and apatite. Niobate minerals were identified in the 125-250 ?m fraction of stream sediment samples more than 11 km downstream from the Aley carbonatite (their source) without the need for pre-concentration. With minimal processing by Mozley C800, carbonatite indicator minerals were detected downstream of the Lonnie and Wicheeda carbonatites. The main advantages of QEMSCAN® over the traditional indicator mineral exploration techniques are its ability to: 1) analyze very small minerals, 2) quickly determine quantitative sediment composition and mineralogy by both weight percent and mineral count, 3) establish mineral size distribution within the analyzed size fraction, and 4) determine the proportions of monomineralic (liberated) grains to compound grains and statistically assess mineral associations in compound grains. One of the key advantages is that this method permits the use of indicator minerals based on their chemical properties. This is impossible to accomplish using visual identification.
DS201605-0884
2016
Poitras, S.Indicator mineral chemistry of the Horn Plateau, NWT.DCO Edmonton Diamond Workshop, June 8-10Canada, Northwest TerritoriesGeochemistry - KIMS
DS201605-0894
2016
Sarkar, C.Dating kimberlite magmatism and new results from the Slave and Rae cratons.DCO Edmonton Diamond Workshop, June 8-10Canada, Northwest territoriesGeochronology
DS201605-0896
2016
Schneider, A.Komatiites reveal a deep, hydrous mantle reservoir 2.7 Ga ago.Nature, Mar. 31, 1p.Canada, QuebecWater - hydrous mantle

Abstract: For decades, geologists have debated the geodynamic processes that operated in the young Earth. In the Archean, 4 and 2.5 billion years ago, the interior of the planet was much hotter which led to more rapid convection and, according to some authors, to an absence of plate tectonics. Komatiites (Fig. 1) - volcanic rocks with abnormal, olivine-enriched compositions - are thought to result from high-degrees of partial melting of extremely hot parts of the Earth’s mantle. This interpretation is blurred, however, by uncertainty as to the water content of komatiitic magmas. There are two schools of thought on this question: the first proposes that the magmas were dry (<0.1% water) and very hot (> 1600°C), and were produced in mantle plumes from the base of the mantle; the second suggests that the magmas were hydrated, with lower melting temperatures, and had formed in subduction settings. The analysed komatiite melt contained 30% magnesium oxide and 0.6% water and began to crystallize at a relatively low temperature of 1530°C. The chemical composition of the magma and low oxygen fugacity are inconsistent with a subduction setting. he mantle plume (orange) traverses the transition zone, which contains excess H2O, F and Cl in ringwoodite and/or wadsleyite (high pressure polymorphs of olivine).The plume is hot enough to be partially molten near the top of the transition zone (small black dots) and entrains hydrous melt (blue shapes) either from the layer at the upper boundary of the transition zone or from the hot boundary between the plume and the transition zone. Alternatively or additionally, the plume may entrain solid wadsleyite from the transition zone (green shapes). All these hydrous materials introduce H2O and possibly F and Cl into the plume and accelerate its melting (larger black dots). Further ascent of the plume generates more melt during decompression (large black dots), which then separates from the source and ascends to the surface without reaction with peridotite (purple stripes). Instead, the authors suggest that the magmas were generated in a deep mantle plume and that the water and other volatile components, especially the halogens (F, Cl), were entrained into the komatiitic magma as it passed through the transition zone between the upper and lower mantle, at a depth below 410 km (Fig. 3). This implies the existence of a deep reservoir of water in the mantle: a portion of the mantle containing a few thausends of parts per million of water in high pressure polymorphs of olivine wadsleyite, ringwoodite. This water may have accumulated during the primordial accretion of the Earth or by the unexpectedly early subduction of hydrated slabs that became trapped in the transition zone. Finally, the authors propose that modern mantle plumes do not extract water from the transition zone because they are colder and therefore entirely solid when they crossed the transition zone.
DS201605-0902
2016
Smith, R.Resolving the origins of KIMS on Banks Island, NWT.DCO Edmonton Diamond Workshop, June 8-10Canada, Northwest TerritoriesGeochemistry - KIMs
DS201606-1091
2016
Hiyate, A.Tough year tests Dominion.Northern Miner Diamonds in Canada, May pp. 5-7.Canada, Northwest TerritoriesDominion Diamonds
DS201606-1097
2016
Kenny, G.G., Whitehouse, M.J., Kamber, B.S.Differentiated impact melt sheets may be potential source of Hadean detrital zircon.Geology, in press availableCanada, OntarioMentions Sudbury impact

Abstract: Constraining the origin and history of very ancient detrital zircons has unique potential for furthering our knowledge of Earth's very early crust and Hadean geodynamics. Previous applications of the Ti-in-zircon thermometer to >4 Ga zircons have identified a population with relatively low crystallization temperatures (Tzirxtln) of ?685 °C. This could possibly indicate wet minimum-melting conditions producing granitic melts, implying very different Hadean terrestrial geology from that of other rocky planets. Here we report the first comprehensive ion microprobe study of zircons from a transect through the differentiated Sudbury impact melt sheet (Ontario, Canada). The new zircon Ti results and corresponding Tzirxtln fully overlap with those of the Hadean zircon population. Previous studies that measured Ti in impact melt sheet zircons did not find this wide range because they analyzed samples only from a restricted portion of the melt sheet and because they used laser ablation analyses that can overestimate true Ti content. It is important to note that internal differentiation of the impact melt is likely a prerequisite for the observed low Tzirxtln in zircons from the most evolved rocks. On Earth, melt sheet differentiation is strongest in subaqueous impact basins. Thus, not all Hadean detrital zircon with low Ti necessarily formed during melting at plate boundaries, but at least some could also have crystallized in melt sheets caused by intense meteorite bombardment of the early, hydrosphere-covered protocrust.
DS201606-1100
2016
Kopylova, M.G., Beausoleil, Y., Goncharov, A., Burgess, J., Strand, P.Spatial distribution of eclogite in the Slave Craton mantle: the role of subduction.Tectonophysics, Vol. 672-673, pp. 87-103.Canada, Northwest TerritoriesSubduction

Abstract: We reconstructed the spatial distribution of eclogites in the cratonic mantle based on thermobarometry for ~ 240 xenoliths in 4 kimberlite pipes from different parts of the Slave craton (Canada). The accuracy of depth estimates is ensured by the use of a recently calibrated thermometer, projection of temperatures onto well-constrained local peridotitic geotherms, petrological screening for unrealistic temperature estimates, and internal consistency of all data. The depth estimates are based on new data on mineral chemistry and petrography of 148 eclogite xenoliths from the Jericho and Muskox kimberlites of the northern Slave craton and previously reported analyses of 95 eclogites from Diavik and Ekati kimberlites (Central Slave). The majority of Northern Slave eclogites of the crustal, subduction origin occurs at 110-170 km, shallower than in the majority of the Central Slave crustal eclogites (120-210 km). The identical geochronological history of these eclogite populations and the absence of steep suture boundaries between the central and northern Slave craton suggest the lateral continuity of the mantle layer relatively rich in eclogites. We explain the distribution of eclogites by partial preservation of an imbricated and plastically dispersed oceanic slab formed by easterly dipping Proterozoic subduction. The depths of eclogite localization do not correlate with geophysically mapped discontinuities. The base of the depleted lithosphere of the Slave craton constrained by thermobarometry of peridotite xenoliths coincides with the base of the thickened lithospheric slab, which supports contribution of the recycled oceanic lithosphere to formation of the cratonic root. Its architecture may have been protected by circum-cratonic subduction and shielding of the shallow Archean lithosphere from the destructive asthenospheric metasomatism.
DS201606-1104
2016
Pehrsson, S.J., Eglinton, B.M., Evans, D.A.A., Huston, D.Metallogeny and its link to orogenic style during the Nuna supercontinent.Geological Society of London Special Publication Supercontinent Cycles through Earth History., Vol. 424, pp. 83-94.United States, CanadaSupercontinents

Abstract: The link between observed episodicity in ore deposit formation and preservation and the supercontinent cycle is well established, but this general framework has not, however, been able to explain a lack of deposits associated with some accretionary orogens during specific periods of Earth history. Here we show that there are intriguing correlations between styles of orogenesis and specific mineral deposit types, in the context of the Nuna supercontinent cycle. Using animated global reconstructions of Nuna's assembly and initial breakup, and integrating extensive databases of mineral deposits, stratigraphy, geochronology and palaeomagnetism we are able to assess spatial patterns of deposit formation and preservation. We find that lode gold, volcanic-hosted-massive-sulphide and nickel-copper deposits peak during closure of Nuna's interior ocean but decline during subsequent peripheral orogenesis, suggesting that accretionary style is also important. Deposits such as intrusion-related gold, carbonate-hosted lead-zinc and unconformity uranium deposits are associated with the post-assembly, peripheral orogenic phase. These observations imply that the use of plate reconstructions to assess orogenic style, although challenging for the Precambrian, can be a powerful tool for mineral exploration targeting.
DS201606-1110
2016
Rizo, H., Walker, R.J., Carlson, R.W., Horan, M.F., Mukhopadhyay, S., Manthos, V., Francis, D., Jackson, M.G.Preservation of Earth forming events in the tungsten isotopic composition of modern flood basalts…… ancient rocksScience, Vol. 352, no. 6287, May 13, pp. 809-812.Canada, Nunavut, Baffin IslandGeochronology

Abstract: How much of Earth's compositional variation dates to processes that occurred during planet formation remains an unanswered question. High-precision tungsten isotopic data from rocks from two large igneous provinces, the North Atlantic Igneous Province and the Ontong Java Plateau, reveal preservation to the Phanerozoic of tungsten isotopic heterogeneities in the mantle. These heterogeneities, caused by the decay of hafnium-182 in mantle domains with high hafnium/tungsten ratios, were created during the first ~50 million years of solar system history, indicating that portions of the mantle that formed during Earth’s primary accretionary period have survived to the present
DS201606-1113
2016
Saywell, T.Stornoway adds three years to mine life at Renard.Northern Miner Diamonds in Canada, May pp. 18-19.Canada, QuebecDeposit - Renard
DS201606-1121
2016
Stokes, L.Gahcho Kue shifts the future of De Beers Canada.Northern Miner Diamonds in Canada, May pp. 20-22.Canada, Northwest TerritoriesDeposit - Gahcho Kue
DS201607-1288
2016
Bussweiler, Y., Stone, R.S., Pearson, D.G., Luth, R.W., Stachel, T., Kjarsgaard, B.A., Menzies, A.The evolution of calcite bearing kimberlites by melt rock reaction: evidence from polymineralic inclusions within clinopyroxene and garnet megacrysts from Lac de Gras kimberlites, Canada.Contributions to Mineralogy and Petrology, Vol. 171, 7, 25p.Canada, Northwest TerritoriesDeposit - Lac de Gras arena

Abstract: Megacrystic (>1 cm) clinopyroxene (Cr-diopside) and garnet (Cr-pyrope) xenocrysts within kimberlites from Lac de Gras (Northwest Territories, Canada) contain fully crystallized melt inclusions. These ‘polymineralic inclusions’ have previously been interpreted to form by necking down of melts at mantle depths. We present a detailed petrographical and geochemical investigation of polymineralic inclusions and their host crystals to better understand how they form and what they reveal about the evolution of kimberlite melt. Genetically, the megacrysts are mantle xenocrysts with peridotitic chemical signatures indicating an origin within the lithospheric mantle (for the Cr-diopsides studied here ~4.6 GPa, 1015 °C). Textural evidence for disequilibrium between the host crystals and their polymineralic inclusions (spongy rims in Cr-diopside, kelyphite in Cr-pyrope) is consistent with measured Sr isotopic disequilibrium. The preservation of disequilibrium establishes a temporal link to kimberlite eruption. In Cr-diopsides, polymineralic inclusions contain phlogopite, olivine, chromite, serpentine, and calcite. Abundant fluid inclusion trails surround the inclusions. In Cr-pyropes, the inclusions additionally contain Al-spinel, clinopyroxene, and dolomite. The major and trace element compositions of the inclusion phases are generally consistent with the early stages of kimberlite differentiation trends. Extensive chemical exchange between the host phases and the inclusions is indicated by enrichment of the inclusions in major components of the host crystals, such as Cr2O3 and Al2O3. This chemical evidence, along with phase equilibria constraints, supports the proposal that the inclusions within Cr-diopside record the decarbonation reaction: dolomitic melt + diopside ? forsterite + calcite + CO2, yielding the observed inclusion mineralogy and producing associated (CO2-rich) fluid inclusions. Our study of polymineralic inclusions in megacrysts provides clear mineralogical and chemical evidence for an origin of kimberlite that involves the reaction of high-pressure dolomitic melt with diopside-bearing mantle assemblages producing a lower-pressure melt that crystallizes a calcite-dominated assemblage in the crust.
DS201607-1289
2016
Calo, M., Bodin, T., Romanowicz, B.Layered structure in the upper mantle across North America from joint inversion of long and short period seismic data.Earth and Planetary Science Letters, Vol. 449, pp. 164-175.United States, CanadaGeophysics - seismics

Abstract: We estimate crustal and uppermost mantle shear velocity structure beneath 30 stations in North America by jointly inverting the high frequency scattered wavefield observed in the P wave coda, together with long period surface wave phase and group dispersion data. Several features distinguish our approach from previous such joint inversions. 1) We apply a cross-convolution method, rather than more standard deconvolution approaches used in receiver function studies, and consider both Love and Rayleigh wave dispersion, allowing us to infer profiles of radial anisotropy. 2) We generate probabilistic 1D radially anisotropic depth profiles across the whole uppermost mantle, down to ?350 km depth. 3) The inverse problem is cast in a trans-dimensional Bayesian formalism, where the number of isotropic and anisotropic layers is treated as unknown, allowing us to obtain models described with the least number of parameters. Results show that the tectonically active region west of the Rocky Mountain Front is marked by a Lithospheric Asthenosphere Boundary and a Lehmann Discontinuity occurring at relatively shallow depths (60-150 km and 100-200 km, respectively), whereas further east, in the stable craton, these discontinuities are deeper (170-200 km and 200-250 km, respectively). In addition, in the stable part of the continent, at least two Mid-Lithospheric Discontinuities are present at intermediate depths, suggesting the existence of strong lithospheric layering, and a mechanism for lithospheric thickening by underplating of additional layers as cratonic age increases. The Moho across the continent as well as mid-crustal discontinuities in the craton are also imaged, in agreement with independent studies.
DS201607-1339
2016
Davies, A.Seismic velocity model of the Great Bear Fault Zone, NWT Canada.IGC 35th., Session A Dynamic Earth 1p. AbstractCanada, Northwest TerritoriesGeophysics - seismics
DS201607-1340
2016
Davies, R.Cluster analysis of chromites, Lena West diamond region, NWT Canada.IGC 35th., Session Mineral Exploration 1p. AbstractCanada, Northwest TerritoriesChromite
DS201607-1295
2016
Ernst, R.E., Hamilton, M.A., Soderlund, U., Hanes, J.A., Gladkochub, D.P., Okrugin, A.V., Kolotilina, T., Mekhonoshin, A.S., Bleeker, W., LeCheminant, A.N., Buchan, K.L., Chamberlain, K.R., Didenko, A.N.Long lived connection between southern Siberia and northern Laurentia in the Proterozoic.Nature Geoscience, Vol. 9, 6, pp. 464-469.Canada, RussiaProterozoic

Abstract: Precambrian supercontinents Nuna-Columbia (1.7 to 1.3 billion years ago) and Rodinia (1.1 to 0.7 billion years ago) have been proposed. However, the arrangements of crustal blocks within these supercontinents are poorly known. Huge, dominantly basaltic magmatic outpourings and intrusions, covering up to millions of square kilometres, termed Large Igneous Provinces, typically accompany (super) continent breakup, or attempted breakup and offer an important tool for reconstructing supercontinents. Here we focus on the Large Igneous Province record for Siberia and Laurentia, whose relative position in Nuna-Columbia and Rodinia reconstructions is highly controversial. We present precise geochronology—nine U -Pb and six Ar -Ar ages—on dolerite dykes and sills, along with existing dates from the literature, that constrain the timing of emplacement of Large Igneous Province magmatism in southern Siberia and northern Laurentia between 1,900 and 720 million years ago. We identify four robust age matches between the continents 1,870, 1,750, 1,350 and 720 million years ago, as well as several additional approximate age correlations that indicate southern Siberia and northern Laurentia were probably near neighbours for this 1.2-billion-year interval. Our reconstructions provide a framework for evaluating the shared geological, tectonic and metallogenic histories of these continental blocks.
DS201607-1310
2016
Ou, C., Leblon, B., Zhang, Yu., LaRocque, A., Webster, K., McLaughlin, J.Modelling and mapping permafrost at high spatial resolution using Land sat and Radarsat images in northern Ontario: model calibration and regional mapping.International Journal of Remote Sensing, Vol. 37, 12, pp. 2727-2779.Canada, OntarioNews item - permafrost

Abstract: Permafrost is an important ground thermal condition that has significant biophysical and socio-economic impacts. In order to better understand the distribution and dynamics of permafrost, there is a need to map permafrost at high spatial resolution. This study is part of a research project that aims to model and map permafrost using remote sensing images and the Northern Ecosystem Soil Temperature (NEST) model in the central part of the Hudson Bay Lowland in northern Ontario, Canada. The study area is near the southern margin of permafrost region where permafrost exists only in isolated patches. In this study, we ran the NEST model from 1932 to 2012 using a climate data set compiled from station observations and grid data sources. The model outputs were then compared to field observations acquired during 2009 -2012 at seven peat monitoring stations and two flux towers, which represent three major types of peatland in the study area (bog, fen, and palsa). The simulated soil temperatures at various depths show good agreement with the observations, and the simulated latent and sensible heat fluxes and net radiation are similar to the observations at the two flux towers. The model accurately shows the existence of permafrost only at palsa sites. Based on the general range of climate and ground conditions in this area, sensitivity tests indicate that the modelled permafrost conditions are sensitive to leaf area index, air temperature, precipitation, and soil texture. Therefore, the NEST model is capable of simulating ground temperature and permafrost conditions in where permafrost occurs only sporadically. A companion paper (part 2) uses the model with Landsat and Radarsat imagery to map the distribution and dynamics of permafrost in this area.
DS201607-1313
2016
Schiffer, C., Nielsen, S.B.Implications for anomalous mantle pressure and dynamic topography from lithospheric stress patterns in the North Atlantic Realm.Journal of Geodynamics, Vol. 98, pp. 53-69.Canada, NorwayGeophysics - seismics

Abstract: With convergent plate boundaries at some distance, the sources of the lithospheric stress field of the North Atlantic Realm are mainly mantle tractions at the base of the lithosphere, lithospheric density structure and topography. Given this, we estimate horizontal deviatoric stresses using a well-established thin sheet model in a global finite element representation. We adjust the lithospheric thickness and the sub-lithospheric pressure iteratively, comparing modelled in plane stress with the observations of the World Stress Map. We find that an anomalous mantle pressure associated with the Iceland and Azores melt anomalies, as well as topography are able to explain the general pattern of the principle horizontal stress directions. The Iceland melt anomaly overprints the classic ridge push perpendicular to the Mid Atlantic ridge and affects the conjugate passive margins in East Greenland more than in western Scandinavia. The dynamic support of topography shows a distinct maximum of c. 1000 m in Iceland and amounts <150 m along the coast of south-western Norway and 250 -350 m along the coast of East Greenland. Considering that large areas of the North Atlantic Realm have been estimated to be sub-aerial during the time of break-up, two components of dynamic topography seem to have affected the area: a short-lived, which affected a wider area along the rift system and quickly dissipated after break-up, and a more durable in the close vicinity of Iceland. This is consistent with the appearance of a buoyancy anomaly at the base of the North Atlantic lithosphere at or slightly before continental breakup, relatively fast dissipation of the fringes of this, and continued melt generation below Iceland.
DS201607-1314
2016
Schiller, E.Diamonds in Canada: a major world producer. Canada has more mines under development and promising exploration projects.Resource World Magazine, Feb 8, 5p.CanadaDiamond production, future mines
DS201608-1397
2016
Bussweiler, Y., Stone, R.S., Pearson, D.G., Luth, R.W., Stachel, T., Kjarsgaard, B.A., Menzies, A.The evolution of calcite bearing kimberlites by melt rock reaction: evidence from polymineralic inclusions within clinopyroxene and garnet megacrysts from Lac de Gras kimberlites, Canada.Contributions to Mineralogy and Petrology, in press available 25p.Canada, Northwest TerritoriesDeposit - Lac de Gras

Abstract: Megacrystic (>1 cm) clinopyroxene (Cr-diopside) and garnet (Cr-pyrope) xenocrysts within kimberlites from Lac de Gras (Northwest Territories, Canada) contain fully crystallized melt inclusions. These ‘polymineralic inclusions’ have previously been interpreted to form by necking down of melts at mantle depths. We present a detailed petrographical and geochemical investigation of polymineralic inclusions and their host crystals to better understand how they form and what they reveal about the evolution of kimberlite melt. Genetically, the megacrysts are mantle xenocrysts with peridotitic chemical signatures indicating an origin within the lithospheric mantle (for the Cr-diopsides studied here ~4.6 GPa, 1015 °C). Textural evidence for disequilibrium between the host crystals and their polymineralic inclusions (spongy rims in Cr-diopside, kelyphite in Cr-pyrope) is consistent with measured Sr isotopic disequilibrium. The preservation of disequilibrium establishes a temporal link to kimberlite eruption. In Cr-diopsides, polymineralic inclusions contain phlogopite, olivine, chromite, serpentine, and calcite. Abundant fluid inclusion trails surround the inclusions. In Cr-pyropes, the inclusions additionally contain Al-spinel, clinopyroxene, and dolomite. The major and trace element compositions of the inclusion phases are generally consistent with the early stages of kimberlite differentiation trends. Extensive chemical exchange between the host phases and the inclusions is indicated by enrichment of the inclusions in major components of the host crystals, such as Cr2O3 and Al2O3. This chemical evidence, along with phase equilibria constraints, supports the proposal that the inclusions within Cr-diopside record the decarbonation reaction: dolomitic melt + diopside ? forsterite + calcite + CO2, yielding the observed inclusion mineralogy and producing associated (CO2-rich) fluid inclusions. Our study of polymineralic inclusions in megacrysts provides clear mineralogical and chemical evidence for an origin of kimberlite that involves the reaction of high-pressure dolomitic melt with diopside-bearing mantle assemblages producing a lower-pressure melt that crystallizes a calcite-dominated assemblage in the crust.
DS201608-1432
2016
Pearson, D.G., Weiss, Y.Diamond forming fluids - the importance of being salty.GSA Annual Meeting, Abstract, 1p.Canada, Northwest TerritoriesDeposit - Ekati, Diavik

Abstract: Fluids are now thought to be the growth medium for most diamonds sampled from the base of the lithosphere. Fluids trapped in fast-growing, fluid-rich diamonds provide the only direct view of this growth medium and provide valuable information on the geochemistry of deep mantle fluids in general. The most common fluids within fluid-rich diamonds are those belonging to the low- and high-Mg carbonatite affinity as well as more Si-rich variants. A sub-class of fluids that are very rich in alkalis and Cl, known as “saline” fluids, have been found but are generally scarce. At both Ekati and Diavik saline fluids appear much more common and provide a unique insight into their origin. We describe a novel sampling method that allows the analysis of the trace element and radiogenic isotope composition of diamonds (both gem and fluid-rich). Using these methods we analyzed 11 diamonds from the Fox kimberlite in the Ekati kimberlite cluster. The diamonds containing saline fluids are solely associated with peridotite on the basis of their micro-mineral inclusions. Silicic fluid compositions are related exclusively to eclogitic inclusions. Striking differences between the two fluid compositions are the positive Eu and Sr anomalies within saline fluids versus no anomalies in the silicic fluids. These characteristics are identical to previously studied fluids in fibrous diamonds from neighbouring kimberlites in Ekati and Diavik, which also contains diamonds carrying high- and low-Mg carbonatitic fluids. Combining the data, we show a clear chemical evolutionary trend, identifying for the first time saline fluids as parental to silicic and carbonatitic deep mantle melts, via fluid-rock interaction in the Slave CLM. Moreover, the trace-element and Sr isotopic fingerprints of subducting slabs and the timing of host diamond formation suggest that a subducting plate under western North America is the source of the saline fluids, which controlled metasomatism in the Slave lithosphere prior to Mesozoic kimberlite eruption. Saline fluids can be documented as a metasomatic product interacting with the lithosphere above shallow-subducting slabs such as the Farallon slab. As such they appear to be key players in the enrichment of the base of the lithosphere and the formation of diamonds.
DS201608-1435
2016
Robinson, S.The magnificent mineral and gem collections of the Royal Ontario Museum in Toronto.Rocks and Minerals, Vol. 9, 2, pp. 154-163.Canada, OntarioGem collection
DS201608-1446
2016
Tschirhart, V., Jefferson, C.W., Morris, W.A.Basement geology beneath the northeast The lon Basin, Nunavut: insights from integrating new gravity, magnetic and geological data.Geophysical Prospecting, in press available Aug 8Canada, NunavutGeophysics

Abstract: Current models for unconformity-associated uranium deposits predict fluid flow and ore deposition along reactivated faults in >1.76 Ga basement beneath Mesoproterozoic siliciclastic basins. In frontier regions such as the Thelon Basin in the Kivalliq region of Nunavut, little is known about the sub-basin distribution of units and structures, making exploration targeting very tenuous. We constructed a geological map of the basement beneath the unconformity by extrapolating exposed features into the subsurface. The new map is constrained by detailed geological, geophysical, and rock property observations of outcrops adjacent to the basin and by aeromagnetic and gravity data over the geophysically transparent sedimentary basin. From rock property measurements, it is clear that the diverse magnetic and density characteristics of major rock packages provide quantitative three-dimensional constraints. Gravity profiles forward modelled in four cross sections define broad synforms of the Amer Belt and Archean volcanic rocks that are consistent with the structural style outside the basin. Major lithotectonic entities beneath the unconformity include: supracrustal rocks of the Archean Woodburn Lake group and Marjorie Hills meta sedimentary gneiss and associated mixed granitoid and amphibolitic gneiss; the Amer Mylonite Zone and inferred mafic intrusions oriented parallel and sub-parallel; other igneous intrusions of 2.6 Ga, 1.83 Ga, and 1.75 Ga vintage; and the <2.3 Ga to >1.84 Ga Amer Group. Four main brittle regional fault arrays (040°-060°, 075°-90°, 120°, and 150°) controlled development and preservation of the basin. The reactivated intersections of such faults along fertile basement units such as the Rumble assemblage, Marjorie Hills assemblage, Nueltin igneous rocks, and Pitz formation are the best targets for uranium exploration.
DS201609-1706
2016
Boyce, A., Bastow, I.D., Darbyshire, F.A., Ellwood, A.G., Gilligan, A., Levin, V., Menke, W.Subduction beneath Laurentia modifies the eastern North American cratonic edge: evidence from P wave and S wave tomography.Journal of Geophysical Research,, Vol. 121, 7, pp. 5013-5030.CanadaSubduction

Abstract: The cratonic cores of the continents are remarkably stable and long-lived features. Their ability to resist destructive tectonic processes is associated with their thick (?250 km), cold, chemically depleted, buoyant lithospheric keels that isolate the cratons from the convecting mantle. The formation mechanism and tectonic stability of cratonic keels remains under debate. To address this issue, we use P wave and S wave relative arrival-time tomography to constrain upper mantle structure beneath southeast Canada and the northeast USA, a region spanning three quarters of Earth's geological history. Our models show three distinct, broad zones: Seismic wave speeds increase systematically from the Phanerozoic coastal domains, through the Proterozoic Grenville Province, and to the Archean Superior craton in central Québec. We also recover the NW-SE trending track of the Great Meteor hot spot that crosscuts the major tectonic domains. The decrease in seismic wave speed from Archean to Proterozoic domains across the Grenville Front is consistent with predictions from models of two-stage keel formation, supporting the idea that keel growth may not have been restricted to Archean times. However, while crustal structure studies suggest that Archean Superior material underlies Grenvillian age rocks up to ?300 km SE of the Grenville Front, our tomographic models show a near-vertical boundary in mantle wave speed directly beneath the Grenville Front. We interpret this as evidence for subduction-driven metasomatic enrichment of the Laurentian cratonic margin, prior to keel stabilization. Variable chemical depletion levels across Archean-Proterozoic boundaries worldwide may thus be better explained by metasomatic enrichment than inherently less depleted Proterozoic composition at formation.
DS201609-1721
2016
Hogberg, K., Stachel, T., Stern, R.A.Carbon and nitrogen isotope systematics in diamond: different sensitivities to isotopic fractionation or a decoupled origin?Lithos, In press available 15p.Canada, Nunavut, Baffin IslandDeposit - Chidliak

Abstract: Using stable isotope data obtained on multiple aliquots of diamonds from worldwide sources, it has been argued that carbon and nitrogen in diamond are decoupled. Here we re-investigate the carbon-nitrogen relationship based on the most comprehensive microbeam data set to date of stable isotopes and nitrogen concentrations in diamonds (n = 94) from a single locality. Our diamond samples, derived from two kimberlites in the Chidliak Field (NE Canada), show large variability in ?13C (? 28.4 ‰ to ? 1.1‰, mode at ? 5.8‰), ?15N (? 5.8 to + 18.8‰, mode at ? 3.0‰) and nitrogen contents ([N]; 3800 to less than 1 at.ppm). In combination, cathodoluminescence imaging and microbeam analyses reveal that the diamonds grew from multiple fluid pulses, with at least one major hiatus documented in some samples that was associated with a resorption event and an abrupt change from low ?13C and [N] to mantle-like ?13C and high [N]. Overall, ?13C appears to be uncorrelated to ?15N and [N] on both the inter- and intra-diamond levels. Co-variations of ?15N-log[N], however, result in at least two parallel, negatively correlated linear arrays, which are also present on the level of the individual diamonds falling on these two trends. These arrays emerge from the two principal data clusters, are characterized by slightly negative and slightly positive ?15N (about ? 3 and + 2‰, respectively) and variable but overall high [N]. Using published values for the diamond-fluid nitrogen isotope fractionation factor and nitrogen partition coefficient, these trends are perfectly reproduced by a Rayleigh fractionation model. Overall, three key elements are identified in the formation of the diamond suite studied: (1.) a low ?13C and low [N] component that possibly is directly associated with an eclogitic diamond substrate or introduced during an early stage fluid event. (2.) Repeated influx of a variably nitrogen-rich mantle fluid (mildly negative ?13C and ?15N). (3.) In waning stages of influx, availability of the mantle-type fluid at the site of diamond growth became limited, leading to Rayleigh fractionation. These fractionation trends are clearly depicted by ?15N-[N] but are not detected when examining co-variation diagrams involving ?13C. Also on the level of individual diamonds, large (? 5‰) variations in ?15N are associated with ?13C values that typically are constant within analytical uncertainty. The much smaller isotope fractionation factor for carbon (considering carbonate- or methane-rich fluids as possible carbon sources) compared to nitrogen leads to an approximately one order of magnitude lower sensitivity of ?13C values to Rayleigh fractionation processes (i.e. during fractionation, a 1‰ change in ?13C is associated with a 10‰ change in ?15N). As a consequence, even minor heterogeneity in the primary isotopic composition of diamond forming carbon (e.g., due to addition of minor subducted carbon) will completely blur any possible co-variations with ?15N or [N]. We suggest this strong difference in isotope effects for C and N to be the likely cause of observations of an apparently decoupled behaviour of carbon and nitrogen isotopes in diamond.
DS201609-1742
2016
Shigley, J.E., Shor, R., Padua, P., Breeding, C.M., Shirey, S.B., Ashbury, D.Mining diamonds in the Canadian Arctic: the Diavik mine.Gems & Gemology, Vol. 52, no. 2, Summer, pp. 104-131.Canada, Northwest TerritoriesDeposit - Diavik
DS201609-1743
2010
Skelton, D.The Renard project building a Canadian diamond resource base.The 4th Colloquium on Diamonds - source to use held Gabarone March 1-3, 2010, 14p.Canada, QuebecDeposit - Renard

Abstract: The Renard kimberlite cluster is located in the Monts Otish region of Quebec, Canada. A Canadian National Instrument (NI) 43-101 compliant resource statement for the Renard kimberlites 2, 3, 4 and 9 and the Lynx kimberlite dyke was first issued in 2008 followed by a Preliminary Economic Assessment and the development of a conceptual mine plan. Following a successful drill program in 2009 tbat greatly expanded the amount of kimberlite in Renard 2, a revised resource statement was issued in December 2009 comprising 23 mitlion carats of Indicated Mineral Resources and 13 million carats of Inferred Mineral Resources, a threefold increase on the previous estimate. The project is currently the focus of a second Preliminary Economic Assessment and it is expected that a full feasibility and permitting program will commence in 2010 leading to the creation of Quebec's first diamond mine by 2013
DS201609-1748
2016
Tappe, S., Brand, N.B., Stracke, A., van Acken, D., Liu, C-Z., Strauss, H., Wu, F-Y., Luguet, A., Mitchell, R.H.Plates or plumes in the origin of kimberlites: U/PB perovskite and Sr-Nd-Hf-Os-C-O isotope constraints from the Superior craton ( Canada).Chemical Geology, in press available 85p.Canada, QuebecDeposit - Renard, Wemindji

Abstract: Neoproterozoic kimberlite, ultramafic lamprophyre, and carbonatite magmatic activity was widespread across the Canadian-Greenland Shield. Models to explain the preponderance of this deeply-derived CO2-rich magmatism between 680-540 Ma range from impingement of multiple mantle plumes to rifting activity linked to the breakout of the Laurentian plate from the Rodinia supercontinent configuration. We add to the debate about the origin of kimberlite magmas and evaluate possible mantle sources of the 655 Ma ‘diamond-rich’ Renard (new SIMS U/Pb perovskite ages) and 629 Ma ‘barren’ Wemindji kimberlites on the eastern Superior craton in Quebec, Canada. Our Sr-Nd-Hf and carbon isotope data (87Sr/86Sri = 0.70241-0.70442; ?Ndi = + 0.2 to + 4.8; ?Hfi = + 0.3 to + 6.5; ?13C = ? 5.6 to ? 3.9‰) suggest a common and moderately depleted convecting upper mantle source region for both the Renard and Wemindji kimberlites, which occur 400-km apart in the interior of the Superior craton. In contrast, the low Os isotope ratios (187Os/188Osi = 0.11078-0.12620; ?Osi = ? 13.7 to ? 1.6) and unfractionated chondritic relative HSE abundances (Os, Ir, Ru, Pt, Pd, Re) indicate significant involvement of ancient refractory cratonic mantle material in kimberlite magma formation. Our model calculations suggest that for both the diamond-rich Renard and the barren Wemindji kimberlite magmas up to 30% of the Os was derived from refractory cratonic peridotites. This material might have been assimilated by originally more CO2-rich carbonated silicate melts derived from the asthenosphere. We also show that the geochemical and Sr-Nd-Hf-Os isotopic compositions of the Renard and Wemindji kimberlites do not require significant input from melts derived from olivine-poor cratonic mantle lithologies such as MARID-type veins and pyroxenites/eclogites. This contrasts with the petrogenesis of deeply-derived volatile-rich potassic magmas found along the peripheries of cratons (e.g., ultramafic lamprophyres, kamafugites, and olivine lamproites), a setting where abundant non-peridotitic components have been added to the lithospheric mantle over the course of continent evolution. Provided that CO2-rich melts, such as proto-kimberlites, occur near the solidus of volatile-fluxed peridotites, no excess mantle heat is required in their formation. This important but often overlooked constraint, together with the observation that there exist no spatial or temporal relationships between the Superior craton kimberlites and Large Igneous Provinces during the Late Neoproterozoic, suggests that kimberlite magmatic activity was tectonically controlled. In our preferred model, ubiquitous CO2-rich proto-kimberlite melts form during volatile-controlled redox melting processes at ambient mantle temperatures in a thermal boundary layer directly beneath thick cratonic lithosphere. The success rate of ‘evolving’ hybrid kimberlite magmas reaching Earth’s surface increases when tensile stresses propagate into the > 200 km thick keels of continental lithosphere. These conditions are frequently met during fast and changing plate motions associated with the assembly and breakup of supercontinents.
DS201609-1754
2016
Vandenberg, J.A., Herrell, M., Faithful, J.W., Snow, A.M., Lacrampe, J., Bieber, C., Dayyani, S., Chisholm, V.Multiple modeling approach for the aquatic effects assessment of a proposed northern diamond mine development.Mine Water and the Environment, Vol. 35, pp. 350-368.Canada, Northwest TerritoriesDeposit - Gahcho Kue

Abstract: Eight water models were used to assess potential aquatic environmental effects of the proposed Gahcho Kué diamond mine on groundwater and surface water flow and quality in the Northwest Territories, Canada. This sequence of models was required to cover different spatial and temporal domains, as well as specific physico-chemical processes that could not be simulated by a single model. Where their domains overlapped, the models were interlinked. Feedback mechanisms amongst models were addressed through iterative simulations of linked models. The models were used to test and refine mitigation plans, and in the development of aquatic component monitoring programs. Key findings generated by each model are presented here as testable hypotheses that can be evaluated after the mine is operational. This paper therefore offers a record of assumptions and predictions that can be used as a basis for post-validation.
DS201610-1858
2016
Di Massa, D., Kaminski, V., Viezzoli, A.Airborne IP: Drybones kimberlite VTEM dat a Cole-Cole inversion.ASEG-PESA-AIG 2016 25th Geophysical Conference, Abstract 4p.Canada, Northwest TerritoriesDeposit - Drybones

Abstract: A VTEM survey was flown over the Drybones kimberlite in 2005, followed by a ZTEM survey in 2009. These data sets were inverted on multiple previous occasions using various 1D, 2D, 3D and plate modelling algorithms. VTEM data showed AIP effects, manifested as negative voltages and otherwise skewed transients. This created artefacts in conventional inversions of VTEM data, which showed some inconsistencies with ZTEM inversions, as well as with the known geology. In 2015 the VTEM data were transferred to Aarhus Geophysics, reprocessed and reinverted using the modified "AarhusINV" code with Cole-Cole modelling. The results are presented in current abstract, they appear to be more interpretable and provide better data fit, than previous inversion attempts.
DS201610-1871
2016
Hogberg, K.,Stachel, T., Stern, R.A.Carbon and nitrogen isotope systematics in diamond: different sensitivities to isotopic fractionation or a decoupled origin?Lithos, in press available 15p.Canada, NunavutDeposit - Chidliak

Abstract: Using stable isotope data obtained on multiple aliquots of diamonds from worldwide sources, it has been argued that carbon and nitrogen in diamond are decoupled. Here we re-investigate the carbon-nitrogen relationship based on the most comprehensive microbeam data set to date of stable isotopes and nitrogen concentrations in diamonds (n = 94) from a single locality. Our diamond samples, derived from two kimberlites in the Chidliak Field (NE Canada), show large variability in ?13C (? 28.4 ‰ to ? 1.1‰, mode at ? 5.8‰), ?15N (? 5.8 to + 18.8‰, mode at ? 3.0‰) and nitrogen contents ([N]; 3800 to less than 1 at.ppm). In combination, cathodoluminescence imaging and microbeam analyses reveal that the diamonds grew from multiple fluid pulses, with at least one major hiatus documented in some samples that was associated with a resorption event and an abrupt change from low ?13C and [N] to mantle-like ?13C and high [N]. Overall, ?13C appears to be uncorrelated to ?15N and [N] on both the inter- and intra-diamond levels. Co-variations of ?15N-log[N], however, result in at least two parallel, negatively correlated linear arrays, which are also present on the level of the individual diamonds falling on these two trends. These arrays emerge from the two principal data clusters, are characterized by slightly negative and slightly positive ?15N (about ? 3 and + 2‰, respectively) and variable but overall high [N]. Using published values for the diamond-fluid nitrogen isotope fractionation factor and nitrogen partition coefficient, these trends are perfectly reproduced by a Rayleigh fractionation model. Overall, three key elements are identified in the formation of the diamond suite studied: (1.) a low ?13C and low [N] component that possibly is directly associated with an eclogitic diamond substrate or introduced during an early stage fluid event. (2.) Repeated influx of a variably nitrogen-rich mantle fluid (mildly negative ?13C and ?15N). (3.) In waning stages of influx, availability of the mantle-type fluid at the site of diamond growth became limited, leading to Rayleigh fractionation. These fractionation trends are clearly depicted by ?15N-[N] but are not detected when examining co-variation diagrams involving ?13C. Also on the level of individual diamonds, large (? 5‰) variations in ?15N are associated with ?13C values that typically are constant within analytical uncertainty. The much smaller isotope fractionation factor for carbon (considering carbonate- or methane-rich fluids as possible carbon sources) compared to nitrogen leads to an approximately one order of magnitude lower sensitivity of ?13C values to Rayleigh fractionation processes (i.e. during fractionation, a 1‰ change in ?13C is associated with a 10‰ change in ?15N). As a consequence, even minor heterogeneity in the primary isotopic composition of diamond forming carbon (e.g., due to addition of minor subducted carbon) will completely blur any possible co-variations with ?15N or [N]. We suggest this strong difference in isotope effects for C and N to be the likely cause of observations of an apparently decoupled behaviour of carbon and nitrogen isotopes in diamond.
DS201610-1887
2016
Metivier, L., Caron, L., Greff-Lefftz, M., Pajot-Metivier, G., Fleitout, L., Rouby, H.Evidence for Post glacial signatures in gravity gradients: a clue in lower mantle viscosity. ( Hudson bay region)Earth and Planetary Science Letters, Vol. 453, pp. 146-156.Canada, OntarioGravity

Abstract: The Earth's surface was depressed under the weight of ice during the last glaciations. Glacial Isostatic Adjustment (GIA) induces the slow recession of the trough that is left after deglaciation and is responsible for a contemporary uplift rate of more than 1 cm/yr around Hudson Bay. The present-day residual depression, an indicator of still-ongoing GIA, is difficult to identify in the observed topography, which is predominantly sensitive to crustal heterogeneities. According to the most widespread GIA models, which feature a viscosity of on top of the lower mantle, the trough is approximately 100 m deep and cannot explain the observed gravity anomalies across North America. These large anomalies are therefore usually attributed to subcontinental density heterogeneities in the tectosphere or to slab downwelling in the deep mantle.
DS201610-1892
2016
Ootes, L., Kopylova, M.The Archean- Paleoproterozoic evolution of the western margin of the Slave Craton and its influence on on-craton diamonds. Second talk same day: The role of subduction in the distribution of eclogite below the Slave Craton.Vancouver Kimberlite Cluster, Oct. 7, 1p. AbstractCanada, Nunavut, Northwest TerritoriesSlave Craton
DS201610-1896
2016
Pearson, D.G., Weiss, Y.Diamond-forming fluids - the importance of being salty. Ekati and DiavikGSA Annual Meeting, 1/2p. abstractCanada, Northwest TerritoriesSaline fluids

Abstract: Fluids are now thought to be the growth medium for most diamonds sampled from the base of the lithosphere. Fluids trapped in fast-growing, fluid-rich diamonds provide the only direct view of this growth medium and provide valuable information on the geochemistry of deep mantle fluids in general. The most common fluids within fluid-rich diamonds are those belonging to the low- and high-Mg carbonatite affinity as well as more Si-rich variants. A sub-class of fluids that are very rich in alkalis and Cl, known as “saline” fluids, have been found but are generally scarce. At both Ekati and Diavik saline fluids appear much more common and provide a unique insight into their origin. We describe a novel sampling method that allows the analysis of the trace element and radiogenic isotope composition of diamonds (both gem and fluid-rich). Using these methods we analyzed 11 diamonds from the Fox kimberlite in the Ekati kimberlite cluster. The diamonds containing saline fluids are solely associated with peridotite on the basis of their micro-mineral inclusions. Silicic fluid compositions are related exclusively to eclogitic inclusions. Striking differences between the two fluid compositions are the positive Eu and Sr anomalies within saline fluids versus no anomalies in the silicic fluids. These characteristics are identical to previously studied fluids in fibrous diamonds from neighbouring kimberlites in Ekati and Diavik, which also contains diamonds carrying high- and low-Mg carbonatitic fluids. Combining the data, we show a clear chemical evolutionary trend, identifying for the first time saline fluids as parental to silicic and carbonatitic deep mantle melts, via fluid-rock interaction in the Slave CLM. Moreover, the trace-element and Sr isotopic fingerprints of subducting slabs and the timing of host diamond formation suggest that a subducting plate under western North America is the source of the saline fluids, which controlled metasomatism in the Slave lithosphere prior to Mesozoic kimberlite eruption. Saline fluids can be documented as a metasomatic product interacting with the lithosphere above shallow-subducting slabs such as the Farallon slab. As such they appear to be key players in the enrichment of the base of the lithosphere and the formation of diamonds.
DS201610-1903
2016
Reimink, J.R., Davies, J.H.F.L., Chacko, T., Stern, R.A., Heaman, L.M., Sarkar, C., Schaltegger, U., Creaser, R.A., Pearson, D.G.No evidence for Hadean continental crust within Earth's oldest evolved rock unit. (Acasta Gneiss Complex)Nature Geoscience, Vol. 9, pp. 777-780.CanadaHadean crust

Abstract: Due to the acute scarcity of very ancient rocks, the composition of Earth’s embryonic crust during the Hadean eon (>4.0 billion years ago) is a critical unknown in our search to understand how the earliest continents evolved. Whether the Hadean Earth was dominated by mafic-composition crust, similar to today’s oceanic crust1, 2, 3, 4, or included significant amounts of continental crust5, 6, 7, 8 remains an unsolved question that carries major implications for the earliest atmosphere, the origin of life, and the geochemical evolution of the crust-mantle system. Here we present new U-Pb and Hf isotope data on zircons from the only precisely dated Hadean rock unit on Earth—a 4,019.6 ± 1.8?Myr tonalitic gneiss unit in the Acasta Gneiss Complex, Canada. Combined zircon and whole-rock geochemical data from this ancient unit shows no indication of derivation from, or interaction with, older Hadean continental crust. Instead, the data provide the first direct evidence that the oldest known evolved crust on Earth was generated from an older ultramafic or mafic reservoir that probably surfaced the early Earth.
DS201610-1910
2016
Sobolev, N.V., Wirth, R., Logvinova, A.M., Yelisseyev, A.P., Kuzmin, D.V.Retrograde isochemical phase transformations of majoritic garnets included in diamonds: a case study of subcalcic Cr-rich majoritic pyrope from a Snap Lake diamond, Canada.Lithos, in press available 11p.Canada, Northwest TerritoriesDeposit - Snap Lake

Abstract: Homogeneity of a peridotitic garnet inclusion in diamond demonstrating excess in Si concentration (i.e. presence of majorite component) was investigated by TEM using FIB prepared foils. The host diamond is a low-nitrogen brown stone, which can be related to type IIa with features of strong plastic deformation. The studied sample is represented by Ca-poor Cr-pyrope of harzburgitic (H) paragenesis from Snap Lake dyke, Canada The garnet had been previously reported to contain Si = 3.16 apfu. The revised examination of the sample, resulted in detection of extremely fine-grained symplectite consisting of low Ca-orthopyroxene, clinopyroxene, Cr-spinel and coesite completely located and isolated in the inner part of the garnet crystal, which forms a sharp interface with the surrounding homogeneous garnet. XRD study confirmed the presence of the minerals constituting the symplectite. EPMA showed an identical bulk chemistry of the nanometer-sized symplectite and garnet. Further polishing of the garnet inclusion on the same surface with diamond removed the symplectite, which possibly was present as a thin lens within garnet. The remaining garnet is completely homogeneous as checked by two profiles, and contains unusually high Ni (118.2 ppm) and depleted REE patterns. Estimated PT formation conditions of this garnet are 10.8 GPa and 1450 °C within asthenosphere. Symplectite testifies partial retrograde isochemical phase transformation of the examined garnet which is suggested to be caused by decompression along with plastic deformation of diamond within the coesite stability field at T > 1000 °C and depth no less than 100 km. Because previously published studies of rare majoritic garnets composition were performed by EPMA only, it is possible that the traces of partial phase transformation (symplectite formation) could have been overlooked without additional XRD and/or TEM/AEM studies.
DS201611-2103
2014
Devriese, S.G.R., Corcoran, N., Cowan, D., Davis, K., Bild-Enkin, D., Fournier, D., Heagy, L., Kang, S., Marchant, D., McMillan, M.S., Mitchell, M., Rosenkjar, G., Yang, D., Oldenburg, D.W.Magnetic inversion of three airborne dat a sets over the Tli Kwi Cho kimberlite complex.SEG Annual Meeting Denver, pp. 1790-1794. pdfCanada, Northwest TerritoriesDeposit - Tli Kwi Cho

Abstract: The magnetic and electromagnetic responses from airborne systems at Tli Kwi Cho, a kimberlite complex in the Northwest Territories, Canada, have received considerable attention over the last two decades but a complete understanding of the causative physical properties is not yet at hand. Our analysis is distributed among three papers. In the first, we find a 3D magnetic susceptibility model for the area; in the second, we find a 3D conductivity model; and in the third paper, we find a 3D chargeability model. Our goal is to explain all the geophysical results within a geologic framework. In this first paper, we invert three independent airborne magnetic data sets flown over the Tli Kwi Cho kimberlite complex located in the Lac de Gras kimberlite field in Northwest Territories, Canada. The complex consists of two kimberlites known as DO-27 and DO- 18. An initial airborne DIGHEM survey was flown in 1992 and AeroTEM and VTEM data subsequently acquired in 2003 and 2004, respectively. In this paper, we invert each magnetic data set in three dimensions. Both kimberlites are recovered in each model, with DO-27 as a more susceptible body than DO-18. Our goal is to simultaneously invert the three data sets to generate a single susceptibility model for Tli Kwi Cho. This project is part of a larger, on-going investigation by UBC-GIF on inverting magnetic, electromagnetic, and induced polarization data from the Tli Kwi Cho area.
DS201611-2104
2016
Devriese, S.G.R., Davis, K., Oldenburg, D.W.Inversion of airborne geophysics over the Tli Kwi Cho kimberlite complex, Part I: potential fields.Tli Kwi Cho Workshop UBC, Sept. 8, 49p. Contact [email protected]Canada, Northwest TerritoriesDeposit - Tli Kwi Cho
DS201611-2107
2014
Fournier, D., Heagy, L., Corcoran, N., Cowan, D., Devriese, S.G.R., Bild-Enkin, D., Davis, K., Marchant, M., McMillan, M.S., Mitchell, M., Rosenkjar, G., Yang, D., Oldenburg, D.W.Multi-EM systems inversion - towards a common conductivity model for Tli Kwi Cho complex.SEG Annual Meeting Denver, pp. 1795-1799. pdfCanada, Northwest TerritoriesDeposit - Tli Kwi Cho

Abstract: The magnetic and electromagnetic responses from airborne systems at Tli Kwi Cho, a kimberlite complex in the Northwest Territories, Canada, have received considerable attention over the last two decades but a complete understanding of the causative physical properties is not yet at hand. Our analysis is distributed among three posters. In the first we find a 3D magnetic susceptibility model for the area; in the second we find a 3D conductivity model; and in the third we find a 3D chargeability model that can explain the negative transient responses measured over the kimberlite pipes. In this second paper we focus upon the task of finding a conductivity model that is compatible with three airborne data sets flown between 1992 and 2004: one frequency-domain data set (DIGHEM) and two time-domain systems (AeroTEM and VTEM). The goal is to obtain a 3D model from which geologic questions can be answered, but even more importantly, to provide a background conductivity needed to complete the 3D IP inversion of airborne EM data. We begin by modifying our pre-existing 1D frequency and time domain inversion codes to produce models that have more lateral continuity. The results are useful in their own right but we have also found that 1D analysis is often very effective in bringing to light erroneous data, assisting in estimating noise floors, and providing some starting information for developing a background model for the 3D EM inversion. Here we show some results from our Laterally Constrained Inversion (LCI) framework. The recovered conductivity models seem to agree on the general location of the kimberlite pipes but disagree on the geometry and conductivity values at depth. The complete 3D inversions in time and frequency, needed to resolved these issues, are currently in progress.
DS201611-2108
2016
Fournier, D., Kang, S., McMillan, M.S., Oldenburg, D.W.Inversion of airborne geophysics over the Tli Kwi Cho kimberlite complex, Part II: electromagnetics.Tli Kwi Cho Workshop UBC, Sept. 8, 43p. Contact sdevriese @eos.ubc.caCanada, Northwest TerritoriesDeposit - Tli Kwi Cho
DS201611-2119
2015
Kang, S., Fournier, D., Oldenburg, D.W.Inversion of airborne geophysics over the Tli Kwi Cho kimberlite complex.Tli Kwi Cho Workshop UBC, 24p. Contact [email protected]Canada, Northwest TerritoriesDeposit - Tli Kwi Cho
DS201611-2120
2015
Kang, S., Oldenburg, D.W., McMillan, M.S.3D IP Inversion of airborne EM dat a at Tli Kwi Cho.ASEG-PESA-AIG 2016 25th Geophysical Conference, 4p. PdfCanada, Northwest TerritoriesDeposit - Tli Kwi Cho

Abstract: In this study, we revisit three airborne EM surveys over Tli Kwi Cho (TKC). These consist of a frequency domain DIGHEM data set, and two time domain surveys, VTEM and AeroTEM. Negative transients have been recorded in both of the time domain surveys and we interpret these as arising from chargeable bodies. The kimberlite pipes are referred to as DO-27 and DO-18. We look in more detail at the transient data and apply the ATEM-IP inversion procedure to recover a 3D pseudo-chargeability distribution. Important components of the analysis involve estimating a background conductivity for the region. For DO-27 we have used a 3D parametric inversion to recover the conductivity from TEM data. The IP signal for the inversion is obtained by subtracting the time domain responses estimated by EM inversion from the observed background signal. This process also removes EM coupling noise that might be contaminating the data. The resultant IP data are inverted with a linear inverse approach using the sensitivity from the background conductivity. This yields a 3D model of pseudo-chargeability.
DS201611-2127
2016
Newton, D.E., Kopylova, M.G., Burgess, J., Strand, P., Murphy, B.Peridotite and pyroxenite xenoliths from the Muskox kimberlite, northern Slave craton, Canada.Canadian Journal of Earth Sciences, Vol. 53, 1, pp. 41-58.Canada, Northwest TerritoriesDeposit - Muskox

Abstract: We present petrography, mineralogy, and thermobarometry for 53 mantle-derived xenoliths from the Muskox kimberlite pipe in the northern Slave craton. The xenolith suite includes 23% coarse peridotite, 9% porphyroclastic peridotite, 60% websterite, and 8% orthopyroxenite. Samples primarily comprise forsteritic olivine (Fo 89-94), enstatite (En 89-94), Cr-diopside, Cr-pyrope garnet, and chromite spinel. Coarse peridotites, porphyroclastic peridotites, and pyroxenites equilibrated at 650-1220 °C and 23-63 kbar (1 kbar = 100 MPa), 1200-1350 °C and 57-70 kbar, and 1030-1230 °C and 50-63 kbar, respectively. The Muskox xenoliths differ from xenoliths in the neighboring and contemporaneous Jericho kimberlite by their higher levels of depletion, the presence of a shallow zone of metasomatism in the spinel peridotite field, a higher proportion of pyroxenites at the base of the mantle column, higher Cr2O3 in all pyroxenite minerals, and weaker deformation in the Muskox mantle. We interpret these contrasts as representing small-scale heterogeneities in the bulk composition of the mantle, as well as the local effects of interaction between metasomatizing fluid and mantle wall rocks. We suggest that asthenosphere-derived pre-kimberlitic melts and fluids percolated less effectively through the less permeable Muskox mantle, resulting in lower degrees of hydrous weakening, strain, and fertilization of the peridotitic mantle. Fluids tended to concentrate and pool in the deep mantle, causing partial melting and formation of abundant pyroxenites.
DS201611-2129
2015
Paulen, R.C., McClenaghan, M.B., Trenhaile, A.Late Wisconsin ice-flow history in the Buffalo Head Hills kimberlite field, north-central Alberta.Canadian Journal of Earth Sciences, Vol. 52, 1, pp. 51-67.Canada, AlbertaDeposit - Buffalo Head Hills

Abstract: Ice flow of the last glaciation in the Buffalo Head Hills kimberlite field of northern Alberta is reconstructed from landform interpretations and clast orientations for the purpose of aiding kimberlite exploration in the region. The paucity of bedrock outcrop and the absence of preserved striae and other erosional ice-flow indicators on the soft Cretaceous marine sediments inhibit detailed interpretations on glacial flow chronology. Poorly developed bedrock drumlins on the Buffalo Head Hills and erosional ice-flow indicators preserved on the kimberlite outcrops indicate southwestward ice flow during the maximum extent of ice during the last glaciation. During the deglaciation of northern Alberta, later phases of ice flow were controlled by lobes of surging ice, which surged into proglacial lakes. West of the Buffalo Head Hills, the maximum phase of southwest flow was followed by southeastward ice movement of the Peace River ice lobe. Similarly, east of the Buffalo Head Hills, the maximum phase of ice flow was superceded by a south-southwest ice advance of the Wasbasca ice lobe.
DS201611-2136
2000
Sage, R.P., Crabtree, D.C., Morris, T.F.Nicholson ultramafic dike: midcontinent rift and the mantle sample - diamond potential.Sage donated paper file, 35p. Unpubl. Note date 2000Canada, Ontario, WawaLamprophyre
DS201611-2137
2000
Sage, R.P., Crabtree, D.C., Thomas, R.D., Morris, T.F.Sandor diamond occurrence: an Archean spessartite lamprophyre Michipicoten greenstone belt, Wawa Ontario.Sage donated paper file, 48p. Unpubl. Pdf Note date 2000Canada, Ontario, WawaLamprophyre
DS201611-2141
2016
Smart, K., Tappe, S., Simonetti, A., Harris, C.Tectonic significance and redox state of Paleoproterozoic eclogite and pyroxenite components in the Slave cratonic mantle lithosphere, Voyageur kimberlite, Arctic Canada.Chemical Geology, in press available 22p.Canada, NunavutDeposit - Voyageur
DS201612-2284
2016
Cao, Y.H., Linnen, R.L., Good, D.J., Samson, I.M., Epstein, R.The application of portable XRF and benchtop SEM-EDS to Cu-Pd exploration in the Coldwell alkaline complex, Ontario, Canada.Geochemistry: Exploration, Environment, Analysis, Vol. 16, 3-4, pp. 193-212.Canada, OntarioAlkalic

Abstract: Mineral exploration is increasingly taking advantage of real time techniques that dramatically reduce the costs and time taken to obtain results compared to traditional analytical methods. Portable X-ray fluorescence (pXRF) is now a well-established technique that is used to acquire lithogeochemical data. To date, however, benchtop scanning electron microscopes, equipped with energy dispersive systems (bSEM-EDS) have received little attention as a possible mineral exploration tool. This study examines the utility of combining pXRF and bSEM-EDS to characterize the igneous stratigraphy and its relationship to Cu-Pd mineralization in a drill hole at the Four Dams occurrence, located within the Eastern Gabbro assemblage of the Coldwell Alkaline Complex, Canada. The first part of this study compares field portable and laboratory techniques. Seventy-two powdered samples analysed by pXRF are compared with traditional major elements analysed by inductively coupled atomic emission spectroscopy (ICP-AES) and trace elements by inductively coupled plasma spectrometry (ICP-MS), and the compositions of 128 olivine, clinopyroxene and plagioclase grains analysed by bSEM-EDS are compared with traditional electron microprobe data. Our results show that each portable technique yields results similar to their lab-based counterparts within the analytical capabilities and precisions of the respective instruments. The second part presents a case study for the application of pXRF and bSEM-EDS to resolve questions related to igneous stratigraphy as an aid to mineral exploration in a complicated geological setting. A major problem for Cu-Pd exploration in the Coldwell Complex of NW Ontario is that the oxide-rich units that host Cu-Pd mineralization in the Marathon Series are petrographically similar to the barren oxide-rich units in the Layered Series. However, the mineralized units are geochemically distinctive. Our results show that the mineralized Marathon Series can be distinguished from the barren Layered Series, including oxide-rich units of both, by combinations of P2O5, Ba, Zr and V/Ti values, determined by pXRF, combined with plagioclase, olivine or clinopyroxene compositions measured by bSEM-EDS. The combination of pXRF and bSEM-EDS thus shows considerable promise as an exploration technique.
DS201612-2300
2016
Fulop, A., Kurszlaukis, S.Monogenetic v. polygenetic kimberlite volcanism: in-depth examination of the Tango extension super structure, Attawapiskat kimberlite field, Ontario, Canada.Geological Society of London, Special Publication no. 446 on line availableCanada, Ontario, AttawapiskatDeposit - Tango

Abstract: Extensive drilling of the Tango Extension kimberlite pipe resulted in the construction of an emplacement model that revealed the complex architecture of two amalgamated pipes: an older pipe, the Tango Extension Deep, which is cut along its northern margin by the smaller Tango Extension pipe. The resulting volcano forms a complex pipe-in-pipe structure called the Tango Extension Super Structure. The emplacement of the Tango Extension Super Structure sequence indicates prolonged hiatuses, which, similar to other volcanoes classified as monogenetic, puts the classical monogenetic and polygenetic definitions of maar-diatreme volcanoes to the test. Although the Tango Extension and Tango Extension Deep volcanoes could be characterized individually as monogenetic volcanoes, the Tango Extension Super Structure shows evidence of the occurrence of the significant hiatuses typical of polygenetic volcanoes. We suggest that hiatuses that are long enough to consolidate earlier tephra unambiguously differentiate polygenetic from monogenetic maar-diatreme volcanoes.
DS201612-2329
2016
Reimink, J.R., Davies, J.H.F.L., Chacko, T., Stern, R.A., Heaman, L.M., Sarkar, C., Schaltegger, U., Creaser, R.A., Pearson, D.G.No evidence for Hadean continental crust within Earth's oldest evolved rock unit.Nature Geoscience, Vol. 9, pp. 777-780.CanadaAcasta Gneiss

Abstract: Due to the acute scarcity of very ancient rocks, the composition of Earth’s embryonic crust during the Hadean eon (>4.0 billion years ago) is a critical unknown in our search to understand how the earliest continents evolved. Whether the Hadean Earth was dominated by mafic-composition crust, similar to today’s oceanic crust1, 2, 3, 4, or included significant amounts of continental crust5, 6, 7, 8 remains an unsolved question that carries major implications for the earliest atmosphere, the origin of life, and the geochemical evolution of the crust-mantle system. Here we present new U-Pb and Hf isotope data on zircons from the only precisely dated Hadean rock unit on Earth—a 4,019.6 ± 1.8?Myr tonalitic gneiss unit in the Acasta Gneiss Complex, Canada. Combined zircon and whole-rock geochemical data from this ancient unit shows no indication of derivation from, or interaction with, older Hadean continental crust. Instead, the data provide the first direct evidence that the oldest known evolved crust on Earth was generated from an older ultramafic or mafic reservoir that probably surfaced the early Earth.
DS201612-2331
2016
Robles-Stefoni, L., Dimitrakopoulos, R.Stochastic simulation of the Fox kimberlitic diamond pipe, Ekati mine, Northwest Territories, Canada.Journal of South African Institute of Mining and Metallurgy, Vol. 116, Feb. pp. 189-201.Canada, Northwest TerritoriesDeposit - Fox, Ekati

Abstract: Multiple-point simulation (MPS) methods have been developed over the last decade as a means of reproducing complex geological patterns while generating stochastic simulations. Some geological spatial configurations are complex, such as the spatial geometries and patterns of diamond-bearing kimberlite pipes and their internal facies controlling diamond quality and distribution. Two MPS methods were tested for modelling the geology of a diamond pipe located at the Ekati mine, NT, Canada. These are the single normal equation simulation algorithm SNESIM, which captures different patterns from a training image (TI), and the filter simulation algorithm FILTERSIM, which classifies the patterns founded on the TI. Both methods were tested in the stochastic simulation of a four-category geology model: crater, diatreme, xenoliths, and host rock. Soft information about the location of host rock was also used. The validation of the simulation results shows a reasonable reproduction of the geometry and data proportions for all geological units considered; the validation of spatial statistics, however, shows that although simulated realizations from both methods reasonably reproduce the fourth-order spatial statistics of the TI, they do not reproduce well the same spatial statistics of the available data (when this differs from the TI). An interesting observation is that SNESIM better imitated the shape of the pipe, while FILTERSIM yielded a better reproduction of the xenolith bodies.
DS201612-2341
2016
Tappe, S., Brand, N.B., Strackc, A., van Acken, D., Lie, C-Z., Strausf, H., Wu, F-Y., Luguet, A., Mitchell, R.H.Plates or plumes in the origin of kimberlites: U/PB perovskite and Sr-Nd-Hf-Os-C-O isotope constraints from the Superior craton ( Canada).Chemical Geology, on line August 27p.Canada, QuebecDeposit - Renard, Wemindji

Abstract: Neoproterozoic kimberlite, ultramafic lamprophyre, and carbonatite magmatic activity was widespread across the Canadian-Greenland Shield. Models to explain the preponderance of this deeply-derived CO2-rich magmatism between 680-540 Ma range from impingement of multiple mantle plumes to rifting activity linked to the breakout of the Laurentian plate from the Rodinia supercontinent configuration. We add to the debate about the origin of kimberlite magmas and evaluate possible mantle sources of the 655 Ma ‘diamond-rich’ Renard (new SIMS U/Pb perovskite ages) and 629 Ma ‘barren’ Wemindji kimberlites on the eastern Superior craton in Quebec, Canada. Our Sr-Nd-Hf and carbon isotope data (87Sr/86Sri = 0.70241-0.70442; ?Ndi = + 0.2 to + 4.8; ?Hfi = + 0.3 to + 6.5; ?13C = ? 5.6 to ? 3.9‰) suggest a common and moderately depleted convecting upper mantle source region for both the Renard and Wemindji kimberlites, which occur 400 km apart in the interior of the Superior craton. In contrast, the low Os isotope ratios (187Os/188Osi = 0.11078-0.12620; ?Osi = ? 13.7 to ? 1.6) and unfractionated chondritic relative HSE abundances (Os, Ir, Ru, Pt, Pd, Re) indicate significant involvement of ancient refractory cratonic mantle material in kimberlite magma formation. Our model calculations suggest that for both the diamond-rich Renard and the barren Wemindji kimberlite magmas up to 30% of the Os was derived from refractory cratonic peridotites. This material might have been assimilated by originally more CO2-rich carbonated silicate melts derived from the asthenosphere. We also show that the geochemical and Sr-Nd-Hf-Os isotopic compositions of the Renard and Wemindji kimberlites do not require significant input from melts derived from olivine-poor cratonic mantle lithologies such as MARID-type veins and pyroxenites/eclogites. This contrasts with the petrogenesis of deeply-derived volatile-rich potassic magmas found along the peripheries of cratons (e.g., ultramafic lamprophyres, kamafugites, and olivine lamproites), a setting where abundant non-peridotitic components have been added to the lithospheric mantle over the course of continent evolution. Provided that CO2-rich melts, such as proto-kimberlites, occur near the solidus of volatile-fluxed peridotites, no excess mantle heat is required in their formation. This important but often overlooked constraint, together with the observation that there exist no spatial or temporal relationships between the Superior craton kimberlites and Large Igneous Provinces during the Late Neoproterozoic, suggests that kimberlite magmatic activity was tectonically controlled. In our preferred model, ubiquitous CO2-rich proto-kimberlite melts form during volatile-controlled redox melting processes at ambient mantle temperatures in a thermal boundary layer directly beneath thick cratonic lithosphere. The success rate of ‘evolving’ hybrid kimberlite magmas reaching Earth’s surface increases when tensile stresses propagate into the > 200 km thick keels of continental lithosphere. These conditions are frequently met during fast and changing plate motions associated with the assembly and breakup of supercontinents.
DS201612-2348
2015
Wywrot, A.Mineralogy and petrology of a newly discovered paralamproite occurrence near Marathon, Ontario.Thesis, 'BSc. Lakehead University, Bsc. Thesis unpubl.Canada, OntarioLamproite

Abstract: A lamproitic igneous occurrence was recently discovered by a prospector working in the area to the north of Marathon, Ontario. It occurs near a large number of features related to the 1.1 Ga Midcontinent Rift such as the Coldwell Complex and the Trans-Superior Tectonic Zone, but no radiometric dating has been completed on this particular unit of rock. At outcrop level, the unit appears as a collection of metre-scale mafic sills within granitic country rock. These sills appear on all sides of a large lake, marking the lake as the likely location of the main body of the lamproitic rock. The rock is composed of a variety of minerals, including forsteritic olivine, diopside pyroxene, sanidine feldspar, and a variety of spinels. Later periods of magmatism contributed secondary apatite and phlogopite. At the same time, the volatile-rich fluids produced by the magma created a variety of alterations, such as serpentine, chlorite, and carbonate, and heavily disrupted the primary minerals in the rock. This rock retains a classification as a paralamproite, with a mineral assemblage that cannot fulfill the defined composition of lamproite due to geochemical differences between definition and observed samples.
DS201701-0010
2016
Ford, H.A., Long, M.D., Wirth, E.A.Mid-lithospheric discontinuities and complex anistropic layering in the mantle lithosphere beneath the Wyoming and Superior provinces.Journal of Geophysical Research, Vol. 121, 9, pp. 6675-6697.United States, CanadaGeophysics

Abstract: The observation of widespread seismic discontinuities within Archean and Proterozoic lithosphere is intriguing, as their presence may shed light on the formation and early evolution of cratons. A clear explanation for the discontinuities, which generally manifest as a sharp decrease in seismic velocity with depth, remains elusive. Recent work has suggested that midlithospheric discontinuities (MLDs) may correspond to a sharp gradient in seismic anisotropy, produced via deformation associated with craton formation. Here we test this hypothesis beneath the Archean Superior and Wyoming Provinces using anisotropic Ps receiver function (RF) analysis to characterize the relationship between MLDs and seismic anisotropy. We computed radial and transverse component RFs for 13 long-running seismic stations. Of these, six stations with particularly clear signals were analyzed using a harmonic regression technique. In agreement with previous studies, we find evidence for multiple MLDs within the cratonic lithosphere of the Wyoming and Superior Provinces. Our harmonic regression results reveal that (1) MLDs can be primarily explained by an isotropic negative velocity gradient, (2) multiple anisotropic boundaries exist within the lithospheric mantle, (3) the isotropic MLD and the anisotropic boundaries do not necessarily occur at the same depths, and (4) the depth and geometry of the anisotropic boundaries vary among stations. We infer that the MLD does not directly correspond to a change in anisotropy within the mantle lithosphere. Furthermore, our results reveal a surprising level of complexity within the cratonic lithospheric mantle, suggesting that the processes responsible for shaping surface geology produce similar structural complexity at depth.
DS201701-0033
2017
Snyder, D.B., Humphreys, E., Pearson, D.G.Construction and destruction of some North American cratons. Rae, Slave, WyomingTectonophysics, Vol. 694, pp. 464-486.United States, CanadaMetasomatism

Abstract: Construction histories of Archean cratons remain poorly understood; their destruction is even less clear because of its rarity, but metasomatic weakening is an essential precursor. By assembling geophysical and geochemical data in 3-D lithosphere models, a clearer understanding of the geometry of major structures within the Rae, Slave and Wyoming cratons of central North America is now possible. Little evidence exists of subducted slab-like geometries similar to modern oceanic lithosphere in these construction histories. Underthrusting and wedging of proto-continental lithosphere is inferred from multiple dipping discontinuities, emphasizing the role of lateral accretion. Archean continental building blocks may resemble the modern lithosphere of oceanic plateau, but they better match the sort of refractory crust expected to have formed at Archean ocean spreading centres. Radiometric dating of mantle xenoliths provides estimates of rock types and ages at depth beneath sparse kimberlite occurrences, and these ages can be correlated to surface rocks. The 3.6-2.6 Ga Rae, Slave and Wyoming cratons stabilized during a granitic bloom at 2.61-2.55 Ga. This stabilization probably represents the final differentiation of early crust into a relatively homogeneous, uniformly thin (35-42 km), tonalite-trondhjemite-granodiorite crust with pyroxenite layers near the Moho atop depleted lithospheric mantle. Peak thermo-tectonic events at 1.86-1.7 Ga broadly metasomatized, mineralized and recrystallized mantle and lower crustal rocks, apparently making mantle peridotite more ‘fertile’ and more conductive by introducing or concentrating sulfides or graphite at 80-120 km depths. This metasomatism may have also weakened the lithosphere or made it more susceptible to tectonic or chemical erosion. Late Cretaceous flattening of Farallon lithosphere that included the Shatsky Rise conjugate appears to have weakened, eroded and displaced the base of the Wyoming craton below 140-160 km. This process replaced the old re-fertilized continental mantle with relatively young depleted oceanic mantle.
DS201701-0039
2015
Zajac, I.S.John Jambor's contributions to the mineralogy of the Strange Lake peralkaline complex, Quebec-Labrador, Canada.The Canadian Mineralogist, Vol. 53, pp. 885-894.Canada, LabradorRare earths

Abstract: The Strange Lake peralkaline complex is one of the world's largest deposits of yttrium, heavy rare-earth elements, and zirconium. The Precambrian intrusive body of peralkaline granitic rocks in central Labrador is extensively mineralized but mineralogically complex. It is a pleasure to acknowledge John Jambor's important contributions to the understanding of the unusual and varied mineralization. He was first to identify and characterize the potentially economic minerals: gittinsite, widespread at Strange Lake but otherwise an uncommon zirconosilicate, and the unusual acid-soluble zircon, which are the main sources of Strange Lake zirconium. He also identified the previously unknown mineral gerenite-(Y), and provided better characterization of kainosite-(Y) and of the complex gadolinite-datolite species which, collectively, account for most of the yttrium and heavy rare-earths. In all, his identification and characterization of these minerals were invaluable to understanding of the peralkaline complex, particularly the late-stage alteration that affected it and generated its economically important minerals, making them amenable to effective metallurgical processes.
DS201702-0200
2017
Cayer, E., Winterburn, P., Barrett, E.Direct detection of drift concealed kimberlites using surface geochemistry and Lands cape evolution in the Northwest Territories, Canada.Poster ( MDRU) presentation, 1p. Poster pdfCanada, Northwest TerritoriesGeochemistry

Abstract: Apatite-group phosphates are nearly ubiquitous in carbonatites, but our understanding of these minerals is inadequate, particularly in the areas of element partitioning and petrogenetic interpretation of their compositional variation among spatially associated rocks and within individual crystals. In the present work, the mode of occurrence, and major- and trace-element chemistry of apatite (sensu lato) from calcite and dolomite carbonatites, their associated cumulate rocks (including phoscorites) and hydrothermal parageneses were studied using a set of 80 samples from 50 localities worldwide. The majority of this set represents material for which no analytical data are available in the literature. Electron-microprobe and laser-ablation mass-spectrometry data (~ 600 and 400 analyses, respectively), accompanied by back-scattered-electron and cathodoluminescence images and Raman spectra, were used to identify the key compositional characteristics and zoning patterns of carbonatitic apatite. These data are placed in the context of phosphorus geochemistry in carbonatitic systems and carbonatite evolution, and compared to the models proposed by previous workers. The documented variations in apatite morphology and zoning represent a detailed record of a wide range of evolutionary processes, both magmatic and fluid-driven. The majority of igneous apatite from the examined rocks is Cl-poor fluorapatite or F-rich hydroxylapatite (? 0.3 apfu F) with 0.2-2.7 wt.% SrO, 0-4.5 wt.% LREE2O3, 0-0.8 wt.% Na2O, and low levels of other cations accommodated in the Ca site (up to 1000 ppm Mn, 2300 ppm Fe, 200 ppm Ba, 150 ppm Pb, 700 ppm Th and 150 ppm U), none of which show meaningful correlation with the host-rock type. Silicate, (SO4)2 ? and (VO4)3 ? anions, substituting for (PO4)3 ?, tend to occur in greater abundance in crystals from calcite carbonatites (up to 4.2 wt.% SiO2, 1.5 wt.% SO3 and 660 ppm V). Although (CO3)2 ? groups are very likely present in some samples, Raman micro-spectroscopy proved inconclusive for apatites with small P-site deficiencies and other substituent elements in this site. Indicator REE ratios sensitive to redox conditions (?Ce, ?Eu) and hydrothermal overprint (?Y) form a fairly tight cluster of values (0.8-1.3, 0.8-1.1 and 0.6-0.9, respectively) and may be used in combination with trace-element abundances for the development of geochemical exploration tools. Hydrothermal apatite forms in carbonatites as the product of replacement of primary apatite, or is deposited in fractures and interstices as euhedral crystals and aggregates associated with typical late-stage minerals (e.g., quartz and chlorite). Hydrothermal apatite is typically depleted in Sr, REE, Mn and Th, but enriched in F (up to 4.8 wt.%) relative to its igneous precursor, and also differs from the latter in at least some of key REE ratios [e.g., shows (La/Yb)cn ? 25, or a negative Ce anomaly]. The only significant exception is Sr(± REE,Na)-rich replacement zones and overgrowths on igneous apatite from some dolomite(-bearing) carbonatites. Their crystallization conditions and source fluid appear to be very different from the more common Sr-REE-depleted variety. Based on the new evidence presented in this work, trace-element partitioning between apatite and carbonatitic magmas, phosphate solubility in these magmas, and compositional variation of apatite-group minerals from spatially associated carbonatitic rocks are critically re-evaluated.
DS201702-0202
2017
Chalapathi Rao, N.V., Lehmann, B., Belyatsky, B., Warnsloh, J.M.The Late Cretaceous Diamondiferous pyroclastic kimberlites from the Fort a La Corne (FALC) field, Saskatchewan craton, Canada: petrology, geochemistry and genesis.Gondwana Research, In press available 91p.Canada, SaskatchewanDeposit - Fort a La Corne

Abstract: The article gives new experimental data on spectral characteristics of photoluminescence of natural diamonds extracted from deep horizons of Mir and Internatsionalnaya Pipes, Republic of Sakha (Yakutia) depending on composition of basic and additional optically active structural defects in crystals and on temperature during spectrum recording, considering kinetics of luminescence. It is hypothesized on applicability of low-temperature effects to enhance efficiency of photoluminescence separation of diamond crystals.
DS201702-0204
2017
Chen, Y., Gu, Y.J., Hung, S-H.Finite frequency P-wave tomography of the western Canada sedimentary basin: implications for the lithospheric evolution in western Laurentia.Tectonophysics, Vol. 698, pp. 79-90.Canada, Alberta, SaskatchewanCraton, tomography
DS201702-0205
2017
Clements, B.The Canadian diamond business: 25 years and going strong.SEG Newsletter, No. 108, p. 1, 12-18.Canada, United StatesHistory - exploration, deposits
DS201702-0226
2016
Martin, R.F., Alarie, E., Minarik, W.G., Waczek, Z., McCammon, C.A.Titanium rich magneso-hastingite macrocrysts in a camptonite dike, Lafarge quarry, Montreal Island, Quebec: early crystallization in a pseudo-unary system.The Canadian Mineralogist, Vol. 54, pp. 65-78.Canada, QuebecCamptonite

Abstract: A prominent dike of camptonite cuts the Middle Ordovician Tétreauville Formation of the Trenton Group in the Montréal-Est quarry operated by Lafarge Canada Inc. The “Lafarge” dike is strikingly porphyritic, with largely anhedral macrocrysts of unzoned calcic amphibole up to 13 cm across. The macrocrysts are rimmed with ferri-kaersutite resembling the amphibole in the fine-grained matrix of the camptonite. The magnesio-hastingstite macrocrysts have virtually the same composition as the matrix; they thus grew without much of a boundary layer. The magma crystallized in a disequilibrium way as a pseudo-unary system. The macrocrysts are unusually enriched in Fe3+ (approximately 44% of the total iron), yet locally enclose globules of immiscible sulfide melt. The magma became oxygenated owing to preferential loss of hydrogen upon the dissociation of aqueous gas bubbles. The amygdaloidal macrocrysts have a relatively high ?D value because of this loss of H2; the values of ?18O are typical of an upper mantle source. Camptonite dikes are very common on Mont Royal. Like the Lafarge dike, they likely arose by the disequilibrium crystallization of batches of the parental melt of asthenospheric origin.
DS201702-0231
2017
Pearson, G.The complex history of the mantle roots beneath the Slave Craton and surrounding regions.Vancouver Kimberlite Cluster, Jan. 26, 1/4p. AbstractCanada, Northwest Territories, NunavutGeochronology
DS201703-0404
2017
Gaudet, M.The principal role of silicic crustal xenolith assimilation in the formation of Kimberley type pyroclastic kimberlites.Vancouver Kimberlite Cluster, Feb. 28, 1p. AbstractCanada, QuebecDeposit - Renard 65
DS201703-0411
2017
Kaminski, V., Viezzoli, A.Modeling induced polarization effects in helicopter time domain electromagnetic data: Field case studies ( Drybones Bay, NWT)Geophysics, Vol. 82, 2, pp. B49-B61.Canada, Northwest TerritoriesGeophysics, deposit - Drybones

Abstract: Induced polarization (IP) effects are becoming more evident in time-domain helicopter airborne electromagnetic (AEM) data thanks to advances in instrumentation, mainly due to improvements in the signal-to-noise ratio and hence better data quality. Although the IP effects are often manifested as negative receiver voltage values, which are easy to detect, in some cases, IP effects can distort recovered transients in other ways so they may be less obvious and require careful data analysis and processing. These effects represent a challenge for modeling and inversion of the AEM data. For proper modeling of electromagnetic transients, the chargeability of the subsurface and other parameters describing the dispersion also need to be taken into consideration. We use the Cole-Cole model to characterize the dispersion and for modeling of the IP effects in field AEM data, collected by different airborne systems over different geologies and exploration targets, including examples from diamond, gold, and base metal exploration.
DS201703-0424
2017
LaFlamme, C., McFarlane, C.R.M., Fisher, C.M., Kirkland, C.L.Multi-mineral geochronology: insights into crustal behaviour during exhumation of an orogenic root.Contributions to Mineralogy and Petrology, in press available, 18p.CanadaCraton, Rae, Hearne
DS201703-0435
2017
Tschirhart, V., Jefferson, C.W., Morris, W.A.Basement geology beneath the northeast The lon Basin, Nunavut: insights from integrating new gravity, magnetic and geological data.Geophysical Prospecting, Vol. 65, 2, pp. 617-636.Canada, NunavutGeophysics - Thelon Basin

Abstract: Current models for unconformity-associated uranium deposits predict fluid flow and ore deposition along reactivated faults in >1.76 Ga basement beneath Mesoproterozoic siliciclastic basins. In frontier regions such as the Thelon Basin in the Kivalliq region of Nunavut, little is known about the sub-basin distribution of units and structures, making exploration targeting very tenuous. We constructed a geological map of the basement beneath the unconformity by extrapolating exposed features into the subsurface. The new map is constrained by detailed geological, geophysical, and rock property observations of outcrops adjacent to the basin and by aeromagnetic and gravity data over the geophysically transparent sedimentary basin. From rock property measurements, it is clear that the diverse magnetic and density characteristics of major rock packages provide quantitative three-dimensional constraints. Gravity profiles forward modelled in four cross sections define broad synforms of the Amer Belt and Archean volcanic rocks that are consistent with the structural style outside the basin. Major lithotectonic entities beneath the unconformity include: supracrustal rocks of the Archean Woodburn Lake group and Marjorie Hills meta sedimentary gneiss and associated mixed granitoid and amphibolitic gneiss; the Amer Mylonite Zone and inferred mafic intrusions oriented parallel and sub-parallel; other igneous intrusions of 2.6 Ga, 1.83 Ga, and 1.75 Ga vintage; and the <2.3 Ga to >1.84 Ga Amer Group. Four main brittle regional fault arrays (040°-060°, 075°-90°, 120°, and 150°) controlled development and preservation of the basin. The reactivated intersections of such faults along fertile basement units such as the Rumble assemblage, Marjorie Hills assemblage, Nueltin igneous rocks, and Pitz formation are the best targets for uranium exploration.
DS201703-0440
2017
Wu, F-Y.,Mitchell, R.H., Li, Q-L., Zhang, C., Yang, Y-H.Emplacement age and isotopic composition of the Prairie Lake carbonatite complex, northwestern Ontario, Canada.Geological Magazine, Vol. 154, 2, pp. 217-236.Canada, OntarioCarbonatite

Abstract: Alkaline rock and carbonatite complexes, including the Prairie Lake complex (NW Ontario), are widely distributed in the Canadian region of the Midcontinent Rift in North America. It has been suggested that these complexes were emplaced during the main stage of rifting magmatism and are related to a mantle plume. The Prairie Lake complex is composed of carbonatite, ijolite and potassic nepheline syenite. Two samples of baddeleyite from the carbonatite yield U-Pb ages of 1157.2±2.3 and 1158.2±3.8 Ma, identical to the age of 1163.6±3.6 Ma obtained for baddeleyite from the ijolite. Apatite from the carbonatite yields the same U-Pb age of ~1160 Ma using TIMS, SIMS and laser ablation techniques. These ages indicate that the various rocks within the complex were synchronously emplaced at about 1160 Ma. The carbonatite, ijolite and syenite have identical Sr, Nd and Hf isotopic compositions with a 87Sr/86Sr ratio of ~0.70254, and positive ?Nd(t)1160 and ?Hf(t)1160 values of ~+3.5 and ~+4.6, respectively, indicating that the silicate and carbonatitic rocks are co-genetic and related by simple fractional crystallization from a magma derived from a weakly depleted mantle. These age determinations extend the period of magmatism in the Midcontinent Rift in the Lake Superior area to 1160 Ma, but do not indicate whether the magmatism is associated with passive continental rifting or the initial stages of plume-induced rifting.
DS201704-0627
2017
Greig, J., Besserer, D., Raffle, K.Exploring forgotten diamond-bearing ground in the North Slave Craton. Muskox and JerichoVancouver Kimberlite Cluster, Apr. 5, 1p. AbstractCanada, NunavutDeposit - Jericho
DS201704-0639
2016
MiningNorth25 Years of Diamondsminingnorth.com, videoCanada, Northwest TerritoriesHistory
DS201704-0640
2017
MiningNorthDiamond Gala - Explorationutube, videoCanadaHistory
DS201704-0654
2016
Zhang, S., Pell, J.Conodonts and their colour alteration index values from carbonate xenoliths in four kimberlites on the Hall Peninsula, Baffin Island, Nunavut.Canada-Nunavut Geoscience Office, pp. 1-12.Canada, Nunavut, Baffin IslandDeposit - Chidliak
DS201705-0844
2016
Kwan, K., Legault, J.Tli Kwi Cho shootout. III GeophysicsSEG Annual Meeting Dallas, 14 ppt.Canada, Northwest TerritoriesDeposit - Tli Kwi Cho
DS201705-0846
2017
LeBreton, R.Dat a gathering and integration in geotechnical applications- the Diavik experience.Canadian Institute of Mining and Metallurgy, abstract, 1/4p.Canada, Northwest TerritoriesDeposit - Diavik
DS201705-0852
2016
Macnae, J.DO-27 and DO-18 (formerly Tli Kwi Cho complex when they were believed to be part of the same kimberlite complex).SEG Annual Meeting Dallas, 24 ppt.Canada, Northwest TerritoriesDeposit - Tli Kwi Cho
DS201705-0865
2017
NWT & Nunavut Chamber of Mines3D kimberlite mineral chemistry dat a from promising Slave Geological Province.Northwest Territories Geoscience Office, Open File report 2017-011Canada, Northwest TerritoriesGeochemistry
DS201705-0868
2016
Oldenburg, D., Kang, S., fournier, D.Airborne IP at Tli Kwi Cho.SEG Annual Meeting Dallas, 19 ppt.Canada, Northwest TerritoriesDeposit - Tli Kwi Cho
DS201705-0881
2017
Tabassum, N., Kohn, S., Smith, C., Bulanova, G.The water concentations and OH in corporation mechanism of silicate inclusions in diamonds. What information do they provide?European Geosciences Union General Assembly 2017, Vienna April 23-28, 1p. 16735 AbstractAustralia, Canada, Russia, IndiaDiamond inclusions
DS201705-0886
2016
Viezzoli, A.Tli Kwi Cho shootout. IV GeophysicsSEG Annual Meeting Dallas, 67 ppt.Canada, Northwest TerritoriesDeposit - Tli Kwi Cho
DS201705-0888
2017
Warren, C.Plate tectonics: when ancient continents collide. Trans Hudson areaNature Geoscience, Vol. 10, pp. 245-246.Canada, NunavutTectonics

Abstract: The geological record preserves scant evidence for early plate tectonics. Analysis of eclogites - metamorphic rocks formed in subduction zones — in the Trans-Hudson mountain belt suggests modern-style subduction may have operated 1,800 million years ago.
DS201706-1064
2017
Bragagni, A., Luguet, A., Fonsecca, R.O.C., Pearson, D.G., Lorand, D.G., Nowell, G.M., Kjarsgaard, B.A.The geological record of base metal sulfides in the cratonic mantle: a microscale 187Os/188/Os study of peridotite xenoliths from Somerset Island, Rae craton,( Canada).Geochimica et Cosmochimica Acta, in press available 49p.Canada, Nunavut, Somerset Islandperidotite

Abstract: We report detailed petrographic investigations along with 187Os/188Os data in Base Metal Sulfide (BMS) on four cratonic mantle xenoliths from Somerset Island (Rae Craton, Canada). The results shed light on the processes affecting the Re-Os systematics and provide time constraints on the formation and evolution of the cratonic lithospheric mantle beneath the Rae craton. When devoid of alteration, BMS grains mainly consist of pentlandite + pyrrhotite ± chalcopyrite. The relatively high BMS modal abundance of the four investigated xenoliths cannot be reconciled with the residual nature of these peridotites, but requires addition of metasomatic BMS. This is especially evident in the two peridotites with the highest bulk Pd/Ir and Pd/Pt. Metasomatic BMS likely formed during melt/fluid percolation in the Sub Continental Lithospheric Mantle (SCLM) as well as during infiltration of the host kimberlite magma, when djerfisherite crystallized around older Fe-Ni-sulfides. On the whole-rock scale, kimberlite metasomatism is visible in a subset of bulk xenoliths, which defines a Re-Os errorchron that dates the host magma emplacement. The 187Os/188Os measured in the twenty analysed BMS grains vary from 0.1084 to >0.17 and it shows no systematic variation depending on the sulfide mineralogical assemblage. The largest range in 187Os/188Os is observed in BMS grains from the two xenoliths with the highest Pd/Ir, Pd/Pt, and sulfide modal abundance. The whole-rock TRD ages of these two samples underestimate the melting age obtained from BMS, demonstrating that bulk Re-Os model ages from peridotites with clear evidence of metasomatism should be treated with caution. The TRD ages determined in BMS grains are clustered around 2.8-2.7, ?2.2 and ?1.9 Ga. The 2.8-2.7 Ga TRD ages document the main SCLM building event in the Rae craton, which is likely related to the formation of the local greenstone belts in a continental rift setting. The Paleoproterozoic TRD ages can be explained by addition of metasomatic BMS during (i) major lithospheric rifting at ?2.2 Ga and (ii) the Taltson-Thelon orogeny at ?1.9 Ga. The data suggest that even metasomatic BMS can inherit 187Os/188Os from their original mantle source. The lack of isotopic equilibration, even at the micro-scale, allowed the preservation of different populations of BMS grains with distinct 187Os/188Os, providing age information on multiple magmatic events that affected the SCLM.
DS201706-1073
2017
Good, D.J., Cabri, L.J., Ames, D.E.PGM facies variations for Cu-PGE deposits in the Coldwell alkaline complex, Ontario, Canada.Ore Geology Reviews, in press available 36p.Canada, Ontarioalkaline rocks

Abstract: Accurate characterization of the platinum group mineral (PGM) assemblages for Cu-Ni-PGE deposits are typically constrained by sample size and the difficulty of finding statistically significant numbers of grains, which is expected given the low concentrations of platinum group elements (<2 ppm), the great variety of PGM, and the likelihood that a few large grains (>75 µm) can account for large fractions of total mass. Despite these limitations, an accurate survey of PGM from different deposit types would have significant value towards developing deposit models and respective exploration strategies. In this study, we present results for a comprehensive evaluation of PGM at four copper-PGE occurrences hosted within separate but co-genetic gabbro or troctolite intrusions in the Coldwell Alkaline Complex and confirm that accurate surveys are possible with sufficient sample material and efficient PGM concentration methods. The PGM concentration methods used include: (1) hydroseparation of sieved size fractions of pulverized material, and (2) panning of grain separates produced by electric pulse disaggregation of drill core specimens. A favourable comparison of the results has verified the reliability of each method and added confidence that the PGM assemblages identified at three of the four locations are fully characterized. Precious metal mineral (PMM) assemblages are determined for the Main zone and W Horizon at the Marathon deposit, and the main zones at each of the Geordie Lake deposit and Area 41 occurrence. A total of 10,824 PMM grains (PGE and Au-Ag) and 68 mineral species, including 16 unknown minerals, were identified, of which 768 grains and 31 species occur at the Main zone, 523 grains and 41 species at Area 41,9485 grains and 43 species at W horizon, and 56 grains and 12 species at Geordie Lake. The PMM are grouped as follows: Pd-Ge, PGE-S-As, Pt-Fe alloy, Pd-Cu-Pb-Au, Pd-Ni-S, Pd-Pt-Sn, Pt-As, Pd-As, Pd-Pt-Sb-As, Pd-Pt-Bi-Te, and Au-Ag. All of the deposits were found to contain similar proportions of Pd-Pt-Sb-As, Pd-Pt-Bi-Te and Au-Ag minerals. But the W Horizon and Area 41 are distinguished from the Marathon Main zone and Geordie Lake deposits by the presence of minerals in the PGE-S-As, Pt-Fe alloy, Pd ± Cu ± Pb ± Au and Pd-Ge groups. Taken together, the PMM assemblages for deposits in the Coldwell exhibit a strong correlation to PGE enrichment relative to the range for mantle Cu/Pd values (1000-10,000). And there is no relationship between the abundances of Pd-Pt-Bi-Te and Pd-Pt-Sb-As minerals that are commonly associated with hydrous phases, and the intensity of hydrothermal alteration. Thus minerals found only at the W Horizon and Area 41, where significant PGE upgrading has occurred, including Pt-Fe alloys, rustenburgite, marathonite, palladogermanide, unknown Rh-Ni-Fe-sulfide, Au-Pd-Cu alloy, braggite, coldwellite, laurite, zvyagintsevite, laflammeite, and unknown phases Pd5As2, Pd3As, Pd3(As,Pb,Bi) might be considered as index minerals for PGE enriched types of mineralization in the Coldwell.
DS201706-1077
2017
Harrison, J.C., St. Onge, M.R., Paul, D., Brodaric, B.A new geological map and map database for Canada north of 60.GAC annual meeting, 1p. AbstractCanadamap
DS201706-1080
2017
Hodder, T.J., Kelley, S.E., Trommelen, M.S., Ross, M., Rinne, M.L.The Kaskattama highland: till composition and indications of a new Precambrian In lier in the Hudson Bay Lowland?GAC annual meeting, 1p. AbstractCanada, Manitobageochemistry
DS201706-1081
2017
Hogg, S., Munro, S.The geophysical history of discoveries in the James Bay Lowlands from the Victor kimberlite to the Ring of Fire copper and nickel deposits.exploration17.com, 1p. AbstractCanada, Ontariogeophysics

Abstract: The James Bay Lowlands is a large remote area of Northern Ontario with very limited access. The Archean basement rocks lie beneath a layer of Paleozoic limestone, up to 300 m thick, that is topped by glacial till and bog. This setting, without outcrop or hard geological knowledge, presented a blank slate well suited to airborne geophysical exploration. This paper presents the aeromagnetic survey methodology and analysis techniques that evolved from the initial kimberlite aeromagnetic program carried out by Selco in 1979 through the 1989 DeBeers discovery of the Victor kimberlite and the 1993 Spider/KWG discovery of the older sub-Paleozoic Kyle series kimberlites and eventually the Ring of Fire. Without property constraints the exploration methodology was a cycle of survey-interpret-drill then move on and repeat as discoveries and finances permitted. After 3 cycles of kimberlite discovery a Spider/KWG/DeBeers partnership encountered VMS copper mineralization in 2001. An airborne EM survey in 2003 identified a number of excellent prospects and the most technically promising became the Noront Eagles Nest MMS nickel deposit that began the Ring of Fire saga. These greenfield discoveries, in a blind geological environment beneath limestone cover, illustrate the potential effectiveness of geophysically directed exploration.
DS201706-1083
2017
Kelley, S.E., Ross, M., Elliott, B., Normandeau, P.X.Glacial dispersal patterns in three dimensions from a pair of buried kimberlites, Lac de Gras region.GAC annual meeting, 1p. AbstractCanada, Northwest Territoriesgeochemisty

Abstract: Drift prospecting has been a successful mineral exploration tool in previously glaciated terrains. Based on the concepts of glacial dynamics, and related sediment production, transport and deposition, drift prospecting surveys assess compositional variability within glacial sediments and trace indicators of mineralization back to a buried bedrock source. The time-transgressive nature of shifting ice flow direction and related till production is an important factor, controlling the shape and extent of dispersal patterns in till. The effect of changing ice flow on the composition of till has been well-studied in both map view, as well as longitudinally in cross section (i.e., dispersal curves). Fewer studies have looked at dispersal patterns holistically in three-dimensions. Here, we use 94 reverse circulation (RC) boreholes, yielding 254 till samples, to reconstruct the subsurface geometry of a dispersal train from a pair of buried kimberlite pipes (DO-27 and DO-18) in the Northwest Territories. Discrete smooth interpolation modeling in SKUA-GOCAD based on downhole data allows for visualization of geochemical anomalies within the till column, as well as the subsurface density of kimberlite indicator mineral grains. Through the combination of borehole data, field work, and modeling, we are able to compare three-dimensional dispersal patterns in the subsurface with local ice flow records, measured from erosional ice flow indicators in the field. This dataset allows us to evaluate the role that changing ice flow, as well as local bedrock surface topography, play in controlling dispersal and deposition of clastic sediment by past ice sheets. Our modeling documents buried palimpsest terrains along older ice flow trajectories, demonstrating lateral and vertical variability within a single, relatively thin and discontinuous till sheet. Furthermore, we observe relationships between local indicator mineral concentrations and bedrock topography, with indicator mineral dispersal concentrated along a bedrock-controlled topographic low aligned with the most recent ice flow. This work demonstrates the benefit of detailed mapping and visualization of a dispersal plume, even in areas of relatively thin and discontinuous till cover, highlighting the role basal topography and shifting ice flow plays on shaping the surface expression of a dispersal train.
DS201706-1088
2017
Kupers, S.A., Schmidt, M., Campbell, I.A petrographic and geochemical analysis of the KRVY kimberlite, Lake Timiskaming kimberlite field, Ontario Canada.GSA Annual Meeting, 1p. AbstractCanada, Ontariodeposit - Krvy

Abstract: The Lake Tamiskaming Kimberlite Field, in Ontario, Canada is host to multiple kimberlite pipes, such as the KRVY Kimberlite Pipe, south of Latchford, Ontario. Drill core of this kimberlite pipe, collected by Temex Resources Corporation, confirmed the diamondiferous nature, with microdiamonds being retrieved. Thin sections of the drill core samples suggest the pipe is highly altered through serpentinization. Euhedral to subhedral grains of mica, such as phlogopite and biotite, compose the phenocryst and matrix components of the samples. Electron microprobe analysis will be used to determine the composition of the micas, in order to constrain the origin conditions of these grains, determining if the grains originate from crustal or magmatic components. Micro X-ray Diffraction will determine the mineralogy in the samples. Other likely xenocrystic minerals include quartz, etc. Textural and compositional attributes of the KRVY Kimberlite will be compared to data collected from the approximately twelve known kimberlite pipes within 25 kilometres (15.5 miles) of the specified kimberlite in order to find similarities or patterns. Geochemical analysis will better constrain the formation conditions of this pipe and allow comparison with other surrounding pipes in the Lake Tamiskaming Kimberlite Field.
DS201706-1097
2017
Mitchell, R.H., Smith, D.L.Geology and mineralogy of the Ashram zone carbonatite, Eldor complex, Quebec.Ore Geology Reviews, in press availableCanada, Quebeccarbonatite

Abstract: The Ashram Zone, which is host to the Ashram Rare Earth Element (REE) Deposit, occurs within the Eldor Carbonatite Complex, Québec, Canada. The complex is located within the Paleoproterozoic New Québec Orogen (Labrador Trough), and has been subjected to greenschist metamorphism and folding during the Hudsonian Orogeny at 1.75 Ga. To date, consanguineous undersaturated alkaline rocks have not been recognized within or adjacent to the complex. It is evident that the bulk compositions of the rocks, essentially magnesiocarbonatites and ferrocarbonatites, do not represent those of liquid compositions, as many are complex breccias which have been subjected to later hydrothermal activity. The Ashram Zone is dominated by diverse textural varieties of carbonatite which include: fluorite-rich schlieren carbonatites; coarse-to-medium grained granular carbonatites; fine grained, commonly mosaic-textured, quartz-bearing carbonatites; and colloform carbonatites. Compositional and textural data are provided for the minerals present in the carbonatites. The major rock-forming minerals are diverse Ca-Mg-Fe carbonates, fluorite, and quartz. The carbonates range in their compositional evolution from rare dolomite through ferrodolomite and magnesian siderite to siderite. The principal REE-bearing minerals of the Ashram Deposit are monazite-(Ce) and monazite-(Nd), with lesser amounts of bastnaesite-(Ce) and bastnaesite-(Nd). The minor and accessory mineral suite is characterized by the presence of apatite, phlogopite, xenotime, diverse Sc- and sn-bearing Nb-Ti-minerals (niobian rutile, nioboaeschynite, samarskite), barite, sphalerite, several uncommon, but here relatively abundant, Ba- and Ba-Be minerals (bafertisite, magbasite, barylite, betrandite, sanbornite, cebaite), yangzhumingite, cassiterite, galena, pyrite, and rare magnetite and potassium feldspar. Pyrochlore is absent and the Nb-Ti oxide assemblage is similar to that found in NYF-pegmatites associated with F-rich, A-type granitoids. The mineralogy of the Ashram Deposit, compared to that of other carbonatites associated with undersaturated silicate rocks is unique, especially with respect to the abundance of fluorite and monazite (commonly with Nd-enrichment), Ba-Be-enrichment, the NYF-type Nb-Ti oxide assemblage (especially xenotime, Y-Nb-aeschynite, samarskite), phlogopite-potassium feldspar quartz-rich residua with granitoid characteristics, paucity of magnetite, pyrochlore, and Sr-bearing carbonates. The Ashram Deposit is considered to be a late-magmatic-to-hydrothermal F-REE magnesio-to-ferrocarbonatite derived from as yet unknown consanguineous antecedents.
DS201706-1100
2017
Pufahl, P.K., Groat, L.A.Sedimentary and igneous phosphate deposits: formation and exploration: an invited paper. ( carbonatite)Economic Geology, Vol. 112, pp. 483-516.Russia, Kola Peninsula, Europe, Finland, Canada, British Columbiadeposit - Khibina, Fir, Siilinjarvi

Abstract: Phosphorus is the central ingredient in fertilizer that allows modern agriculture to feed the world’s population. This element, also critical in a host of industrial applications, is a nonrenewable resource that is sourced primarily from the phosphatic mineral apatite, hosted in sedimentary and igneous ores. World phosphate resources are estimated by the U.S. Geological Survey at ca. 300,000 Mt, of which 95% are sedimentary and 5% are igneous. Current known USGS reserve estimates are sufficient for a maximum of 200 to 300 years; the exploration and discovery of new resources, enhanced mining technologies, and new technologies aimed at the recovery and recycling of P from sewage and agricultural runoff will all contribute to extending P production. Igneous ores are generally associated with Phanerozoic carbonatites and silica-deficient alkalic intrusions that typically average 5 to 15 wt % P2O5, which can be beneficiated to high-grade concentrates of at least 30 wt % P2O5 with few contaminants. Carbonatites are typically the smallest and youngest parts of a carbonatite-alkaline rock complex that formed during fractional crystallization of a calcic parental alkaline silicate melt, or from liquid immiscibility of a carbonate-rich nephelinite that underwent magmatic fractionation and differentiation during ascent from the mantle source. Fluorapatite generally crystallizes early, near the liquidus, and over a small temperature interval below the apatite saturation temperature that varies strongly with temperature, SiO2 and CaO concentrations, and the aluminosity of the melt. Carbonatite-alkaline rock complexes commonly possess a concentric, zonal structure thought to reflect caldera volcanism. Pathfinder elements in soils, sediments, tills, and vegetation include Nb, rare earth elements (REEs), P, Ba, Sr, F, U, and Th, and in water, F, Th, and U are indicators. Remote sensing techniques with the ability to identify minerals rich in CO3, REEs, and Fe2+ that are characteristic of carbonatites are also important exploration tools that may provide vectors to ore. Sedimentary phosphorite is a marine bioelemental sedimentary rock that contains >18 wt % P2O5. While small peritidal phosphorites formed in Precambrian coastal environments, economically significant upwelling-related phosphorite did not accumulate until the late Neoproterozoic and continued through the Phanerozoic. Coastal upwelling delivered deep, P-rich waters to continental shelves and in epeiric seas to drive phosphogenesis and form the largest phosphorites on Earth. High-grade deposits formed as a result of hydraulic concentration of phosphate grains to form granular beds with minimal gangue. The amalgamation of these beds into decameter-thick, stratiform ore zones is generally focused along the maximum flooding surface, which is a primary exploration target in upwelling-related phosphorite. In addition to P, other elements concentrated in igneous and sedimentary phosphorites are Se, Mo, Zn, Cu, and Cr, which are important agricultural micronutrients. Other saleable by-products include U and REEs. The U concentration in sedimentary phosphorite is generally between 50 and 200 ppm, but can be as high as 3,000 ppm, making it an increasingly important source of U for the nuclear industry. The concentration of REEs in some sedimentary phosphorites is comparable to the world’s richest igneous and Chinese clay-type REE deposits. The source of the dissolved P in upwelling ocean water is ultimately derived from the chemical weathering of continental rocks, the process that links igneous and sedimentary phosphorites through time and space. The covarying temporal relationship of igneous and sedimentary deposits suggests that plate tectonics and the concentration of apatite in a progressively more felsic crust underpins the feedback processes regulating the biogeochemical cycling of P. Critical to the generation of greenfield exploration targets is the recognition that large P deposits emerged in the late Neoproterozoic. The geological environments conducive for exploration can be constrained from an understanding of ore-forming processes by the use of complementary petrological techniques, including fieldwork, petrography, sedimentology, sequence stratigraphy, and geochemistry.
DS201706-1105
2017
St. Onge, M.R., Harrison, J.C., Paul, D., Tella, S., Brent, T.A., Jauer, C.D., MacleanTectonic map of Arctic Canada (TeMAC): a first derivative product from Canada in 3-D geological compilation work.GAC annual meeting, 1p. AbstractCanadatectonics
DS201706-1108
2017
Trommelen, M.S., Gauthier, M., Kelly, S.E., Hodder, T.J., Wang, Y., Ross, M.Till composition inheritance and overprinting in the Hudson Bay Lowland and across the Precambrian shield.GAC annual meeting, 1p. AbstractCanada, Manitobageochemistry

Abstract: The goal of this work is to determine the effect of multiple glaciations on till composition, in a zone of transition from a multi-till stratigraphy within the Hudson Bay Lowland (HBL) to a single till stratigraphy over the Precambrian shield. The study area, in NE Manitoba, has access to numerous sections that expose multiple tills, in addition to interglacial and postglacial sediments. Sequences of thick till are not easily separated into different units, despite previous field attempts to define four named tills. The compositional transition to thin till overlying the Precambrian Shield in the west is also not well understood. Yet, the two different settings were affected by the same 3+ glacial cycles. The wide range in eastern- and/or northeastern-sourced calcareous clast concentrations, and ‘locally’-sourced shield clast concentrations, combined with variable concentrations of northern-sourced clasts, suggests that the tills of northeastern Manitoba are ‘provenance’ hybrids. Local tills result from the net effect of multiple glacial processes that underwent spatiotemporal variability. Mixed provenance applies not only to surface tills, but to the subsurface tills as well. Preliminary results suggest that carbonate transport across the shield was continuous throughout several glacial cycles, but the bulk of transport likely occurred prior to the most recent glacial cycle. Current work has established a northern-Manitoba ice-flow history using the erosional and depositional record, which encompasses 5 to 7 phases. This new compilation is used in conjunction with ‘till-clast’ stratigraphy and ‘till-geochemistry’ stratigraphy, to identify a new provenance framework for tills in northeastern Manitoba.
DS201707-1303
2017
Ames, D.E., Kjarsgaard, I.M., McDonald, A.M., Good, D.J.Insights into the extreme PGE enrichment of the W Horizon, Marathon Cu-Pd deposit, Coldwell alkaline complex, Canada: platinum group mineralogy, compositions and genetic implications.Ore Geology Reviews, in press availableCanada, Ontarioalkaline - Coldwell Complex

Abstract: The W Horizon, Marathon Cu-Pd deposit in the Mesoproterozoic Midcontinent rift is one of the highest grade PGE repositories in magmatic ore deposits world-wide. The textural relationships and compositions of diverse platinum-group mineral (PGM) and sulfide assemblages in the extremely enriched ores (>100 ppm Pd-Pt-Au over 2 m) of the W Horizon have been investigated in mineral concentrates with ?10,000 PGM grains and in situ using scanning electron microprobe and microprobe analyses. Here we show, from ore samples with concentrations up to 23.1 Pd ppm, 8.9 Pt ppm, 1.4 Au ppm and 0.73 Rh ppm, the diversity of minerals (n = 52) including several significant unknown minerals and three new mineral species marathonite (Pd25Ge9; McDonald et al., 2016), palladogermanide (Pd2Ge; IMA 2016-086, McDonald et al., 2017), kravtsovite (PdAg2S, IMA No 2016-092, Vymazalová et al., 2017). The PGM are distributed as PG-, sulfides (52 vol%), -arsenides (34 vol%), -intermetallics of Au-Ag-Pd-Cu and Pd-Ge(10 vol%) and -bismuthides and tellurides (4 vol%). The discovery of abundant (>330 grains) large unknown sulfide minerals with Rh allows us to present analyses three significant potentially new minerals (WUK-1, WUK-2, WUK-3) that are all clearly enriched in Rh (averaging 4.2, 8.5 and 28.21 wt% Rh respectively). Several examples of paragenetic sequences and mineral chemical changes for enrichment of Cu, Pd and Rh with time are revealed in the PGM and base-metal sulfides. We suggest this enhanced metal enrichment formed in response to increasing fO2 causing the oxidation of Fe2+ to Fe3+ and to a lesser extent, S. Phase relations in the Ag-Pd-S, Rh-Ni-Fe-S, Pd-Ge, Au-Pd-Cu-Ag, Pd-Ag-Te systems help constrain the crystallization temperatures of the majority of ore minerals in the W Horizon at ?500 °C or moderate to high subsolidus temperatures (400–600 °C). Local transport by aqueous fluids becomes evident as minerals recrystallize down to <300 °C. The PGE-enriched W Horizon ores exhibit a complex post-magmatic history dominated by the effects of oxidation during cooling of a Cu-PGE enriched magma source from a deep reservoir.
DS201707-1324
2016
Fulop, A., Kurszlaukis, S.Monogenetic v. polygenetic kimberlite volcanism: in-depth examination of Tango extension super structure, Attwapiskat kimberlite field, Ontario, Canada.Geological Society of London, Special Publication: Monogenetic volcanism, no. 446, pp. 205-224.Canada, Ontario, Attawapiskatdeposit - Tango

Abstract: Extensive drilling of the Tango Extension kimberlite pipe resulted in the construction of an emplacement model that revealed the complex architecture of two amalgamated pipes: an older pipe, the Tango Extension Deep, which is cut along its northern margin by the smaller Tango Extension pipe. The resulting volcano forms a complex pipe-in-pipe structure called the Tango Extension Super Structure. The emplacement of the Tango Extension Super Structure sequence indicates prolonged hiatuses, which, similar to other volcanoes classified as monogenetic, puts the classical monogenetic and polygenetic definitions of maar-diatreme volcanoes to the test. Although the Tango Extension and Tango Extension Deep volcanoes could be characterized individually as monogenetic volcanoes, the Tango Extension Super Structure shows evidence of the occurrence of the significant hiatuses typical of polygenetic volcanoes. We suggest that hiatuses that are long enough to consolidate earlier tephra unambiguously differentiate polygenetic from monogenetic maar-diatreme volcanoes.
DS201707-1335
2016
Hogarth, D.D.Chemical trends in the Meech Lake Quebec, carbonatites and fenites.The Canadian Mineralogist, Vol 54, pp. 1105-1128.Canada, Quebeccarbonatite - Meech Lake

Abstract: Near Meech Lake, Québec, the edges of Mesoproterozoic carbonatite dikes are composed of calcite, dolomite, fluorapatite, phlogopite, amphibole, and pyrochlore. The carbonatite is separated from amphibole-fenite by a narrow, fine-grained reaction selvage of phlogopite pierced with long prisms of amphibole. The amphibole is mainly richterite, but it extends to magnesio-arfvedsonite (overgrowth, crystal rim). Uranium-rich pyrochlore is metamict and ranges from calciopyrochlore to kenopyrochlore with Ta-U enrichment in crystal rims. Chemical characteristics of the suite are: (1) F and Nb highest in the selvage, and (2) decline of Sr and Ce outwards from the carbonatite. A similar pattern (this research) is found at Fen, Norway. Rare earths are enriched in LREE with smooth downward-sloping patterns, in chondrite-normalized curves, to HREE. Two major surges of mineralization are suggested: (1) early, metasomatic-alkalic, creating fenites with enrichment in Mg, Na, and K; and (2) later igneous depositing carbonatites and introducing first F, P, and Nb, then Ca, Sr, and Ce. Thermochemical and geochronological data place carbonate equilibration at 700 °C and the emplacement at 1026 Ma b.p. Calciocarbonatites, in monzonitic orthogneiss, are enriched in Ba and Ce. They are composed of baryte, calcite, phlogopite, fluorapatite, magnesio-riebeckite, and non-metamict allanite-(Ce). A mica selvage is present, but amphibole fenite is almost completely lacking. Magnesiocarbonatite has a well-developed selvage against granite but lacks significant amphibole fenite. In breccia cement at nearby Fortune Lake, pyrochlore is associated with abundant fluorapatite but lacks carbonates. The Cambro-Proterozoic calciocarbonatite near Fen, Norway is particularly Nb-rich in breccia zones, and pyroxene fenite takes the place of amphibole fenite at Meech Lake. In contrast to a relatively anorogenic regime during carbonatite petrogenesis at Fen, metamorphism has obscured pyrochlore zonation and enhanced amphibole growth at Meech Lake
DS201707-1336
2017
Ivanova, O.A., Logvinova, A.M., Pokhilenko, N.P.Inclusions in diamonds from Snap Lake kimberlites ( Slave craton, Canada): geochemical features of crystallization.Doklady Earth Sciences, Vol. 474, 1, pp. 490-493.Canada, Northwest Territoriesdeposit - Snap Lake

Abstract: The results of integrated studies of inclusion-containing diamonds from kimberlites of the Snap Lake dike complex (Canada) are presented. Features of the morphology, defect–impurity composition, and internal structure of the diamonds were determined by optic and scanning microscopy. The chemical composition of crystalline inclusions (olivine, garnet, and pyroxene) in diamonds was studied using a microanalyzer with an electronic probe. The inclusions of ultramafic paragenesis in the diamond (87%) are predominant. Carbonates, sulfide and hydrated silicate phases were found only in multiphase microinclusions. The large phlogopite inclusion studied was similar in composition to earlier studied nanosize inclusions of high-silica mica in diamonds from Snap Lake kimberlites. Revealed features of studied diamonds and presence of high-silica mica suggest that diamonds from Snap Lake have formed as the result of interaction between enriched in volatile and titanium high-potassium carbonate–silicate melts and peridotitic substrate at the base of thick lithospheric mantle.
DS201707-1351
2017
Mitchell, R., Chudy, T., McFarlane, C.R.M., Wu, F-Y.Trace element and isotopic composition of apatite in carbonatites from the Blue River area ( British Columbia, Canada) and mineralogy of associated silicate rocks. Verity, Fir, Gum, Howard Creek, FelixLithos, in press available, 64p.Canada, British Columbiacarbonatite - Blue River

Abstract: Apatites from the Verity, Fir, Gum, Howard Creek and Felix carbonatites of the Blue River (British Columbia, Canada) area have been investigated with respect to their paragenesis, cathodoluminescence, trace element and Sr–Nd isotopic composition. Although all of the Blue River carbonatites were emplaced as sills prior to amphibolite grade metamorphism and have undergone deformation, in many instances magmatic textures and mineralogy are retained. Attempts to constrain the U–Pb age of the carbonatites by SIMS, TIMS and LA–ICP-MS studies of zircon and titanite were inconclusive as all samples investigated have experienced significant Pb loss during metamorphism. The carbonatites are associated with undersaturated calcite–titanite amphibole nepheline syenite only at Howard Creek although most contain clasts of disaggregated phoscorite-like rocks. Apatite from each intrusion is characterized by distinct, but wide ranges, in trace element composition. The Sr and Nd isotopic compositions define an array on a 87Sr/86Sr vs²Nd diagram at 350 Ma indicating derivation from depleted sub-lithospheric mantle. This array could reflect mixing of Sr and Nd derived from HIMU and EM1 mantle sources, and implies that depleted mantle underlies the Canadian Cordillera. Although individual occurrences of carbonatites in the Blue River region are mineralogically and geochemically similar they are not identical and thus cannot be considered as rocks formed from a single batch of parental magma at the same stage of magmatic evolution. However, a common origin is highly probable. The variations in the trace element content and isotopic composition of apatite from each occurrence suggest that each carbonatite represents a combination of derivation of the parental magma(s) from mineralogically and isotopically heterogeneous depleted mantle sources coupled with different stages of limited differentiation and mixing of these magmas. We do not consider these carbonatites as primary direct partial melts of the sub-lithospheric mantle which have ascended from the asthenosphere without modification of their composition.
DS201707-1354
2017
Ootes, L., Jackson, V.A., Davis, W.J., Bennett, V., Smar, L., Cousens, B.L.Parentage of Archean basement within a Paleoproterozoic orogen and implications for on-craton diamond preservation: Slave craton and Wopmay orogen, northwest Canada.Canadian Journal of Earth Sciences, Vol. 54, pp. 203-232.Canada, Northwest Territorieskimberlite

Abstract: The Wopmay orogen is a Paleoproterozoic accretionary belt preserved to the west of the Archean Slave craton, northwest Canada. Reworked Archean crystalline basement occurs in the orogen, and new bedrock mapping, U–Pb geochronology, and Sm–Nd isotopic data further substantiate a Slave craton parentage for this basement. Detrital zircon results from unconformably overlying Paleoproterozoic supracrustal rocks also support a Slave craton provenance. Rifting of the Slave margin began at ca. 2.02 Ga with a second rift phase constrained between ca. 1.92 and 1.89 Ga, resulting in thermal weakening of the Archean basement and allowing subsequent penetrative deformation during the Calderian orogeny (ca. 1.88–1.85 Ga). The boundary between the western Slave craton and the reworked Archean basement in the southern Wopmay orogen is interpreted as the rifted cratonic margin, which later acted as a rigid backstop during compressional deformation. Age-isotopic characteristics of plutonic phases track the extent and evolution of these processes that left penetratively deformed Archean basement, Paleoproterozoic cover, and plutons in the west, and “rigid” Archean Slave craton to the east. Diamond-bearing kimberlite occurs across the central and eastern parts of the Slave craton, but kimberlite (diamond bearing or not) has not been documented west of ?114°W. It is proposed that while the crust of the western Slave craton escaped thermal weakening, the mantle did not and was moved out of the diamond stability field. The Paleoproterozoic extension–convergence cycle preserved in the Wopmay orogen provides a reasonable explanation as to why the western Slave craton appears to be diamond sterile.
DS201707-1368
2017
Skipton, D.R., Schneider, D.A., Kellett, D.A., Joyce, N.L.Deciphering the Paleoproterozoic cooling history of the northeastern Trans-Hudson Orogen, Baffin Island ( Canada), using 40Ar/39Ar step heating and UV laser thermochrobology.Lithos, Vol. 284-285. pp. 69-90.Canada, Nunavut, Baffin Islandgeothermometry

Abstract: The previously unstudied cooling and exhumation history of mid-crustal rocks exposed on southeastern Baffin Island (Canada) provides new insights into the post-orogenic evolution of the Paleoproterozoic Trans-Hudson Orogen (THO). New 40Ar/39Ar step-heat analyses of biotite, muscovite and phlogopite and core-to-rim intra-grain 40Ar/39Ar analyses of muscovite have a range of apparent ages compatible with slow regional cooling following peak metamorphism. Twenty-nine amphibolite- to granulite-facies rocks were dated using the 40Ar/39Ar step-heating laser (CO2) method. 40Ar/39Ar spot analyses were performed across muscovite grains from three samples using an ultraviolet (UV) laser to investigate intra-grain 40Ar/39Ar age variations. Step-heating apparent ages range from ca. 1788–1622 Ma for biotite, 1720–1630 Ma for phlogopite and 1729–1657 Ma for muscovite. UV spot 40Ar/39Ar analyses in the three muscovite grains range from ca. 1661–1640 Ma, 1675–1645 Ma and 1680–1652 Ma, with core-to-rim apparent age gradients of 20–30 Myr. Previous studies resolved peak metamorphism in this region to between ca. 1860 and 1820 Ma and identified late- to post-THO zircon and monazite populations at ca. 1800–1750 Ma. Numerical diffusion models for Ar in muscovite were conducted to test different Proterozoic cooling and exhumation scenarios. Comparisons with our 40Ar/39Ar ages attest to cooling rates of ~ 1–2 °C/Myr following peak metamorphism and ~ 1.5–2.5 °C/Myr after ca. 1740 Ma. Anomalously old apparent 40Ar/39Ar ages, in cases equivalent to U–Pb zircon rim and monazite ages, likely result from incorporation of excess Ar. The results suggest that mid-crustal rocks on southeastern Baffin Island remained hotter than ~ 420–450 °C for ~ 150–200 Myr after peak metamorphism, with subsequent slow cooling and denudation rates that are typical of Proterozoic orogens. The apparent absence of orogenic collapse implies that, despite high temperatures and estimated maximum crustal thicknesses comparable to those of large, hot orogens, the THO remained gravitationally stable during its terminal phase.
DS201707-1369
2017
Smart, K.A., Tappe, S., Simonetti, A., Simonetti, S.S., Woodland, A.B., Harris, C.Tectonic significance and redox state of Paleoproterozoic eclogite and pyroxenite components in the Slave cratonic mantle lithosphere, Voyager kimberlite, Arctic Canada.Chemical Geology, Vol. 455, pp. 98-119.Canadadeposit - Voyager

Abstract: Mantle-derived eclogite and pyroxenite xenoliths from the Jurassic Voyageur kimberlite on the northern Slave craton in Arctic Canada were studied for garnet and clinopyroxene major and trace element compositions, clinopyroxene Pb and garnet O isotopic compositions, and garnet Fe3 +/?Fe contents. The Voyageur xenoliths record a wide range of pressures, but are cooler compared to mantle xenoliths derived from the nearby, coeval Jericho kimberlite. The CaO, TiO2 and Zr contents of Voyageur eclogites increase with depth, which is also observed in northern Slave peridotite xenoliths, demonstrating ‘bottom-up’ metasomatic processes within cratonic mantle lithosphere. The Voyageur eclogites have positive Eu anomalies, flat HREEN patterns, and major element compositions that are consistent with ultimate origins from basaltic and gabbroic protoliths within oceanic lithosphere. Clinopyroxene Pb isotope ratios intercept the Stacey-Kramers two-stage terrestrial Pb evolution curve at ca. 2.1 Ga, and form an array towards the host kimberlite, indicating isotopic mixing. The 2.1 Ga eclogite formation age broadly overlaps with known Paleoproterozoic subduction and collision events that occurred along the western margin of the Slave craton. Unlike the eclogites, the Voyageur pyroxenites contain garnet with distinctive fractionated HREEN, sinusoidal REE patterns of calculated bulk rocks, and clinopyroxene with 206Pb/204Pb ratios that intercept the Stacey-Kramers curve at 1.8 Ga. This suggests a distinct origin as Paleoproterozoic high-pressure mantle cumulates. However, the pyroxenite Pb isotope ratios fall within the eclogite array and could also be explained by protoliths formation at ca. 2.1 Ga followed by minor isotopic mixing during mantle metasomatism. Thus, an alternative scenario involves pyroxenite formation within the mantle section of Paleoproterozoic oceanic lithosphere followed by variable metasomatism after incorporation into cratonic mantle lithosphere. This model allows for a linked petrogenesis of the Voyageur eclogites (crust) and pyroxenites (mantle) as part of the same subducting oceanic slab. Oxygen fugacity determinations for one pyroxenite and ten eclogite xenoliths show a range of 3 log units, from ? 4.6 to ? 1.6 ?FMQ, similar to the range observed for nearby Jericho and Muskox eclogites (?FMQ ? 4.2 to ? 1.5). Importantly, the northern Slave eclogite and pyroxenite mantle components are highly heterogeneous in terms of redox state provided that they range from reduced to oxidized relative to Slave peridotite xenoliths. Moreover, the Voyageur eclogites do not exhibit any trend between oxidation state and equilibration depth, which contrasts with the downward decrease in fO2 shown by Slave and worldwide cratonic peridotite xenoliths. Our investigation of mantle eclogite and pyroxenite fO2 reinforces the important influence of recycled mafic components in upper mantle processes, because their high and variable redox buffering capacity strongly controls volatile speciation and melting relations under upper mantle conditions.
DS201707-1375
2017
Tappe, S., Brand, N.B., Stracke, A., van Acken, D., Liu, C-Z., Strauss, H., Wu, F-Y., Luguet, A., Mitchell, R.H.Plates or plumes in the origin of kimberlites: U/pb perovskite and Sr-Nd-Hf-Os-C-O isotope contraints from the Superior craton ( Canada).Chemical Geology, Vol. 455, pp. 57-83.Canadadeposit - Renard, Wemndiji

Abstract: Neoproterozoic kimberlite, ultramafic lamprophyre, and carbonatite magmatic activity was widespread across the Canadian-Greenland Shield. Models to explain the preponderance of this deeply-derived CO2-rich magmatism between 680–540 Ma range from impingement of multiple mantle plumes to rifting activity linked to the breakout of the Laurentian plate from the Rodinia supercontinent configuration. We add to the debate about the origin of kimberlite magmas and evaluate possible mantle sources of the 655 Ma ‘diamond-rich’ Renard (new SIMS U/Pb perovskite ages) and 629 Ma ‘barren’ Wemindji kimberlites on the eastern Superior craton in Quebec, Canada. Our Sr-Nd-Hf and carbon isotope data (87Sr/86Sri = 0.70241–0.70442; ?Ndi = + 0.2 to + 4.8; ?Hfi = + 0.3 to + 6.5; ?13C = ? 5.6 to ? 3.9‰) suggest a common and moderately depleted convecting upper mantle source region for both the Renard and Wemindji kimberlites, which occur 400 km apart in the interior of the Superior craton. In contrast, the low Os isotope ratios (187Os/188Osi = 0.11078–0.12620; ?Osi = ? 13.7 to ? 1.6) and unfractionated chondritic relative HSE abundances (Os, Ir, Ru, Pt, Pd, Re) indicate significant involvement of ancient refractory cratonic mantle material in kimberlite magma formation. Our model calculations suggest that for both the diamond-rich Renard and the barren Wemindji kimberlite magmas up to 30% of the Os was derived from refractory cratonic peridotites. This material might have been assimilated by originally more CO2-rich carbonated silicate melts derived from the asthenosphere. We also show that the geochemical and Sr-Nd-Hf-Os isotopic compositions of the Renard and Wemindji kimberlites do not require significant input from melts derived from olivine-poor cratonic mantle lithologies such as MARID-type veins and pyroxenites/eclogites. This contrasts with the petrogenesis of deeply-derived volatile-rich potassic magmas found along the peripheries of cratons (e.g., ultramafic lamprophyres, kamafugites, and olivine lamproites), a setting where abundant non-peridotitic components have been added to the lithospheric mantle over the course of continent evolution. Provided that CO2-rich melts, such as proto-kimberlites, occur near the solidus of volatile-fluxed peridotites, no excess mantle heat is required in their formation. This important but often overlooked constraint, together with the observation that there exist no spatial or temporal relationships between the Superior craton kimberlites and Large Igneous Provinces during the Late Neoproterozoic, suggests that kimberlite magmatic activity was tectonically controlled. In our preferred model, ubiquitous CO2-rich proto-kimberlite melts form during volatile-controlled redox melting processes at ambient mantle temperatures in a thermal boundary layer directly beneath thick cratonic lithosphere. The success rate of ‘evolving’ hybrid kimberlite magmas reaching Earth’s surface increases when tensile stresses propagate into the > 200 km thick keels of continental lithosphere. These conditions are frequently met during fast and changing plate motions associated with the assembly and breakup of supercontinents.
DS201707-1384
2017
Wyman, D.Do cratons preserve evidence of stagnant lid tectonics?Geoscience Frontiers, in press available 15p.Canada, Ontariomantle plumes

Abstract: Evidence for episodic crustal growth extending back to the Hadean has recently prompted a number of numerically based geodynamic models that incorporate cyclic changes from stagnant lid to mobile lid tectonics. A large part of the geologic record is missing for the times at which several of these cycles are inferred to have taken place. The cratons, however, are likely to retain important clues relating to similar cycles developed in the Mesoarchean and Neoarchean. Widespread acceptance of a form of plate tectonics by ?3.2 Ga is not at odds with the sporadic occurrence of stagnant lid tectonics after this time. The concept of scale as applied to cratons, mantle plumes and Neoarchean volcanic arcs are likely to provide important constraints on future models of Earth's geodynamic evolution. The Superior Province will provide some of the most concrete evidence in this regard given that its constituent blocks may have been locked into a stagnant lid relatively soon after their formation and then assembled in the next global plate tectonic interval. Perceived complexities associated with inferred mantle plume – volcanic arc associations in the Superior Province and other cratons may be related to an over estimation of plume size. A possible stagnant lid episode between ?2.9 Ga and ?2.8 Ga is identified by previously unexplained lapses in volcanism on cratons, including the Kaapvaal, Yilgarn and Superior Province cratons. If real, then mantle dynamics associated with this episode likely eliminated any contemporaneous mantle plume incubation sites, which has important implications for widespread plumes developed at ?2.7 Ga and favours a shallow mantle source in the transition zone. The Superior Province provides a uniquely preserved local proxy for this global event and could serve as the basis for detailed numerical models in the future.
DS201708-1588
2017
Abersteiner, A.Significance of halogens ( F, Cl) in kimberlite melts: insights from mineralogy and melt inclusions in the Roger pipe ( Ekati, Canada).11th. International Kimberlite Conference, PosterCanada, Northwest Territoriesdeposit - Roger

Abstract: The abundance and distribution of halogens (F, Cl) are rarely recorded in kimberlites and therefore their petrogenetic significance is poorly constrained. Halogens are usually present in kimberlite rocks in the structure of phlogopite and apatite, but their original concentrations are never fully retained due to the effects of alteration. To provide new constraints on the origin and evolution of halogens in kimberlites and their melts, we present a detailed study of the petrography and geochemistry of the late-Cretaceous Group-I (or archetypal) Roger kimberlite (Ekati cluster, Canada). The studied samples contain abundant anhedral-to-euhedral olivine which is set in a crystalline groundmass of monticellite, phlogopite, apatite, spinel (i.e. magnesian ulvöspinel-magnetite (MUM), Mg-magnetite, pleonaste, Cr-spinel), and perovskite along with abundant secondary alteration phases (i.e. serpentine, garnet (andradite-schlorlomite), amakinite ((Fe2 +, Mg, Mn)(OH)2), calcite). The Roger kimberlite is characterised by the highest recorded F-content (up to 2688 ppm) of the Ekati cluster kimberlites, which is reflected by the preservation of F-rich phases, where bultfonteinite (Ca4(Si2O7)(F, OH)2) and fluorite commonly replace olivine. In order to examine the composition and evolution of the kimberlite melt prior to post-magmatic processes, we studied melt inclusions in olivine, Cr-spinel, monticellite and apatite. Primary multiphase melt inclusions in Cr-spinel, monticellite and apatite and secondary inclusions in olivine are shown to contain a diversity of daughter phases and compositions that are dominated by alkali/alkali-earth (Na, K, Ba, Sr)-enriched Ca-Mg-carbonates ± F, Na-K-chlorides and sulphates, phosphates ± REE, spinel, silicates (e.g. olivine, phlogopite, (clino)humite), and sulphides. Although alkali/alkali-earth- and halogen-bearing phases are abundant in melt inclusions, they are generally absent from the kimberlite groundmass, most likely due to ubiquitous effects of syn- and/or post-magmatic alteration (i.e. serpentinisation). Comparisons between halogens and other trace elements of similar compatibility (i.e. F/Nd and Cl/U) in the Roger kimberlite and their respective estimated primitive mantle abundances show that halogens should be a more significant component in kimberlites than typically measured. We propose that fluorine in the Roger kimberlite was magmatic and was redistributed during hydrothermal alteration by Ca-bearing serpentinising fluids to produce the observed bultfonteinite/fluorite assemblages. Based the compositions and daughter mineral assemblages in primary melt inclusions and reconstructed halogen abundances, we suggest that Cr-spinel, monticellite and apatite crystallised from a variably differentiated Si-P-Cl-F-bearing carbonate melt that was enriched in alkalis/alkali-earths and highly incompatible trace elements.
DS201708-1563
2017
Abersteiner, A., Kamanetsky, V.S., Kamenetsky, M., Goemann, K., Ehrig, K., Rodemann, T.Significance of halogens ( F, Cl) in kimberlite melts: insights from mineralogy and melt inclusions in the Roger pipe ( Ekati, Canada).Chemical Geology, in press available, 16p.Canada, Northwest Territoriesdeposit, Roger, Ekati

Abstract: The abundance and distribution of halogens (F, Cl) are rarely recorded in kimberlites and therefore their petrogenetic significance is poorly constrained. Halogens are usually present in kimberlite rocks in the structure of phlogopite and apatite, but their original concentrations are never fully retained due to the effects of alteration. To provide new constraints on the origin and evolution of halogens in kimberlites and their melts, we present a detailed study of the petrography and geochemistry of the late-Cretaceous Group-I (or archetypal) Roger kimberlite (Ekati cluster, Canada). The studied samples contain abundant anhedral-to-euhedral olivine which is set in a crystalline groundmass of monticellite, phlogopite, apatite, spinel (i.e. magnesian ulvöspinel-magnetite (MUM), Mg-magnetite, pleonaste, Cr-spinel), and perovskite along with abundant secondary alteration phases (i.e. serpentine, garnet (andradite-schlorlomite), amakinite ((Fe2 +, Mg, Mn)(OH)2), calcite). The Roger kimberlite is characterised by the highest recorded F-content (up to 2688 ppm) of the Ekati cluster kimberlites, which is reflected by the preservation of F-rich phases, where bultfonteinite (Ca4(Si2O7)(F, OH)2) and fluorite commonly replace olivine. In order to examine the composition and evolution of the kimberlite melt prior to post-magmatic processes, we studied melt inclusions in olivine, Cr-spinel, monticellite and apatite. Primary multiphase melt inclusions in Cr-spinel, monticellite and apatite and secondary inclusions in olivine are shown to contain a diversity of daughter phases and compositions that are dominated by alkali/alkali-earth (Na, K, Ba, Sr)-enriched Ca-Mg-carbonates ± F, Na-K-chlorides and sulphates, phosphates ± REE, spinel, silicates (e.g. olivine, phlogopite, (clino)humite), and sulphides. Although alkali/alkali-earth- and halogen-bearing phases are abundant in melt inclusions, they are generally absent from the kimberlite groundmass, most likely due to ubiquitous effects of syn- and/or post-magmatic alteration (i.e. serpentinisation). Comparisons between halogens and other trace elements of similar compatibility (i.e. F/Nd and Cl/U) in the Roger kimberlite and their respective estimated primitive mantle abundances show that halogens should be a more significant component in kimberlites than typically measured. We propose that fluorine in the Roger kimberlite was magmatic and was redistributed during hydrothermal alteration by Ca-bearing serpentinising fluids to produce the observed bultfonteinite/fluorite assemblages. Based the compositions and daughter mineral assemblages in primary melt inclusions and reconstructed halogen abundances, we suggest that Cr-spinel, monticellite and apatite crystallised from a variably differentiated Si-P-Cl-F-bearing carbonate melt that was enriched in alkalis/alkali-earths and highly incompatible trace elements
DS201708-1564
2017
Abersteiner, A., Kamanetsky, V.S., Pearson, D.G., Kamenetsky, M., Ehrig, K., Goemann, K., Rodemann, T.Monticellite in group I kimberlites: implications for evolution of parallel melts and post emplacement CO2 degassing. Leslie, Pipe 1Chemical Geology, in press available, 54p.Canada, Northwest Territories, Europe, Finlanddeposit, Leslie

Abstract: Monticellite is a magmatic and/or deuteric mineral that is often present, but widely varying in concentrations in Group-I (or archetypal) kimberlites. To provide new constraints on the petrogenesis of monticellite and its potential significance to kimberlite melt evolution, we examine the petrography and geochemistry of the minimally altered hypabyssal monticellite-rich Leslie (Canada) and Pipe 1 (Finland) kimberlites. In these kimberlites, monticellite (Mtc) is abundant (25–45 vol%) and can be classified into two distinct morphological types: discrete and intergrown groundmass grains (Mtc-I), and replacement of olivine (Mtc-II). Monticellite in group-I kimberlites: Implications for evolution of parental melts and post-emplacement CO 2 degassing (PDF Download Available).
DS201708-1595
2017
Aulbach, S.Re-Os isotope systematics of sulphide inclusions in diamonds from Victor ( Superior craton) document mobilization of volatiles and Os during Rodinia break up.11th. International Kimberlite Conference, PosterCanada, Ontario, Attawapiskatdeposit - Victor
DS201708-1597
2017
Banas, A.Yellow and white diamonds from the Qilalugaq kimberlites: two generations of diamond growth.11th. International Kimberlite Conference, PosterCanada, Nunavutdeposit - Qilalugaq
DS201708-1598
2017
Barnett, W.Kelvin and Faraday kimberlite emplacement geometries and implications for Subterranean magmatic processes.11th. International Kimberlite Conference, OralCanada, Northwest TerritoriesDeposit - Kelvin, Faraday

Abstract: The Kennady North Project kimberlites are located approximately 280 kilometers east-northeast of Yellowknife, in the Northwest Territories of Canada. The unusual geometry and extent of the kimberlite magmatic system is revealed by renewed exploration drilling activities by Kennady Diamonds since 2012. It has become clear that the system comprises multiple intrusive dykes within which several volcaniclastic bodies have developed, all within 11 kilometres of the Gahcho Kué kimberlite cluster and diamond mine. The detailed exploration of the entire system provides unique evidence for subterranean volcanic conduit growth processes that may have scientific and practical exploration benefits.
DS201708-1599
2017
Bezzola, M.The geology and evaluation of the Kelvin kimberlite pipe, NWT, Canada.11th. International Kimberlite Conference, PosterCanada, Northwest Territoriesdeposit - Kelvin
DS201708-1600
2017
Bloom, A.Density measurement within the context of the rock mass characterization program of the Kelvin and Faraday kimberlites and surrounding country rock in the Northwest Territories of Canada.11th. International Kimberlite Conference, PosterCanada, Northwest Territoriesdeposit - Kelvin, Faraday
DS201708-1603
2017
Brett, C.Petrology of the White River Diamondiferous Paleoproterozoic intrusive rocks.11th. International Kimberlite Conference, PosterCanada, Ontariodeposit - White River
DS201708-1608
2017
Bussweiller, Y.Cr-rich megacrysts of clinopyroxene and garnet from Lac de Gras kimberlites, Slave craton, Canada - implications for the origin of clinopyroxenes and garnet in cratonic peridotites.11th. International Kimberlite Conference, OralCanada, Northwest Territoriesdeposit - Lac de Gras
DS201708-1609
2017
Bussweiller, Y.Evolution of calcite-bearing kimberlites by melt-rock reaction - evidence from polmineralic inclusions within clinopyroxene and garnet megacrysts from Lac de Gras kimberlites, Canada.11th. International Kimberlite Conference, PosterCanada, Northwest Territoriesdeposit - Lac de Gras

Abstract: Megacrystic (>1 cm) clinopyroxene (Cr-diopside) and garnet (Cr-pyrope) xenocrysts within kimberlites from Lac de Gras (Northwest Territories, Canada) contain fully crystallized melt inclusions. These `polymineralic inclusions' have previously been interpreted to form by necking down of melts at mantle depths. We present a detailed petrographical and geochemical investigation of polymineralic inclusions and their host crystals to better understand how they form and what they reveal about the evolution of kimberlite melt. Genetically, the megacrysts are mantle xenocrysts with peridotitic chemical signatures indicating an origin within the lithospheric mantle (for the Cr-diopsides studied here ~4.6 GPa, 1015 °C). Textural evidence for disequilibrium between the host crystals and their polymineralic inclusions (spongy rims in Cr-diopside, kelyphite in Cr-pyrope) is consistent with measured Sr isotopic disequilibrium. The preservation of disequilibrium establishes a temporal link to kimberlite eruption. In Cr-diopsides, polymineralic inclusions contain phlogopite, olivine, chromite, serpentine, and calcite. Abundant fluid inclusion trails surround the inclusions. In Cr-pyropes, the inclusions additionally contain Al-spinel, clinopyroxene, and dolomite. The major and trace element compositions of the inclusion phases are generally consistent with the early stages of kimberlite differentiation trends. Extensive chemical exchange between the host phases and the inclusions is indicated by enrichment of the inclusions in major components of the host crystals, such as Cr2O3 and Al2O3. This chemical evidence, along with phase equilibria constraints, supports the proposal that the inclusions within Cr-diopside record the decarbonation reaction: dolomitic melt + diopside ? forsterite + calcite + CO2, yielding the observed inclusion mineralogy and producing associated (CO2-rich) fluid inclusions. Our study of polymineralic inclusions in megacrysts provides clear mineralogical and chemical evidence for an origin of kimberlite that involves the reaction of high-pressure dolomitic melt with diopside-bearing mantle assemblages producing a lower-pressure melt that crystallizes a calcite-dominated assemblage in the crust.
DS201708-1610
2017
Cairns, S.Revitalizing exploration in a key diamond district: a case study in the Northwest Territories, Canada.11th. International Kimberlite Conference, PosterCanada, Northwest Territoriesdeposit -
DS201708-1657
2017
Campebll, D., Puumala, M., Eichenberg, D., Riemer, W., Wahl, R.Diamond field trip Marathon-White Ricer area. Guidebook, 15p. Pdf availableCanada, Ontarioguidebook
DS201708-1616
2017
Czas, J.Diamond brecciation and annealing accompanying major metasomatism in eclogite xenoliths from the Sask craton, Canada.11th. International Kimberlite Conference, OralCanada, Saskatchewanmetasomatism
DS201708-1625
2017
Delgaty, J.Ontario's newest kimberlite cluster - the Pagwachuan cluster.11th. International Kimberlite Conference, PosterCanada, Ontariodeposit - Pagawachuan
DS201708-1631
2017
Fagan, A.Geochemistry and geothermobarometry of lherzolite and pyroxenite xenoliths from the CH-33, CH-52 & CH-58 Diamondiferous kimberlite pipes at Chidliak ( Baffin Island, Canada).11th. International Kimberlite Conference, PosterCanada, Nunavut, Baffin Islanddeposit - CH-33, CH-52, CH-58
DS201708-1641
2017
Fulop, A.Geology of the Snap Lake kimberlite dykem Northwest territories, Canada and its metasomatic interaction with granite.11th. International Kimberlite Conference, PosterCanada, Northwest Territoriesdeposit - Snap Lake
DS201708-1643
2017
Gainer, D.The geology of the Faraday 3 kimberlite, NWT, Canada.11th. International Kimberlite Conference, PosterCanada, Northwest Territoriesdeposit - Faraday 3
DS201708-1647
2017
Gaudet, M.The principal role of silicic crustal xenolith assimilation in the formation of Kimberley-type pyroclastic kimberlites - a petrographic study of the Renard 65 kimberlite pipe, Quebec, Canada.11th. International Kimberlite Conference, OralCanada, QuebecDeposit - Renard 65

Abstract: The Renard 65 pipe is located in the Otish Mountains, Quebec, Canada. It is one of nine diamondiferous kimberlite pipes in the ~ 640 Ma Renard cluster and is the largest of four pipes in the Renard Mine reserve. Detailed characterizations of the petrographic and compositional features of these pipe-infilling kimberlite rock types supports their classification into three geological units: Kimb65a, Kimb65b, and Kimb65d. These pipe-infilling kimberlites are interpreted to represent the solidified products of two separate magmatic events: Phase A containing Kimb65a, and Phase B containing Kimb65b and Kimb65d. This research demonstrates that the interclast matrix modal mineralogy (diopside + phlogopite + serpentine) in pyroclastic rock types in the Renard 65 kimberlites are inconsistent with origins by hydrothermal alteration involving hydrous meteoric fluids. Detailed investigation of the reactions between granitic and gneissic crustal xenolith lithologies and their host kimberlites, suggests that reactions occur at both magmatic and subsolidus temperatures involving significant volumetric proportions of xenoliths. The assimilation of crustal xenoliths, and contamination of the kimberlite magmas primarily by Si, are demonstrated to result in enhanced degassing of magmatic volatiles during emplacement and stabilization of the hybrid groundmass assemblage diopside + phlogopite + serpentine over the non hybrid groundmass assemblage calcite + phlogopite + serpentine. It is thus interpreted that the spatial distribution of transitional to Kimberley-type pyroclastic kimberlite rock types, which are characterized by diopside-rich and calcite-poor matrix assemblages as observed in the Renard 65 pipe and other similar pipes, is a function of crustal xenolith distribution in the magma during emplacement. This model not only accounts for the features of Kimberley-type pyroclastic kimberlite rock types, but also the spatial distribution of these rock types in numerous pipes which is often not consistent with lateral textural gradations as has been previously proposed. These results further indicate that the different mineralogy and textures of Fort-à-la-Corne-type pyroclastic kimberlites with respect to Kimberley-type pyroclastic kimberlites may be a consequence of not only the structural controls imparted by the host rock lithology with implications for emplacement-related processes, but also the absence of contamination of the magma by silicic crustal xenoliths.
DS201708-1648
2017
Gaudet, M.Subsolidus compositional modification of kimberlitic spinel in the Renard 65 kimberlite pipe, Quebec, Canada - implications for the use of spinel chemistry in the identification of kimberlite phases.11th. International Kimberlite Conference, PosterCanada, Quebecdeposit - Renard 65
DS201708-1658
2017
Grutter, H.Tracing kimberlitic indicators to their kimberlite source at Chidliak, Nunavut, Canada, re-visited: the unexpected accuracy of a simplified Mahalanobis-distance approach.11th. International Kimberlite Conference, OralCanada, Nunavut, Baffin IslandDeposit - Chidliak
DS201708-1664
2017
Harris, G.Mantle composition, age and geotherm beneath the Darby kimberlite field, west central Rae craton.11th. International Kimberlite Conference, PosterCanada, Yukondeposit - Darby

Abstract: The Rae craton in Canada’s North contains several kimberlite fields and has been the subject of episodic diamond exploration, with proven diamond-bearing deposits. However, relatively little is known about the deep mantle lithosphere that underpins the architecturally complex crust of this craton. The Darby Kimberlite field, located ~120 km southwest of the community of Kugaaruk, Nunavut, provides an opportunity to study the mantle beneath the western portion of the central Rae craton via mantle xenoliths. The Darby kimberlite field contains eight kimberlite bodies erupted at circa 540 Ma. Five of the kimberlites have proven to be diamond-bearing including the 12 hectare ‘Iceberg’ kimberlite. Mantle xenoliths were collected from kimberlite float above proven kimberlite targets across the property. Most of the surface kimberlite is highly altered and hence the peridotite xenoliths they contain are generally serpentinized or deeply-weathered. Eclogites/pyroxenites were recovered from each locality visited. A total of 33 mantle xenoliths exceeding one cm in maximum dimension (14 peridotites and 19 “eclogites”) were selected for mineral chemistry and bulk analysis. Four peridotite xenoliths contain fresh garnet. Clinopyroxenes from kimberlite heavy mineral concentrate provide a preliminary geotherm for the West Central Rae lithosphere and indicate a lithospheric depth of ~200 km. Using Ni-in-garnet temperatures, four garnet peridotites and 49 peridotitic garnets from concentrate yield two distinct mantle sampling depths. Whole rock Re-depletion ages for Darby peridotites range from Mesoarchean to Paleoproterozoic. Archean whole rock TMA ages for the eclogites/pyroxenites are consistent with a Mesoarchean age for the western Central Rae lithosphere, older than the lithosphere beneath the Repulse Bay block to the East. The anomalously high abundance of eclogite/pyroxenite xenoliths and garnet concentrate found in the Darby field (58 % of xenoliths and 82 % of concentrate) is at odds with the abundance of eclogite thought to be present in cratonic lithospheric mantle from xenocryst studies (~one to five %). The high abundance may be related to the proximity of the field to the proposed suture between the Committee Block and the Queen Maud Block to the far West of the Rae craton
DS201708-1679
2017
Jakubec, J.Underground diamond mining at Ekati and Diavik mines.11th. International Kimberlite Conference, PosterCanada, Northwest Territoriesdeposit - Ekati, Diavik
DS201708-1692
2017
Kjarsgaard, B.Discrimination of Whiskey kimberlite eruptive phases utilizing portable XRF spectrometry data.11th. International Kimberlite Conference, PosterCanada, Northwest Territoriesdeposit - Whiskey
DS201708-1694
2017
Kopylova, M.Peridotite xenoliths of the Chidliak kimberlite province (NE Canada): The North Atlantic cratonic mantle with recent thermal and Ti-Na metasomatic disturbance.11th. International Kimberlite Conference, OralCanada, Nunavut, Baffin IslandDeposit - Chidliak
DS201708-1695
2017
Kopylova, M.Hydration of the lithospheric mantle in the northern Slave craton ( Canada): constraints from combined FTIR and ESRD measurements on peridotite xenoliths.11th. International Kimberlite Conference, PosterCanada, Northwest Territorieshydration
DS201708-1701
2017
Laroulandie, C.Barium and titanium enrichment of zoned phlogopite xenocrysts and phenocrysts in the Adamantin kimberlites, Quebec, Canada.11th. International Kimberlite Conference, PosterCanada, Quebecdeposit - Adamantin
DS201708-1703
2017
Lepine, I.Geochemistry and geology of the Renard 2 coherent kimberlitic phases, Quebec, Canada - spatial distribution and diamond content.11th. International Kimberlite Conference, PosterCanada, Quebecdeposit - Renard 2
DS201708-1704
2017
Lepine, I.3D geological modeling of the Renard 2 pipe, Quebec, Canada: from exploration to extraction.11th. International Kimberlite Conference, PosterCanada, Quebecdeposit - Renard
DS201708-1575
2017
Levin, V., Servali, A., VanTongeren, J., Menke, W., Darbyshire, F.Crust mantle boundary in eastern North America, from the (oldest) craton to the (youngest) rift.Geological Society of London, Chapter 6, pp. 107-132.United States, Canadatectonics

Abstract: The North American continent consists of a set of Archean cratons, Proterozoic orogenic belts, and a Sequence of Phanerozoic accreted terranes. We present an ~1250-km-long seismological profile that crosses the Superior craton, Grenville Province, and Appalachian domains, with the goal of documenting the thickness, internal properties, and the nature of the lower boundary of the North American crust using uniform procedures for data selection, preparation, and analysis to ensure compatibility of the constraints we derive. Crustal properties show systematic differences between the three major tectonic domains. The Archean Superior Province is characterized by thin crust, sharp Moho, and low values of Vp/Vs ratio. The Proterozoic Grenville Province has some crustal thickness variation, near-uniform values of Vp/Vs, and consistently small values of Moho thickness. Of the three tectonic domains in the region, the Grenville Province has the thickest crust. Vp/Vs ratios are systematically higher than in the Superior Province. Within the Paleozoic Appalachian orogen, all parameters (crustal thickness, Moho thickness, Vp/Vs ratio) vary broadly over distances of 100 km or less, both across the strike and along it. Internal tectonic boundaries of the Appalachians do not appear to have clear signatures in crustal properties. Of the three major tectonic boundaries crossed by our transect, two have clear manifestations in the crustal structure. The Grenville front is associated with a change in crustal thickness and crustal composition (as reflected in Vp/Vs ratios). The Norumbega fault zone is at the apex of the regional thinning of the Appalachian crust. The Appalachian front is not associated with a major change in crustal properties; rather, it coincides with a zone of complex structure resulting from prior tectonic episodes, and thus presents a clear example of tectonic inheritance over successive Wilson cycles.
DS201708-1706
2017
Liu, J.Age and evolution of the lithospheric mantle beneath southern Baffin Island, Nunavut, Canada.11th. International Kimberlite Conference, PosterCanada, Nunavut, Baffin Islandgeochronology
DS201708-1709
2017
McCandless, T.Geology of the K6-252 kimberlite complex, Alberta.11th. International Kimberlite Conference, PosterCanada, Albertadeposit - K6-252
DS201708-1715
2017
Milligan, R.Features of apatite in kimberlites from Ekati diamond mine and Snap Lake, Northwest Territories: modelling of kimberlite composition.11th. International Kimberlite Conference, PosterCanada, Northwest Territoriesdeposit - Ekati, Snap Lake

Abstract: Kimberlites are volcanic ultramafic rocks originate from the upper mantle, and some are diamond bearing. Due to assimilation of mantle and crustal material, loss of volatiles, significant alteration and variable compositions of kimberlite seen at the surface, the primary composition and proportion of melt fluids (H2O, CO2) are unknown. Kimberlitic fluid and melt composition have significant effects on the preservation and quality of diamonds carried to the surface. In an attempt to gain predictive knowledge of the economic viability of a kimberlite, it is important to understand the primary and evolving compositions of kimberlite magmas, as well as the behaviour of volatiles during kimberlite eruption. Apatite is a common groundmass mineral in kimberlite, and has a composition sensitive to volatiles and trace elements [Ca5(PO4)3(F,Cl,OH)]. This study will examine the variation of apatite occurrence, composition, texture and trace element distribution in relation to varied kimberlite geologies and explore the potential of apatite as an indicator of fluid history and melt composition. Seven kimberlites have been selected for a study of groundmass apatite. The six Ekati property kimberlites (Koala, Misery, Panda, Beartooth, Leslie and Grizzly) have been chosen for their varying facies and styles of eruption. Panda and Beartooth are resedimented volcaniclastic kimberlites. Misery and Koala are massive volcaniclastic kimberlites. Leslie and Grizzly are pipe-fill coherent kimberlites. The seventh kimberlite, Snap Lake, is a coherent kimberlite dyke. All kimberlites are located in the Northwest Territories, Canada. Selecting kimberlites with diverse eruption styles allows us to test the apatite indicator model for a variety of potential volatile histories. Back scatter electron imaging has been used to identify and discriminate significant differences in apatite abundance and textural characteristics from Ekati kimberlites and Snap Lake. Wavelength dispersive spectroscopic analysis for major and some trace elements (LREE’s, Sr, Ba) reveals primary substitution mechanisms for rare earth element (REE) incorporation into apatite structure. Previous studies show that distribution of trace elements into apatite greatly depends on the growth media. Partitioning of the LREE’s relative to Sr is significantly different between silicate melt, carbonate melt, and aqueous fluid. Experimental partition coefficients between apatite and various growth media are used to test existing hypotheses of kimberlite melt composition. The future aim of this project is to establish apatite as an effective indicator of magmatic fluid and outline the applicability of groundmass apatite as an indicator of diamond preservation potential in kimberlites.
DS201708-1719
2017
Moss, S.Kimberlite emplacement and mantle sampling through time at A154N kimberlite volcano, Diavik diamond mine.11th. International Kimberlite Conference, OralCanada, Northwest TerritoriesDeposit - A154N
DS201708-1722
2017
Navon, O.The chemical and isotopic composition of Diavik fibrous diamonds and their microinclusions.11th. International Kimberlite Conference, PosterCanada, Northwest Territoriesdeposit - Diavik
DS201708-1723
2017
Nelson, L.The geology of the Faraday 1 kimberlite, NWT, Canada.11th. International Kimberlite Conference, PosterCanada, Northwest Territoriesdeposit - Faraday 1
DS201708-1724
2017
Nelson, L.The geology of the Faraday 2 kimberlite, NWT, Canada.11th. International Kimberlite Conference, PosterCanada, Northwest Territoriesdeposit - Faraday 2
DS201708-1730
2017
Pearson, G.Trace elements in gem quality diamonds from the De Beers Victor mine, Ontario, Canada.11th. International Kimberlite Conference, PosterCanada, Ontario, Attawapiskatdeposit - Victor
DS201708-1731
2017
Pell, J.Conodont geothermometry in pyroclastic kimberlite: constraints on emplacement temperature and cooling histories.11th. International Kimberlite Conference, PosterCanada, Nunavut, Baffin IslandGeothermometry

Abstract: Kimberlites are mantle-derived ultramafic rocks preserved in volcanic and sub-volcanic edifices and are the main primary source of diamonds. The temperatures of formation, transport, eruption and deposition remain poorly constrained despite their importance for understanding the petrological and thermodynamic properties of kimberlite magmas and styles of volcanic eruption. Here, we present measured values of Colour Alteration Indices (CAI) for conodonts recovered from 76 Paleozoic carbonate xenoliths found within 11 pipes from the Chidliak kimberlite field on Baffin Island, Nunavut, Canada. The dataset comprises the largest range of CAI values (1.5 to 8) and the highest CAI values reported to date for kimberlite-hosted xenoliths. Thermal models for cooling of the Chidliak kimberlite pipes and synchronous heating of conodont-bearing xenoliths indicate time windows of 10–20 000 h and, for these short time windows, the measured CAI values indicate heating of the xenoliths to temperatures of 225 to >925 ?C. We equate these temperatures with the minimum temperatures of the conduit-filling kimberlite deposit (i.e. emplacement temperature, TE). The majority of the xenoliths record CAI values of between 5 and 6.5 suggesting heating of xenoliths to temperatures of 460 ?C–735 ?C. The highest CAI values are consistent with being heated to 700 ?C–925 ?C and establish the minimum conditions for welding or formation of clastogenic kimberlite deposits. Lastly, we use TE variations within and between individual pipes, in conjunction with the geology of the conduit-filling deposits, to constrain the styles of explosive volcanic eruption.
DS201708-1732
2017
Pell, J.A tale of two pipes: using whole rock geochemistry to see through alteration and contamination at the CH-6 & CH-7 kimberlites, Chidliak kimberlite province, Baffin Island, Nunavut.11th. International Kimberlite Conference, PosterCanada, Nunavut, Baffin IslandDeposit - Chidliak
DS201708-1737
2017
Poitras, S.Evidence for a >200 km thick diamond -bearing root beneath the Central Mackenzie Valley, Northwest Territories, Canada: diamond indicator mineral geochemistry from the Horn Plateau and Trout Lakes regions.11th. International Kimberlite Conference, OralCanada, Northwest Territoriesindicator minerals
DS201708-1741
2017
Ranger, I.Punctuated long lived emplacement history of kimberlites from the Renard cluster, Superior Province, Canada indicated by new high precision U-Pb groundmass perovskite dating.11th. International Kimberlite Conference, OralCanada, Quebecdeposit - Renard
DS201708-1749
2017
Sarkar, C.Geochronology and mantle source characteristics of kimberlites and related rocks from the Rae Craton, Melville Peninsula, Nunavut, Canada.11th. International Kimberlite Conference, PosterCanada, Nunavut, Melville Peninsulageochronology
DS201708-1762
2017
Shu, Q.50 myr kimberlite magmatism in the Fort a la Corne field, Sask craton, recorded by zircon megacrysts.11th. International Kimberlite Conference, OralCanada, Saskatchewandeposit - Fort a la Corne
DS201708-1767
2017
Snyder, D.Construction and destruction of some North American cratons.11th. International Kimberlite Conference, OralUnited States, Canadacratons

Abstract: Construction histories of Archean cratons remain poorly understood; their destruction is even less clear because of its rarity, but metasomatic weakening is an essential precursor. By assembling geophysical and geochemical data in 3-D lithosphere models, a clearer understanding of the geometry of major structures within the Rae, Slave and Wyoming cratons of central North America is now possible. Little evidence exists of subducted slab-like geometries similar to modern oceanic lithosphere in these construction histories. Underthrusting and wedging of proto-continental lithosphere is inferred from multiple dipping discontinuities, emphasizing the role of lateral accretion. Archean continental building blocks may resemble the modern lithosphere of oceanic plateau, but they better match the sort of refractory crust expected to have formed at Archean ocean spreading centres. Radiometric dating of mantle xenoliths provides estimates of rock types and ages at depth beneath sparse kimberlite occurrences, and these ages can be correlated to surface rocks. The 3.6–2.6 Ga Rae, Slave and Wyoming cratons stabilized during a granitic bloom at 2.61–2.55 Ga. This stabilization probably represents the final differentiation of early crust into a relatively homogeneous, uniformly thin (35–42 km), tonalite-trondhjemite-granodiorite crust with pyroxenite layers near the Moho atop depleted lithospheric mantle. Peak thermo-tectonic events at 1.86–1.7 Ga broadly metasomatized, mineralized and recrystallized mantle and lower crustal rocks, apparently making mantle peridotite more ‘fertile’ and more conductive by introducing or concentrating sulfides or graphite at 80–120 km depths. This metasomatism may have also weakened the lithosphere or made it more susceptible to tectonic or chemical erosion. Late Cretaceous flattening of Farallon lithosphere that included the Shatsky Rise conjugate appears to have weakened, eroded and displaced the base of the Wyoming craton below 140–160 km. This process replaced the old re-fertilized continental mantle with relatively young depleted oceanic mantle.
DS201708-1770
2017
Southam, G.Microbial response to the presence of buried kimberlite pipes in the Attwapiskat region, northern Ontario: bacteria-kimberlite interactions.11th. International Kimberlite Conference, PosterCanada, Ontario, AttawapiskatMicrobiology
DS201708-1771
2017
Stachel, T.The Victor diamond mine ( Superior craton, Canada) - A new paradigm for exploration in unconventional settings.11th. International Kimberlite Conference, OralCanada, Ontario, Attawapiskatdeposit - Victor
DS201708-1581
2017
Van Rythoven, A.D., Schulze, D.J., Hauri, E.H., Wang, J., Shirey, S.Intra-crystal co-variations of carbon isotopes and nitrogen contents in diamond from three north american cratons. A54 south ( Diavik) Slave craton; Lynx dike Superior craton ; Kelsey Lake Wyoming cratonChemical Geology, in press available 54p.Canada, Northwest Territories, Quebec, United States, Coloradodeposit, A54, Lynx, Kelsey Lake

Abstract: Eighteen diamond samples from the A154 South kimberlite pipe (Diavik Mine), Slave Craton, Northwest Territories (Canada); sixteen diamond samples from the Lynx kimberlite dyke, Superior Craton, Quebec (Canada) and twelve diamond samples from the Kelsey Lake kimberlite pipe, Wyoming Craton, Colorado (USA), were cut through the core-zones, polished, imaged by cathodoluminescence (CL), and analyzed by secondary ion mass spectrometry (SIMS) for carbon isotope composition and nitrogen abundance. Twenty Kelsey Lake diamond plates, including the twelve crystals analyzed by SIMS, were analyzed by Fourier transform infrared spectrometry (FTIR) for nitrogen concentration and aggregation state. Diamond samples from Diavik and Kelsey Lake have average ?13CPDB and nitrogen contents (atomic ppm) similar to those found by earlier studies: averaging between ? 3.9‰ and 486 ppm, and ? 7‰ and 308 ppm, respectively. Samples from the Lynx dyke, investigated for the first time, are substantially different, having ?13C = ?1.2‰ and nitrogen content = 32 ppm (averages). All three localities have examples of significant variations in nitrogen content (> 100 ppm) within single stones. Carbon isotope variation within individual stones is relatively minor (< 2‰). In terms of nitrogen aggregation, samples from the Kelsey Lake kimberlite are dominated by zones of Type IaA, but mixed-type and Type IaB (less common) stones also occur. For the majority of samples, overall intra-diamond zonations of nitrogen abundances and carbon isotope ratios are not in agreement with modeled trends for single-event Rayleigh fractionation of diamond from fluid under nitrogen-compatible conditions at 1100 °C. The involvement of fluids from subducted crustal reservoirs with exceptionally light, and in the case of Lynx samples, exceptionally heavy ?13CPDB values is necessary to explain the observed growth histories of all the samples studied here.
DS201708-1785
2017
Wang, Q.Hydrogen of the lithospheric mantle in the northern Slave craton ( Canada): constraints from combined FTIR and EBSD measurements on peridoite xenoliths.11th. International Kimberlite Conference, PosterCanada, Northwest Territoriesperidotite
DS201708-1798
2017
Zhuk, V.Continuity of kimberley-type pyroclastic kimberlite phases within Renard 2 over 1,000 m depth - insights to the geological and emplacement model, Superior craton, Canada.11th. International Kimberlite Conference, OralCanada, QuebecDeposit - Renard 2
DS201709-1961
2017
Beland, C.M.J., William-Jones, A.E.The nature and origin of REE mineralization in the Ashram deposit, Eldor carbonatite complex, Quebec, CanadaGoldschmidt Conference, abstract 1p.Canada, Quebeccarbonatite, Eldor

Abstract: A growing number of studies have suggested that hydrothermal remobilization is crucial for the formation of carbonatite-hosted rare earth element (REE) deposits [1-3]. The Ashram REE deposit, hosted by the Paleoproterozoic Eldor Carbonatite Complex [4], is an example of a REE deposit formed mainly due to hydrothermal processes in magnesio- and ferro-carbonatite. The REE minerals in the Ashram deposit, monazite-(Ce), bastnäsite-(Ce), xenotime- (Y) and minor aeschynite-(Y), are secondary, and were precipitated from hydrothermal fluids. They occur mainly as disseminations, in breccia matrices and veins, and as vug fillings. Hydrothermal apatite and fluorite are also present in appreciable quantities in REE-mineralized zones. Monazite- (Ce) was the earliest REE mineral to form, and was followed by xenotime-(Y) and bastnäsite-(Ce). The compositions of the main REE minerals vary with location in the deposit, particularly in respect to their Nd2O3 and ThO2 contents. Two generations of monazite-(Ce) have been distinguished on the basis of their Nd content. Early, low-Nd monazite-(Ce) formed by replacing apatite through the substitution of 3REE3+ for 5Ca2+ + F- ; low-Nd apatite is LREE-enriched compared to apatite. In contrast, the later high-Nd generation, which has a chondrite-normalized REE profile almost perfectly parallel to that of the apatite, is interpreted to have formed by dissolving the Ca2+ and F- of the apatite and reconstituting the REE and phosphate as monazite-(Ce): Ca4.94REE0.060(PO4)3F = 0.060REEPO4 + F- + 4.94Ca2+ + 2.94PO4 3- Bastnäsite-(Ce) developed as a replacement of monazite- (Ce) through ligand exchange (F- and CO3 2- for PO4 3- ), while preserving the original REE chemistry. A combination of magmatic zone-refinement and hydrothermal remobilization, involving a chloride-bearing fluid, contributed to the formation of a carbonatite-hosted REE deposit.
DS201709-1968
2017
Bussweiler, Y., Poitras, S., Borovinskaya, O., Tanner, M., Pearson, G.Rapid multielemental analysis of garnet with LA-ICP-TOF-MS implications for diamond exploration studies.Goldschmidt Conference, abstract 1p.Canada, Northwest Territoriesdiamond potential

Abstract: Garnet arguably constitutes the most important mineral in diamond exploration studies; not only can the presence of mantle garnet in exploration samples point to kimberlite occurrences, but its minor and trace element composition can further be used to assess the “diamond potential” of a kimberlite. The content of Cr and Ca, especially, has been found to be a reliable tool to test whether garnets originate from within the diamond stability field in the mantle [1]. Trace element patterns can further indicate the mantle host rock of the garnets, for example, whether they originate from a depleted or ultra-depleted mantle section [2]. Routinely, two separate analytical methods are necessary to fully characterize the composition of garnet; major and minor elements are usually determined by electron probe micro-analysis (EPMA), whereas determination of trace elements requires the more sensitive method of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Here, we demonstrate rapid measurement of the entire suite of elements in garnet employing a new, commercially available timeof-flight (TOF) mass spectrometer, the icpTOF (TOFWERK AG, Thun, Switzerland), coupled to a fast wash-out laser ablation system (Teledyne Cetac Technologies Inc., Omaha, NE, USA). Using garnets from exploration samples taken from the Horn Plateau, Northwest Territories, Canada [3], we directly compare the icpTOF results to EPMA and LA-ICP-MS data. We examine whether the icpTOF can reliably characterize the garnets in Cr versus Ca space and at the same time reproduce their trace element patterns, thereby offering a cost effective method of analysis. The method of LA-ICP-TOF-MS, with its high speed of data acquisition and its ability to record the entire mass spectrum simultaneously, may have great benefits for (diamond) exploration studies. Moreover, the method can be used for fast, highresolution imaging, which is applicable to a wide range of geological materials and settings [4].
DS201709-2001
2017
Ivanov, O.A., Logvinova, A.M., Pokhilenko, N.P.Characteristics of nitrogen impurity in octahedral diamonds from Snap Lake ( Slave craton, Canada).Goldschmidt Conference, abstract 1p.Canada, Northwest Territoriesdeposit - Snap Lake

Abstract: The nitrogen concentration and aggregation form reflect the conditions of diamond formation and diamond evolution in primary source [1]. FTIR measurements were made on 40 colorless or slightly greenish octahedral diamonds from Snap Lake kimberlite dyke system. Studied diamonds differ in nitrogen content, distribution and aggregation degree. The total nitrogen content in different diamond zones is up to 1600 ppm. Diamonds have been classified into two groups on the basis of nitrogen aggregation degree in them. Group 1 includes poorly-aggregated-nitrogen diamonds. We suggest that such diamonds belong to the same generation such as cubic diamonds from Snap Lake [2]. The low degree of nitrogen aggregation in diamonds is indicative of short mantle residence and suggests that they crystallized shortly before kimberlite eruption. Diamonds of Group 2 are characterized by high nitrogen aggregation degree (up to 98.6%). Group 2 includes diamonds either with uniform nitrogen distribution throughout the crystal volume or with a predominance of Bdefect in the center. Inhomogeneity in nitrogen distribution from the center to the edge of the octahedral crystals indicates, at least, about the two, or even more growth stages of a part of the studied diamonds. High nitrogen aggregation degree according to “annealing” model is evidence of diamond staying in the high temperature region or of their residence in the mantle conditions. Results obtained support that significant part of octahedral diamonds from Snap Lake may have formed at the base of a thick lithospheric mantle at depth below 300 km [3].
DS201709-2016
2017
Kjarsgaard, B.A., Heaman, L.M., Sarkar, C., Pearson, D.G.The North American mid-Cretaceous kimberlite corridor: wet, edge-driven decompression melting of an OIB-type deep mantle source.Geochemistry, Geophysics, Geosystems: G3, Vol. 18, 7, pp. 2727-2747.Canada, Somerset Island, Saskatchewan, United States, Kansasmagmatism, convection, diamond genesis

Abstract: Thirty new high-precision U-Pb perovskite and zircon ages from kimberlites in central North America delineate a corridor of mid-Cretaceous (115–92 Ma) magmatism that extends ?4000 km from Somerset Island in Arctic Canada through central Saskatchewan to Kansas, USA. The least contaminated whole rock Sr, Nd, and Hf isotopic data, coupled with Sr isotopic data from groundmass perovskite indicates an exceptionally limited range in Sr-Nd-Hf isotopic compositions, clustering at the low ?Nd end of the OIB array. These isotopic compositions are distinct from other studied North American kimberlites and point to a sublithospheric source region. This mid-Cretaceous kimberlite magmatism cannot be related to mantle plumes associated with the African or Pacific large low-shear wave velocity province (LLSVP). All three kimberlite fields are adjacent to strongly attenuated lithosphere at the edge of the North American craton. This facilitated edge-driven convection, a top-down driven processes that caused decompression melting of the transition zone or overlying asthenosphere. The inversion of ringwoodite and/or wadsleyite and release of H2O, with subsequent metasomatism and synchronous wet partial melting generates a hot CO2 and H2O-rich protokimberlite melt. Emplacement in the crust is controlled by local lithospheric factors; all three kimberlite fields have mid-Cretaceous age, reactivated major deep-seated structures that facilitated kimberlite melt transit through the lithosphere.
DS201709-2022
2017
Logvinova, A.M., Wirth, R., Sobolev, N.V.Hydrous silicates within black cloudy zone in diamonds.Goldschmidt Conference, abstract 1p.Canada, Northwest Territoriesdeposit - Diavik

Abstract: Is there the existence of a water-rich zone in the mantle, currently one of the most discussed problem in mantle petrology? There are recent studies of low-water content in nominally anhydrous minerals in diamonds [1] and the chemistry of exceptionally rare phlogopite inclusions coexisting with peridotitic and eclogitic minerals in kimberlite-hosted diamonds [2]. Previous studies have shown that some rapidly formed diamonds reflect the composition of the environment in which they formed [3]. The minerals trapped during nucleation stage remain shielded from any changing conditions during further diamond growth or later mantle metasomatism. Thus, the analysis of diamond microinclusions is a major tool for the direct study of mantle high-density fluids (HDFs) from which the diamonds have precipitated [4]. Using transmission electron microscopy (TEM) techniques, we have investigated hydrous silicates inside nanometerscale, polyphased unclusions, especially in dark cloudy alluvial and kimberlite diamonds. Clinohumite, phlogopite, and phengite were detected. Hydrous silicate phases are accompanied by Ba-Sr-Ca -Fe-Mg carbonates, in addition to sulfides, oxides (magnetite, rutile, ilmenite), F-apatite, KCl, graphite, and fluid bubbles. A contrast occurs between clinohumite associated with phlogopite, F-apatite and highMg carbonates, but phengite, accompanied by a Al, Kbearing, unidentified silicate. These inclusions reflect the composition of fluid from which the host diamond crystallized. The mica composition, in most cases, has excess Si, similar to the high-silica mica identified within diamond microinclusions from Diavik [5]. The fluid-bearing carbonatitic-silicic diamonds grew in water-rich environments with extremely high K-activity, compared to most diamonds, which grew only within limited zones in the Earth’s mantle.
DS201709-2048
2017
Reimink, J.R., Carlson, R.W., Shirey, S.B., Pearson, D.G.Crustal evolution of the Archean Slave craton, NWT.Goldschmidt Conference, abstract 1p.Canada, Northwest Territoriesgeochronology

Abstract: The Slave craton, located in the northwestern portion of the Canadian Shield, contains the oldest known remnant of evolved crust on Earth [1?3] and more extensive suites of granitoid basement gneisses with crystallization ages that nearly span the breadth of the Archean. Portions of these basement gneisses form the Central Slave Basement Complex (CSBC), a belt of exposures recording magmatic events that occurred approximately every 100?150 million years from 3.5?2.7 Ga [4]. When considered with the 4.02 Ga Acasta Gneiss Complex, the good exposure and wide age range of basement gneisses of the Slave craton provide a unique record of the geological processes involved in continent formation. A suite of 3.5?2.7 gyr old Slave craton granitoids collected from a 200 km-long traverse of the CSBC has intermediate to felsic compositions, textures that range from migmatitic gneisses to preservation of primary magmatic features. Preliminary Sm-Nd isotope systematics, as well as zircon U-Pb and Hf isotope data suggest that the granitoids reflect both the products of reworking of Hadean crust, as indicated by the presence of 142Nd deficits in some of the units, but also new additions from the mantle as indicated both in the chemical composition and initial isotopic composition of other rock units. For those samples that derive from remelting of older crustal materials, the initial Hf isotopic composition of zircons are most consistent with a source component that includes Hadean mafic crust. The multiple U-Pb age peaks documented by accessory minerals show a close correspondence with age spectra from the welldocumented mantle lithosphere beneath this region [5] illustrating the coupled evolution of crust and mantle.
DS201709-2060
2017
Stamm, N., Schmidt, M.W.Asthenospheric kimberlites: volatile contents and bulk compositions at 7 Gpa.Earth and Planetary Science Letters, Vol. 474, pp. 309-321.Canada, Nunavutdeposit - Jericho

Abstract: During ascent, kimberlites react with the lithospheric mantle, entrain and assimilate xenolithic material, loose volatiles and suffer from syn- and post-magmatic alteration. Consequently, kimberlite rocks deviate heavily from their primary melt. Experiments at 7 GPa, 1300–1480?°C, 10–30 wt% CO2 and 0.46 wt% H2O on a proposed primitive composition from the Jericho kimberlite show that saturation with a lherzolitic mineral assemblage occurs only at 1300–1350?°C for a carbonatitic melt with <8 wt% SiO2 and >35 wt% CO2. At asthenospheric temperatures of >1400?°C, where the Jericho melt stays kimberlitic, this composition saturates only in low-Ca pyroxene, garnet and partly olivine. We hence forced the primitive Jericho kimberlite into multiple saturation with a lherzolitic assemblage by adding a compound peridotite. Saturation in olivine, low- and high-Ca pyroxene and garnet was obtained at 1400–1650 °C (7 GPa), melts are kimberlitic with 18–29 wt% SiO2 + Al2O3, 22.1–24.6 wt% MgO, 15–27 wt% CO2 and 0.4–7.1 wt% H2O; with a trade-off of H2O vs. CO2 and temperature. Melts in equilibrium with high-Ca pyroxene with typical mantle compositions have ?2.5 wt% Na2O, much higher than the commonly proposed 0.1–0.2 wt%. The experiments allow for a model of kimberlite origin in the convective upper mantle, which only requires mantle upwelling that causes melting at the depth where elemental carbon (in metal, diamond or carbide) converts to CO2 (at ?250 km). If primary melts leading to kimberlites contain a few wt% H2O, then adiabatic temperatures of 1400–1500?°C would yield asthenospheric mantle melts that are kimberlitic (>18 wt% SiO2 + Al2O3) but not carbonatitic (<10 wt% SiO2 + Al2O3) in composition, carbonatites only forming 100–200?°C below the adiabat. These kimberlites represent small melt fractions concentrating CO2 and H2O and then acquire part of their chemical signature by assimilation/fractionation during ascent in the subcratonic lithosphere.
DS201709-2072
2017
Wilson, D., Amos, R., Blowes, D., Langman, J., Smith, L., Sego, D.Diavik waste rock project: scale up of a reactive transport conceptual model for temperature and sulfide dependent geochemical evolution.Goldschmidt Conference, abstract 1p.Canada, Northwest Territoriesdeposit, Diavik
DS201710-2213
2017
Barnett, W.Kelvin and Faraday kimberlite emplacement geometries and implications for subterranean magmatic processes.Vancouver Kimberlite Cluster, Oct. 17, 1p. AbstractCanada, Northwest Territorieskimberlite emplacement
DS201710-2217
2017
Bragagni, A., Luguet, A., Fonseca, R.O.C., Pearson, D.G.,Lorand, J-P., Nowell, G.M., Kjarsgaard, B.A.The geological record of base metal sulfides in the cratonic mantle: a microscale 187Os/188Os study of peridotite xenoliths from Somerset Island, Rae Craton ( Canada).Geochimica et Cosmochimia Acta, Vol. 216, pp. 264-285.Canada, Nunavut, Somerset IslandGeochronology

Abstract: We report detailed petrographic investigations along with 187Os/188Os data in Base Metal Sulfide (BMS) on four cratonic mantle xenoliths from Somerset Island (Rae Craton, Canada). The results shed light on the processes affecting the Re-Os systematics and provide time constraints on the formation and evolution of the cratonic lithospheric mantle beneath the Rae craton. When devoid of alteration, BMS grains mainly consist of pentlandite + pyrrhotite ± chalcopyrite. The relatively high BMS modal abundance of the four investigated xenoliths cannot be reconciled with the residual nature of these peridotites, but requires addition of metasomatic BMS. This is especially evident in the two peridotites with the highest bulk Pd/Ir and Pd/Pt. Metasomatic BMS likely formed during melt/fluid percolation in the Sub Continental Lithospheric Mantle (SCLM) as well as during infiltration of the host kimberlite magma, when djerfisherite crystallized around older Fe-Ni-sulfides. On the whole-rock scale, kimberlite metasomatism is visible in a subset of bulk xenoliths, which defines a Re-Os errorchron that dates the host magma emplacement. The 187Os/188Os measured in the twenty analysed BMS grains vary from 0.1084 to >0.17 and it shows no systematic variation depending on the sulfide mineralogical assemblage. The largest range in 187Os/188Os is observed in BMS grains from the two xenoliths with the highest Pd/Ir, Pd/Pt, and sulfide modal abundance. The whole-rock TRD ages of these two samples underestimate the melting age obtained from BMS, demonstrating that bulk Re-Os model ages from peridotites with clear evidence of metasomatism should be treated with caution. The TRD ages determined in BMS grains are clustered around 2.8-2.7, ?2.2 and ?1.9 Ga. The 2.8-2.7 Ga TRD ages document the main SCLM building event in the Rae craton, which is likely related to the formation of the local greenstone belts in a continental rift setting. The Paleoproterozoic TRD ages can be explained by addition of metasomatic BMS during (i) major lithospheric rifting at ?2.2 Ga and (ii) the Taltson-Thelon orogeny at ?1.9 Ga. The data suggest that even metasomatic BMS can inherit 187Os/188Os from their original mantle source. The lack of isotopic equilibration, even at the micro-scale, allowed the preservation of different populations of BMS grains with distinct 187Os/188Os, providing age information on multiple magmatic events that affected the SCLM.
DS201710-2239
2017
Li, W-Y., Huang, F., Yu, H-M., Xu, J., Halama, R., Teng, F-Z.Barium isotopic composition of the mantle constrained by carbonatites.Goldschmidt Conference, 1p. AbstractAfrica, Tanzania, east Africa, Canada, Europe, Germany, Greenlandcarbonatite

Abstract: Deep mantle origin and ultra-reducing conditions in podiform chromitite: diamonds, moissanite, and other unusual minerals in podiform chromitites from the Pozanti-Karsanti ophiolite, southern Turkey
DS201710-2248
2017
Mercier-Langevin, P.Mineral deposits of Canada: a compilation (1905-2016)Society of Economic Geologists, CD of 1,460 papers. $ 150.00Canadamineral deposits
DS201710-2256
2017
Pogge von Strandmann, P.A.E., Desrochers, A., Murphy, M.J., Finlay, A.J., Selby, D., Lenton, T.M.Global climate stabilisation by chemical weathering during the Hirnantian glaciation.Geochemical Perspectives Letters, Vol. 3, pp. 230-237.Canada, Quebec, Anticosti Islandcarbon cycle

Abstract: Chemical weathering of silicate rocks is a primary drawdown mechanism of atmospheric carbon dioxide. The processes that affect weathering are therefore central in controlling global climate. A temperature-controlled “weathering thermostat” has long been proposed in stabilising long-term climate, but without definitive evidence from the geologic record. Here we use lithium isotopes (?7Li) to assess the impact of silicate weathering across a significant climate-cooling period, the end-Ordovician Hirnantian glaciation (~445 Ma). We find a positive ?7Li excursion, suggestive of a silicate weathering decline. Using a coupled lithium-carbon model, we show that initiation of the glaciation was likely caused by declining CO2 degassing, which triggered abrupt global cooling, and much lower weathering rates. This lower CO2 drawdown during the glaciation allowed climatic recovery and deglaciation. Combined, the data and model provide support from the geological record for the operation of the weathering thermostat.
DS201710-2264
2017
Sharpe, D.R., Kjarsgaard, B.A., Knight, R.D., Russell, H.A.J., Kerr, D.E.Glacial dispersal and flow history, East Arm area of Great Slave Lake, NWT, Canada.Quaternary Science Reviews, Vol. 165, pp. 49-72.Canada, Northwest Territoriesgeomorphology

Abstract: Little work has been completed on paleo-ice-sheet flow indicators of the Laurentide Ice Sheet, west of the Keewatin Ice Divide. Field mapping, sampling and analysis of glaciogenic sediment (?500 sample sites) in a ?33,000 km2 region near the East Arm of Great Slave Lake in northwestern Canada, provided a rare opportunity to improve understanding of sediment erosion and transport patterns. Glacially-eroded bedrock and sedimentary landforms record east to west flow with NW and SW divergence, mapped within a portion of the Great Slave Lake flow tract. Transported till reflects a similar divergent flow pattern based on dispersal geometries for multiple indicators (e.g., heavy minerals and lithic fragments), which are aligned with the dominant and latest ice flow direction. Glaciofluvial erosion (e.g., s-forms and till removal), transport, and deposition (mainly as esker sediment) are set within 0.3-3 km wide meltwater erosional corridors, spaced regularly at 10-15 km intervals. Transport paths and distances are comparable in till and esker sediment, however, distances appear to be greater (?5-25 km) in some esker constituents and indicator minerals are typically more concentrated in esker sediment than in till. Corridors form a divergent array identical to the pattern of ice-flow features. The congruence of ice and meltwater flow features is interpreted to be a response to a similar ice sheet gradient, and close timing of events (late dominant glacial ice flow and meltwater flow). The similarity in glacial and glaciofluvial flow patterns has important ramifications for event reconstruction and for exploration geologists utilizing mineral and geochemical tracing methods in this region, and possibly other parts of northern Canada. The correspondence between East Arm dispersal patterns, landforms and flow indicators supports interpretation of a simple and predictable single flow divergence model. This is in contrast to previous, multi-flow models, in which fan-shaped geometries are often reported to result from multiple transport events, compared to single-flow divergence. The observed widespread effects of glaciofluvial processes (e.g., erosional corridors) indicate a need to update existing terrain process models.
DS201710-2277
2017
Witze, A.Oldest traces of life on Earth may lurk in Canadian rocks. SaglekNature, Sept. 27 3p.Canada, Labradorgeochronology
DS201710-2278
2017
Wolfe, A.P., Reyes, A.V., Royer, D.L., Greenwood, D.R., Doria, G., Gagen, M.H., Siver, P.A., Westgate, J.A.Middle Eocene CO2 and climate reconstructed from the sediment fill of a subarctic kimberlite Maar.Geology , Vol. 45, 7, pp. 619-622.Canada, Northwest Territoriesdeposit - Giraffe

Abstract: Eocene paleoclimate reconstructions are rarely accompanied by parallel estimates of CO2 from the same locality, complicating assessment of the equilibrium climate response to elevated CO2. We reconstruct temperature, precipitation, and CO2 from latest middle Eocene (ca. 38 Ma) terrestrial sediments in the posteruptive sediment fill of the Giraffe kimberlite in subarctic Canada. Mutual climatic range and oxygen isotope analyses of botanical fossils reveal a humid-temperate forest ecosystem with mean annual temperatures (MATs) more than 17 °C warmer than present and mean annual precipitation ?4× present. Metasequoia stomatal indices and gas-exchange modeling produce median CO2 concentrations of ?630 and ?430 ppm, respectively, with a combined median estimate of ?490 ppm. Reconstructed MATs are more than 6 °C warmer than those produced by Eocene climate models forced at 560 ppm CO2. Estimates of regional climate sensitivity, expressed as ?MAT per CO2 doubling above preindustrial levels, converge on a value of ?13 °C, underscoring the capacity for exceptional polar amplification of warming and hydrological intensification under modest CO2 concentrations once both fast and slow feedbacks become expressed.
DS201711-2498
2017
Anderson, S.D.Preliminary geology of the diamond occurrence at southern Knee Lake, Oxford Lake-Knee Lake greenstone belt, Manitoba ( NTS 53L15).Manitoba Geological Survey, Open File OF2017-3, 34p. PdfCanada, Manitobageochemistry
DS201711-2517
2017
Hodder, T.J.Kimberlite indicator mineral results derived from glacial sediments ( till) in the Southern Indian Lake area of north central Manitoba ( parts of NTS 64B15, 64G1,2,7,8).Manitoba Geological Survey, Open File OF2017-2, 13p. PdfCanada, Manitobageochemistry
DS201711-2524
2017
Liddell, M.V., Bastow, I., Darbyshire, F., Gilligan, A., Pugh, S.The formation of Laurentia: evidence from shear wave splitting.Earth and Planetary Science Letters, Vol. 479, pp. 170-178.Canada, Nunavut, Baffin Islandgeophysics - seismics

Abstract: The northern Hudson Bay region in Canada comprises several Archean cratonic nuclei, assembled by a number of Paleoproterozoic orogenies including the Trans-Hudson Orogen (THO) and the Rinkian-Nagssugtoqidian Orogen. Recent debate has focused on the extent to which these orogens have modern analogues such as the Himalayan-Karakoram-Tibet Orogen. Further, the structure of the lithospheric mantle beneath the Hudson Strait and southern Baffin Island is potentially indicative of Paleoproterozoic underthrusting of the Superior plate beneath the Churchill collage. Also in question is whether the Laurentian cratonic root is stratified, with a fast, depleted, Archean core underlain by a slower, younger, thermally-accreted layer. Plate-scale process that create structures such as these are expected to manifest as measurable fossil seismic anisotropic fabrics. We investigate these problems via shear wave splitting, and present the most comprehensive study to date of mantle seismic anisotropy in northern Laurentia. Strong evidence is presented for multiple layers of anisotropy beneath Archean zones, consistent with the episodic development model of stratified cratonic keels. We also show that southern Baffin Island is underlain by dipping anisotropic fabric, where underthrusting of the Superior plate beneath the Churchill has previously been interpreted. This provides direct evidence of subduction-related deformation at 1.8 Ga, implying that the THO developed with modern plate-tectonic style interactions.
DS201711-2531
2017
Timms, N.E., Erickson, T.M., Zanetti, M.R., Pearce, M.A., Cayron, C., Cavosie, A.J., Reddy, S.M., Wittman, A., Carpenter, P.K.Cubic zirconia in >2370 C impact melt records Earth's hottest crust.Earth and Planetary Science Letters, Vol. 478, pp. 52-58.Canada, QuebecMistastin crater

Abstract: Bolide impacts influence primordial evolution of planetary bodies because they can cause instantaneous melting and vaporization of both crust and impactors. Temperatures reached by impact-generated silicate melts are unknown because meteorite impacts are ephemeral, and established mineral and rock thermometers have limited temperature ranges. Consequently, impact melt temperatures in global bombardment models of the early Earth and Moon are poorly constrained, and may not accurately predict the survival, stabilization, geochemical evolution and cooling of early crustal materials. Here we show geological evidence for the transformation of zircon to cubic zirconia plus silica in impact melt from the 28 km diameter Mistastin Lake crater, Canada, which requires super-heating in excess of 2370?°C. This new temperature determination is the highest recorded from any crustal rock. Our phase heritage approach extends the thermometry range for impact melts by several hundred degrees, more closely bridging the gap between nature and theory. Profusion of >2370?°C superheated impact melt during high intensity bombardment of Hadean Earth likely facilitated consumption of early-formed crustal rocks and minerals, widespread volatilization of various species, including hydrates, and formation of dry, rigid, refractory crust.
DS201712-2670
2017
Alty, R.Diavik diamond mines - 2016 Socio-economic Monitoring Agreement performance.45th. Annual Yellowknife Geoscience Forum, p. 2 abstractCanada, Northwest Territoriesdeposit - Diavik

Abstract: At Diavik, sustainable development is integrated into everything we do. Our operations provide benefits and opportunities for local communities, businesses, and governments. We work with all our stakeholders to deliver substantial and lasting benefits. The Diavik sustainable development report, is a requirement under the Diavik socio-economic monitoring agreement (SEMA). Through this report information on annual training, employment, business benefits, and community initiatives are available to the public. During this session of the Geoscience discussion, we will be sharing the Diavik Diamond mine performance under the SEMA up to and including December 2016.
DS201712-2675
2017
Barnett, W., Stubley, M., Hrkac, C., Hetman, C.M., McCandless, T.Kelvin and Faraday kimberlite emplacement geometries and implications for subterranean magmatic processes.45th. Annual Yellowknife Geoscience Forum, p. 4 abstractCanada, Northwest Territoriesdeposit - Kelvin, Faraday

Abstract: The Kennady North Project kimberlites are located approximately 280 kilometers east-northeast of Yellowknife, in the Northwest Territories of Canada. The unusual geometry and extent of the kimberlite magmatic system is revealed by renewed exploration drilling activities by Kennady Diamonds since 2012. It has become clear that the system comprises multiple intrusive dykes within which several volcaniclastic bodies have developed, all within 11 kilometres of the Gahcho Kué kimberlite cluster and diamond mine. The detailed exploration of the entire system provides unique evidence for subterranean volcanic conduit growth processes that may have scientific and practical exploration benefits. The identified Kennady North Project volcaniclastic bodies are named Kelvin, Faraday 1, Faraday 2 and Faraday 3, and have complex geometries atypical of the more common subvertical kimberlite pipes. Rather, these pipe-like bodies are inclined between 12 and 30 degrees towards the northwest. Kelvin has sharp angular change in trend towards the north. On-going detailed petrographic studies have shown that the pipes contain layers of complex volcaniclastic units with variable volumes of xenolithic fragments, as well as coherent magmatic layers. The pipe textures include evidence for high energy magma and country rock fragmentation processes typically observed in open volcanic systems. The pipes have developed within a shallow 20 degree northwest dipping kimberlite dyke system. Detailed structural geology studies, using fault observations in oriented and unoriented drill core, have identified at least two important fault-fracture trends. The first fault-fracture system is parallel to the dyke segments, and likely related to the intrusion of the dykes and the regional stress tensor during emplacement. The second fault system is subvertical and north-south striking, parallel to the lithological layering within the metasedimentary country rock. The north-south faults match the contact geometry of the Kelvin pipe’s north-south limb exactly. The dykes have been 3-D modelled along with the pipes. Three possible renditions of the dykes have been created, based on different interpretations of dyke segment continuity. The renditions have been labelled “Optimistic”, “Realistic” and “Pessimistic”. The assumptions made have important implications for developing dyke-type mineral resources. The realistic dyke model defines dyke segments that intersect the Kelvin pipe, and those intersections match geometric trends and irregularities in the pipe shape. The coincidental geometries strongly imply that the pipe development interacted with a penecontemporaneous dyke system. The north-south faults also controlled the local trend of Kelvin pipe development, possibly by enhancing fluid permeability, alteration and brecciation along the faults, connecting from one shallow dipping dyke to the next above. Breccia bodies have been observed on similar dipping dykes at Snap Lake mine that intersect fault structures. We conclude that the pipe development geometry and process is governed by a combination of stress, structure and magmatic fluids, and speculate on the nature of the energy required for fragmentation and development of the pipe at some still unknown depth in the crust.
DS201712-2682
2017
Davies, R., Davies, A.W.Where have all the garnets gone - Lena West paleo-climate.45th. Annual Yellowknife Geoscience Forum, p. 93 abstract posterCanada, Northwest Territoriesdeposit - Lena West
DS201712-2688
2017
Harris, G.A., Pearson, D.G., Liu, J., Hardman, M.F., Kelsch, D.Mantle composition, age and geotherm beneath the Darby kimberlite field, west central Rae craton.45th. Annual Yellowknife Geoscience Forum, p. 33 abstractCanada, Northwest Territoriesdeposit - Darby

Abstract: New geological and geophysical research on Canada’s Rae craton are providing an increasingly good baseline for diamond exploration. This study uses mantle xenoliths and xenocrysts from the Darby property, located ~200 km southwest of the community of Kugaaruk, Nunavut, to provide new information on the lithospheric mantle and diamond potential of the western portion of the central Rae. Peridotite xenoliths containing enough fresh olivine have a median Mg# value of 92.5, indistinguishable from the median value of 92.6 typical of cratonic peridotites world-wide. Only of the 14 peridotitic xenoliths contain fresh garnet. Of these, garnet in one sample is classified as harzburgitic (G10), giving a minimum pressure of 4.7 GPa using the P38 geobarometer (38 mW/m2 model geothermal gradient), while garnets from three peridotites are classified as lherzolitic (G9). 52 garnets picked from concentrate have lherzolitic affinities. Lherzolitic diopsides from kimberlite heavy mineral concentrate yield a lithospheric thickness of ~ 200 km. The four garnet peridotite xenoliths and 49 peridotitic garnets from concentrate yield two distinct modes in mantle sampling depths using Ni thermometry, when projected to the Cpx geotherm. A cluster of samples from the higher Ca/Cr lherzolitic garnets equilibrated at 765 to 920 °C with a group of peridotitic garnets (50 % of xenoliths and 28 % of concentrate) from the lower Ca/Cr lherzolitic garnets with anomalously high Ti concentrations yielding super-adiabatic TNi values The aluminum-in-olivine thermometer applied to olivines filtered to be “garnet facies yielded a mantle sampling portion of the mantle cargo from the diamond stability field. A suite of pyroxenitic xenoliths are a feature of each Darby kimberlite target. New screening techniques indicate that these rocks likely originate close to the crust mantle boundary. Osmium isotope analyses of the Darby peridotites reveal whole-rock Re-depletion ages ranging from Mesoarchean to Paleoproterozoic. The pyroxenite xenoliths have very radiogenic Os isotope compositions and provide the first age information from pyroxenites/“eclogites” beneath the Rae craton. Their resulting Archean whole rock TMA ages are consistent with a Mesoarchean age of the western Central Rae lithosphere older than the lithosphere beneath the Repulse Bay block in the East section of the Rae craton (Liu et al., 2016. Precambrian Research 272). The highly depleted olivine compositions, thick cold lithosphere, and Archean ages of the Darby peridotite xenoliths clearly indicate the presence of 200 km thick cold cratonic lithospheric mantle beneath the western segment of the central Rae craton circa 540 Ma. The Archean model ages of most of the pyroxenites support this, notwithstanding the fact that some of these rocks could be sampling either crust or mantle lithologies very close to the crust-mantle boundary. Mantle sampling took place well into the diamond stability field at Darby.
DS201712-2689
2017
Hiyate, A.Shore finds potential partner in Rio Tinto. Rio signs option to earn majority stake in Saskatchewan project.Diamonds In Canada Magazine, Northern Miner, Nov. pp. 6-8.Canada, Saskatchewandeposit - Star-Orion
DS201712-2690
2017
Hiyate, A.Stornoway crafts breakage plan for Renard plant $ 22 M waste-sorting circuit to be commissioned in early 2018.Diamonds In Canada Magazine, Northern Miner, Nov. pp. 9-11.Canada, Quebecdeposit - Renard
DS201712-2691
2017
Hiyate, A.Gahcho Kue makes the grade. Partners raise 2017 production guidance for new NWT mine.Diamonds In Canada Magazine, Northern Miner, Nov. pp. 12-14.Canada, Northwest Territoriesdeposit - Gahcho Kue
DS201712-2692
2017
Hiyate, A., Hefferman, V.Dominion's latest transformation .. Next chapter Washington Companies takeover is just the latest twist in the company's history.Diamonds In Canada Magazine, Northern Miner, Nov. pp. 4-5.Canada, Northwest Territoriesdeposit - Ekati
DS201712-2698
2017
Kelley, S.E., Ross, M., Stirling, R.A., Normandeau, P.X., Elliott, B.The application of 3D indicator minerals datasets to regional scale modeling of glacial sediments in the Lac de Gras area.45th. Annual Yellowknife Geoscience Forum, p. 101 abstract posterCanada, Northwest Territoriesgeomorphology
DS201712-2704
2017
McCandless, T., desGagnes, B., Shimell, M., Read, G.Geology of the K6-252 kimberlite complex, Alberta.45th. Annual Yellowknife Geoscience Forum, p. 102 abstract posterCanada, Albertadeposit - K6-252
DS201712-2705
2017
McPeak, S., Mallozzi, S., Samson, C., Elliott, B., Junter, J.Estimating overburden depth in a permafrost rich environment using passive seismics: results from the 2017 preliminary survey at Kennady Camp.45th. Annual Yellowknife Geoscience Forum, p. 103 abstract posterCanada, Northwest Territoriesdeposit - Kennady
DS201712-2707
2017
Moore, R., Hrkac, C., Nelson, L.Kennady North project 2017 field season update.45th. Annual Yellowknife Geoscience Forum, p. 52 abstractCanada, Northwest Territoriesdeposit - Kennady North
DS201712-2709
2017
Nelson, L., Hetman, C.M., Diering, M.The geology of the Faraday 2 kimberlite pipe, Northwest Territories.45th. Annual Yellowknife Geoscience Forum, p. 106 abstract posterCanada, Northwest Territoriesdeposit - Faraday 2
DS201712-2722
2017
Reyes, A.V., Wolfe, A.P., Tierney, J.E., Silver, P.A., Royer, D.L., Greenwood, D.R., Buryak, S., Davies, J.H.F.L.Paleoenvironmental research on early Cenozoic sediment fills in Lac de Gras kimberlite pipes: progress and prospects.45th. Annual Yellowknife Geoscience Forum, p. 65 abstractCanada, Northwest Territoriesdeposit - Giraffe

Abstract: Several Lac de Gras kimberlite pipes host thick accumulations of stratified post-eruptive lacustrine sediment and peat. Given the range of Lac de Gras kimberlite emplacement ages, these fills - though rare - provide a unique sedimentary archive of paleoenvironments during the sustained Early Cenozoic “greenhouse” interval, in a high-latitude region otherwise devoid of Phanerozoic sediment cover. Extensive exploration drilling has provided a valuable window into this unique sedimentary record, which would have otherwise remained covered by Quaternary glacial deposits. Our focus to date has been multidisciplinary study of the Giraffe pipe sediment fill: an ~80 m-thick sequence of post-eruptive lacustrine silt overlain by peat, which paints a remarkable picture of a humid-temperate Middle Eocene forest ecosystem on the Canadian Shield. Post-eruptive chronology is provided by interbedded distal tephra horizons, likely sourced from Alaska, that have been dated by glass fission-track and zircon U-Pb techniques. Paleoclimate proxies derived from pollen, wood cellulose oxygen isotopes, and biomarkers converge on reconstructed mean annual temperatures >17 °C warmer than present, with mean winter temperatures above freezing, and mean annual precipitation ~4x present. Two independent reconstructions of CO2 from well preserved conifer foliage suggest that this warming occurred under relatively modest atmospheric CO2 concentrations of 430-630 ppm. These findings provide direct field-based evidence for dramatic past arctic warming at CO2 concentrations that were well within the range of projections under “business-as-usual” emissions scenarios, underscoring the capacity for exceptional polar amplification of climate change under modest CO2 concentrations once both fast and slow feedbacks processes become expressed. Our studies at Giraffe pipe also highlight the scientific value of archived exploration drill core in the Lac de Gras kimberlite field, particularly with respect to pipes that are unremarkable for the purpose of diamond exploration.
DS201712-2724
2017
Ross, M., Kelley, S.E., Janzen, R.J.D., Stirling, R.A., Normandeau, P.X., Elliott, B.Tracing the breadcrumbs back tp their source: exploring geological factors controlling production of atypical glacial dispersal patterns of indicator minerals45th. Annual Yellowknife Geoscience Forum, p. 67 abstractCanada, Northwest Territoriesgeochemistry - indicator minerals

Abstract: Tracing surficial dispersal patterns of indicator minerals within glacial sediments in the main up-ice direction has greatly contributed to numerous mineral discoveries of economic value in the Northwest Territories. However, many cases have also reported perplexing scenarios of dispersal trains seemingly lacking a source, or known sources without a spatially associated dispersal train at the surface. These ‘special’ cases often hinder exploration efforts, and tend to remain poorly understood; yet these cases are becoming increasingly important to decipher as exploration moves into more complex terrains. We present an overview of our research done in the Lac de Gras area over the past few years in collaboration with the Northwest Territories Geological Survey and their partners investigating the effect of multiple ice flows, variable bedrock topography and drift thickness, and the complexities of glacial sedimentary environments on 2D and 3D mechanical (detrital) dispersion. Our research draws from surface and subsurface datasets from various sources at both the regional and local scales. We show that despite the occurrence of relatively long, continuous, surficial patterns extending in the direction of the latest-strongest ice flow event in the region, a subtle record of the time-transgressive glacial history is also frequently preserved. These records yield information about the net effect on sediment dispersion of multiple ice flow phases, bedrock geology, basal topography, and glacial depositional processes. Our findings suggest these geological factors played a key role in producing some of the most irregular and enigmatic dispersal patterns in the region. They also offer insights into how to best characterize and explain the signal (or lack thereof) from elusive buried sources of potential economic interest.
DS201712-2726
2017
Sacco, D.A., McKillop, R.J., Ward, B.C.Why your kim-bearing till samples may not be leading you to kimberlite.45th. Annual Yellowknife Geoscience Forum, p. 70 abstractCanada, Northwest Territoriesgeochemistry - indicator minerals

Abstract: Kimberlite indicator mineral (KIM) concentrations in till are commonly used in glaciated areas such as Northwest Territories to identify glacial dispersal from a kimberlitic source. However, sampling of till that has been modified by post-depositional processes, or material that is not till, can obscure the original glacial dispersion and mislead exploration efforts. The recognition of subtle changes in material type or the occurrence of till modification is obstructed by periglacial processes that homogenize the landscape. Due to restrictions of scale, it is nearly impossible to identify and represent these subtle landscape variations in regional-scale surficial mapping. The uniform till cover depicted in the regional mapping does not reflect reality, and therefore does not provide the necessary surficial context to inform till sampling programs and evaluation efforts. The Northwest Territories Geological Survey and several private exploration companies have recognized the importance of identifying differences in material type and processes that can remobilize and alter the composition of till. Recent improvements in the availability of high-resolution imagery and digital elevation data have provided the means to perform more detailed surficial studies at a scale that is more applicable to diamond exploration. As a result, multiple high-resolution surficial mapping and associated sediment sample data evaluations have been initiated in and around the Lac de Gras region. These studies have reinforced that there is significant spatial variation in the suitability for till sampling, and found that subglacial meltwater corridors and glacial lakes were common. Furthermore, a many of the previously collected till samples were affected by these processes, which can have a significant influence on KIM concentrations and the shape of their dispersal patterns. Meltwater can truncate dispersals and concentrate heavy minerals. Glacial lakes can either dilute or concentrate heavy minerals depending on whether the environment was proximal or distal. Specific landform assemblages and characteristics have been documented that can be used to identify these dispersal-modifying processes, and used to produce a surficial context that is more suitable to exploration. This improved surficial context facilitates the collection of in situ till samples and the interpretation of existing surface sediment data resulting in lower-risk exploration targets.
DS201712-2731
2017
Stokes, L.Kennady delivers Faraday resources.Diamonds In Canada Magazine, Northern Miner, Nov. pp. 17-18.Canada, Northwest Territoriesdeposit - Farady
DS201712-2732
2017
Tappert, R., Tappert, M.C.Novel kimberlite exploration tools: delineating country rock hydration associated with kimberlites using Vis-SWIR hyper spectral point dat a collected from drill core.45th. Annual Yellowknife Geoscience Forum, p. 78 abstractCanada, Northwest Territories, Saskatchewandeposit - Kelvin, Faraday, Pikoo

Abstract: Many kimberlite ore bodies are relatively small and the presence of overburden can make it challenging to intersect a kimberlite target during exploration drilling. If kimberlite is not intersected during drilling, it can be difficult to decide whether an existing kimberlite body has been missed or whether the geophysical target was not kimberlite. A preliminary spectroscopic study conducted in 2017 provides evidence that kimberlites with sizes exceeding 30 meters hydrate the adjacent country rock. The detection of such ‘hydration halos’ in barren country rock drill cores can provide crucial evidence for the existence of nearby undiscovered kimberlites. To gain a better understanding about the size and morphology of hydration halos around different kimberlite ore bodies, hyperspectral point data were collected from drill cores comprised of crustal rocks recovered in close proximity to known kimberlites (e.g., Kelvin, Farraday, and Pikoo kimberlites). The information obtained as a result of this study will likely serve as a foundation for the development of a rapid, low-cost kimberlite exploration tool that can help evaluate kimberlite potential in areas where kimberlite was not intersected during drilling.
DS201712-2733
2017
Ugalde, H., Furlan, A., Veglio, E., Milkereit, B., Mirza, A.M., Elliott, B.Airborne MAG/EM dat a integration of Slave Province kimberlites, Northwest Territories.45th. Annual Yellowknife Geoscience Forum, p. 82 abstractCanada, Northwest Territoriesgeophysics

Abstract: As part of the Slave Province Geophysical, Surficial Materials and Permafrost Study, the Northwest Territories Geological Survey (NTGS) commissioned high resolution geophysical surveys in the Slave Geological Province (SGP). The high resolution aeromagnetic survey was flown from February to April 2017 and comprise 87,600 line-km of data flown at 100 m line spacing and nominal aircraft terrain clearance was 60 m with drape flying over the Central Slave craton block. The horizontal gradient magnetic and frequency domain EM (FDEM) survey was flown from February to March 2017 acquired at 75 m line spacing over 6 other blocks with nominal terrain clearance of 60 m to maintain bird height of 25 m, covering 4,580 line-km (Munn Lake, Margaret Lake, Zyena Lake, Lac de Gras West, Big Blue and Mackay Lake). The objective of this work is to develop multi-parameter models to help mineral exploration and mining companies better understand the range of geophysical signatures associated with kimberlites in the SGP. A regular geophysical-based approach for kimberlite exploration usually involves inverting geophysical data with limited geological input. In this contribution we present different ways of looking at the geophysical data and try to obtain a more thorough geological understanding out of it. The workflow starts with a complete GIS compilation of all the ancillary data available in the area: previous industry reports, geology, remote sensing, topographic layers. Secondly, we compute a number of interpretation sub-products from the total magnetic intensity data (tilt derivatives, analytic signal, and other edge detection routines). The next stage involves the computation of a susceptibility distribution from the FDEM data (Tschirhart et al, 2015). With this we are able to generate a magnetic model of the near surface susceptibility distributions, which are then subtracted from the observed data. The resultant map shows anomalous sources that could be associated to either remanent magnetization and/or deeper sources. Following the work of Sterritt (2006), post-emplacement alteration is ubiquitous in kimberlite pipes. Alteration results in production of secondary oxide minerals and alteration of primary oxide minerals to phases with different magnetic susceptibilities (e.g. non-magnetic iron oxides). This can lead to a dramatic increase of magnetic susceptibility due to serpentinization (Clark, 1997). On the other hand, remanent magnetization can change the polarity of the observed magnetic anomalies or even completely remove the expected signature due to an equal but opposite combination of remanent and induced magnetic components. Therefore, a thorough compilation of petrophysical and mineralogical data over kimberlites and altered rocks in the vicinity of known occurrences is critical for the geological understanding of the existing geophysical data. This contribution will show some preliminary processing and compilation work completed over the Slave province kimberlites using the newly acquired geophysical data.
DS201712-2737
2017
Wickham, A.P., Winterburn, P.A.Surface till geochemistry and lithogeochemical exploration for a concealed kimberlite.45th. Annual Yellowknife Geoscience Forum, p. 118 abstract posterCanada, Northwest Territoriesdeposit - Kelvin, Kennady
DS201801-0040
2018
Nadeau, O., Stevenson, R., Jebrak, M.Interaction of mantle magmas and fluids with crustal fluids at the 1894 Ma Montviel alkaline carbonatite complex, Canada: insights from metasomatic and hydrothermal carbonates.Lithos, Vol. 296-299, pp. 563-579.Canada, Quebeccarbonatite - Montviel

Abstract: Alkaline and carbonatite rocks are relatively rare but offer the opportunity to study the contribution of fluids in the genesis of mantle and crustal rocks because they are commonly affected by metasomatism. Carbonate minerals represent versatile archives of mantle and crustal magmatic-hydrothermal processes because they can have magmatic, metasomatic or hydrothermal origins and because they host the trace elements, stable and radiogenic isotopes required to unravel their petrogenesis. Previous studies have shown that the 1894 Ma Montviel alkaline?carbonatite complex was emplaced through four injections of volatile-saturated, mantle magmas which evolved through fractional crystallization, mixing of mantle and crustal fluids and metasomatism. Trace element analyses and ?18O, ?13C, 87Sr/86Sr and 143Nd/144Nd isotope compositions of metasomatic and hydrothermal carbonates further support that each magma injection was accompanied by a volatile phase. Variations in trace element concentrations suggest that the carbonatite might have exsolved from a metasomatized mantle or hybrid silicate?carbonatite magma, and that the fluid composition evolved towards higher REE and lower HFSE with increasing degree of segregation of the carbonatite magma and the silicate source. A strong correlation between the C-O-Sr isotopic systems show that mantle fluids mixed with crustal fluids, increasing the 87Sr/86Sr from mantle to crustal values, and driving the C and O isotopic ratios towards respectively lighter and heavier values. The Sm/Nd isotopic system was weakly coupled with the other isotopic systems as depleted mantle fluids mixed with crustal fluids and metasomatized the crystallizing magmas, thereby redistributing the REE and affecting their Sm/Nd ratios. The Nd isotopes suggest that the mixed mantle/crustal fluids redistributed the rare earth elements, producing ultra-depleted (?Nd = + 10), normally depleted (?Nd = + 4) and slightly enriched (?Nd = ? 2) isotopic compositions.
DS201801-0063
2017
Simandl, G.J., Mackay, D.A.R., Ma, X., Luck, P., Gravel, J., Akam, C.The direct indicator mineral concept and QEMSCAN applied to exploration for carbonatite and carbonatite related ore deposits.in: Ferbey, T. Plouffe, A., Hickein, A.S. eds. Indicator minerals in tills and stream sediments of the Canadian Cordillera. Geological Association of Canada Special Paper,, Vol. 50, pp. 175-190.Canada, British Columbiacarbonatite - Aley, Lonnie, Wicheeda

Abstract: This volume consists of a series of papers of importance to indicator minerals in the Canadian Cordillera. Topics include the glacial history of the Cordilleran Ice Sheet, drift prospecting methods, the evolution of survey sampling strategies, new analytical methods, and recent advances in applying indicators minerals to mineral exploration. This volume fills a notable knowledge gap on the use of indicator minerals in the Canadian Cordillera. We hope that the volume serves as a user guide, encouraging the wider application of indicator minerals by the exploration community.
DS201801-0080
2017
Wenker, S., Beaumont, C.Can metasomatic weakening result in the rifting of cratons?Tectonophysics, in press available, 19p.China, Canada, Africa, Tanzaniametasomatism

Abstract: Cratons are strong and their preservation demonstrates that they resist deformation and fragmentation. Yet several cratons are rifting now, or have rifted in the past. We suggest that cratons need to be weakened before they can rift. Specifically, metasomatism of the depleted dehydrated craton mantle lithosphere is a potential weakening mechanism. We use 2D numerical models to test the efficiency of simulated melt metasomatism and coeval rehydration to weaken craton mantle lithosphere roots. These processes effectively increase root density through a parameterized melt-peridotite reaction, and reduce root viscosity by increasing the temperature and rehydrating the cratonic mantle lithosphere. The models are designed to investigate when a craton is sufficiently weakened to undergo rifting and is no longer protected by adjacent standard Phanerozoic lithosphere. We find that cratons only become vulnerable to rifting following large-volume melt metasomatism (~ 30% by volume) and thinning of the gravitationally unstable cratonic lithosphere from > 250 km to ~ 100 km; at which point its residual crustal strength is important. Furthermore, our results indicate that rifting of cratons depends on the timing of extension with respect to metasomatism. An important effect in the large-volume melt models is the melt-induced increase in temperature which must have time to reach peak values in the uppermost mantle lithosphere before rifting. Release of water stored in the transition zone at the base of a big mantle wedge may provide a suitable natural setting for both rehydration and refertilization of an overlying craton and is consistent with evidence from the eastern North China Craton. An additional effect is that cratons subside isostatically to balance the increasing density of craton mantle lithosphere where it is moderately metasomatized. We suggest that this forms intracratonic basins and that their subsidence and subsequent uplift, and cratonic rifting constitute evidence of progressive metasomatism of cratonic mantle lithosphere.
DS201801-0081
2018
Wilson, D., Amos, R.T., Blowes, D.W., Langman, J.B., Ptacek, C.J., Smith, L., Sego, D.C.Diavik waste rock project: a conceptual model for temperature and sulfide content dependent geochemical evolution of waste rock - Laboratory scale.Applied Geochemistry, Vol. 89, pp. 160-172.Canada, Northwest Territoriesdeposit - Diavik

Abstract: The Diavik Waste Rock Project consists of laboratory and field experiments developed for the investigation and scale-up of the geochemical evolution of sulfidic mine wastes. As part of this project, humidity cell experiments were conducted to assess the long-term geochemical evolution of a low-sulfide waste rock. Reactive transport modelling was used to assess the significant geochemical processes controlling oxidation of sulfide minerals and their dependence on temperature and sulfide mineral content. The geochemical evolution of effluent from waste rock with a sulfide content of 0.16 wt.% and 0.02 wt.% in humidity cells was simulated with the reactive transport model MIN3P, based on a conceptual model that included constant water flow, sulfide mineral content, sulfide oxidation controlled by the availability of oxidants, and subsequent neutralization reactions with carbonate and aluminosilicate minerals. Concentrations of Ni, Co, Cu, Zn, and SO4 in the humidity cell effluent were simulated using the shrinking core model, which represented the control of oxidant diffusion to the unreacted particle surface in the sulfide oxidation process. The influence of temperature was accounted for using the Arrhenius relation and appropriate activation energy values. Comparison of the experiment results, consisting of waste rock differentiated by sulfide mineral content and temperature, indicated surface area and temperature play important roles in rates of sulfide oxidation and release of sulfate and metals. After the model was calibrated to fit the effluent data from the higher sulfide content cells, subsequent simulations were conducted by adjusting only measured parameters, including sulfide mineral content and surface area.
DS201802-0216
2018
Abersteiner, A., Kamenetsky, V.S., Kamenetsky, M., Goemann, K., Ehrig, K., Rodemann, T.Significance of halogens ( F, Cl) in kimberlite melts: insights from mineralogy and melt inclusions in the Roger pipe ( Ekati, Canada).Chemical Geology, Vol. 478, pp. 148-163.Canada, Northwest Territoriesdeposit - Roger

Abstract: The abundance and distribution of halogens (F, Cl) are rarely recorded in kimberlites and therefore their petrogenetic significance is poorly constrained. Halogens are usually present in kimberlite rocks in the structure of phlogopite and apatite, but their original concentrations are never fully retained due to the effects of alteration. To provide new constraints on the origin and evolution of halogens in kimberlites and their melts, we present a detailed study of the petrography and geochemistry of the late-Cretaceous Group-I (or archetypal) Roger kimberlite (Ekati cluster, Canada). The studied samples contain abundant anhedral-to-euhedral olivine which is set in a crystalline groundmass of monticellite, phlogopite, apatite, spinel (i.e. magnesian ulvöspinel-magnetite (MUM), Mg-magnetite, pleonaste, Cr-spinel), and perovskite along with abundant secondary alteration phases (i.e. serpentine, garnet (andradite-schlorlomite), amakinite ((Fe2 +, Mg, Mn)(OH)2), calcite). The Roger kimberlite is characterised by the highest recorded F-content (up to 2688 ppm) of the Ekati cluster kimberlites, which is reflected by the preservation of F-rich phases, where bultfonteinite (Ca4(Si2O7)(F, OH)2) and fluorite commonly replace olivine. In order to examine the composition and evolution of the kimberlite melt prior to post-magmatic processes, we studied melt inclusions in olivine, Cr-spinel, monticellite and apatite. Primary multiphase melt inclusions in Cr-spinel, monticellite and apatite and secondary inclusions in olivine are shown to contain a diversity of daughter phases and compositions that are dominated by alkali/alkali-earth (Na, K, Ba, Sr)-enriched Ca-Mg-carbonates ± F, Na-K-chlorides and sulphates, phosphates ± REE, spinel, silicates (e.g. olivine, phlogopite, (clino)humite), and sulphides. Although alkali/alkali-earth- and halogen-bearing phases are abundant in melt inclusions, they are generally absent from the kimberlite groundmass, most likely due to ubiquitous effects of syn- and/or post-magmatic alteration (i.e. serpentinisation). Comparisons between halogens and other trace elements of similar compatibility (i.e. F/Nd and Cl/U) in the Roger kimberlite and their respective estimated primitive mantle abundances show that halogens should be a more significant component in kimberlites than typically measured. We propose that fluorine in the Roger kimberlite was magmatic and was redistributed during hydrothermal alteration by Ca-bearing serpentinising fluids to produce the observed bultfonteinite/fluorite assemblages. Based the compositions and daughter mineral assemblages in primary melt inclusions and reconstructed halogen abundances, we suggest that Cr-spinel, monticellite and apatite crystallised from a variably differentiated Si-P-Cl-F-bearing carbonate melt that was enriched in alkalis/alkali-earths and highly incompatible trace elements.
DS201802-0217
2018
Abersteiner, A., Kamenetsky, V.S., Pearson, D.G., Kamenetsky, M., Goemann, K., Ehrig, K., Rodemann, T.Monticellite in group I kimberlites: implications for evolution of parental melts and post emplacement CO2 degassing.Chemical Geology, Vol. 478, pp. 76-88.Canada, Northwest Territories, Europe, Finlanddeposit - Leslie, Pipe 1

Abstract: Monticellite is a magmatic and/or deuteric mineral that is often present, but widely varying in concentrations in Group-I (or archetypal) kimberlites. To provide new constraints on the petrogenesis of monticellite and its potential significance to kimberlite melt evolution, we examine the petrography and geochemistry of the minimally altered hypabyssal monticellite-rich Leslie (Canada) and Pipe 1 (Finland) kimberlites. In these kimberlites, monticellite (Mtc) is abundant (25-45 vol%) and can be classified into two distinct morphological types: discrete and intergrown groundmass grains (Mtc-I), and replacement of olivine (Mtc-II). Primary multiphase melt inclusions in monticellite, perovskite and Mg-magnetite contain assemblages dominated by alkali (Na, K, Ba, Sr)-enriched Ca-Mg-carbonates, chlorides, phosphates, spinel, silicates (e.g. olivine, phlogopite) and sulphides. These melt inclusions probably represent snapshots of a variably differentiated kimberlite melt that evolved in-situ towards carbonatitic and silica-poor compositions. Although unconstrained in their concentration, the presence of alkali-carbonates and chlorides in melt inclusions suggests they are a more significant component of the kimberlite melt than commonly recorded by whole-rock analyses. We present petrographic and textural evidence showing that pseudomorphic Mtc-II resulted from an in-situ reaction between olivine and the carbonate component of the kimberlite melt in the decarbonation reactio. This reaction is supported by the preservation of abundant primary inclusions of periclase and to a lesser extent Fe-Mg-oxides in monticellite, perovskite and Mg-magnetite. Based on the preservation of primary periclase inclusions, we infer that periclase also existed in the groundmass, but was subsequently altered to brucite. We suggest that CO2 degassing in the latter stages of kimberlite emplacement into the crust is largely driven by the observed reaction between olivine and the carbonate melt. For this reaction to proceed, CO2 should be removed (i.e. degassed), which will cause further reaction and additional degassing in response to this chemical system change (Le Chatelier's principle). Our study demonstrates that these proposed decarbonation reactions may be a commonly overlooked process in the crystallisation of monticellite and exsolution of CO2, which may in turn contribute to the explosive eruption and brecciation processes that occur during kimberlite magma emplacement and pipe formation.
DS201802-0234
2018
From, R.E., Camacho, A., Pearson, D.G., Luo, Y.U-Pb and Lu-Hf isotopes of the Archean orthogneiss complex on eastern Hall Peninsula, southern Baffin Island, Nunavut: identification of exotic Paleo to Mesoarchean crust beneath eastern Hall Peninsula.Precambrian Research, Vol. 305, pp. 341-357.Canada, Nunavut, Hall Peninsulageochronology

Abstract: Eastern Hall Peninsula on southeastern Baffin Island, lies at the junction of a complex Paleoproterozoic collision between the Rae craton, Meta Incognita microcontinent and the North Atlantic craton from ca. 1.88 to 1.80?Ga. Several different interpretations of crustal correlations and the location of intervening sutures have been proposed based on reconnaissance-scale geologic investigation. Therefore, in this study, complex zircon grains from Archean orthogneiss units on eastern Hall Peninsula were analyzed in-situ to elucidate the detailed magmatic history of the region and assess crustal provenance. Magmatic zircons yielded U-Pb crystallization ages between ca. 2976 and 2720?Ma and metamorphic zircons record tectonothermal disturbances between ca. 2740 and 2700?Ma, a period coinciding with metamorphism documented in adjacent crustal blocks (e.g., west Greenland and northern Labrador). Magmatic rocks older than ca. 2740?Ma generally have positive ?Hf(t) signatures between 0 and 7 (±2) and depleted mantle model ages of ca. 3.1-3.0?Ga indicating the time that protolith melt was extracted from the mantle. The oldest, granodioritic crust crystallized at ca. 2976?Ma and was then reworked periodically at ca. 2.93, 2.84-2.81 and 2.77-2.69?Ma. Zircons from two orthogneiss samples, with U-Pb crystallization ages younger than ca. 2740?Ma, yielded negative ?Hf(t) values ranging from ?4 to ?12 and mean depleted mantle model ages of ca. 3.4 and 3.3?Ga respectively, indicating derivation from an older, potentially exotic, crustal source yet to be identified in outcrop on Hall Peninsula. Synthesizing regional U-Pb data we propose a new regional correlation model that retains the essentials of previous models and incorporates new data from eastern Hall Peninsula and other recent studies. This new tectonic correlation model groups eastern Hall Peninsula, southern Cumberland Peninsula and the Aasiaat domain into a “Core zone” that shared a geologic history prior to 1.90?Ga and potentially prior to 2.75?Ga.
DS201803-0474
2017
Sepehri, M., Apel, D.B., Hall, R.A.Prediction of mining induced surface subsidence and ground movements at a Canadian diamond mine using electroplastic finite element model. International Journal of Rock Mechanics and Mining Sciences, Vol. 100, pp. 73-82.Canada, Northwest Territoriesdeposit - Diavik
DS201803-0488
2018
Yang, Y-H., Wu, F-Y., Yang, J-H., Mitchell, R.H., Zhao, Z-F., Xie, L-W., Huang, C., Ma, Q., Yang, M., Zhao, H.U-Pb age determination of schorlomite garnet by laser ablation inductively coupled plasma mass spectrometry. Magnet Cove, Fanshan, Ozernaya, Alno, Prairie LakeJournal of Analytical At. Spectrometry, Vol. 33, pp. 231-239.United States, Arkansas, China, Hebei, Russia, Kola Peninsula, Europe, Sweden, Canada, Ontariogeochronology

Abstract: We report the first U-Pb geochronological investigation of schorlomite garnet from carbonatite and alkaline complexes and demonstrate its applicability for U-Pb age determination using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) due to its relatively high U and Th abundances and negligible common Pb content. The comparative matrix effects of laser ablation of zircon and schorlomite are investigated and demonstrate the necessity of a suitable matrix-matched reference material for schorlomite geochronology. Laser-induced elemental fractional and instrumental mass discrimination were externally-corrected using an in house schorlomite reference material (WS20) for U-Pb geochronology. In order to validate the effectiveness and robustness of our analytical protocol, we demonstrate the veracity of U-Pb age determination for five schorlomite samples from: the Magnet Cove complex, Arkansas (USA); the Fanshan ultrapotassic complex, Hebei (China); the Ozernaya alkaline ultramafic complex, Kola Peninsula (Russia); the Alnö alkaline-rock carbonatite complex (Sweden); and the Prairie Lake carbonatite complex, Ontario (Canada). The schorlomite U-Pb ages range from 96 Ma to 1160 Ma, and are almost identical to ages determined from other accessory minerals in these complexes and support the reliability of our analytical protocol. Schorlomite garnet U-Pb geochronology is considered to be a promising new technique for understanding the genesis of carbonatites, alkaline rocks, and related rare-metal deposits.
DS201804-0676
2017
Butler, J.E., Post, J.E., Wang, W.The Foxfire diamond revisited. Diavik ( using DiamondView phosphoresence)Gems & Gemology Lab Notes, Vol. 53, 4, pp. 479-481.Canada, Northwest Territoriesdiamond notable - Foxfire

Abstract: The largest gem-quality rough diamond found in Canada, reported earlier in Gems & Gemology (Summer 2016 GNI, pp. 188-189), has revealed remarkable responses to excitation with long- and mid-wave UV light. This 187.63 ct diamond (figure 1) was extracted from the Diavik mine in the Canadian Arctic in the spring of 2015. Aptly named for the aurora borealis, the “Foxfire” displays unusual fluorescence and phosphorescence behavior upon exposure to ultraviolet light. As previously reported, this type Ia diamond has a high concentration of nitrogen impurities, a weak hydrogen-related absorption at 3107 cm-1, and typical "cape" absorption lines.
DS201804-0683
2017
Devriese, S.G.R., Davis, K., Oldenburg, D.W.Inversion of airborne geophysics over the DO-27/DO18 kimberlites. Part 1. Potential fields.Society of Exploration Geophysicists, Interpretation, August T 299, 13p.Canada, Northwest Territoriesdeposit - Tli Kwi Cho

Abstract: The Tli Kwi Cho (TKC) kimberlite complex contains two pipes, called DO-27 and DO-18, which were discovered during the Canadian diamond exploration rush in the 1990s. The complex has been used as a testbed for ground and airborne geophysics, and an abundance of data currently exist over the area. We have evaluated the historical and geologic background of the complex, the physical properties of interest for kimberlite exploration, and the geophysical surveys. We have carried out 3D inversion and joint interpretation of the potential field data. The magnetic data indicate high susceptibility at DO-18, and the magnetic inversion maps the horizontal extent of the pipe. DO-27 is more complicated. The northern part is highly magnetic and is contaminated with remanent magnetization; other parts of DO-27 have a low susceptibility. Low densities, obtained from the gravity and gravity gradiometry data, map the horizontal extents of DO-27 and DO-18. We combine the 3D density contrast and susceptibility models into a single geologic model that identifies three distinct kimberlite rock units that agree with drilling data. In further research, our density and magnetic susceptibility models are combined with information from electromagnetic data to provide a multigeophysical interpretation of the TKC kimberlite complex.
DS201804-0688
2017
Forster, B., Aulbach, S., Symes, C., Gerdes, A., Hofer, H.E., Chacko, T.A reconnaissance study of Ti minerals in cratonic granulite xenoliths and their potential as recorders of lower crust formation and evolution.Journal of Petrology, Vol. 58, 10, pp. 2007-2034.Canada, Northwest Territoriesdeposit - Diavik

Abstract: A comprehensive petrographic and in situ major and trace element study of rutile, ilmenite and Ti-magnetite was undertaken in six lower crustal xenoliths of metabasaltic (?underplate) and metasedimentary (subduction) origin from the Diavik kimberlites (central Slave Craton, Canada). The aims of the study were to improve our understanding of trace element incorporation into these Ti-minerals, and to use these systematics to obtain insights into lower continental crust formation and evolution. Abundant (oxy)exsolution of titanomagnetite lamellae, blocky rutile, as well as minor pleonaste and zircon in ilmenite from metabasaltic granulites are proposed to reflect cooling from magmatic or metamorphic temperatures and subsequent secular mantle cooling. This explains the large spread in Zr-in-rutile temperatures (>200°C) and may partly be responsible for the substantial heterogeneity of other trace element concentrations in rutile and ilmenite. Even after accounting for trace element heterogeneity and modal uncertainties, mass-balance calculations indicate that both Ti and Nb in lower crustal granulites are largely controlled by rutile and ilmenite. Rutile U-Pb data define discordia arrays that yield upper intercept ages broadly coincident with the 1•27 Ga giant Mackenzie dike swarm event, suggesting reheating of the lower crust above the rutile U-Pb closure temperature, whereas lower intercept ages roughly correspond to the age of Cretaceous to Eocene kimberlite magmatism. Subsequent cooling led to partial resetting and data spread along the concordia. Closer inspection reveals that inter-grain concentrations of elements that are compatible in rutile (Nb, Ta, W, U), but highly incompatible in the abundant silicate minerals (in equilibrium with melt), are heterogeneous and contrast with the more homogeneous concentrations of the transition metals (NiO, V). This may indicate that local reaction partners for diffusive homogenization of these element concentrations were absent. Nb/Ta is also highly variable at the sample scale. This may be explained by prograde growth from high-Nb/Ta mineral precursors (e.g. biotite) in the metasedimentary granulites and crystallization of the protoliths to the metabasaltic granulites from a mafic magma that had experienced fractionation of ilmenite with low Nb/Ta in a crustal magma chamber. Thus, (Fe)-Ti minerals represent high field strength element ‘islands’ in the granulite silicate matrix. The lack of homogenization and persistence of high-energy grain boundaries, such as exsolution lamellae, further indicate that the lower continental crust remained essentially dry and did not recrystallize, possibly since Neoarchaean metamorphism.
DS201804-0690
2017
Fournier, D., Kang, S., Mmillan, M.S., Oldenburg, D.W.Inversion of airborne geophysics over the DO-27/DO18 kimberlites. Part 2. Electromagnetics.Society of Exploration Geophysicists, Interpretation, August T 313, 13p.Canada, Northwest Territoriesdeposit - Tli Kwi Cho

Abstract: We focus on the task of finding a 3D conductivity structure for the DO-18 and DO-27 kimberlites, historically known as the Tli Kwi Cho (TKC) kimberlite complex in the Northwest Territories, Canada. Two airborne electromagnetic (EM) surveys are analyzed: a frequency-domain DIGHEM and a time-domain VTEM survey. Airborne time-domain data at TKC are particularly challenging because of the negative values that exist even at the earliest time channels. Heretofore, such data have not been inverted in three dimensions. In our analysis, we start by inverting frequency-domain data and positive VTEM data with a laterally constrained 1D inversion. This is important for assessing the noise levels associated with the data and for estimating the general conductivity structure. The analysis is then extended to a 3D inversion with our most recent optimized and parallelized inversion codes. We first address the issue about whether the conductivity anomaly is due to a shallow flat-lying conductor (associated with the lake bottom) or a vertical conductive pipe; we conclude that it is the latter. Both data sets are then cooperatively inverted to obtain a consistent 3D conductivity model for TKC that can be used for geologic interpretation. The conductivity model is then jointly interpreted with the density and magnetic susceptibility models from a previous paper. The addition of conductivity enriches the interpretation made with the potential fields in characterizing several distinct petrophysical kimberlite units. The final conductivity model also helps better define the lateral extent and upper boundary of the kimberlite pipes. This conductivity model is a crucial component of the follow-up paper in which our colleagues invert the airborne EM data to recover the time-dependent chargeability that further advances our geologic interpretation.
DS201804-0705
2017
Kang, S., Fournier, D., Oldenburg, D.W.Inversion of airborne geophysics over D0-27/D0-18 kimberlites. Part 3: Induced polarization.Society of Exploration Geophysicists, Interpretation, August T 327, 14p.Canada, Northwest Territoriesdeposit -Tli Kwi Cho

Abstract: The geologically distinct DO-27 and DO-18 kimberlites, often called the Tli Kwi Cho (TKC) kimberlites, have been used as a testbed for airborne geophysical methods applied to kimberlite exploration. This paper, which is the last of a three-part series, focuses on extracting chargeability information from time-domain electromagnetic (TEM) data. Three different TEM surveys, having similar coincident-loop geometry, have been carried out over TKC. Each records negative transients over the main kimberlite units and this is a signature of induced polarization (IP) effects. By applying a TEM-IP inversion workflow to a VTEM data set we decouple the EM and IP responses in the observations and then recover 3D pseudo-chargeability models at multiple times. A subsequent analysis is used to recover Cole-Cole parameters. Our models demonstrate that both DO-18 and DO-27 pipes are chargeable, but they have different Cole-Cole time constants: 110 and 1160 ?s, respectively. At DO-27, we also distinguish between two adjacent kimberlite units based on their respective Cole-Cole time constants. Our chargeability models are combined with the den-sity, magnetic susceptibility and conductivity models from Papers I and II and allow us to build a 3D petrophysical model of TKC using only information obtained from airborne geophysics. Comparison of this final petrophysical model to a 3D geological model derived from the extensive drilling program demonstrates that we can characterize the three main kimberlite units at TKC: HK, VK, and PK in 3D by using airborne geophysics.
DS201804-0721
2018
Moller, V., Williams-Jones, A.E.A hyper spectral study ( V-NIR-SWIR) of the Nechalacho REE-Nb_Zr deposit Canada. Thor lakeJournal of Geochemical Exploration, Vol. 188, pp. 194-215.Canada, Northwest Territoriesrare earths

Abstract: The Canadian Nechalacho rare metal deposit (Thor Lake, Northwest Territories) contains one of the of the world's largest high-grade resources of rare earth elements (REE) and a large niobium (Nb) resource (Avalon Rare Metals Inc., 2013). The deposit formed mainly by magmatic accumulation of eudialyte (a complex REE-Nb-zirconosilicate) at the top of a > 1.1 km deep and ~2 km diameter layered nepheline-sodalite syenite intrusion, the Nechalacho Layered Suite. The strongest enrichment of REE and Nb is contained in the eudialyte cumulates of the Basal Zone layer. However, a strong hydrothermal overprint modified the eudialyte cumulate layers and their host rocks to produce a variety of hydrothermal silicates and REE-Nb minerals. The primary objective of this study is to evaluate the spatial distribution of the alteration minerals and identify possible mineral zoning.
DS201804-0727
2018
Pell, J., Russell, J.K., Zhang, S.Z.Conodont geothermometry in pyroclastic kimberlite: constraints on emplacement temperatures and cooling histories.Mineralogy and Petrology, in press available 14p.Canada, Nunavut, Baffin Islanddeposit - Chidliak

Abstract: Kimberlite pipes from Chidliak, Baffin Island, Nunavut, Canada host surface-derived Paleozoic carbonate xenoliths containing conodonts. Conodonts are phosphatic marine microfossils that experience progressive, cumulative and irreversible colour changes upon heating that are experimentally calibrated as a conodont colour alteration index (CAI). CAI values permit us to estimate the temperatures to which conodont-bearing rocks have been heated. Conodonts have been recovered from 118 samples from 89 carbonate xenoliths collected from 12 of the pipes and CAI values within individual carbonate xenoliths show four types of CAI distributions: (1) CAI values that are uniform throughout the xenolith; (2) lower CAIs in core of a xenolith than the rim; (3) CAIs that increase from one side of the xenolith to the other; and, (4) in one xenolith, higher CAIs in the xenolith core than at the rim. We have used thermal models for post-emplacement conductive cooling of kimberlite pipes and synchronous heating of conodont-bearing xenoliths to establish the temperature-time history of individual xenoliths within the kimberlite bodies. Model results suggest that the time-spans for xenoliths to reach the peak temperatures recorded by CAIs varies from hours for the smallest xenoliths to 2 or 3 years for the largest xenoliths. The thermal modelling shows the first three CAI patterns to be consistent with in situ conductive heating of the xenoliths coupled to the cooling host kimberlite. The fourth pattern remains an anomaly.
DS201804-0752
2018
Wang, E., Unsworth, M., Chacko, T.Geoelectric structure of the Great Slave Lake shear zone in northwest Alberta: implications for structure and tectonic history.Canadian Journal of Earth Sciences, Vol. 55, pp. 295-307.Canada, Albertageophysics - electromagnetics, magnetotellurics

Abstract: The study of ancient plate boundaries can provide insights into the past and present-day tectonic processes. Here, we describe a magnetotellurics (MT) study of the Precambrian basement of the Hay River Fault (HRF) in northwest Alberta, which is the southwest segment of the Great Slave Lake shear zone. New broadband MT data were collected to give a clearer image of the crustal structure. The Western Canada Sedimentary Basin was imaged as a low-resistivity layer above the resistive crystalline basement. Four basement conductors were defined, and correlate with the terrane boundaries delineated with aeromagnetic data. These are (1) a major conductor in the Kiskatinaw domain, (2) a conductor on the boundary of the Ksituan and Chinchaga domains, (3) a conductor on the boundary of the Chinchaga and Buffalo Head domains, and (4) a conductor near the HRF. Both (1) and (2) correspond to areas of high seismic reflectivity. The low resistivity can be explained by interconnected grain boundary graphite or sulfide phases deposited by metamorphic fluid migration. The HRF was not definitively located in previous studies. The new data show that the HRF could be thin (1 km) or wide (10 km) and located at the boundary of the contrasting aeromagnetic anomalies or further to the north. Various tectonic processes are proposed to interpret the possible locations of the HRF. No electrical anisotropy structure is required to interpret the MT data in this study.
DS201805-0934
2018
Aulbach, S., Creaser, R.A., Stachel, T., Kong, J.Diamond ages from Victor ( Superior craton): intra-mantle cycling of volatiles ( C.N.S) during supercontinent reorganisation.Earth Planetary Science Letters, Vol. 490, pp. 77-87.Canada, Ontariodeposit - Victor

Abstract: The central Superior Craton hosts both the diamondiferous 1.1 Ga Kyle Lake and Jurassic Attawapiskat kimberlites. A major thermal event related to the Midcontinent Rift at ca. 1.1 Ga induced an elevated geothermal gradient that largely destroyed an older generation of diamonds, raising the question of when, and how, the diamond inventory beneath Attawapiskat was formed. We determined Re-Os isotope systematics of sulphides included in diamonds from Victor by isotope dilution negative thermal ionisation mass spectrometry in order to obtain insights into the age and nature of the diamond source in the context of regional tectonothermal evolution. Regression of the peridotitic inclusion data (n = 14 of 16) yields a 718 ± 49 Ma age, with an initial 187Os/188Os ratio of 0.1177 ± 0.0016, i.e. depleted at the time of formation (?Os -3.7 ± 1.3). Consequently, Re depletion model ages calculated for these samples are systematically overestimated. Given that reported 187Os/188Os in olivine from Attawapiskat xenoliths varies strongly (0.1012-0.1821), the low and nearly identical initial Os of sulphide inclusions combined with their high 187Re/188Os (median 0.34) suggest metasomatic formation from a mixed source. This was likely facilitated by percolation of amounts of melt sufficient to homogenise Os, (re)crystallise sulphide and (co)precipitate diamond; that is, the sulphide inclusions and their diamond host are synchronous if not syngenetic. The ?720 Ma age corresponds to rifting beyond the northern craton margin during Rodinia break-up. This suggests mobilisation of volatiles (C, N, S) and Os due to attendant mantle stretching and metasomatism by initially oxidising and S-undersaturated melts, which ultimately produced lherzolitic diamonds with high N contents compared to older Kyle Lake diamonds. Thus, some rift-influenced settings are prospective with respect to diamond formation. They are also important sites of hidden, intra-lithospheric volatile redistribution that can be revealed by diamond studies. Later emplacement of the Attawapiskat kimberlites, linking the carbon cycle to the surface, was associated with renewed disturbance during passage of the Great Meteor Hotspot. Lherzolitic diamond formation from oxidising small-volume melts may be the expression of an early and deep stage of the lithospheric conditioning required for the successful eruption of kimberlites, which complements the late and shallow emplacement of volatile-rich metasomes after upward displacement of a redox freezing front.
DS201805-0937
2018
Brett, C.Petrology of the White River Diamondiferous Paleoproterozoic intrusive rocks and constraining the timing of destruction of the southern Superior cratonic rocks.Vancouver Kimberlite Cluster, May 3, 1p. AbstractCanada, OntarioWawa

Abstract: Diamond-bearing kimberlitic rocks have been identified as occurring within the Oskabukuta property,15km west of the town of White River, Northwestern Ontario. These rocks were emplaced within Neo-to-Mesoarchean (2.5 to 3.4 Ga) crystalline rock of the Wawa Subprovince, located within the Superior Province of North America. The emplacement age of the dyke is dated at 1945.3 ± 1.9 Ma (1?) (U-Pb in perovskite). The diamond-bearing, kimberlitic intrusion has been mapped at surface for over a 900 m strike, and is referred to as the Rabbit Foot occurrence. Geothermobarometry of the nearby Proterozoic (2.7 Ga) aged diamondiferous metaconglomerate in Wawa (90 km SE) reported a maximum geothermal gradient range between 39 and 41 mW/m2 corresponding to a minimum lithospheric thickness of the Superior Craton of 190-220 km (Miller et al., 2012). In contrast, the study highlight that younger kimberlite (e.g. ~1.1 Ga Wawa kimberlite) within the Southern Superior record a substantially warmer conductive geotherm (46 mW/m2; Kaminsky et al., 2002) and maximum depth of garnet sampled of 150 km. Miller et al. (2012) interpret the apparent heating of the mantle is likely to have resulted from the Midcontinent Rift, which is broadly coeval with the Wawa kimberlite age. Pressure-Temperature estimates calculated using garnet and clinopyroxene xenocryst mineral compositions extracted from Rabbit Foot Model are consistent with model conductive heat flow of between 38-41 mW-m-2. These data support the interpretation of Miller et al. (2012) and further constrain the presence of a cool and thick Southern Superior keel at 1945 Ma. In fact, several of our garnet compositions support a minimum lithosphere-asthenosphere boundary of 250 km in depth and suggest (along with the presence of diamond) that the Rabbit Foot intrusion transected and sampled a significant portion of depleted and diamond stable lithospheric mantle at ~1945 Ma. A later thermal event, likely related to the Mid-continental rift, has subsequently heated and thinned the Southern Superior Craton, thereby constraining timing of the cessation of diamond fertile sublithospheric mantle in the region.
DS201805-0938
2018
Buchan, K.L., Ernst, R.E.A giant circumferential dyke swarm associated with the High Arctic Large Igneous Province ( HALIP).Gondwana Research, Vol. 58, pp. 39-57.Canada, Greenlanddykes

Abstract: n this study, we identify a giant circumferential mafic dyke swarm associated with the 135-75 Ma High Arctic Large Igneous Province (HALIP). Previously, a HALIP giant radiating mafic dyke swarm, with portions scattered across the Canadian high Arctic islands, northern Greenland, Svalbard and Franz Josef Land, was recognized in a pre-drift plate tectonic reconstruction of the Arctic region. The radiating swarm has been interpreted to focus above a mantle plume responsible for HALIP magmatism. The newly-recognized HALIP giant circumferential swarm has a centre that is near the focus of the HALIP radiating system, and hence, is likely related to the HALIP plume. Elements of the circumferential swarm are located in each of the four regions where the radiating system is found. The circumferential swarm has a quasi-circular or slightly elliptical geometry, an outer diameter of ~1600 km and an arc of ~220°. It is one of the largest giant circumferential dyke swarms recognized on Earth, and could be linked to the outer edge of the flattening plume head. It is also the first such swarm to have been identified by means of a plate tectonic reconstruction. Although giant circumferential dyke swarms appear to be relatively rare on Earth, possible analogues are common on Venus and are also found on Mars. On Venus giant circular or elliptical tectono-magmatic features, termed coronae, are characterized by an annulus of graben or fissures and prominent topography. Some coronae include a radiating graben-fissure system. Both radiating and circumferential graben may be underlain by dykes. If so, coronae could be analogues for terrestrial giant circumferential dyke swarms such as observed in the case of the HALIP.
DS201805-0944
2018
Eeken, T., Goes, S., Pedersen, H.A., Arndt, N.T., Bouilhol, P.Seismic evidence for depth dependent metasomatism in cratons.Earth Planetary Science Letters, Vol. 491, pp. 148-159.Africa, Australia, Canada, Europegeothermometry

Abstract: The long-term stability of cratons has been attributed to low temperatures and depletion in iron and water, which decrease density and increase viscosity. However, steady-state thermal models based on heat flow and xenolith constraints systematically overpredict the seismic velocity-depth gradients in cratonic lithospheric mantle. Here we invert for the 1-D thermal structure and a depth distribution of metasomatic minerals that fit average Rayleigh-wave dispersion curves for the Archean Kaapvaal, Yilgarn and Slave cratons and the Proterozoic Baltic Shield below Finland. To match the seismic profiles, we need a significant amount of hydrous and/or carbonate minerals in the shallow lithospheric mantle, starting between the Moho and 70 km depth and extending down to at least 100-150 km. The metasomatic component can consist of 0.5-1 wt% water bound in amphibole, antigorite and chlorite, ?0.2 wt% water plus potassium to form phlogopite, or ?5 wt% CO2 plus Ca for carbonate, or a combination of these. Lithospheric temperatures that fit the seismic data are consistent with heat flow constraints, but most are lower than those inferred from xenolith geothermobarometry. The dispersion data require differences in Moho heat flux between individual cratons, and sublithospheric mantle temperatures that are 100-200?°C less beneath Yilgarn, Slave and Finland than beneath Kaapvaal. Significant upward-increasing metasomatism by water and CO2-rich fluids is not only a plausible mechanism to explain the average seismic structure of cratonic lithosphere but such metasomatism may also lead to the formation of mid-lithospheric discontinuities and would contribute to the positive chemical buoyancy of cratonic roots.
DS201805-0957
2018
Lepine, I., Farrow, D.3D geological modelling of the Renard 2 kimberlite pipe, Quebec, Canada: from exploration to extraction.Mineralogy and Petrology, doi.org/10.1007/s00710-018-0567-y 9p.Canada, Quebecdeposit - Renard

Abstract: The Renard 2 kimberlite pipe is one of nine diamondiferous kimberlite pipes that form a cluster in the south-eastern portion of the Superior Province, Québec, Canada and is presently being extracted at the Renard Mine. It is interpreted as a diatreme-zone kimberlite consisting of two Kimberley-type pyroclastic units and related country rock breccias, all cross-cut by coherent kimberlite dykes and irregular intrusives. Renard 2 has been the subject of numerous diamond drilling campaigns since its discovery in 2001. The first two geological models modelled kimberlite and country rock breccia units separately. A change in modelling philosophy in 2009, which incorporated the emplacement envelope and history, modelled the entire intrusive event and projected the pipe shape to depth allowing for more targeted deep drilling where kimberlite had not yet been discovered. This targeted 2009 drilling resulted in a?>?400% increase in the volume of the Indicated Resource. Modelling only the kimberlite units resulted in a significant underestimation of the pipe shape. Current open pit and underground mapping of the pipe shape corresponds well to the final 2015 geological model and contact changes observed are within the expected level of confidence for an Indicated Resource. This study demonstrates that a sound understanding of the geological emplacement is key to developing a reliable 3D geological and resource model that can be used for targeted delineation drilling, feasibility studies and during the initial stages of mining.
DS201805-0962
2018
McDannell, K.T., Zeitler, P.K., Schneider, D.A.Instability of the southern Canadian Shield during the late Proterozoic.Earth Planetary Science Letters, Vol. 490, pp. 100-109.Canadacraton

Abstract: Cratons are generally considered to comprise lithosphere that has remained tectonically quiescent for billions of years. Direct evidence for stability is mainly founded in the Phanerozoic sedimentary record and low-temperature thermochronology, but for extensive parts of Canada, earlier stability has been inferred due to the lack of an extensive rock record in both time and space. We used 40Ar/39Ar multi-diffusion domain (MDD) analysis of K-feldspar to constrain cratonic thermal histories across an intermediate (~150-350°C) temperature range in an attempt to link published high-temperature geochronology that resolves the timing of orogenesis and metamorphism with lower-temperature data suited for upper-crustal burial and unroofing histories. This work is focused on understanding the transition from Archean-Paleoproterozoic crustal growth to later intervals of stability, and how uninterrupted that record is throughout Earth’s Proterozoic "Middle Age." Intermediate-temperature thermal histories of cratonic rocks at well-constrained localities within the southern Canadian Shield of North America challenge the stability worldview because our data indicate that these rocks were at elevated temperatures in the Proterozoic. Feldspars from granitic rocks collected at the surface cooled at rates of <0.5°C/Ma subsequent to orogenesis, seemingly characteristic of cratonic lithosphere, but modeled thermal histories suggest that at ca. 1.1-1.0 Ga these rocks were still near ~200°C - signaling either reheating, or prolonged residence at mid-crustal depths assuming a normal cratonic geothermal gradient. After 1.0 Ga, the regions we sampled then underwent further cooling such that they were at or near the surface (<< 60°C) in the early Paleozoic. Explaining mid-crustal residence at 1.0 Ga is challenging. A widespread, prolonged reheating history via burial is not supported by stratigraphic information, however assuming a purely monotonic cooling history requires at the very least 5 km of exhumation beginning at ca. 1.0 Ga. A possible explanation may be found in evidence of magmatic underplating that thickened the crust, driving uplift and erosion. The timing of this underplating coincides with Mid-Continent extension, Grenville orogenesis, and assembly of the supercontinent Rodinia. 40Ar/39Ar MDD data demonstrate that this technique can be successfully applied to older rocks and fill in a large observational gap. These data also raise questions about the evolution of cratons during the Proterozoic and the nature of cratonic stability across deep time.
DS201805-0988
2018
Vasyukova, O.V., Williams-Jones, A.E.Direct measurement of metal concentrations in fluid inclusions, a tale of hydrothermal alteration and REE ore formation from Strange Lake, Canada.Chemical Geology, Vol. 483, pp. 385-396.Canada, Quebec, LabradorRare earths

Abstract: Granites and pegmatites in the Strange Lake pluton underwent extreme enrichment in high field strength elements (HFSE), including the rare earth elements (REE). Much of this enrichment took place in the most altered rocks, and is expressed as secondary minerals, showing that hydrothermal fluids played an important role in HFSE concentration. Vasyukova et al. (2016) reconstructed a P-T-X path for the evolution of these fluids and provided evidence that hydrothermal activity was initiated by exsolution of fluid during crystallisation of border zone pegmatites (at ~450-500?°C and 1.1?kbar). This early fluid comprised a high salinity (25?wt% NaCl) aqueous phase and a CH4?+?H2 gas. During cooling, the gas was gradually oxidised, first to higher hydrocarbons (e.g., C2H6, C3H8), and then to CO2, and the salinity decreased to 4?wt% (~250-300?°C), before increasing to 19?wt%, due to fluid-rock interaction (~150?°C). Here, we present crush-leach fluid inclusion data on the concentrations of the REE and major ligands at different stages of the evolution of the fluid. The chondrite-normalised REE profile of the fluid evolved from light REE (La-Nd)-enriched at high temperature (~400?°C, Stages 1-2a) to middle REE (Sm-Er)-enriched at 360 to 250?°C (Stages 2b-3) and strongly heavy REE (Tm-Lu)-enriched at low temperature (150?°C, Stage 5). These changes in the REE distribution were accompanied by changes in the concentrations of major ligands, i.e., Cl? was the dominant ligand in Stages 1, 2, 4 and 5, whereas HCO3? was dominant in Stage 3. Alteration of arfvedsonite to aegirine and/or hematite contributed strongly to the mobilisation of the REE. This alteration released middle REE (MREE) and heavy REE (HREE), which either partitioned into the fluid or precipitated directly as bastnäsite-(Ce), ferri-allanite-(Ce) or gadolinite-(Y). Replacement of primary fluorbritholite-(Ce), which crystallised from an immiscible fluoride melt and altered to bastnäsite-(Ce), was also important in mobilising the REE (MREE). This paper presents the first report of the distribution of the REE in an evolving hydrothermal fluid. Using this distribution, in conjunction with information on the changing physicochemical conditions, the study identifies the sources of REE enrichment, reconstructs the path of REE concentration, and evaluates the REE mineralising capacity of the fluid. Finally, this information is integrated into a predictive model for REE mobilisation applicable not only to Strange Lake but any REE ore-forming system, in which hydrothermal processes were important.
DS201806-1255
2018
Stachel, T., Banas, A., Aulbach, S., Smit, K.V., Wescott, P., Chinn, I.L.The Victor mine ( Superior Craton, Canada): Neoproterozoic lherzolitic diamonds from a thermally-modified cratonic root.Mineralogy and Petrology, in press available, 12p.Canada, Ontario, Attawapiskatdeposit - Victor

Abstract: The Jurassic Victor kimberlite (Attawapiskat Field) was emplaced into an area of the central Superior Craton that was affected by a lithosphere-scale thermal event at ~1.1 Ga. Victor diamonds formed ca. 400 million years after this event, in a lithospheric mantle characterized by an unusually cool model geotherm (37-38 mW/m2; Hasterok and Chapman 2011). The bulk of Victor diamonds derives from a thin (<10 km thick) layer that is located at about 180 km depth and represents lherzolitic substrates (for 85% of diamonds). Geothermobarometric calculations (average pressure and temperature at the 1 sigma level are 57?±?2 kbar and 1129?±?16 °C) coupled with typical fluid metasomatism-associated trace element patterns for garnet inclusions indicate diamond precipitation under sub-solidus (lherzolite + H2O) conditions. This conclusion links the presence of a diamond-rich lherzolitic layer in the lithospheric mantle, just above the depth where ascending melts would freeze, to the unusually low paleogeotherm beneath Attawapiskat, because along an average cratonic geotherm (40 mW/m2) lherzolite in the presence of hydrous fluid would melt at depths >140 km.
DS201807-1482
2018
Bussweiler, Y., Pearson, D.G., Stachel, T., Kjarsgaard, B.A.Cr-rich megacrysts of clinopyroxene and garnet from Lac de Gras kimberlites, Slave Craton, Canada - implications for the origin of clinopyroxene and garnet in cratonic lherzolites.Mineralogy and Petrology, 10.1007/s00710 -018-0599-2, 14p. Canada, Northwest Territoriesdeposit - Diavik, Ekati

Abstract: Kimberlites from the Diavik and Ekati diamond mines in the Lac de Gras kimberlite field contain abundant large (>1 cm) clinopyroxene (Cr-diopside) and garnet (Cr-pyrope) crystals. We present the first extensive mineral chemical dataset for these megacrysts from Diavik and Ekati and compare their compositions to cratonic peridotites and megacrysts from the Slave and other cratons. The Diavik and Ekati Cr-diopside and Cr-pyrope megacrysts are interpreted to belong to the Cr-rich megacryst suite. Evidence for textural, compositional, and isotopic disequilibrium suggests that they constitute xenocrysts in their host kimberlites. Nevertheless, their formation may be linked to extensive kimberlite magmatism and accompanying mantle metasomatism preceding the eruption of their host kimberlites. It is proposed that the formation of megacrysts may be linked to failed kimberlites. In this scheme, the Cr-rich megacrysts are formed by progressive interaction of percolating melts with the surrounding depleted mantle (originally harzburgite). As these melts percolate outwards, they may contribute to the introduction of clinopyroxene and garnet into the depleted mantle, thereby forming lherzolite. This model hinges on the observation that lherzolitic clinopyroxenes and garnets at Lac de Gras have compositions that are strikingly similar to those of the Cr-rich megacrysts, in terms of major and trace elements, as well as Sr isotopes. As such, the Cr-rich megacrysts may have implications for the origin of clinopyroxene and garnet in cratonic lherzolites worldwide.
DS201807-1496
2018
Grutter, H.S., Pell, J.A., Fitzgerald, C.E.Use of a simplified Mahalanobis distance approach to constrain the dispersion and provenance of Cr-pyrope populations at the Chidliak kimberlite province, Nunavut, Canada.Mineralogy and Petrology, June 14, DOI:10.1007/ s0710-018 -0578-7, 12p.Canada, Nunavutdeposit - Chidliak

Abstract: Exploration for diamond-bearing kimberlites in the Chidliak project area by Peregrine Diamonds has generated a grid-like till sampling pattern across four discrete areas of interest totalling 402 km2 that is densely populated with research-grade compositional data for 10,743 mantle-derived Cr-pyrope garnets. The available dataset is well suited to statistical analysis, in part due to the relatively unbiased spatial coverage. Previous workers showed empirically that the TiO2 and Mn thermometry (Ti-TMn) attributes of Cr-pyrope populations at the Chidliak project may serve as source-specific “fingerprints”. In this work, we employ a simplified version of the multivariate Mahalanobis distance technique to formally examine the variability of, and differences between, Ti-TMn attributes of Cr-pyrope subpopulations recovered from a Laurentide-age glaciated terrain that also contains 30 known kimberlites within the four areas of interest. We show the simplified Mahalanobis distance approach enables accurate discrimination of Cr-pyrope subpopulations with subtly to distinctly different Ti-TMn attributes, and permits proper demarcation of their respective kimberlite source(s), specifically in areas with straightforward glacial histories. Redistribution and blending of Cr-pyrope subpopulations from known kimberlite sources is also observed, and typifies areas at Chidliak with complex late-glacial histories. Our results support <1 km horizontal scale subtle to obvious variability in the proportions of TiO2-rich and high-temperature (> 1100 °C) Cr-pyropes between closely spaced kimberlite source(s) and also between physically adjacent magma batches within single kimberlite pipes. The local scale variability is attributed to protokimberlite fluid or melt interacting with, and metasomatizing discrete conduits within, the ambient diamond-facies peridotitic mantle at times closely preceding eruption of kimberlite magma batches at Chidliak.
DS201807-1506
2018
Lebedev, A., Rodel, A.Application of dynamic simulation for the Gahcho Kue project. GPSS, LIMNSAIMM Diamonds - source to use 2018 Conference 'thriving in changing times'. June 11-13., pp. 259-284.Canada, Northwest Territoriesdeposit - Gahcho Kue
DS201807-1516
2018
Mervine, E.M., Wilson, S.A., Power, I.M., Dipple, G.M., Turvey, C.C., Hamilton, J.L., Vanderzee, S., Raudsepp, M., Southam, C., Matter, J.M., Kelemen, P.B., Stiefenhofer, J., Miya, Z., Southam, G.Potential for offsetting diamond mine carbon emissions through mineral carbonation of processed kimberlite: an assessment of De Beers mine sites in South Africa and Canada.Mineralogy and Petrology, 10.1007/ s00710-018- 0589-4, 14p.Africa, South Africa, Canada, Northwest Territories, Ontariodeposit - Venetia, Voorspoed, Gahcho Kue, Victor, Snap Lake

Abstract: De Beers kimberlite mine operations in South Africa (Venetia and Voorspoed) and Canada (Gahcho Kué, Victor, and Snap Lake) have the potential to sequester carbon dioxide (CO2) through weathering of kimberlite mine tailings, which can store carbon in secondary carbonate minerals (mineral carbonation). Carbonation of ca. 4.7 to 24.0 wt% (average?=?13.8 wt%) of annual processed kimberlite production could offset 100% of each mine site’s carbon dioxide equivalent (CO2e) emissions. Minerals of particular interest for reactivity with atmospheric or waste CO2 from energy production include serpentine minerals, olivine (forsterite), brucite, and smectite. The most abundant minerals, such as serpentine polymorphs, provide the bulk of the carbonation potential. However, the detection of minor amounts of highly reactive brucite in tailings from Victor, as well as the likely presence of brucite at Venetia, Gahcho Kué, and Snap Lake, is also important for the mineral carbonation potential of the mine sites.
DS201808-1742
2018
Edahbi, M., Plante, B., Benzaazoua, M., Kormos, L., Pelletier, M.Rare earth elements ( La, Ce, Pr, Nd, and Sm) from a carbonatite deposit: mineralogical characterization and geochemical behavior. MontvielMinerals, Vol. 8, pp. 55-74.Canada, Quebeccarbonatite

Abstract: Geochemical characterization including mineralogical measurements and kinetic testing was completed on samples from the Montviel carbonatite deposit, located in Quebec (Canada). Three main lithological units representing both waste and ore grades were sampled from drill core. A rare earth element (REE) concentrate was produced through a combination of gravity and magnetic separation. All samples were characterized using different mineralogical techniques (i.e., quantitative evaluation of minerals by scanning electron microscopy (QEMSCAN), X-ray diffraction (XRD), and scanning electron microscopy with X-ray microanalysis (SEM-EDS)) in order to quantify modal mineralogy, liberation, REE deportment and composition of REE-bearing phases. The REE concentrate was then submitted for kinetic testing (weathering cell) in order to investigate the REE leaching potential. The mineralogical results indicate that: (i) the main REE-bearing minerals in all samples are burbankite, kukharenkoite-Ce, monazite, and apatite; (ii) the samples are dominated by REE-free carbonates (i.e., calcite, ankerite, and siderite); and (iii) LREE is more abundant than HREE. Grades of REE minerals, sulfides and oxides are richer in the concentrate than in the host lithologies. The geochemical test results show that low concentrations of light REE are leached under kinetic testing conditions (8.8-139.6 ?g/L total light REE). These results are explained by a low reactivity of the REE-bearing carbonates in the kinetic testing conditions, low amounts of REE in solids, and by precipitation of secondary REE minerals.
DS201808-1751
2018
Harris, G.A., Pearson, D.G., Liu, J., Hardman, M.F., Snyder, D.B., Kelsch, D.Mantle composition, age and geotherm beneath the Darby kimberlite field, west central Rae craton.Mineralogy and Petrology, doi.org/10.1007/s00710-018-0609-4 14p.Canada, Northwest Territoriesdeposit - Darby

Abstract: New geological and geophysical research on Canada’s Rae craton are providing an increasingly good baseline for diamond exploration. This study uses mantle xenoliths and xenocrysts from the Darby property, located ~200 km southwest of the community of Kugaaruk, Nunavut, to provide new information on the lithospheric mantle and diamond potential of the western portion of the central Rae. Peridotite xenoliths containing enough fresh olivine have a median Mg# value of 92.5, indistinguishable from the median value of 92.6 typical of cratonic peridotites world-wide. Only of the 14 peridotitic xenoliths contain fresh garnet. Of these, garnet in one sample is classified as harzburgitic (G10), giving a minimum pressure of 4.7 GPa using the P38 geobarometer (38 mW/m2 model geothermal gradient), while garnets from three peridotites are classified as lherzolitic (G9). 52 garnets picked from concentrate have lherzolitic affinities. Lherzolitic diopsides from kimberlite heavy mineral concentrate yield a lithospheric thickness of ~ 200 km. The four garnet peridotite xenoliths and 49 peridotitic garnets from concentrate yield two distinct modes in mantle sampling depths using Ni thermometry, when projected to the Cpx geotherm. A cluster of samples from the higher Ca/Cr lherzolitic garnets equilibrated at 765 to 920 °C with a group of peridotitic garnets (50 % of xenoliths and 28 % of concentrate) from the lower Ca/Cr lherzolitic garnets with anomalously high Ti concentrations yielding super-adiabatic TNi values The aluminum-in-olivine thermometer applied to olivines filtered to be “garnet facies yielded a mantle sampling portion of the mantle cargo from the diamond stability field. A suite of pyroxenitic xenoliths are a feature of each Darby kimberlite target. New screening techniques indicate that these rocks likely originate close to the crust mantle boundary. Osmium isotope analyses of the Darby peridotites reveal whole-rock Re-depletion ages ranging from Mesoarchean to Paleoproterozoic. The pyroxenite xenoliths have very radiogenic Os isotope compositions and provide the first age information from pyroxenites/“eclogites” beneath the Rae craton. Their resulting Archean whole rock TMA ages are consistent with a Mesoarchean age of the western Central Rae lithosphere older than the lithosphere beneath the Repulse Bay block in the East section of the Rae craton (Liu et al., 2016. Precambrian Research 272). The highly depleted olivine compositions, thick cold lithosphere, and Archean ages of the Darby peridotite xenoliths clearly indicate the presence of 200 km thick cold cratonic lithospheric mantle beneath the western segment of the central Rae craton circa 540 Ma. The Archean model ages of most of the pyroxenites support this, notwithstanding the fact that some of these rocks could be sampling either crust or mantle lithologies very close to the crust-mantle boundary. Mantle sampling took place well into the diamond stability field at Darby.
DS201808-1763
2018
Li, Z., Fedortchouk, Y., Fulop, A., Chinn, I.L., Forbes, N.Positively oriented trigons - a unique resorption feature of diamonds from Snap Lake kimberlite dyke, Canada.minsocam.org/ MSA/AMMin/ special-collections, doi.org/10.2138/am-2018-6496. 48p. Canada, Northwest Territoriesdeposit - Snap Lake
DS201808-1764
2018
Lim, E., Giuliani, A., Phillips, D., Goemann, K.Origin of complex zoning in olivine from diverse, Diamondiferous kimberlites and tectonic settings: Ekati ( Canada), Alto Paranaiba ( Brazil) and Kaalvallei ( South Africa).Mineralogy and Petrology, doi.org/10.1007/s00710-018-0607-6 16p.Canada, Northwest Territories, South America, Brazildeposit - Ekati, Grizzly, Kaola, Limpeza-18, Tres Ranchos-04, Kaalvallei, Samada, New Robinson

Abstract: Olivine in kimberlites can provide unique insights into magma petrogenesis, because it is the most abundant xenocrystic phase and a stable magmatic product over most of the liquid line of descent. In this study we examined the petrography and chemistry of olivine in kimberlites from different tectonic settings, including the Slave craton, Canada (Ekati: Grizzly, Koala), the Brasilia mobile belt (Limpeza-18, Tres Ranchos-04), and the Kaapvaal craton, South Africa (Kaalvallei: Samada, New Robinson). Olivine cores display a wide range of compositions (e.g., Mg#?=?78-95). The similarity in olivine composition, resorption of core zones and inclusions of mantle-derived phases, indicates that most olivine cores originated from the disaggregation of mantle peridotites, including kimberlite-metasomatised lithologies (i.e. sheared lherzolites and megacrysts). Olivine rims typically show a restricted range of Mg#, with decreasing Ni and increasing Mn and Ca contents, a characteristic of kimberlitic olivine worldwide. The rims host inclusions of groundmass minerals, which implies crystallisation just before and/or during emplacement. There is a direct correlation between olivine rim composition and groundmass mineralogy, whereby high Mg/Fe rims are associated with carbonate-rich kimberlites, and lower Mg/Fe rims are correlated with increased phlogopite and Fe-bearing oxide mineral abundances. There are no differences in olivine composition between explosive (Grizzly) and hypabyssal (Koala) kimberlites. Olivine in kimberlites also displays transitional zones and less common internal zones, between cores and rims. The diffuse transitional zones exhibit intermediate compositions between cores and rims, attributed to partial re-equilibration of xenocrystic cores with the ascending kimberlite melt. In contrast, internal zones form discrete layers with resorbed margins and restricted Mg# values, but variable Ni, Mn and Ca concentrations, which indicates a discrete crystallization event from precursor kimberlite melts at mantle depths. Overall, olivine exhibits broadly analogous zoning in kimberlites worldwide. Variable compositions for individual zones relate to different parental melt compositions rather than variations in tectonic setting or emplacement mechanism.
DS201808-1771
2018
Muntener, C., Gaudet, M.Geology of the Renard 2 pipe to 1000 depth, Renard mine, Quebec, Canada: insights into Kimberley type pyroclastic kimberlite emplacement.Mineralogy and Petrology, doi.org/10.1007/s00710-018-0614-7 12p.Canada, Quebecdeposit - Renard

Abstract: The Renard 2 pipe is currently the deepest-drilled and most extensively studied kimberlite body in the Renard cluster, central Québec, Canada, forming the major component of the Mineral Resource of Stornoway Diamond Corporation’s Renard Mine. Renard 2 is infilled with two distinct kimberlite units that exhibit Kimberley-type pyroclastic kimberlite and related textures. Hypabyssal kimberlite also occurs as smaller cross-cutting sheets and irregular intrusions. The units are distinguished by their rock textures, groundmass mineral assemblages, olivine macrocryst size distributions and replacement products, mantle and country rock xenolith contents, whole rock geochemical signatures, bulk densities and diamond grades. These differences are interpreted to reflect different mantle ascent and near-surface emplacement processes and are here demonstrated to be vertically continuous from present surface to over 1000 m depth. The distinctive petrological features together with sharp, steep and cross-cutting internal contact relationships, show that each unit was formed from a separate batch of mantle-derived kimberlite magma, and was completely solidified before subsequent emplacement of the later unit. The mineralogy and textures of the ultra-fine-grained interclast matrix are consistent with those described at numerous Kimberley-type pyroclastic kimberlite localities around the world and are interpreted to reflect rapid primary crystallization during emplacement of separate kimberlite magmatic systems. The units of fractured and brecciated country rock surrounding the main kimberlite pipe contain kimberlite-derived material including carbonate providing evidence of subsurface brecciation. Together these data show that Renard 2 represents the deeper parts of a Kimberley-type pyroclastic kimberlite pipe system and demonstrates that their diagnostic features result from magmatic crystallisation during subsurface volcanic emplacement processes.
DS201809-1993
2018
Barnett, W., Stubley, M., Hetman, C., Uken, R., Hrkac, C., McCandless, T.Kelvin and Faraday kimberlite emplacement geometries and implications for subterranean magmatic processes.Mineralogy and Petrology, doi.org/10.1007/ s00710-018-0621-8 16p.Canada, Northwest Territoriesdeposit - Kelvin, Faraday

Abstract: The Kennady North Project kimberlites (Northwest Territories of Canada) comprises multiple shallow dipping dykes and several volcaniclastic bodies that have an unusual shallow plunging geometry and complex "pipe" shapes that are termed chonoliths. The detailed exploration of the entire system provides exceptional evidence for subterranean volcanic conduit growth processes. The possible processes leading to the development of the kimberlite bodies are discussed, with emphasis on the importance of the subsurface intrusive system geometry and the local stress tensor. Emplacement into a locally compressive stress regime (i.e. ?1 and ?2 inclined at a low angle to surface) could change the kimberlite emplacement geometries to that observed at Kennady North. Models are proposed for the development of the chonoliths, to emphasize aspects of the growth of kimberlite systems that are not well understood. The conclusions challenge or evolve current emplacement models and should influence kimberlite exploration and resource definition assumptions.
DS201809-2006
2018
Castillo-Oliver, M., Giuliani, A., Griffin, W.L., O'Reilly, S.Y.Characterisation of primary and secondary carbonates in hypabyssal kimberlites: an integrated compositional and Sr-isotopic approach. Mineralogy and Petrology, doi.org/10.1007/s00710-018-0626-3 13p.Africa, South Africa, Australia, Europe, Finland, Canada, Northwest Territoriesdeposit - Wesselton, De Beers, Bultfontein, Benfontein, Jagersfontein, Cullinan, Melita, Pipe 1, Grizzley, Koala

Abstract: Carbonates in fresh hypabyssal kimberlites worldwide have been studied to understand their origin [i.e. primary magmatic (high T) versus deuteric (‘low T’) versus hydrothermal/alteration (‘low T’)] and identify optimal strategies for petrogenetic studies of kimberlitic carbonates. The approach presented here integrates detailed textural characterisation, cathodoluminescence (CL) imaging, in situ major- and trace-element analysis, as well as in situ Sr-isotope analysis. The results reveal a wide textural diversity. Calcite occurs as fine-grained groundmass, larger laths, segregations, veins or as a late crystallising phase, replacing olivine or early carbonates. Different generations of carbonates commonly coexist in the same kimberlite, each one defined by a characteristic texture, CL response and composition (e.g., variable Sr and Ba concentrations). In situ Sr isotope analysis revealed a magmatic signature for most of the carbonates, based on comparable 87Sr/86Sr values between these carbonates and the coexisting perovskite, a robust magmatic phase. However, this study also shows that in situ Sr isotope analysis not always allow distinction between primary (i.e., magmatic) and texturally secondary carbonates within the same sample. Carbonates with a clear secondary origin (e.g., late-stage veins) occasionally show the same moderately depleted 87Sr/86Sr ratios of primary carbonates and coexisting perovskite (e.g., calcite laths-shaped crystals with 87Sr/86Sr values identical within uncertainty to those of vein calcite in the De Beers kimberlite). This complexity emphasises the necessity of integrating detailed petrography, geochemical and in situ Sr isotopic analyses for an accurate interpretation of carbonate petrogenesis in kimberlites. Therefore, the complex petrogenesis of carbonates demonstrated here not only highlights the compositional variability of kimberlites, but also raises concerns about the use of bulk-carbonate C-O isotope studies to characterise the parental melt compositions. Conversely, our integrated textural and in situ study successfully identifies the most appropriate (i.e. primary) carbonates for providing constraints on the isotopic parameters of parental kimberlite magmas.
DS201809-2015
2018
Di Massa, D., Fedi, M., Florio, G., Vitale, A., Viezzoli, A., Kaminski, V.Joint interpretation of AEM and aeromagnetic dat a acquired over the Drybones kimberlite, NWT ( Canada).Journal of Applied Physics, Vol. 158, pp. 48-56.Canada, Northwest Territoriesdeposit - Drybones

Abstract: We present the joint interpretation of airborne electromagnetic and aeromagnetic data, acquired to study kimberlite pipes. We analyse the data surveyed in 2005 over Drybones Bay, Archean Slave Province of the Northwest Territories, northern Canada. This area hosts a recently discovered kimberlite province with >150 kimberlite pipes. Magnetic and electromagnetic data were each one modelled by 1D inversion. For magnetic data we inverted vertical soundings built through upward continuations of the measured data at various altitudes. The validity of the method was prior verified by tests on synthetic data. Electromagnetic data were processed and inverted using the modified AarhusINV code, with Cole-Cole modelling, in order to take into account induced polarization effects, consisting in negative voltages and otherwise skewed transients. The integrated study of the two kinds of data has led to a better understanding of the structures at depth, even though the comparison between the magnetic and the electromagnetic models shows the different sensitivity of the two methods with respect to the geological structure at Drybones Bay.
DS201809-2028
2018
Gong, Z., Xu, X., Evans, D.A.D., Hoffman, P.F., Mitchell, R.N., Bleeker, W.Paleomagnetism and rock magnetism of the ca. 1.87 Ga Pearson Formation, Northwest Territories, Canada: a test of vertical axis rotation within the Great Slave Basin.Precambrian Research , Vol. 305C, pp. 295-309.Canada, Northwest Territoriesgeophysics

Abstract: A geometrically quantitative plate-kinematic model, based on paleomagnetism, for the initial assembly of Laurentia has taken form in the past few decades. Within this framework, there remains but one problematic interval of data predominantly from the Slave craton, which is the 1.96-1.87?Ga Coronation apparent polar wander path (APWP). The Coronation APWP shows large (?110°) back-and-forth oscillations that are difficult to explain in terms of plate motion. Nonetheless, poles from the Coronation APWP have been incorporated in various paleogeographic reconstructions of Laurentia and the supercontinent Nuna, pointing to the importance of testing its veracity. In this study, we conducted a detailed paleomagnetic and rock magnetic study of the ca. 1.87?Ga Pearson Formation, East Arm of Great Slave Lake, Northwest Territories, Canada. Our results show that Pearson Formation yields a characteristic remanent magnetization carried by single-domain or small pseudo-single-domain magnetite. The age of the magnetization is constrained to be older than Paleoproterozoic deformation and is interpreted as primary. Paleomagnetic declinations reveal a one-to-one correlation with local structural attitudes, indicating that some small blocks in the fold belt likely experienced significant (?60°) vertical-axis rotations, presumably related to large dextral displacements along the McDonald Fault system. Alternative explanations, such as true polar wander or a non-dipole magnetic field, are considered less parsimonious for the data presented here. It is suspected that some existing Christie Bay Group poles (the Stark and Tochatwi Formations), which were sampled in areas with anomalous structural attitudes and differ from time-equivalent poles obtained from areas of the Slave craton far from major transcurrent faults, may similarly suffer from vertical-axis rotation. We suggest further study before using possibly rotated Christie Bay Group poles for paleogeographic reconstructions.
DS201809-2038
2018
Howell, D., Stachel, T., Pearson, D.G., Stern, R.A., Nestola, F., Shirey, S.B., Harris, J.W.Deep carbon through time: the diamond record.Goldschmidt Conference, 1p. AbstractAfrica, Australia, Russia, Canadadeposit - Argyle, De Beers Pool, Jwaneng, Orapa, Udachnaya, Venetia, Wawa, Diavik

Abstract: Earth’s mantle is by far the largest silicate-hosted reservoir of carbon. Diamonds are unrivalled in their ability to record the cycle of mantle carbon and other volatiles over a vast portion of the Earth’s history. They are the product of ascending, cooling, carbon-saturated, metasomatic fluidsmelts and/or redox reactions, predominantly within peridotitic and eclogitic domains in the mantle lithosphere. This paper reports the results of a major secondary ion mass spectrometry (SIMS) carbon isotope study, carried out on 127 diamond samples, spanning a large range of geological time. Detailed transects across the incremental growth zones within each diamond were measured for C isotopes, N abundances and, for samples with N >~200 at.ppm, N isotopes. Given that all of the samples are fragments, recovered when the original crystals were broken to liberate their inclusions, 81 of the analytical traverses have confirmed growth direction context. 98 samples are from studies that have confirmed the dates of the individual diamonds through analysis of their silicate or sulphide inclusions, from source localities including Argyle, De Beers Pool, Jwaneng, Orapa, Udachnaya & Venetia. Additional samples come from Wawa (a minimum age) and Diavik where the samples are tied via inclusion paragenesis to published ages. The peridotitic dataset covers the age range of ~3.3 - 2.0 Ga, with the eclogitic data from 2.9 - 1.0 Ga. In total, 751 carbon isotope and nitrogen concentration measurements have been obtained (425 on peridotitic diamonds, and 326 on eclogitic diamonds) with 470 nitrogen isotope measurements (190 P, 280 E). We attempt to constrain the diamond carbon isotope record through time and its implications for (i) the mantle carbon reservoir, (ii) its oxygen fugacity, (iii) the fluid / melt growth environment of diamonds, (iv) fractionation trends recorded in individual diamonds, and (v) diamond population studies using bulk combustion carbon isotope analysis.
DS201809-2046
2018
Johnson, T.E., Gardiner, N.J., Miljkovic, K., Spencer, C.J., Kirkland, C.L., Bland, P.A., Smithies, R.H.Are Earth's oldest felsic rocks impact melts? Acasta Gneiss ComplexGoldschmidt Conference, 1p. AbstractCanada, Northwest Territoriesmeteorite

Abstract: Earth’s oldest felsic rocks, the 4.02 billion-year-old Idiwhaa gneisses of the Acasta Gneiss Complex, northwest Canada, have compositions that are distinct from the felsic rocks that typify Earth’s ancient continental nuclei, implying they formed through a different process. Using phase equilibria and trace element modelling, we show that the Idiwhaa gneisses were produced by partial melting of ironrich amphibolite host rocks at very low pressures, equating to the uppermost ~3 km of mafic crust. The heat required for such shallow melting is most easily explained through meteorite impacts. Hydrodynamic impact modelling shows that, not only is this scenario physically plausible, but the region of shallow melting appropriate to formation of the Idiwhaa gneisses would have been widespread. Given the predicted high flux of meteorites during the late Hadean, impact melting may have been the predominant mechanism that generated Hadean felsic rocks.
DS201809-2050
2018
Kohn, S.C., Speich, L., Bulanova, G.P., Smith, C.B., Gress, M.U., Davies, G.R.Modelling the temperature history of mantle lithosphere using FTIR maps of diamonds.Goldschmidt Conference, 1p. AbstractAfrica, Zimbabwe. Australia, Canada, Northwest Territories, South Africa, Botswanadeposit - Murowa, Argyle, Diavik, Venetia, Orapa

Abstract: FTIR maps of diamond plates, cut through the centre of growth, contain abundant information about changing defect concentrations from core to rim. These data can, in principle, be interpreted in terms of the variation in conditions of diamond growth and the temperatures experienced by the diamond during the period of mantle residence between growth and exhumation. Many diamonds show multiple growth zones that can be observed by cathodoluminescence. Importantly, the combination of nitrogen concentration and nitrogen aggregation measured by FTIR can be used to determine whether the growth zones are of similar or very different ages (Kohn et al., 2016). In this study, we use automated fitting of several thousand individual spectra within each FTIR map to define a model temperature for each pixel using the Python program, QUIDDIT. We then use a two-stage aggregation model to constrain potential temperature-time histories for each diamond. To take full advantage of the temperature history recorded by zoned diamonds, radiometric ages of inclusions are required. If the growth ages of each zone and the date of exhumation are well-known, then a model temperature can be calculated for each zone. The combination of zone-specific ages and improved quality and processing of FTIR spectra is able to provide unique new insights into the thermal history of diamondbearing lithospheric mantle. For the first time we will be able to use the N defects in diamonds to work out whether a particular location in the lithosphere has heated or cooled over long periods of geological time. The implications for the mechanism of formation of lithosphere will be discussed. We will illustrate the approach using examples of zoned diamonds from Murowa (Zimbabwe), Argyle (Australia), Diavik (Canada), Venetia (South Africa) and Orapa (Botswana).
DS201809-2054
2018
Lawley, C.J.M., Kjarsgaard, B.A., Jackson, S.E., Yang, Z., Petts, D.C.Olivine and clinopyroxene mantle xenocryst geochemistry from the Kirkland Lake kimberlite field, Ontario.Geological Survey of Canada, Open File 8376, 9p.Canada, Ontariogeochemistry
DS201809-2058
2018
Liddell, M.V., Bastow, I., Rawlinson, N., Darbyshire, F., Gilligan, A., Watson, E.Precambrian plate tectonics in northern Hudson Bay: evidence from P and S Wave Seismic tomography and analysis of source side effects in relative arrival-time dat a sets.Journal of Geophysical Research, Vol. 123, 7, pp. 5690-5709.Canada, NunavutGeophysics - seismic

Abstract: The geology of northern Hudson Bay, Canada, documents more than 2 billion years of history including the assembly of Precambrian and Archean terranes during several Paleoproterozoic orogenies, culminating in the Trans?Hudson Orogen (THO) ?1.8 Ga. The THO has been hypothesized to be similar in scale and nature to the ongoing Himalaya?Karakoram?Tibetan orogen, but the nature of lithospheric terrane boundaries, including potential plate?scale underthrusting, is poorly understood. To address this problem, we present new P and S wave tomographic models of the mantle seismic structure using data from recent seismograph networks stretching from northern Ontario to Nunavut (60-100?W and 50-80?N). The large size of our network requires careful mitigation of the influence of source side structure that contaminates our relative arrival time residuals. Our tomographic models reveal a complicated internal structure in the Archean Churchill plate. However, no seismic wave speed distinction is observed across the Snowbird Tectonic Zone, which bisects the Churchill. The mantle lithosphere in the central region of Hudson Bay is distinct from the THO, indicating potential boundaries of microcontinents and lithospheric blocks between the principal colliders. Slow wave speeds underlie southern Baffin Island, the leading edge of the generally high wave speed Churchill plate. This is interpreted to be Paleoproterozoic material underthrust beneath Baffin Island in a modern?style subduction zone setting.
DS201809-2060
2018
Liu, J., Brin, L.E., Pearson, D.G., Bretschneider, L., Luguet, A., van Acken, D., Kjarsgaard, B., Riches, A., Miskovic, A.Diamondiferous Paleoproterozoic mantle roots beneath Arctic Canada: a study of mantle xenoliths from Parry Peninsula and Central Victoria Island.Geochimica et Cosmochimica Acta, doi.org/10.1016/j.gca.2018.08.010 78p.Canada, Nunavut, Parry Peninsula. Central Victoria Islandxenoliths

Abstract: While the mantle roots directly beneath Archean cratons have been relatively well studied because of their economic importance, much less is known about the genesis, age, composition and thickness of the mantle lithosphere beneath the regions that surround the cratons. Despite this knowledge gap, it is fundamentally important to establish the nature of relationships between this circum-cratonic mantle and that beneath the cratons, including the diamond potential of circum-cratonic regions. Here we present mineral and bulk elemental and isotopic compositions for kimberlite-borne mantle xenoliths from the Parry Peninsula and Central Victoria Island, Arctic Canada. These xenoliths provide key windows into the lithospheric mantle underpinning regions to the North and Northwest of the Archean Slave craton, where the presence of cratonic material has been proposed. The mantle xenolith data are supplemented by mineral concentrate data obtained during diamond exploration. The mineral and whole rock chemistry of peridotites from both localities is indistinguishable from that of typical cratonic mantle lithosphere. The cool mantle paleogeotherms defined by mineral thermobarometry reveal that the lithospheric mantle beneath the Parry Peninsula and Central Victoria Island terranes extended well into the diamond stability field at the time of kimberlite eruption, and this is consistent with the recovery of diamonds from both kimberlite fields. Bulk xenolith Se and Te contents, and highly siderophile element (including Os, Ir, Pt, Pd and Re) abundance systematics, plus corresponding depletion ages derived from Re-Os isotope data suggest that the mantle beneath these parts of Arctic Canada formed in the Paleoproterozoic Era, at ?2?Ga, rather than in the Archean. The presence of a diamondiferous Paleoproterozoic mantle root is part of the growing body of global evidence for diamond generation in mantle roots that stabilized well after the Archean. In the context of regional tectonics, we interpret the highly depleted mantle compositions beneath both studied regions as formed by mantle melting associated with hydrous metasomatism in the major Paleoproterozoic Wopmay-Great Bear-Hottah arc systems. These ?2?Ga arc systems were subsequently accreted along the margin of the Slave craton to form a craton-like thick lithosphere with diamond potential thereby demonstrating the importance of subduction accretion in building up Earth’s long-lived continental terranes.
DS201809-2062
2018
Liu, J., Pearson, D.G., Bretschneider, L., Luguet, A., Van Acken, D., Kjarsgaard, B., Riches, A., Miskovic, A.Diamondiferous Proterozoic mantle roots beneath Arctic Canada.Goldschmidt Conference, 1p. AbstractCanada, Parry Peninsula, Victoria Islandxenoliths

Abstract: The mantle roots directly beneath Archean cratons have been relatively well studied because of their economic importance, yet much less is known about the genesis, age, composition and thickness of the mantle lithosphere beneath the regions surrounding these cratons. However, it is critically important to establish the nature of the relationship between this circum-cratonic mantle and that beneath the cratons, including the diamond potential of circum-cratonic regions. Here we present mineral and bulk elemental and isotopic compositions for kimberlite-borne mantle xenoliths from the Parry Peninsula (PP) and Central Victoria Island (CVI), Arctic Canada. These xenoliths provide key windows into the lithospheric mantle underpinning regions to the North and Northwest of the Slave craton, where the presence of cratonic mantle has been proposed. The mineral and whole rock chemistry of peridotites from both localities is indistinguishable from that of typical cratonic mantle lithosphere. The cool mantle geotherms defined by mineral thermobarometry reveal that the lithospheric mantle beneath the PP and CVI terranes extended well into the diamond stability field at the time of kimberlite eruption, consistent with the recovery of diamonds from both kimberlite fields. Bulk Se, Te, and highly siderophile element abundance systematics, plus Re-Os isotope age data suggest that the mantle beneath these parts of Arctic Canada formed at ~2 Ga, rather than in the Archean. The presence of a diamondiferous Paleoproterozoic mantle root is part of the growing body of evidence for peridotitic diamond generation in mantle roots that stabilized well after the Archean. In the context of regional tectonics, the highly depleted mantle compositions beneath both regions developed during mantle melting associated with hydrous metasomatism in the major Paleoproterozoic Wopmay- Great Bear-Hottah arc systems. These terranes were subsequently accreted along the margin of the Slave craton to form a craton-like thick lithosphere with significant diamond potential.
DS201809-2070
2018
McCoy-West, A.J., Fitton, J.G., Pons, M-L., Inglis, E.C., Williams, H.M.The Fe and Zn isotope composition of deep mantle source regions: insight from Baffin Island picrites.Geochimica et Cosmochimica Acta, Vol. 238, pp. 542-562.Canada, Nunavut, Baffin Islandpicrites

Abstract: Young (61?Ma) unaltered picrites from Baffin Island, northeast Canada, possess some of the highest 3He/4He (up to 50?Ra) seen on Earth, and provide a unique opportunity to study primordial mantle that has escaped subsequent chemical modification. These high-degree partial melts also record anomalously high 182W/184W ratios, but their Sr-Nd-Hf-Pb isotopic compositions (including 142Nd) are indistinguishable from those of North Atlantic mid-ocean ridge basalts. New high precision Fe and Zn stable isotope analyses of Baffin Island picrites show limited variability with ?56Fe ranging from ?0.03‰ to 0.13‰ and ?66Zn varying from 0.18‰ to 0.28‰. However, a clear inflection is seen in both sets of isotope data around the composition of the parental melt (MgO?=?21?wt%; ?56Fe?=?0.08?±?0.04‰; and ?66Zn?=?0.24?±?0.03‰), with two diverging trends interpreted to reflect the crystallisation of olivine and spinel in low-MgO samples and the accumulation of olivine at higher MgO. Olivine mineral separates are significantly isotopically lighter than their corresponding whole rocks (?56Fe????0.62‰ and ?66Zn????0.22‰), with analyses of individual olivine phenocrysts having extremely variable Fe isotope compositions (?56Fe?=??0.01‰ to ?0.80‰). By carrying out modelling in three-isotope space, we show that the very negative Fe isotope compositions of olivine phenocryst are the result of kinetic isotope fractionation from disequilibrium diffusional processes. An excellent correlation is observed between ?56Fe and ?66Zn, demonstrating that Zn isotopes are fractionated by the same processes as Fe in simple systems dominated by magmatic olivine. The incompatible behaviour of Cu during magmatic evolution is consistent with the sulfide-undersaturated nature of these melts. Consequently Zn behaves as a purely lithophile element, and estimates of the bulk Earth Zn isotope composition based on Baffin Island should therefore be robust. The ancient undegassed lower mantle sampled at Baffin Island possesses a ?56Fe value that is within error of previous estimates of bulk mantle ?56Fe, however, our estimate of the Baffin mantle ?66Zn (0.20?±?0.03‰) is significantly lower than some previous estimates. Comparison of our new data with those for Archean and Proterozoic komatiites is consistent with the Fe and Zn isotope composition of the mantle remaining constant from at least 3?Ga to the present day. By focusing on large-degree partial melts (e.g. komatiites and picrites) we are potenitally biasing our record to samples that will inevitably have interacted with, entrained and melted the ambient shallow mantle during ascent. For a major element such as Fe, that will continuosly participate in melting as it rises through the mantle, the final isotopic compositon of the magama will be a weighted average of the complete melting column. Thus it is unsuprising that minimal Fe isotope variations are seen between localities. In contrast, the unique geochemical signatures (e.g. He and W) displayed by the Baffin Island picrites are inferred to solely originate from the lowermost mantle and will be continuously diluted upon magma ascent.
DS201809-2075
2018
Nicklas, R.W., Puchtel, I.S., Ash, R.D.Redox state of the Archean mantle: evidence from V partioning in 3.5-2.4 Ga komatiites. Kidd-Munro, Pyke Hill, AlexoGeochimica et Cosmochimica Acta, Vol. 222, 1, pp. 447-466.Canada, Ontariokomatiites

Abstract: Oxygen fugacity of the mantle is a crucial thermodynamic parameter that controls such fundamental processes as planetary differentiation, mantle melting, and possible core-mantle exchange. Constraining the evolution of the redox state of the mantle is of paramount importance for understanding the chemical evolution of major terrestrial reservoirs, including the core, mantle, and atmosphere. In order to evaluate the secular evolution of the redox state of the mantle, oxygen fugacities of six komatiite systems, ranging in age from 3.48 to 2.41 Ga, were determined using high-precision partitioning data of the redox-sensitive element vanadium between liquidus olivine, chromite and komatiitic melt. The calculated oxygen fugacities range from -0.11 ± 0.30 ?FMQ log units in the 3.48 Ga Komati system to +0.43 ± 0.26 ?FMQ log units in the 2.41 Ga Vetreny system. Although there is a slight hint in the data for an increase in the oxygen fugacity of the mantle between 3.48 and 2.41 Ga, these values generally overlap within their respective uncertainties; they are also largely within the range of oxygen fugacity estimates for modern MORB lavas of +0.60 ± 0.30 ?FMQ log units that we obtained using the same technique. Our results are consistent with the previous findings that argued for little change in the mantle oxygen fugacity since the early Archean and indicate that the mantle had reached its nearly-present day redox state by at least 3.48 Ga.
DS201809-2077
2018
Pu, Y., Derek, A., Huawei, X.A principal component analysis/fuzzy comprehensive evaluation for rockburst potential in kimberlite.Pure and Applied Physics, Vol. 175, 6, pp. 2141-2151.Canada, Northwest Territoriesmining

Abstract: Kimberlite is an igneous rock which sometimes bears diamonds. Most of the diamonds mined in the world today are found in kimberlite ores. Burst potential in kimberlite has not been investigated, because kimberlite is mostly mined using open-pit mining, which poses very little threat of rock bursting. However, as the mining depth keeps increasing, the mines convert to underground mining methods, which can pose a threat of rock bursting in kimberlite. This paper focuses on the burst potential of kimberlite at a diamond mine in northern Canada. A combined model with the methods of principal component analysis (PCA) and fuzzy comprehensive evaluation (FCE) is developed to process data from 12 different locations in kimberlite pipes. Based on calculated 12 fuzzy evaluation vectors, 8 locations show a moderate burst potential, 2 locations show no burst potential, and 2 locations show strong and violent burst potential, respectively. Using statistical principles, a Mahalanobis distance is adopted to build a comprehensive fuzzy evaluation vector for the whole mine and the final evaluation for burst potential is moderate, which is verified by a practical rockbursting situation at mine site.
DS201809-2082
2018
Sarkar, C., Kjarsgaard, B.A., Pearson, D.G., Heaman, L.M., Locock, A.J., Armstrong, J.P.Geochronology, classification and mantle source characteristics of kimberlites and related rocks from the Rae craton, Melville Peninsula, Nunavut, Canada.Mineralogy and Petrology, doi.org/10.1007/ s00710-018-0632-5 20p.Canada, Nunavut, Melville Peninsuladeposit - Pelly Bay, Darby, Aviat, Qilalugaq

Abstract: Detailed geochronology along with petrographic, mineralogical and geochemical studies have been conducted on recently found diamond-bearing kimberlitic and related rocks in the Rae Craton at Aviat and Qilalugaq, Melville Peninsula, north-east Canada. Magmatic rocks from the Aviat pipes have geochemical (both bulk rock and isotopic) and mineralogical signatures (e.g., core to rim Al and Ba enrichment in phlogopite) similar to Group I kimberlite. In contrast, Aviat intrusive sheets are similar to ‘micaceous’ Group II kimberlite (orangeite) in their geochemical and mineralogical characteristics (e.g., phlogopite and spinel compositions, highly enriched Sr isotopic signature). Qilalugaq rocks with the least crustal contamination have geochemical and mineralogical signatures [e.g., high SiO2, Al2O3 and H2O; low TiO2 and CO2; less fractionated REE (rare earth elements), presence of primary clinopyroxene, phlogopite and spinel compositions] that are similar to features displayed by olivine lamproites from Argyle, Ellendale and West Greenland. The Naujaat dykes, in the vicinity of Qilalugaq, are highly altered due to extensive silicification and carbonation. However, their bulk rock geochemical signature and phlogopite chemistry are similar to Group I kimberlite. U-Pb perovskite geochronology reveals that Aviat pipes and all rocks from Qilalugaq have an early Cambrian emplacement age (540-530 Ma), with the Aviat sheets being ~30 Ma younger. This volatile-rich potassic ultramafic magmatism probably formed by varying degrees of involvement of asthenospheric and lithospherically derived melts. The spectrum of ages and compositions are similar to equivalent magmatic rocks observed from the nearby north-eastern North America and Western Greenland. The ultimate trigger for this magmatism could be linked to Neoproterozoic continental rifting during the opening of the Iapetus Ocean and breakup of the Rodinia supercontinent.
DS201809-2084
2017
Seller, M.H.Lithosphere thickness determinations and kimberlite diamond potential.Geological Survey of Canada, Open File 8345 pp. 35-40.Canada, Northwest Territoriesgeophysics - seismic
DS201809-2097
2018
Sverjensky, D.A., Huang, F.Mixing of saline and carbonatitic fluids to form peridotitic PAnd a diamonds.Goldschmidt Conference, 1p. AbstractCanada, Northwest Territoriesdeposit - Panda

Abstract: Diamonds containing fluid inclusions provide the most direct samples of upper mantle fluids. In eclogites, diamond can form by pH drop during fluid-rock interaction. However, in peridotites, the cause of the chemical evolution of the fluids and minerals, including the wide range of observed salinities involved, are still unclear. Here we used new experimental calibrations of the Deep Earth Water model involving organic and inorganic complexes of the major rockforming elements to show that fluid mixing can cause diamond formation in the peridotitic environment. Models of the saline and carbonatitic fluid inclusion compositions consistent with the chemistry of measured solid inclusions in Panda diamonds were used to simulate the irreversible, chemical mass transfer when a carbonatitic fluid infiltrates harzburgite containing a saline fluid at 950°C and 4.5 GPa. Simultaneous oxidation of aqueous hydrocarbons in the peridotitic fluid and reduction of the organic acid anion formate as well as bicarbonate in the carbonatitic fluid during mixing and reaction with harzburgite resulted in the formation of diamond, olivine, and garnet, and increases in the logfo2 and pH. Olivine was predicted to become more Ferich and garnet more Ca and Fe-rich with reaction progress, in agreement with reported temporal trends in the composition of mineral inclusions from octahedral cores to coated rims on Panda diamonds. Aqueous phase concentrations of all elements changed consistent with measured trends in fluid inclusion compositions from saline to less saline. For comparison, we also simulated a saline fluid infiltrating a harzburgite containing a carbonatitic fluid. Diamond again formed, but the compositional trends of the silicate minerals and the trend of salinity with reaction progress were all in the opposite direction to data from the Panda diamonds. Overall, our study strongly suggests that mixing of fluids containing carbon from both reduced and oxidized sources, and simultaneous reaction with harzburgite can cause precipitation of diamond, without the need for triggering by temperature or pressure changes, while adding Ca and Fe to the sub-lithospheric mantle.
DS201809-2103
2018
Tschauner, O., Huang, S., Wu, Z., Gtreenberg, E., Prakapenka, V.B.Ice-VII inclusions in ultradeep diamonds. Goldschmidt Conference, 1p. AbstractAfrica, South Africa, China, United States, Canada, South Americadiamond inclusions

Abstract: We present the first evidence for inclusions of ice-VII in diamonds from southern Africa, China, North- and South-America [1]. Combining synchrotron X-ray diffraction, - X-ray fluorescence and IR spectroscopy, we show the presence of ice-VII as inclusions in diamonds that have formed at depth > 410 km to about 800 km in the Earth's mantle. What is now crystalline ice-VII, a high pressure polymorph of water-ice, was component of an aqueous fluid entrapped in the diamonds that were growing in the deep mantle. Because of the confinement by the host diamonds, the inclusions retain high pressures. The same holds for inclusions of magnesian calcite, halite, and ilmenite found in the same diamond specimens. These inclusions reflect the presence of aqueous and carbonaceous fluids in the mantle transition zone and the shallow lower mantle. Using their current residual pressures and the equations of state, we can reconstruct their recovery paths [2,3]. Further, we can use the intersection of modelled recovery paths to better constrain the encapsulation pressure and temperature of these inclusions in diamonds.
DS201809-2113
2018
Welford, K., Pearce, A., Geng, M., Dehler, S.A., Dickie, K.Crustal structure of Baffin Bay from constrained 3-D gravity inversion and deformable plate tectonic models. Geophysical Journal International, Vol. 214, 2, pp. 1281-1300. doi:1093/gji/ggy193Canada, NunavutGeophysics - gravity

Abstract: Mesozoic to Cenozoic continental rifting, breakup and spreading between North America and Greenland led to the opening, from south to north, of the Labrador Sea and eventually Baffin Bay between Baffin Island, northeast Canada and northwest Greenland. Baffin Bay lies at the northern limit of this extinct rift, transform and spreading system and remains largely underexplored. With the sparsity of existing crustal-scale geophysical investigations of Baffin Bay, regional potential field methods and quantitative deformation assessments based on plate reconstructions provide two means of examining Baffin Bay at the regional scale and drawing conclusions about its crustal structure, its rifting history and the role of pre-existing structures in its evolution. Despite the identification of extinct spreading axes and fracture zones based on gravity data, insights into the nature and structure of the underlying crust have only been gleaned from limited deep seismic experiments, mostly concentrated in the north and east where the continental shelf is shallower and wider. Baffin Bay is partially underlain by oceanic crust with zones of variable width of extended continental crust along its margins. 3-D gravity inversions, constrained by bathymetric and depth to basement constraints, have generated a range of 3-D crustal density models that collectively reveal an asymmetric distribution of extended continental crust, approximately 25-30?km thick, along the margins of Baffin Bay, with a wider zone on the Greenland margin. A zone of 5-13?km thick crust lies at the centre of Baffin Bay, with the thinnest crust (5?km thick) clearly aligning with Eocene spreading centres. The resolved crustal thicknesses are generally in agreement with available seismic constraints, with discrepancies mostly corresponding to zones of higher density lower crust along the Greenland margin and Nares Strait. Deformation modelling from independent plate reconstructions using GPlates of the rifted margins of Baffin Bay was performed to gauge the influence of original crustal thickness and the width of the deformation zone on the crustal thicknesses obtained from the gravity inversions. These results show the best match with the results from the gravity inversions for an original unstretched crustal thickness of 34-36?km, consistent with present-day crustal thicknesses derived from teleseismic studies beyond the likely continentward limits of rifting around the margins of Baffin Bay. The width of the deformation zone has only a minimal influence on the modelled crustal thicknesses if the zone is of sufficient width that edge effects do not interfere with the main modelled domain.
DS201809-2115
2018
Wilson, D., Amos, R.T., Blowes, D.W., Langman, J.B., Smith, L., Sego, D.C.Diavik waste rock project: Scale up of a reactive transport model for temperature and sulfide content dependent geochemical evolution of waste rock.Applied Geochemisty, Vol. 96, pp. 177-190.Canada, Northwest Territoriesdeposit - Diavik

Abstract: The Diavik Waste Rock Project, located in a region of continuous permafrost in northern Canada, includes complementary field and laboratory experiments with the purpose of investigating scale-up techniques for the assessment of the geochemical evolution of mine waste rock at a large scale. As part of the Diavik project, medium-scale field experiments (?1.5?m high active zone lysimeters) were conducted to assess the long term geochemical evolution and drainage of a low-sulfide waste rock under a relatively simple (i.e. constrained by the container) flow regime while exposed to atmospheric conditions. A conceptual model, including the most significant processes controlling the sulfide-mineral oxidation and weathering of the associated host minerals as observed in a laboratory humidity cell experiment, was developed as part of a previous modelling study. The current study investigated the efficacy of scaling the calibrated humidity cell model to simulate the geochemical evolution of the active zone lysimeter experiments. The humidity cell model was used to simulate the geochemical evolution of low-sulfide waste rock with S content of 0.053?wt.% and 0.035?wt.% (primarily pyrrhotite) in the active zone lysimeter experiments using the reactive transport code MIN3P. Water flow through the lysimeters was simulated using temporally variable infiltration estimated from precipitation measurements made within 200?m of the lysimeters. Flow parameters and physical properties determined during previous studies at Diavik were incorporated into the simulations to reproduce the flow regime. The geochemical evolution of the waste-rock system was simulated by adjustment of the sulfide-mineral content to reflect the values measured at the lysimeters. The temperature dependence of the geochemical system was considered using temperature measurements taken daily, adjacent to the lysimeters, to correct weathering rates according to the Arrhenius equation. The lysimeter simulations indicated that a model developed from simulations of laboratory humidity cell experiments, incorporating detailed representations of temporally variable temperature and water infiltration, can be scaled to provide a reasonable assessment of geochemical evolution of the medium-scale field experiments.
DS201809-2116
2018
Wilson, D., Sinclair, S.A., Blowes, D.W., Amos,R.T., Smith, L., Sego, D.C.Diavik waste rock project: analysis of measured and simulated acid neutralization processes within a large scale field experiment.Goldschmidt Conference, 1p. AbstractCanada, Northwest Territoriesdeposit - Diavik

Abstract: The geochemical evolution of mine-waste rock often includes concurrent acid generation and neutralization processes. Deposition of mine-waste rock in large, oxygenated, and partially saturated piles can result in release of metals and decreased pH from weathering of sulfide minerals. Acid neutralization processes can often mitigate metals and pH impacts associated with sulfide oxidation. The Diavik Waste Rock Project included large field experiments (test piles built in 2006) conducted to characterize weathering of sulfide waste rock at a scale representative of full size waste-rock piles. Water samples from the unsaturated interior of one of the test piles, constructed of waste rock with ~0.05 wt.% S, were collected using soil water solution samplers and drains at the base of the pile. Field observations indicated pH decreased throughout the depth of the pile during 2008 and 2009 and that carbonate mineral buffering was entirely depleted by 2011 or 2012. Carbonate mineral exhaustion was accompanied by increased concentrations of dissolved Al and Fe in effluent samples collected at the basal drains. These results suggest that dissolution of Al and Fe(oxy)hydroxides occurred after the depletion of carbonate minerals following an acid neutralization sequence that is similar to observations made by previous researchers. A conceptual model of acid neutralization proceses within the pile, developed using physical and geochemical measurements conducted from 2008 to 2012, was used to inform reactive transport simulations conducted in 2017 to quantify the dominant acid neutralization processes within the test pile interior. Reactive transport simulations indicate that the conceptual model developed using the results of field samples provides a reasonable assessment of the evolution of the acid neutralization sequence.
DS201810-2296
2018
Bezzola, M., Hetman, C.M., Garlick, G., Creaser, R., Diering, M., Nowicki, T.Geology and resource development of the Kelvin kimberlite pipe, Northwest Territories, Canada.Mineralogy and Petrology, doi.org/10.1007/s00710-018-0631-6 13p.Canada, Northwest Territoriesdeposit - Kelvin

Abstract: The early Cambrian to late Neoproterozoic Kelvin kimberlite pipe is located in the southeast of the Archean Slave Craton in northern Canada, eight km northeast of the Gahcho Kué diamond mine. Kelvin was first discovered in 2000 by De Beers Canada. Subsequent exploration undertaken by Kennady Diamonds Inc. between 2012 and 2016 resulted in the discovery of significant thicknesses of volcaniclastic kimberlite that had not previously been observed. Through extensive delineation drilling Kelvin has been shown to present an atypical, steep-sided inclined L-shaped pipe-like morphology with an overall dip of 15 to 20°. With a surface expression of only 0.08 ha Kelvin dips towards the northwest before turning north. The body (which remains open at depth) has been constrained to a current overall strike length of 700 m with varying vertical thickness (70 to 200 m) and width (30 to 70 m). Detailed core logging, petrography and microdiamond analysis have shown that the pipe infill comprises several phases of sub-horizontally oriented kimberlite (KIMB1, KIMB2, KIMB3, KIMB4, KIMB7 and KIMB8) resulting from multiple emplacement events. The pipe infill is dominated by Kimberley-type pyroclastic kimberlite or “KPK”, historically referred to as tuffisitic kimberlite breccia or “TKB”, with less common hypabyssal kimberlite (HK) and minor units with textures transitional between these end-members. An extensive HK sheet complex surrounds the pipe. The emplacement of Kelvin is believed to have been initiated by intrusion of this early sheet system. The main pipe-forming event and formation of the dominant KPK pipe infill, KIMB3, was followed by late stage emplacement of additional minor KPK and a hypabyssal to transitional-textured phase along the upper contact of the pipe, cross-cutting the underlying KIMB3. Rb-Sr age dating of phlogopite from a late stage phase has established model ages of 531 ± 8 Ma and 546 ± 8 Ma. Texturally and mineralogically, the Kelvin kimberlite is similar to other KPK systems such as the Gahcho Kué kimberlites and many southern African kimberlites; however, the external morphology, specifically the sub-horizontal inclination of the pipe, is unique. The morphology of Kelvin and the other kimberlites in the Kelvin-Faraday cluster defines a new type of exploration target, one that is likely not unique to the Kennady North Project area. Extensive evaluation work by Kennady Diamonds Inc. has resulted in definition of a maiden Indicated Mineral Resource for Kelvin of 8.5 million tonnes (Mt) of kimberlite at an average grade of 1.6 carats per tonne (cpt) with an average diamond value of US$ 63 per carat (ct).
DS201810-2302
2018
Chen, Y., Gu, Y.J., Hung, S-H.A new appraisal of lithospheric structures of the Cordillera craton boundary region in western Canada.Tectonics, Aug. 28, 10.1029/ 2018TC004956Canada, Alberta, Saskatchewancraton

Abstract: The Western Canada Sedimentary Basin marks a boundary zone between the Precambrian North American craton and the Phanerozoic Cordillera. Its crystalline basement has documented more than 3 billion years of evolution history of western Laurentia. Here we conduct a high?resolution survey of the mantle P and S wave velocities using finite?frequency tomography. Our models show pronounced eastward increases of 4% P and 6% S wave velocities beneath the foreland region, which define a sharp seismic Cordillera?Craton boundary. In the cratonic region, distinctive high? (>2%) velocity anomalies representing depleted mantle lithospheres are well correlated with major Precambrian crustal domains. The largest lithosphere thickness contrast coincides with the Snowbird Tectonic Zone, where the Hearne province extends down to ~300 km, nearly 100 km deeper than the Proterozoic terranes in northern Alberta. In the latter region, a pronounced cylindrical negative velocity anomaly extends subvertically from 75 to ~300?km depth, which potentially results from significant tectonothermal modifications during subduction and/or plume activities. At the basin scale, mantle velocities show no apparent correlations with surface heat flux, suggesting a minimum mantle contribution to the regional thermal variability. Furthermore, the long?wavelength isostatic gravity correlates negatively with the velocities, which confirms that the melt extraction from Precambrian cratons is responsible for the formation of highly depleted mantle lithospheres. Moreover, our model reveals the increased concentrations of kimberlites and lamproites near the zones of high horizontal velocity gradients. The distinct spatial pattern may reflect either preferential formation or eruption of potentially diamondiferous rocks at lithospheric weak zones near the western margin of Laurentia.
DS201810-2312
2009
Fedortchouk, Y., Matveev, S.Surface features on diamonds and water content of olivine from kimberlite as indicators of fluid systems in kimberlite magma. EkatiAtlantic Geology, Vol. 45, p. 28. 1p. AbstractCanada, Northwest Territoriesmagmatism
DS201810-2319
2018
Gaudet, M., Kopylova, M., Muntener, C., Zhuk, V., Nathwani, C.Geology of the Renard 65 kimberlite pipe, Quebec, Canada.Mineralogy and Petrology, doi.org/10.1007/ s00710-018-0633-4 13p.Canada, Quebecdeposit - Renard

Abstract: Renard 65, a diamondiferous pipe in the Neoproterozoic Renard kimberlite cluster (Québec, Canada), is a steeply-dipping and downward-tapering diatreme comprised of three pipe-filling units: kimb65a, kimb65b, and kimb65d. The pipe is surrounded by a marginal and variably-brecciated country rock aureole and is crosscut by numerous hypabyssal dykes: kimb65c. Extensive petrographic and mineralogical characterization of over 700 m of drill core from four separate drill holes, suggests that Renard 65 is a Group I kimberlite, mineralogically classified as phlogopite kimberlite and serpentine-phlogopite kimberlite. Kimb65a is a massive volcaniclastic kimberlite dominated by lithic clasts, magmaclasts, and discrete olivine macrocrysts, hosted within a fine-grained diopside and serpentine-rich matrix. Kimb65b is massive, macrocrystic, coherent kimberlite with a groundmass assemblage of phlogopite, spinel, perovskite, apatite, calcite, serpentine and rare monticellite. Kimb65c is a massive, macrocrystic, hypabyssal kimberlite with a groundmass assemblage of phlogopite, serpentine, calcite, perovskite, spinel, and apatite. Kimb65d is massive volcaniclastic kimberlite with localized textures that are intermediate between volcaniclastic and coherent, with tightly packed magmaclasts separated by a diopside- and serpentine-rich matrix. Lithic clasts of granite-gneiss in kimb65a are weakly reacted, with partial melting of feldspars and crystallization of richterite and actinolite. Lithic clasts in kimb65b and kimb65d are entirely recrystallized to calcite + serpentine/chlorite + pectolite and display inner coronas of diopside-aegirine and an outer corona of phlogopite. Compositions are reported for all minerals in the groundmass of coherent kimberlites, magmaclasts, interclast matrices, and reacted lithic clasts. The Renard 65 rocks are texturally classified as Kimberley-type pyroclastic kimberlites and display transitional textures. The kimberlite units are interpreted to have formed in three melt batches based on their distinct spinel chemistry: kimb65a, kimb65b and kimb65d. We note a strong correlation between the modal abundances of lithic clasts and the textures of the kimberlites, where increasing modal abundances of granite/gneiss are observed in kimberlites with increasingly fragmental textures.
DS201810-2342
2018
Lawley, C., Kjarsgaard, B., Jackson, S., Yang, Z., Petts, D., Roots, E.Trace metal and isotopic depth profiles through the Abitibi. Kirkland Lake kimberlite field.Lithos, Vol. 314-315, pp. 520-533.Canada, Ontariodeposit - Kirkland Lake

Abstract: Geophysical imaging of trans-lithospheric structures provide a spatial link between ore deposits in the crust and the underlying cratonic mantle. However, the deep lithosphere's role in ore deposit genesis remains poorly understood because remotely acquired datasets do not provide any direct constraints on the behaviour of ore elements within these mantle-roots. The abundance and behaviour of ore elements governs the metallic endowment of the cratonic mantle and the economic potential of mantle-derived magmas. Herein we present in situ electron probe microanalysis (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) geochemical datasets for clinopyroxene and olivine mantle xenocrysts from the Jurassic Kirkland Lake kimberlite field, Abitibi greenstone belt, Canada. We specifically focus on unconventional trace elements, including ore elements with chalcophile and/or siderophile affinities (Ag-As-Au-Bi-Cu-Mo-Pb-Pt-Pd-Sb-Se-Sn-Te-W-Zn). Robust principal component analysis suggests that low-T, large-ion lithophile element alteration (Ba-Sr), which likely occurred during kimberlite emplacement, represents the largest source of variance for the xenocryst dataset. PT-dependent element partitioning during sub-solidus equilibration represents the second most important control on olivine and clinopyroxene chemistry. We demonstrate that least-altered, high-PT mantle silicates are, in fact, a significant mineral host for a range of ore elements (Cu-Zn ± Ag ± As ± Se ± Sn ± Mo) within equilibrated, garnet peridotite at depth (70-190 km). Statistical analysis of the raw, individual mass sweeps for each LA-ICP-MS signal suggest that the most abundant ore elements (Cu-Zn) occur predominantly as PT-dependent substitution reactions with the dominant mineral-forming elements, rather than as inclusions. A subset of high-PT olivine (160-180 km) yields Fe-Ni-S-poor and Na (Au ± Pt ± Pd)-rich compositions, which may reflect metasomatism, sulphide segregation and trapping of precious metal-bearing fluids at the base of the lithosphere. These anomalous mantle fragments possibly represent the first, direct sampling of precious metal-modified mantle peridotite beneath the Abitibi. Mid-PT olivine xenocrysts (70-120 km), which yield Mg-rich and high field-strength element-poor compositions, document a highly melt-depleted segment of mantle peridotite coincident with and below a shallow-dipping, low-seismic-velocity anomaly and conductive feature of the Kirkland Lake mid-lithosphere at 70-100 km. We speculate that the trace element signature of mid-PT xenocrysts documents the re-distribution of high-charge and incompatible elements from refractory garnet peridotite to phlogopite- and/or amphibole-bearing peridotite with conductive metasomatic up-flow zones. The rapid, sub-solidus diffusion of elements at high-T suggest that these processes likely occurred during, and/or immediately preceding, kimberlite volcanism. New in situ Pb isotope analyses of clinopyroxene xenocrysts sampled from metasomatized, low-Al garnet peridotite, however, also document ancient metasomatic events that likely pre-date Jurassic kimberlitic volcanism by at least one billion years.
DS201810-2354
2018
McDannell, K.T., Zeitler, P.K., Schneider, D.A.Instability of the southern Canadian shield during the Late Proterozoic.researchgate.com, 29p. PdfCanadacraton

Abstract: Cratons are generally considered to comprise lithosphere that has remained tectonically quiescent for billions of years. Direct evidence for stability is mainly founded in the Phanerozoic sedimentary record and low-temperature thermochronology, but for extensive parts of Canada, earlier stability has been inferred due to the lack of an extensive rock record in both time and space. We used 40Ar/39Ar multi-diffusion domain (MDD) analysis of K-feldspar to constrain cratonic thermal histories across an intermediate (?150-350?°C) temperature range in an attempt to link published high-temperature geochronology that resolves the timing of orogenesis and metamorphism with lower-temperature data suited for upper-crustal burial and unroofing histories. This work is focused on understanding the transition from Archean-Paleoproterozoic crustal growth to later intervals of stability, and how uninterrupted that record is throughout Earth's Proterozoic “Middle Age.” Intermediate-temperature thermal histories of cratonic rocks at well-constrained localities within the southern Canadian Shield of North America challenge the stability worldview because our data indicate that these rocks were at elevated temperatures in the Proterozoic. Feldspars from granitic rocks collected at the surface cooled at rates of <0.5?°C/Ma subsequent to orogenesis, seemingly characteristic of cratonic lithosphere, but modeled thermal histories suggest that at ca. 1.1-1.0 Ga these rocks were still near ?200?°C - signaling either reheating, or prolonged residence at mid-crustal depths assuming a normal cratonic geothermal gradient. After 1.0 Ga, the regions we sampled then underwent further cooling such that they were at or near the surface (?60?°C) in the early Paleozoic. Explaining mid-crustal residence at 1.0 Ga is challenging. A widespread, prolonged reheating history via burial is not supported by stratigraphic information, however assuming a purely monotonic cooling history requires at the very least 5 km of exhumation beginning at ca. 1.0 Ga. A possible explanation may be found in evidence of magmatic underplating that thickened the crust, driving uplift and erosion. The timing of this underplating coincides with Mid-Continent extension, Grenville orogenesis, and assembly of the supercontinent Rodinia. 40Ar/39Ar MDD data demonstrate that this technique can be successfully applied to older rocks and fill in a large observational gap. These data also raise questions about the evolution of cratons during the Proterozoic and the nature of cratonic stability across deep time.
DS201810-2357
2018
Moss, S.W., Kobussen, A., Powell, W., Pollock, K.Kimberlite emplacement and mantle sampling through time at A154N kimberlite volcano, Diavik Diamond mine: lessons from the deep.Mineralogy and Petrology, doi.org/10.1007/ s00710-018-0630-7 14p.Canada, Northwest Territoriesdeposit - Diavik

Abstract: The Diavik Diamond Mine in the NWT of Canada has produced in excess of 100 million carats from 3 kimberlite pipes since mining commenced in 2002. Here, we present new findings from deep (>400 m below surface) mining, sampling and drilling work in the A154N kimberlite volcano that require a revision of previous geological and emplacement models and provide a window into how the sub-continental lithospheric mantle (SCLM) below Diavik was sampled by kimberlite magmas through time. Updated internal geological models feature two volcanic packages interpreted to represent two successive cycles of explosive eruption followed by active and passive sedimentation from a presumed crater-rim, both preceded and followed by intrusions of coherent kimberlite. Contact relationships apparent among the geological units allow for a sequential organization of as many as five temporally-discrete emplacement events. Representative populations of mantle minerals extracted from geological units corresponding to four of the emplacement events at A154N are analyzed for major and trace elements, and provide insights into the whether or not kimberlites randomly sample from the mantle. Two independent geothermometers using clinopyroxene and garnet data indicate similar source depths for clinopyroxenes and G9 garnets (130-160 km), and suggest deeper sampling with time for both clinopyroxene and garnets. Harzburgite is limited to 110-160 km, and appears more prevalent in early, low-volume events. Variable ratios of garnet parageneses from the same depth horizons suggest random sampling by passing magmas, but deeper garnet sampling through time suggests early preferential sampling of shallow/depleted SCLM. Evaluations of Ti, Zr, Y and Ga over the range of estimated depths support models of the SCLM underlying the central Slave terrane.
DS201810-2370
2018
Ranger, I.M., Heaman, L.M., Pearson, D.G., Muntener, C., Zhuk, V.Punctuated, long lived emplacement history of the Renard 2 kimberlite, Canada, revealed by new high precision U-Pb groundmass perovskite dating. IF-TIMSMineralogy and Petrology, doi.org/101007/ s00710-018-0629-0 13p.Canada, Quebecdeposit - Renard

Abstract: Kimberlites are rare volatile-rich ultramafic magmas thought to erupt in short periods of time (<1 Myr) but there is a growing body of evidence that the emplacement history of a kimberlite can be significantly more protracted. In this study we report a detailed geochronology investigation of a single kimberlite pipe from the Renard cluster in north-central Québec. Ten new high precision ID-TIMS (isotope dilution - thermal ionization mass spectrometry) U-Pb groundmass perovskite dates from the main pipe-infilling kimberlites and several small hypabyssal kimberlites from the Renard 2 pipe indicate kimberlite magmatism lasted at least ~20 Myr. Two samples of the main pipe-infilling kimberlites yield identical weighted mean 206Pb/238U perovskite dates with a composite date of 643.8?±?1.0 Myr, interpreted to be the best estimate for main pipe emplacement. In contrast, six hypabyssal kimberlite samples yielded a range of weighted mean 206Pb/238U perovskite dates between ~652-632 Myr. Multiple dates determined from these early-, syn- and late-stage small hypabyssal kimberlites in the Renard 2 pipe demonstrate this rock type (commonly used to date kimberlites) help to constrain the duration of kimberlite intrusion history within a pipe but do not necessarily reliably record the emplacement age of the main diatreme in the Renard cluster. Our results provide the first robust geochronological data on a single kimberlite that confirms the field relationships initially observed by Wagner (1914) and Clement (1982); the presence of antecedent (diatreme precursor) intrusions, contemporaneous (syn-diatreme) intrusions, and consequent (post-diatreme) cross-cutting intrusions. The results of this detailed U-Pb geochronology study indicate a single kimberlite pipe can record millions of years of magmatism, much longer than previously thought from the classical viewpoint of a rapid and short-duration emplacement history.
DS201810-2391
2018
Zaporozan, T., Fredericksen, A.W., Bryksin, A., Darbyshire, F.Surface wave images of western Canada: lithographic variations across the Cordillera craton boundary.Canadian Journal of Earth Sciences, Vol. 55, pp. 887-896.Canada, Northwest Territories, Alberta, Saskatchewangeophysics - seismic

Abstract: Two-station surface-wave analysis was used to measure Rayleigh-wave phase velocities between 105 station pairs in western Canada, straddling the boundary between the tectonically active Cordillera and the adjacent stable craton. Major variations in phase velocity are seen across the boundary at periods from 15 to 200 s, periods primarily sensitive to upper mantle structure. Tomographic inversion of these phase velocities was used to generate phase velocity maps at these periods, indicating a sharp contrast between low-velocity Cordilleran upper mantle and high-velocity cratonic lithosphere. Depth inversion along selected transects indicates that the Cordillera-craton upper mantle contact varies in dip along the deformation front, with cratonic lithosphere of the Taltson province overthrusting Cordilleran asthenosphere in the northern Cordillera, and Cordilleran asthenosphere overthrusting Wopmay lithosphere further south. Localized high-velocity features at sub-lithospheric depths beneath the Cordillera are interpreted as Farallon slab fragments, with the gap between these features indicating a slab window. A high-velocity feature in the lower lithosphere of the Slave province may be related to Proterozic or Archean subduction.
DS201810-2394
2018
Zolkos, S., Tank, S.E., Kokelj, S.V.Mineral weathering and the permafrost carbon-climate feedback. Peel PlateauGeophysical Research Letters, orchid.org/ 0000-0001-9945-6945Canada, Northwest Territoriespermafrost

Abstract: The origin of the complex pattern of SKS splitting over the western United States (U.S.) remains a long-lasting debate, where a model that simultaneously matches the various SKS features is still lacking. Here we present a series of quantitative geodynamic models with data assimilation that systematically evaluate the influence of different lithospheric and mantle structures on mantle flow and seismic anisotropy. These tests reveal a configuration of mantle deformation more complex than ever envisioned before. In particular, we find that both lithospheric thickness variations and toroidal flows around the Juan de Fuca slab modulate flow locally, but their co-existence enhances large-scale mantle deformation below the western U.S. The ancient Farallon slab below the east coast pulls the western U.S. upper mantle eastward, spanning the regionally extensive circular pattern of SKS splitting. The prominent E-W oriented anisotropy pattern within the Pacific Northwest reflects the existence of sustaining eastward intrusion of the hot Pacific oceanic mantle to beneath the continental interior, from within slab tears below Oregon to under the Snake River Plain and the Yellowstone caldera. This work provides an independent support to the formation of intra-plate volcanism due to intruding shallow hot mantle instead of a rising mantle plume.
DS201811-2562
2018
Craddock, J., Malone, D., Schmitz, M.D., Gifford, J.N.Strain variations across the Proterozoic Penokean Orogen, USA and Canada. Sudbury impact Precambrian Research, Vol. 318, pp. 25-69.United States, Canadaorogeny

Abstract: Strata in the Huron (2.5-2.0 Ga) and Animikie (2.2-1.85 Ga) basins were deposited on the southern margin of the Archean Superior province. These rocks were deformed during the Penokean orogeny (?1850 Ma) followed by subsequent accretionary orogens to the south at 1750 Ma (Yavapai) and 1630 Ma (Mazatzal). Strain patterns are unique to each orogenic belt with no far-field effect: Archean Wawa terrane rocks in the Penokean foreland preserve deformation associated with Archean accretion with no younger Penokean, Yavapai or Mazatzal strain overprint. The Penokean orogeny deformed Huron-Animikie basin sediments into a north-vergent fold-and-thrust belt with no Yavapai or Mazatzal strain overprint. Yavapai orogen strains (SW-NE margin-parallel shortening) are unique when compared to the younger Mazatzal shortening (N20°W) shortening, with no strain overprint. Penokean deformation is characterized by shortening from the south including uplifted Archean gneisses and a northerly thin-skinned fold-and-thrust belt, with north-vergent nappes and a gently-dipping foreland. Our study of finite and calcite twinning strains (n=60) along (?1500 km) and across (?200 km) the Penokean belt indicate that this orogeny was collisional as layer-parallel shortening axes are parallel across the belt, or parallel to the tectonic transport direction (?N-S). Penokean nappe burial near the margin resulted in vertical shortening strain overprints, some of which are layer-normal. The Sudbury impact layer (1850 Ma) is found across the Animikie basin and provides a widespread deformation marker with many local, unique strain observations. We also report new geochronology (U-Pb zircon and apatite) for the gneiss-mafic dike rocks at Wissota (Chippewa Falls, WI) and Arbutus (Black River Falls, WI) dams, respectively, which bears on Penokean-Yavapai deformation in the Archean Marshfield terrane which was accreted during the Penokean orogen. Pseudotachylite formation was common in the Superior province Archean basement rocks, especially along terrane boundaries reactivated by contemporaneous Penokean, Trans-Hudson, Cape Smith and New Quebec deformation. In the hinterland (south), the younger Yavapai orogen (1750 Ma; n=8) deformation is preserved as margin-parallel horizontal shortening (?SW-NE) in Yavapai crust and up to 200 km to the north in the Penokean thrust belt as a strain and Barrovian metamorphic overprint. Mazatzal deformation (1630 Ma; n=16) is preserved in quartzites on Yavapai and Penokean crust with layer-parallel and layer-normal shortening strains oriented N20°W.
DS201811-2564
2018
Cundari, R., Smyk, M., Campbell, D., Puumala, M., Woodruff, L.G.Possible emplacement controls on diamond bearing rocks North of Lake Superior.Proceedings and Abstracts - Institite on Lake Superior Geology, Vol. 64, pt. 1, pp. 19-20.Canada, Ontariodiamond genesis
DS201811-2570
2018
Ernst, R.E., Davies, D.R., Jowitt, S.M., Campbell, I.H.When do mantle plumes destroy diamonds? ( review )Earth and Planetary Science Letters, Vol. 502, pp. 244-252.Russia, Canada, Ontario, Attawapiskatkimberlite, core boundary

Abstract: Mantle plumes are hot buoyant upwellings that rise from Earth's core-mantle-boundary to its surface where they can produce large igneous provinces (LIPs) and volcanic tracks, such as the Siberian Traps and the Hawaiian Emperor chain, respectively. We show that flattened mantle plume heads, which can have radii of >1200 km in the uppermost mantle, can heat the overlying lithospheric mantle to temperatures above the diamond stability field. As a consequence, they can destroy diamonds within the roots of Archean cratons, the principal source of diamonds in kimberlites. We quantitatively demonstrate that there is a ‘sour spot’ for this effect that occurs when lithospheric thicknesses are 165-185 km and the plume has a temperature of >150?°C above background mantle. Our model explains why the kimberlites associated with the 370 Ma Yakutsk-Vilyui plume in the Siberian craton are diamondiferous whilst those associated with the younger 250 Ma Siberian Traps plume are barren. We also show that the time required to restore the pre-plume thermal structure of the lithosphere is ca. 75-120 Myr, and that destroyed diamonds may regrow once the plume's thermal effect dissipates. The 1100 Ma Kyle Lake and adjacent 180-150 Ma Attawapiskat kimberlites in the southern Superior craton exemplify this, where the older kimberlites are associated with a narrower diamond window (<30 km) in comparison with the ca. 85 km diamond window of the younger Attawapiskat field.
DS201811-2582
2018
Johnson, T.E., Gardiner, N.J., Miljkovic, K., Spencer, C.J., Kirkland, C.L., Bland, P.A., Smithies, H.An impact melt origin for Earth's oldest known evolved rocks. Acasta GneissNature Geoscience, Vol. 11, pp. 795-799.Canada, Northwest Territoriesmelting

Abstract: Earth’s oldest evolved (felsic) rocks, the 4.02-billion-year-old Idiwhaa gneisses of the Acasta Gneiss Complex, northwest Canada, have compositions that are distinct from the felsic rocks that typify Earth’s ancient continental nuclei, implying that they formed through a different process. Using phase equilibria and trace element modelling, we show that the Idiwhaa gneisses were produced by partial melting of iron-rich hydrated basaltic rocks (amphibolites) at very low pressures, equating to the uppermost ~3?km of a Hadean crust that was dominantly mafic in composition. The heat required for partial melting at such shallow levels is most easily explained through meteorite impacts. Hydrodynamic impact modelling shows not only that this scenario is physically plausible, but also that the region of shallow partial melting appropriate to formation of the Idiwhaa gneisses would have been widespread. Given the predicted high flux of meteorites in the late Hadean, impact melting may have been the predominant mechanism that generated Hadean felsic rocks.
DS201811-2590
2018
Li, Z., Fedortchouk, Y., Fulop, A., Chinn, I.L., Forbes, N.Positively oriented trigons on diamonds from the Snap Lake kimberlite dike, Canada: implications for fluids and kimberlite cooling rates.American Mineralogist, Vol. 103, pp. 1634-1648.Canada, Northwest Territoriesdeposit - Snap Lake

Abstract: The role of fluid(s) in the formation of different lithological facies of kimberlites is still poorly understood. The uncertainty in the composition of kimberlite melts hampers understanding the composition of volatiles, the depth of exsolution, and the effect on magma ascent and fragmentation. Recent estimates of H2O and CO2 solubility in kimberlite-like magmas suggest very shallow exsolution of fluid, while many features of kimberlites indicate the presence of significant fluid fraction at depth. Deep magmatic fluid produces negative trigonal etch pits on natural diamonds, the characteristics of which depend on the temperature and composition of the fluid. Positively oriented trigonal etch pits are very rare on natural diamonds and are likely a feature of resorption events unique to only some kimberlite magmas. Here we present the first systematic study of positively oriented trigonal etch pits on natural diamonds from Snap Lake kimberlite dike, Northwest Territories, Canada. The study used 91 micro-diamonds selected from a population of 251 diamonds representative of all six kimberlite litho-facies identified in the Snap Lake dike. We established that unlike the majority of diamonds from kimberlite pipes in the Northwest Territories, every studied Snap Lake diamond shows positively oriented trigons. These trigons cover the whole diamond surface starting from the {111} faces and continuing over the resorbed edges. They overprint negatively oriented trigons and modify them into hexagons. Atomic force microscopy obtained detailed geometry of 154 positive trigons on 14 diamonds. Three distinct trigon morphologies dependent on the type of the crystal lattice defect were recognized. The point-bottomed shape and positive correlation between the depth and diameter of the individual pits suggest a high CO2 content in the fluid. Comparison with the existing experimental data on positive trigons implies resorption at low-pressure conditions in the 800-1000 °C temperature range by trapped magmatic fluid after the dike emplacement. The intensity of this late resorption event (and the size of the positive trigons) increases from the dike contact with the country rock into the interior of the dike. Such a late resorption event is absent in the majority of kimberlites, which form pipes, and might be a specific feature of hypabyssal kimberlite bodies (dikes). The absence of positive trigons on diamonds from the majority of kimberlites suggests very quick magma cooling below ?800 °C after the pipe emplacement, precluding the development of any late resorption features. Our study shows that for kimberlitic magmas, for which mineral chemistry is unable to provide a robust record of magmatic fluid, morphological details of dissolution features on the surface of diamond and other mantle-derived minerals can serve as a fluid proxy. Better constraints of the pressure, temperature, and oxygen fugacity of the reversal in the trigon orientation on diamond may help to reconstruct the emplacement path of geologically diverse kimberlite bodies.
DS201811-2601
2018
Piispa, E.J., Smirnov, A.V., Pesonen, L.J., Mitchell, R.H.Paleomagnetism and geochemistry of ~1144.-Ma lamprophyre dikes, northwestern Ontario: implcations for the North American polar wander and plate velocities.Journal of Geophysical Research: Solid Earth, Vol. 123, 8, pp. 6195-6214.Canada, Ontariogeochronology

Abstract: Similar to a magnetic tape, rocks can retain the direction of ancient Earth's magnetic field. Scientists use this record (known as paleomagnetism) to reconstruct past positions of continents and to decipher the geological history of our planet. We investigated paleomagnetism and chemical composition of the ~1.14 Ga?old intrusive rocks called lamprophyres exposed in Northwestern Ontario (Canada). We found that the paleomagnetic field directions recorded in lamprophyres are indistinguishable from those recorded by another similar age suite of basaltic intrusions called the Abitibi dikes, from the same area. The combined data from these rocks allowed us to constrain the position of an ancient supercontinent called Laurentia at ~1.14 billions of years ago more accurately than it was possible before. Our results convincingly show that, during that time, Laurentia moved with a velocity comparable to present?day plate velocities, before switching to an extremely rapid motion approximately 35 millions of years later. The lamprophyre and Abitibi rocks also share similar chemical signatures, close to those observed for ocean island basalts (e.g., Hawaii). These observations support the hypothesis that a failed ocean opening attempt called the North American Midcontinent Rift was instigated by the arrival of a hot mantle material upwelling to the Earth surface.
DS201812-2777
2018
Aulbach, S., Heaman, L.M., Stachel, T.Diavik deposit: The diamondiferous mantle root beneath the central Slave craton.Society of Economic Geology Geoscience and Exploration of the Argyle, Bunder, Diavik, and Murowa Diamond Deposits, Special Publication no. 20, pp.319-342.Canada, Northwest Territoriesdeposit - Diavik
DS201812-2782
2018
Brett, R.C., Kinakin, Y., Howell, D., Davy, A.T.Diavik deposit: Exploration history and discovery of the Diavik diamond deposits, Northwest Territories, Canada.Society of Economic Geology Geoscience and Exploration of the Argyle, Bunder, Diavik, and Murowa Diamond Deposits, Special Publication no. 20, pp. 253-266.Canada, Northwest Territoriesdeposit - Diavik
DS201812-2786
2018
Bulbuc, K.M., Galarneau, M., Stachel, T., Stern, R.A., Kong, J., Chinn, I.Contrasting growth conditions for sulphide-and garnet-included diamonds from the Victor mine ( Ontario).2018 Yellowknife Geoscience Forum , p. 97-98. abstractCanada, Ontario, Attawapiskatdeposit - Victor

Abstract: The Victor Diamond Mine, located in the Attawapiskat kimberlite field (Superior Craton), is known for its exceptional diamond quality. Here we study the chemical environment of formation of Victor diamonds. We imaged eight sulphide-included diamond plates from Victor using cathodoluminescence (CL). Then, along core-rim transects, we measured nitrogen content and aggregation state utilizing Fourier Transform Infrared (FTIR) spectroscopy, and the stable isotope compositions of carbon (?13C) and nitrogen (?15N), using a multi-collector ion microprobe (MC-SIMS). We compare the internal growth features and chemical characteristics of these sulphide inclusion-bearing diamonds with similar data on garnet inclusion-bearing diamonds from Victor (BSc thesis Galarneau). Using this information, possible fractionation processes during diamond precipitation are considered and inferences on the speciation of the diamond forming fluid(s) are explored. Sulphide inclusion-bearing diamonds show much greater overall complexity in their internal growth features than garnet inclusion-bearing diamonds. Two of the sulphide-included samples have cores that represent an older generation of diamond growth. Compared to garnet inclusion-bearing diamonds, the sulphide-included diamonds show very little intra-sample variation in both carbon and nitrogen isotopic composition; the inter-sample variations in carbon isotopic composition, however, are higher than in garnet included diamonds. For sulphide-included diamonds, ?13C ranges from -3.4 to -17.5 and ?15N ranges from -0.2 to -9.2. Garnet inclusion-bearing diamonds showed ?13C values ranging from -4.6 to -6.0 and ?15N ranging from -2.8 to -10.8. The observation of some 13C depleted samples indicates that, unlike the lherzolitic garnet inclusion-bearing diamonds, the sulphide inclusion-bearing diamonds are likely both peridotitic and eclogitic in origin. The total range in N content across sulphide inclusion-bearing diamonds was 2 to 981 at ppm, similar to the garnet-included samples with a range of 5 to 944 at ppm. The very limited variations in carbon and nitrogen isotopic signatures across growth layers indicate that sulphide-included Victor diamonds grew at comparatively high fluid:rock ratios. This is contrasted by the garnet inclusion-bearing diamonds that commonly show the effects of Rayleigh fractionation and hence grew under fluid-limited conditions.
DS201812-2787
2018
Buryak, S., Reyes, A.V., Siver, P.A., Li, L., Dufrane, S.A.Bulk organic geochemistry and U-Pb zircon geochronology of the Wombat sedimentary fill.2018 Yellowknife Geoscience Forum , p. 98-99. abstractCanada, Northwest Territoriesdeposit - Wombat

Abstract: The Wombat locality (64.73°N, 110.59°W) is a diamondiferous kimberlite in the Lac de Gras kimberlite field of Northwest Territories. Two drill cores, CH 93-29 and DDH 0-005, intersect the Wombat crater facies and include 195 m of well preserved, undisturbed lake sediment fill. Bulk sediment elemental analysis, C isotope composition, and Rock-Eval pyrolysis, together with inferences from microfossils, are used to characterize conditions of sedimentation and paleoenvironment in the maar lake. Bulk sediment C/N, hydrogen index (HI), and ?13C indicate material derived from C3 land plants dominates the sedimentary organic matter, with a minor algal contribution. The ?13C values range from -25.3 ‰ to -30.2 ‰ (average -26.6 ‰) and are typical for C3 land plants, with fluctuations in ?13C likely related to shifts in the proportions of land-derived material and algal organic matter. An overall trend of higher ?13C towards the top of the core suggests increasing autochthonous organic matter production. 18 samples analyzed by Rock-Eval pyrolysis all plot in the Type III kerogen field for HI vs. Tmax,with average Tmax values ~425 °C indicative of the low thermal maturity of organic matter. Total organic carbon (TOC) averages 3.6 wt.% and average total carbonate content is 14.1 wt.%, indicating bottom water anoxia and substantial carbonate input from weathering of overlying carbonate cover rocks, respectively. Together with well-preserved freshwater microfossils (e.g. diatoms, chrysophytes, synurophytes), the results indicate deposition in a non-marine setting. The age of the Wombat maar lake sediments is determined using MC-LA-ICP-MS U-Pb zircon geochronology from two distal rhyolitic tephra beds found in the core DDH 0-005, yielding a date of 82.97±0.60 Ma (MSWD = 1.7, n=18 of 33 grains analyzed). This minimum age suggests that Wombat kimberlite pipe emplacement occurred during the Late Cretaceous, with sedimentation in the maar beginning shortly thereafter. Though our geochronology is preliminary at this point, our findings from the Wombat pipe post-eruptive lake sediment fill provide direct evidence for a non-marine environment in the Lac De Gras area during the Late Cretaceous. Furthermore, microfossils in the Wombat pipe sediment fill likely include the oldest-known occurrence of freshwater diatoms.
DS201812-2795
2018
Czas, J.The quandry of the Sask Craton: origin and evolution of the lithospheric mantle beneath the Sask craton. ( FALC Star and rion South)Thesis, Phd. University of Alberta, 245p. Pdf availableCanada, Saskatchewan deposit - Fort a la Corne
DS201812-2798
2018
Davies, R., Davies, A.W.Alteration of Mn ilmentite in Horton area of Lena West.2018 Yellowknife Geoscience Forum , p. 102-103. abstractCanada, Northwest Territoriesdeposit - Lena West

Abstract: Mn-ilmenite was recognized as a kimberlite indicator mineral (KIM) in the Lena West diamond region of the Northwest Territories by Darnley Bay, Talmora and Sanatana. It includes compositions that match those found as inclusions in type IIa diamonds from Brazil and Venezuela that formed in the lower mantle. The recent determination that large, high value type IIa diamonds like the Cullinan, Koh-I-Nor, etc. also formed in the lower mantle increases the importance of Mn-ilmenites not only as a KIM resistant to tropical weathering but as a possible indicator of large high value stones. The Mn-ilmenite alteration products, pseudorutile (Fe2Ti3O9) and ferropseudobrookite (FeTi2O5) may also be used as KIMs and provide useful additional information. Mn-ilmenites found as inclusions in diamonds range from 51 wt.% TiO2 (total wt.% 100) to 56 wt.% TiO2 (total wt.% 95). The shortfall in wt.% of the high TiO2 grains was ascribed by Kaminsky and Belasouva (2009) to some element not included in the analysis. The shortfall may also occur when some ferric iron is calculated as ferrous iron? As most Lena West Mn-ilmenite analyses have high totals those with totals less than 96 wt.% have been considered an alteration product (“pseudorutile”). “Pseudorutile” is produced by the oxidation of FeO in ilmenite to Fe2O3 which results in an apparent loss of total weight percent when Fe is calculated as ferrous iron. A range of values approximating “ferropseudobrookite” with totals close to 100 wt.% is another alteration product of ilmenite with a loss of iron but without its oxidation to ferric iron. The Horton area consists of a cluster of magnetic anomalies averaging ~ 200 m diameter east of a very large magnetic anomaly beneath Seahorse Lake. The Seahorse anomaly is at the focus of a train of kimberlite pathfinder elements coincident with a NNW trending KIM train characterised by Mn-ilmenite, picro-ilmenite and chromite. A parallel train of similar KIMs is focused Mn-ilmenite was recognized as a kimberlite indicator mineral (KIM) in the Lena West diamond region of the Northwest Territories by Darnley Bay, Talmora and Sanatana. It includes compositions that match those found as inclusions in type IIa diamonds from Brazil and Venezuela that formed in the lower mantle. The recent determination that large, high value type IIa diamonds like the Cullinan, Koh-I-Nor, etc. also formed in the lower mantle increases the importance of Mn-ilmenites not only as a KIM resistant to tropical weathering but as a possible indicator of large high value stones. The Mn-ilmenite alteration products, pseudorutile (Fe2Ti3O9) and ferropseudobrookite (FeTi2O5) may also be used as KIMs and provide useful additional information. Mn-ilmenites found as inclusions in diamonds range from 51 wt.% TiO2 (total wt.% 100) to 56 wt.% TiO2 (total wt.% 95). The shortfall in wt.% of the high TiO2 grains was ascribed by Kaminsky and Belasouva (2009) to some element not included in the analysis. The shortfall may also occur when some ferric iron is calculated as ferrous iron? As most Lena West Mn-ilmenite analyses have high totals those with totals less than 96 wt.% have been considered an alteration product (“pseudorutile”). “Pseudorutile” is produced by the oxidation of FeO in ilmenite to Fe2O3 which results in an apparent loss of total weight percent when Fe is calculated as ferrous iron. A range of values approximating “ferropseudobrookite” with totals close to 100 wt.% is another alteration product of ilmenite with a loss of iron but without its oxidation to ferric iron. The Horton area consists of a cluster of magnetic anomalies averaging ~ 200 m diameter east of a very large magnetic anomaly beneath Seahorse Lake. The Seahorse anomaly is at the focus of a train of kimberlite pathfinder elements coincident with a NNW trending KIM train characterised by Mn-ilmenite, picro-ilmenite and chromite. A parallel train of similar KIMs is focused on the cluster of smaller anomalies to the east. “Pseudorutile” is found over the cluster of anomalies that lie within the Horton River drainage and in the area north towards Darnley Bay. It was especially abundant with some unaltered Mn-ilmenite grains in the cuttings of a Packsack drill hole that penetrated a few feet of rusty coloured clay coincident with one of the anomalies. It does not appear to travel far. “Ferropseudobrookite” is found mostly west of the Horton River drainage, about 100 kilometers down-ice in the trains coming off the Seahorse anomaly and the cluster of smaller anomalies respectively. It represents the weathering of Mn-ilmenite in the upper part of anomalies that was carried furthest by glaciation indicating a resistance to mechanical wear. Mn-ilmenite is a useful KIM in areas of tropical weathering and is also an indicator of rare large high value diamonds. The distribution of pseudorutile and ferropseudobrookite suggests that the initial alteration of Mn-ilmenite is to pseudorutile and then ferropseudobrookite. The presence of one or the other is therefore a measure of the distance to the source.
DS201812-2799
2018
Davy, A.T., Smith, C.B., Helmstaedt, H., Jaques, A.L.PrefaceSociety of Economic Geology Geoscience and Exploration of the Argyle, Bunder, Diavik, and Murowa Diamond Deposits, Special Publication no. 20, p. ixAustralia, India, Canada, Northwest Territories, Africa, Zimbabwedeposits - Argyle, Bunder, Diavik, Murowa
DS201812-2806
2018
Elliott, B.Diamond potential of the Dehcho region. Horn Plateau2018 Yellowknife Geoscience Forum , p. 104. abstractCanada, Northwest Territoriesgeochemistry

Abstract: Our knowledge of the diamond potential in the Dehcho region has progressed significantly in the past decade. We now recognize that the central Dehcho represents a world class diamond exploration district. Continued scientific and industry work in the area have clearly shown that the diamond potential of this area may be of the same magnitude as the Lac de Gras region, which hosts active diamond mines. The evidence for high diamond potential in the Dehcho, includes abundant Kimberlite Indicator Minerals (KIM) from stream sediment sampling work, a diamond found in a stream sediment sample, 39 drilled kimberlites, some of which are diamondiferous, and numerous untested kimberlite-like geophysical anomalies from both government and industry data. Recent work at the University of Alberta has shown that deep Earth conditions in the area of the Horn Plateau may be as favorable for diamond generation and preservation as the Lac de Gras region and that there that there may be multiple generations of kimberlites present in the region. Given the relative paucity of exploration work and geoscience data in the Dehcho region, the available evidence is strongly suggestive of the possibility of the presence of diamond deposits.
DS201812-2807
2018
Esteve, C., Schaeffer, A.J., Audet, P.Upper mantle structure underlying the diamondiferous Slave craton from teleseismic body-wave tomography.2018 Yellowknife Geoscience Forum , p.104-105. abstractCanada, Northwest Territoriestomography

Abstract: Cratons are, by definition, the most tectonically stable and oldest parts of the continental lithosphere on Earth. The Archean Slave craton is located in the northwestern part of the Canadian Shield. The propensity of diamondiferous kimberlite pipes in the central Slave craton raises many questions regarding their structural environment and source. Here, we provide the most robust teleseismic P and S body wave tomography models over the Slave craton region based on 20,547 P-wave delay times, 6,140 direct S-wave delay times and 3,381 SKS delay times. The P-wave model reveals an alternating pattern of relative positive and negative anomalies over a fine broad scale region within the central Slave craton. Furthermore, the P-wave model revealed two fine structures located in the lithosphere beneath the Lac de Gras kimberlite cluster, with relatively slow anomalies (B - C) that extend from 75 km to 350 km depths with an apparent dip to the north. These relatively slow P- and S-wave anomalies are associated with metasomatised regions within the lithosphere. The S-wave model displays a slow S-wave anomaly lying from 300 km depth to the transition zone beneath the central Slave craton. This anomaly is located beneath the Lac de Gras kimberlite cluster. We suggest that this anomaly is not the cause of the actual kimberlites at the surface since last eruption occurred 75-45 Ma ago but may be related to a potential kimberlite magma ascent in the asthenosphere.
DS201812-2813
2018
Gruber, B.H., Chacko, T., Pearson, D.G.The thermochemical conditions of the Diavik lower crust: a kimberlite-hosted xenolith study.2018 Yellowknife Geoscience Forum , p. 25-26. abstractCanada, Northwest Territoriesdeposit - Diavik

Abstract: Thermochemical variables such as lower crustal heat production and Moho temperatures in cratonic regions offer critical insight in constraining the thermal and geodynamic evolution of the lithosphere. In this study, 15 lower crustal granulite xenoliths erupted via the A154N kimberlite at the Diavik mine in the NWT, Canada were studied to quantify the thermal properties of the local Moho and the effects of different heat production models on geotherm models. We quantitatively constrain the thermal properties of the local Moho and the effects of different heat production models on ancient Moho temperatures, the effects of crustal thickness on Moho temperatures, and potential lower crustal compositions. We evaluate the effect of these parameters on total lithospheric thickness estimates. In order to test the accuracy of deep crust thermal calculations, we estimated the ambient temperature of the lower crust at the time of kimberlite eruption through garnet-biotite Fe-Mg exchange geothermometry (Ferry & Spear, 1978). Rim compositions from touching garnet-biotite pairs were used in the calculations and yielded temperatures of 524 ± 77°C (n=20). These represent a maximum estimate of the ambient lower crustal temperature as the closure temperature of garnet-biotite Fe-Mg exchange between garnet and biotite may be higher than the ambient temperature. The primary objective of this study is to quantify lower crustal heat production and its effects on the thermal architecture of cratons. The concentrations of the main heat-producing elements (HPEs) U, Th, and K were quantified via LA-ICP-MS and EPMA in multiple mineral phases per xenolith. By combining these measurements with mineral modes, we derived reconstructed bulk-rock HPE concentrations that were utilized to calculate a range of lower crustal heat production values. This method is preferred over whole-rock analyses as 1) kimberlite is generally enriched in HPEs (Tappe et al. 2013) and can bias trace-element data for their xenoliths and 2) data on individual minerals allows for theoretical lower crustal compositions to be calculated on an idealized basis. A lower crust comprising exclusively mafic granulite (garnet, plagioclase, clinopyroxene ± orthopyroxene) provides a lower bound to heat production (0.07 ± 0.04 W/m3) whereas a lower crust made exclusively of high-grade metasedimentary rocks yields an upper bound (0.42 ± 0.08 W/m3). Both endmembers are present as xenoliths in the A154N kimberlite but mafic granulites predominate following the worldwide trend (Rudnick, 1992). We model the lower crust comprising 20% metasedimentary granulites and 80 % depleted mafic granulites, in accordance with the present xenolith collection. Using this preferred crustal model, we calculate an average heat production of 0.12 ± 0.05 W/m3) for the lower crust beneath Lac de Gras. Utilizing heat flow measurements (Russell et thickness estimates (Mareschal et al. 2004) in conjunction with these HPE determinations, the Moho temperature underlying A-154N can be calculated to be 502 ± 10°C. Using these values along with available mantle xenolith thermobaromtetry (Hasterok & Chapman, 2011) the geotherm is extrapolated to present a mantle potential temperature of 1365°C, at 200 km (FITPLOT, Mather et al, 2011).
DS201812-2815
2018
Haley, W.Diavik diamond mine update.2018 Yellowknife Geoscience Forum , p. 27-28.Canada, Northwest Territoriesdeposit - Diavik

Abstract: Over the past year, the Diavik Diamond Mine continued to make significant contributions through its mining operation on Lac de Gras, NWT. The mine is the second largest diamond mine in the NWT (and in Canada), but the largest producer of Canadian rough diamonds. Production has been augmented in 2018 with the official opening and start of mining from a new ore body called A-21.
DS201812-2818
2018
Hunt, L., Stachel, T., Stern, R.A., Creighton, S.Diavik deposit: Diamonds from the Diavik mine: from formation through mantle residence to emplacement.Society of Economic Geology Geoscience and Exploration of the Argyle, Bunder, Diavik, and Murowa Diamond Deposits, Special Publication no. 20, pp. 343-358.Canada, Northwest Territoriesdeposit - Diavik
DS201812-2820
2018
Iulianella Phillips, B.P., Simister, R.L., Cayer, E.M., Winterburn, P.A., Crowe, S.A.Direct discovery of concealed kimberlites with microbial community fingerprinting. 2018 Yellowknife Geoscience Forum , p. 36. abstractCanada, Northwest Territoriesmineral chemistry

Abstract: Mineral exploration in Canada is becoming increasingly complex as the majority of undiscovered commodities are likely deeply buried beneath significant glacial overburden and bedrock, reducing the effectiveness of many existing tools. The development of innovative exploration protocols and techniques is imperative to the continuation of discovery success. Preliminary experimentation has demonstrated the potential viability of microbial fingerprinting through genetic sequencing to directly identify the projected subcrop of mineralization in addition to the more distal entrained geochemical signatures in till. With the advent of inexpensive modern sequencing technology and big-data techniques, microbiological approaches to exploration are becoming more quantitative, cost effective, and efficient. The integration of microbial community information with soil chemistry, mineralogy and landscape development coupled with geology and geophysics propagates the development of an improved decision process in mineral exploration. Soils over porphyry, kimberlite, and VMS deposits have undergone microbial community profiling. These community-genome derived datasets have been integrated with trace metal chemistry, mineralogy, surface geology and other environmental variables including Eh and pH. Analyses of two kimberlites in the Northwest Territories show significant microbial community shifts that are correlated with subsurface mineralization, with distinctive microbial community profiles present directly above the kimberlite. The relationship between microbial profiles and mineralization leads to the use of microbial fingerprinting as a method for more accurately delineating ore deposits in glacially covered terrain. As databases are developed, there is potential for application as a field based technique, as sequencing technology is progressively developed into portable platforms.
DS201812-2828
2018
Kastek, N., Ernst, R.E., Cousens, B.L., Kamo, S.L., Bleeker, W., Soderlund, U., Baragar, W.R.A., Sylvester, P.U-Pb geochronology and geochemistry of the Povungnituk Group of the Cape Smith Belt: part of a craton scale circa 2.0 Ga Minto-Povungnituk Large Igneous Province, northern Superior craton. Lithos, Vol. 320-321, pp. 315-331.Canada, Quebeccarbonatite

Abstract: Magmatism of the Povungnituk Group of the Cape Smith Belt, northern Superior craton, was formed in three stages: (i)early alkaline magmatism and associated carbonatites (undated), (ii) a main flood basalt sequence (Beauparlant Formation) (constrained between 2040 and 1991?Ma), and (iii) a late stage alkaline pulse (Cecilia Formation) (ca. 1959?Ma). We suggest that the main stage of magmatic activity (middle pulse) was of short duration. A new UPb baddeleyite age of 1998?±?6?Ma is obtained from a dolerite sill intruding the uppermost section of the Beauparlant Formation. This age has regional significance because it matches the previously obtained 1998?±?2?Ma age for the Watts Group (Purtuniq) ophiolite of the northern Cape Smith Belt and the 1998?±?2?Ma?U-Pb age of the Minto dykes intruding the craton to the south. These coeval units, along with additional units correlated on paleomagnetic grounds (Eskimo Formation), are interpreted to define a large igneous province (LIP), extending over an area of >400,000?km2, which we herein define as the Minto-Povungnituk LIP. Geochemical comparison between the Watts Group ophiolite, Minto dykes and the mafic Povungnituk Group shows significant differences allowing these data to be divided into two groups and domains within the LIP. A northern domain, comprising the Povungnituk and Watts groups, shows mixing between a depleted mantle source and a more enriched mantle plume-sourced melt. A southern domain comprising the Minto dykes and the paleomagnetically linked Eskimo Formation shows signs of an even more enriched source, while these magmas also show the effect of crustal contamination. Two distinct source mechanisms can be responsible for the observed geochemical differences between the two domains. First, a difference in lithospheric sources, where melting of different portions of Superior craton lithosphere caused the different melt signatures in the interior of the craton. In this case magmatism in the two domains is only related by having the same heat source (e.g.,a mantle plume) interpreted to be located on the northwestern side of the northern Superior craton. Second, two distinct deep mantle sources that remained separated within the ascending plume. This is analogous to some current hotspots interpreted to sample both large low shear velocity provinces (LLSVP) and adjacent ambient deep mantle. This latter interpretation would allow for the use of bilateral chemistry in LIPs as a potential tool for the recognition and mapping of the LLSVP boundaries throughout Earth's history.
DS201812-2831
2018
Krebs, M.Y., Pearson, D.G., Stachel, T., Laiginhas, F., Woodland, S., Chinn, I., Kong, J.A common parentage - Low abundance trace element data of gem diamonds reveals similar fluids to fibrous diamonds. ( silicate/sulphide)Lithos, doi.org/10.1016/ jlithos.2018.11.025 49p.Canada, Ontario, Attawapiskat, Africa, South Africadeposit - Victor, Finsch, Newlands

Abstract: Quantitative trace element data from high-purity gem diamonds from the Victor Mine, Ontario, Canada as well as near-gem diamonds from peridotite and eclogite xenoliths from the Finsch and Newlands mines, South Africa, acquired using an off-line laser ablation method show that we see the same spectrum of fluids in both high-purity gem and near-gem diamonds that was previously documented in fibrous diamonds. “Planed” and “ribbed” trace element patterns characterize not only the high-density fluid (HDF) inclusions in fibrous diamonds but also in gem diamonds. Two diamonds from two Finsch harzburgite xenoliths show trace element patterns similar to those of saline fluids, documenting the involvement of saline fluids in the precipitation of gem diamonds, further strengthening the link between the parental fluids of both gem and fibrous diamonds. Differences in trace element characteristics are evident between Victor diamonds containing silicate inclusions compared with Victor diamonds containing sulphide inclusions. The sulphide-bearing diamonds show lower levels of inter-element fractionation and more widely varying siderophile element concentrations - indicating that the silicate and sulphide-bearing diamonds likely formed by gradations of the same processes, via melt-rock reaction or from a subtly different fluid source. The shallow negative LREEN-HREEN slopes displayed by the Victor diamonds establish a signature indicative of original derivation of the diamond forming agent during major melting (~10% melt). Consequently, this signature must have been passed on to HDFs separating from such silicate melts.
DS201812-2837
2018
Lai, M.Y.Spectroscopic analysis of yellow diamonds. ( Chidliak, Ekati, Qilalugaq)Thesis, Msc. University of Alberta, 142p. Pdf availableCanada, Nunavut, Northwest Territoriesdeposit - Chidliak, Ekati, Qilalugaq
DS201812-2838
2018
Lee, C., Worsley-Brown, L.Twenty years at the Ekati diamond mine: corporate social responsibility in action. CSR2018 Yellowknife Geoscience Forum , p. 47-48. abstractCanada, Northwest Territoriesdeposit - Ekati

Abstract: The Ekati Diamond Mine in the Northwest Territories is owned and operated by Dominion Diamond Mines, the largest Canadian independent diamond producer. The Ekati mine was the first diamond mine in Canada, and started production in October 1998. In 2018 the operation is celebrating its twenty year anniversary. In the presentation, we will look back on some of the milestones and achievements of the last two decades. We will also discuss the commitment of the company to make a positive difference in the North through Corporate Social Responsibility initiatives, including support for education, training, community development, business opportunities and respect for the environment. Some examples include: Community: Whether mining in northern Canada or sorting diamonds in India, we firmly believe that we can - and should - contribute to the social and economic well-being of the communities near our operations. Dominion's Indigenous partners and business operations are important stakeholders and we respect and value their rights, Traditional Knowledge (TK), and cultural heritage. Hiring, Training and Development: Dominion Diamond Mines is committed to ensuring that the Ekati mine is a welcoming workplace for all employees and that we remain an employer of choice, particularly among northerners and northern Indigenous communities. The company has a number of initiatives and policies to encourage northerners, representatives from Indigenous groups, and women to enter the mining industry. Environment: Throughout the mining process, Dominion Diamond keeps the land and water of the Ekati mine clean and safe for people, plants, and animals. We understand the importance of the Arctic tundra environment and we are committed to mining in the safest, most environmentally responsible way.
DS201812-2845
2018
Macmorran, M.2018 kimberlite discoveries at the Loki ( Lac de Gras, NT) and Mel ( Melville Peninsula, NU) diamond projects.2018 Yellowknife Geoscience Forum , p. 49. abstractCanada, Northwest Territories, Nunavutdeposit - Loki, Mel

Abstract: Details will be provided on the recent kimberlite discoveries at North Arrow's Loki (NT) and Mel (NU) diamond projects. In April of this year, North Arrow announced the discovery of a new kimberlite at its Loki Diamond Project in the Northwest Territories. The Project is located in the Lac de Gras region, approximately 30 km southwest, and 24 km west of the Ekati and Diavik diamond mines, respectively. The Loki claims are contiguous to the south and east of the diamondiferous Monument kimberlite cluster. The project hosts several prospective exploration targets, as well as five known kimberlites: EG-01, EG-02, EG-05 and EG-130. At the beginning of March 2018, North Arrow commenced drilling to test the EG-05 kimberlite, as well as other priority targets. On April 5th, intersections of the first new kimberlite (465) discovered at Lac de Gras in over five years were announced, along with new drilling of kimberlite EG-05. The Mel Diamond Project is located on the Melville Peninsula (NU), approximately 140 km south of the community of Hall Beach, and 210 km northeast of the community of Naujaat (formerly Repulse Bay). A prospecting program conducted in late 2017 focused on discovery of potential kimberlite bedrock sources to a well-defined kimberlite indicator mineral train in the north part of the project area. Kimberlite float and subcrop was found in two areas, including a surface exposure of the ML8 kimberlite. A 62.1 kg sample of ML8 yielded 23 diamonds larger than the 0.106 mm sieve size, including a single, colourless diamond larger than the 0.85 mm sieve size. The 2018 exploration program included 778 m of exploration drilling leading to the discovery of a new kimberlite (ML345) and defining the ML8 kimberlite over a 170 m strike length. In addition, 447 till samples were collected to better define existing and new targets within the project area, 14 magnetic ground survey grids were completed, and over 200 kg of kimberlite was collected from surface at ML8 for further microdiamond analysis.
DS201812-2846
2018
Madsen, E., Truter, K.The transformation of De Beers Canada.2018 Yellowknife Geoscience Forum , p. 49-50. abstractCanadadeposit - De Beers

Abstract: Over the past two years, De Beers Canada has undergone a transformation. This has included: opening the world's largest newdiamond mine (Gahcho Kué Mine); relocating its operational supportcentre to Calgary from Toronto, andrefocusing the Calgary organizationto ensure it provides support servicesto our remote operations rather thanacting as a “head office”; improving partnerships with localcommunities; preparing to close the highlysuccessful Victor Mine in NorthernOntario; and, looking for opportunities to grow thecompany in Canada. The De Beers Canada of 2018 is a dramatically different company, one that has become a solid contributor to the De Beers Group, is a national leader in safety and has its focus on developing the first diamond mine on Baffin Island. Our presentation will provide an update on the activities of De Beers Canada since 2016 and a look ahead at where our company is going in the future.
DS201812-2850
2018
McPeak, S., Samson, C., Lamontagne, M., Elliott, B.Application of passive seismic methodologies to the determination of overburden thickness.2018 Yellowknife Geoscience Forum , p. 111-112. abstractCanada, Northwest Territoriesgeophysics - seismics

Abstract: Diamond mining is central to the economic development of the Canadian North. Innovative methods are needed to identify new prospective targets, as many of them are hidden beneath a thick overburden of glacial sediments. Passive seismics is an emerging method used to map the thickness of near-surface geological layers. Vibrations from distant earthquakes are used as a source of signal and data is processed to estimate the depth of the interface between the overburden and the underlying bedrock. In July 2018, four Tromino seismographs were taken to a study site located approximately ten minutes driving north of Yellowknife. A total of 146 Tromino measurements and associated GPS elevation measurements were taken at 6 m intervals along a dirt road. Elevation measurements were averaged over the course of four days and the survey line was approximately 740 m long. Results indicated that depth to bedrock decreases near outcrops and increases in valleys however; another geophysical dataset is needed to validate the passive seismic data.
DS201812-2852
2018
Moss, S., Porritt, L., Pollock, K., Fomradas, G., Stubley, M., Eichenberg, D., Cutts, J.Diavik deposit: Geology, mineral chemistry, and structure of the kimberlites at Diavik diamond mine: indicators of cluster-scale cross-fertilization, mantle provenance, and pipe morphology.Society of Economic Geology Geoscience and Exploration of the Argyle, Bunder, Diavik, and Murowa Diamond Deposits, Special Publication no. 20, pp. 287-318.Canada, Northwest Territoriesdeposit - Diavik
DS201812-2862
2018
Peters, M.H., Henderson, J.Bridging the gap through care and collaboration: before closure and after production. Snap Lake2018 Yellowknife Geoscience Forum , pp. 60-61. abstractCanada, Northwest territoriesdeposit - Snap Lake

Abstract: Wikipedia defines “Care and Maintenance” as a term used in the mining industry to describe processes and conditions on a closed mine site where there is potential to recommence operations at a later date. During a care and maintenance phase, production is stopped but the site is managed to ensure it remains in a safe and stable condition. De Beers Canada Inc. - Snap Lake Mine entered the Care and Maintenance phase after production ceased in December 2015. The partnership with Det'on Cho Corporation provides for a sustainable execution of care and maintenance activities, taking into consideration approved work plans, mine health and safety considerations and emergency response plans. The mine is currently in its third year of care and maintenance. After exploring the potential sale of the asset and assessing the possibility of reopening the mine, the decision to proceed toward closure was taken in December 2017, ushering Snap Lake into a period of extended care and maintenance (ECM) while a closure plan is developed and finalized. Activities during ECM include monitoring of water quality and other environmental parameters, collecting/treating effluent and making sure that water leaving the site meets water license compliance. Physical infrastructure such as the airstrip, roads, buildings, processed kimberlite containment facilities and associated surface water infrastructure such as sumps, pumps and channels need to be kept in a safe and operable condition. Camp infrastructure such as generators and machinery and equipment are also part of the Care and Maintenance program. Collaboration between the De Beers Canada owner's team and Det'on Cho Corporation resulted in the safe execution of the 2018 work plan which included freshet operations, continued progressive reclamation work, monitoring and maintenance activities. After a trial-run of reduced camp occupancy in the winter of 2017, the site was fully winterized and demobilized in September 2018 to allow for monthly site visits for the duration of the winter and planning for a spring 2019 start-up.
DS201812-2867
2018
Poitras, S.P., Pearson, D.G., Hardman, M.F., Stachel, T., Nowell, G.M.Evidence for a 200 km thick diamond bearing root beneath the Central Mackenzie Valley, Northwest Territories, Canada? Diamond indicator mineral geochemistry from the Horn Plateau and Trout Lake regions.Mineralogy and Petrology, doi.org/10.1007/ s00710-018-0641-4 18p.Canada, Northwest Territoriesindicator minerals, geocthermobarometry

Abstract: The Central Mackenzie Valley (CMV) area of Northwest Territories is underlain by Precambrian basement belonging to the North American Craton. The potential of this area to host kimberlitic diamond deposits is relatively high judging from the seismologically-defined lithospheric thickness, age of basement rocks (2.2-1.7 Ga) and presence of kimberlite indicator minerals (KIMs) in Quaternary sediments. This study presents data for a large collection of KIMs recovered from stream sediments and till samples from two study areas in the CMV, the Horn Plateau and Trout Lake. In the processed samples, peridotitic garnets dominate the KIM grain count for both regions (> 25% each) while eclogitic garnet is almost absent in both regions (< 1% each). KIM chemistry for the Horn Plateau indicates significant diamond potential, with a strong similarity to KIM systematics from the Central and Western Slave Craton. The most significant issue to resolve in assessing the local diamond potential is the degree to which KIM chemistry reflects local and/or distal kimberlite bodies. Radiogenic isotope analysis of detrital kimberlite-related CMV ilmenite and rutile grains requires at least two broad age groups for eroded source kimberlites. Statistical analysis of the data suggests that it is probable that some of these KIMs were derived from primary and/or secondary sources within the CMV area, while others may have been transported to the area from the east-northeast by Pleistocene glacial and/or glaciofluvial systems. At this stage, KIM chemistry does not allow the exact location of the kimberlitic source(s) to be constrained.
DS201812-2868
2018
Pollock, K., Davy, A.T., Moss, S.Diavik deposit: Evaluation of the Diavik diamond deposit.Society of Economic Geology Geoscience and Exploration of the Argyle, Bunder, Diavik, and Murowa Diamond Deposits, Special Publication no. 20, pp. 267-286.Canada, Northwest Territoriesdeposit - Diavik
DS201812-2871
2018
Reimink, J.From Iceland to Indonesia: understanding the Slave Craton from a modern geological context. Keynote address.2018 Yellowknife Geoscience Forum , 1p. AbstractCanada, Northwest Territoriescraton

Abstract: The formation of continental crust makes Earth unique in our solar system. Yet, despite the importance of the continents for the evolution of the atmosphere, hydrosphere, and life, the mechanism and timing of continental growth throughout Earth history is poorly known. The presently exposed continental crust has an age distribution that would suggest most of the mass grew relatively recently. However, the planet is constantly reworking itself, so age distributions are biased towards young ages. Therefore, geochemists must turn to isotopic tracers to infer the amount of crustal reworking that has occurred to form the presently exposed, or previously eroded, continental crust. The Slave craton, in the NWT, Canada, is in many ways a classic Archean craton. One reason for this is that the Slave craton preserves an extensive history of crust formation, spanning from 4.02 Ga to 2.58 Ga. This talk will focus on the petrology and isotope geochemistry of the oldest preserved rocks in the craton, rocks which form the deformed basement gneiss complex. These rocks preserve the oldest history of the craton and form the substrate upon which later geologic events occurred. Our record of crust formation indicates that the Slave craton basement gneisses record a major change in the mechanism of crust formation, a transition that represents a change from internal reprocessing in a setting analogous to modern Iceland, to crust formation in a setting more similar to modern continental-margin settings. This data is discussed in the context of global paradigms for crust formation throughout Earth history.
DS201812-2874
2018
Rodel, A.Ramping up from construction to operations: lessons learned at Gahcho Kue diamond mine.2018 Yellowknife Geoscience Forum , p. 65. abstractCanada, Northwest Territoriesdeposit - Gahcho Kue

Abstract: Numerous glacial dispersal trains, spatially and compositionally associated to kimberlites, have been characterized and mapped in the Lac de Gras region, Northwest Territories (NT). However, a small number of these trains have yet to be associated with a source. Additionally, a number of known sub-cropping kimberlites do not have well-defined, spatially associated, trains of indicator minerals. These issues suggest that local factors may be important in controlling the occurrence, shape, and strength of a dispersal pattern and its spatial association with a kimberlite. Identifying these factors and understanding their effect on the dispersion of indicator minerals could provide a road map for finding additional diamondiferous kimberlites in the NT and elsewhere. Here we examine contrasting dispersal trains from south and southwest of Lac de Gras, as well as situations where the source of known dispersal trains (e.g., Coppermine Train) continue to elude exploration geologists. Using both surface and subsurface datasets, we find that the bedrock geology and topography of the source area, as well as those of the dispersal area, are potential key controls on the type and shape of dispersal patterns. Even across discontinuous drift and subdued shield relief we find that bedrock topography and lithology modulated the effect of glacial dynamics on till production and provenance. These 'bedrock factors' have interacted in various ways during Quaternary glaciations, in combinations unique to each case, to generate complex dispersal patterns in three dimensions. Accounting for these factors, using both surface and subsurface data, could enhance the success of drift exploration programs and improve their outcome in the glaciated shield terrains of northern Canada.
DS201812-2876
2018
Ross, M., Kelley, S.E., Janzen, R., Stirling, R.A., Normandeau, P.X., Elliott, B.Orphan and elusive glacial dispersal trains from kimberlites in the Lac de Gras area.2018 Yellowknife Geoscience Forum , p. 65-66. abstractCanada, Northwest Territoriesgeochemistry

Abstract: Numerous glacial dispersal trains, spatially and compositionally associated to kimberlites, have been characterized and mapped in the Lac de Gras region, Northwest Territories (NT). However, a small number of these trains have yet to be associated with a source. Additionally, a number of known sub-cropping kimberlites do not have well-defined, spatially associated, trains of indicator minerals. These issues suggest that local factors may be important in controlling the occurrence, shape, and strength of a dispersal pattern and its spatial association with a kimberlite. Identifying these factors and understanding their effect on the dispersion of indicator minerals could provide a road map for finding additional diamondiferous kimberlites in the NT and elsewhere. Here we examine contrasting dispersal trains from south and southwest of Lac de Gras, as well as situations where the source of known dispersal trains (e.g., Coppermine Train) continue to elude exploration geologists. Using both surface and subsurface datasets, we find that the bedrock geology and topography of the source area, as well as those of the dispersal area, are potential key controls on the type and shape of dispersal patterns. Even across discontinuous drift and subdued shield relief we find that bedrock topography and lithology modulated the effect of glacial dynamics on till production and provenance. These 'bedrock factors' have interacted in various ways during Quaternary glaciations, in combinations unique to each case, to generate complex dispersal patterns in three dimensions. Accounting for these factors, using both surface and subsurface data, could enhance the success of drift exploration programs and improve their outcome in the glaciated shield terrains of northern Canada.
DS201812-2877
2018
Sacco, D.A., White, D., McKillop, R.Re-thinking diamond exploration tactics in the Slave Province: a surficial geology perspective. Lac de Gras area2018 Yellowknife Geoscience Forum , p. 66-67. abstractCanada, Northwest Territoriesgeochemistry

Abstract: It took several decades to develop the necessary understanding of glaciation, geochemistry and mineralogy to refine exploration strategies and find the first kimberlite in the Northwest Territories, Canada. These fundamental drift prospecting strategies followed by geophysics and drilling have been used to locate many kimberlite occurrences over the years. Indicator minerals in surface sediments are still the primary datasets used to identify kimberlite exploration targets; however, many of the kimberlite sources for the well-defined indicator mineral dispersals have been identified. Exploration must now focus on regions with more complex surficial geology where primary dispersal patterns in till are obscured by post-depositional modification. These patterns are largely defined using data from historical “˜till' surveys that often failed to properly scrutinize the sample media; reworked tills and other surficial materials were commonly collected. The regional surficial geology maps (e.g., 1:50,000 to 1:250,000) typically published by geological surveys to stimulate reconnaissance exploration in new areas are generally incapable of providing sufficient resolution to determine the genesis and post-glacial alteration of sample media or reconcile complex dispersal patterns. Furthermore, advances in analytical methods have yielded compiled datasets with results from multiple methods that are not always comparable. Without a new, more detailed and systematic approach to evaluating surface sediment data, exploration in areas with complex glacial, deglacial and post-glacial histories will be challenged to discover kimberlite. The accessibility, quality and variety of high-resolution aerial or satellite imagery and topographic data has improved significantly over the years, affording a more detailed interpretation of the surficial environment. These detailed interpretations have allowed us to evaluate historical data with a new perspective and target the collection of new, high-quality data. Throughout the Slave Province, we have tailored surficial interpretations to distinguish in-situ till from reworked till and other materials, which have altered dispersion and indicator mineral concentrations. Using examples from the Lac de Gras area, this presentation demonstrates how a detailed surficial framework, combined with an understanding of the varied analytical methods, is applied to historical datasets to refine indicator dispersal patterns and identify new exploration targets. By standardizing the data based on sediment genesis and transport mechanisms, the dataset becomes more suitable for statistical evaluation and anomaly threshold determinations that are unique to specific data subpopulations. As a result, anomaly contrasts are improved, and complex dispersals can be unravelled. In addition, areas with insufficient data coverage are identified and the necessary framework to complete informed, efficient infill or new sampling is provided. The examples we share highlight that there is no replacement for project-scale understanding of surficial geology and its varied effects on mineral dispersals in the development and interpretation of a surface sediment dataset used to identify kimberlite exploration targets.
DS201812-2882
2018
Simpson, L., Sinclair, S., Loescher, B.Short hold time parameters. Diavik mine water treatment plant.2018 Yellowknife Geoscience Forum , p. 74-75. abstractCanada, Northwest Territoriesdeposit - Diavik

Abstract: It is well known that it is very difficult to transport samples from remote locations to the laboratory and allow sufficient time to commence analysis within the prescribed short hold times for certain parameters. Also, the majority of published hold times are based on legacy as opposed to hard science. In an attempt to determine the validity of specific short hold times, a joint study between Diavik and Maxxam was undertaken. The purpose was to determine the stability of short hold time parameters over time using real samples from Diavik sites. Data from two sites will be presented. The first from the Diavik mine water treatment plant influent, which had relatively high levels of the target analytes. The second from a lake water sample with lower native levels of the target analytes. The parameters studied were ammonia (preserved and unpreserved), total nitrogen, nitrite, nitrate, phosphate, total phosphorus and turbidity. All target parameters have a prescribed 3-day hold time.1 pH was also monitored. Samples were collected by Diavik personnel in one-litre containers and extraordinary logistical measures were taken to get them to Maxxam's Burnaby laboratory as soon as possible. On receipt, they were immediately subsampled into appropriate containers. Each parameter (except pH and turbidity) was split into three containers: 1) as received; 2) low level spike added and 3) medium level spike added. All samples were analyzed within 3 at approximately 3-day intervals thereafter for a period of two weeks.
DS201812-2884
2018
Siva-Jothy, W., Chinn, I., Stachel, T., Pearson, D.G.Resorption features of macro and micro diamonds from Gahcho Kue.2018 Yellowknife Geoscience Forum , p. 120. abstractCanada, Northwest Territoriesdeposit - Gahcho Kue

Abstract: Studies into the relationship between oxygen fugacity of mantle fluids/melts and etch features on diamond surfaces have shown specific fluid/melt compositions correspond to associated etch features. A classification scheme has been proposed to determine the fluid composition within a kimberlite by examining etch features associated with diamond surfaces as a proxy for fluid composition in an ascending diamondiferous kimberlite. A suite of 388 microdiamonds (defined as diamonds which pass through a 0.5 mm square mesh screen) and 88 macrodiamonds taken from various drill hole depths in the Hearne kimberlite and 88 inclusion-bearing macrodiamonds from the Gahcho Kué mine (NWT) were viewed under a secondary electron microscope for their surface features in accordance with this scheme. Two hundred and thirty specimens show shallow-depth etch features that can be easily classified: the main features observed were trigons and truncated trigons on the {111} faces and/or tetragons on the {100} faces (indicating etching by fluids of variable CO2:H2O ratios). Thirty-four specimens show deeper etched features that represent either extreme degrees of regular etching (such as deeply-etched tetragons), or corrosion type etching, wherein the diamond lattice is etched in a fluid-free melt. Variability between crystal habits exists between the size fractions studied, with cubic habits only being observed in the microdiamond population. This implies variable formation conditions for the two different diamond size fractions studied from Gahcho Kué. Among microdiamonds, surface textures associated with fluid-related etching are markedly more variable, with truncated trigons, tetragons, and both positive and negative trigons being observed. However, these often occur in combination with features showing a large variability in their depth to size ratio between samples, which is typically caused by mantle-related etching. These observations suggest repeated interaction of fluids/melts with the Gahcho Kué diamond population, with at least some of the fluids affecting the microdiamonds being more CO2-rich than those that etched the macrodiamond fraction.
DS201812-2889
2018
Stirling, R.A., Kelley, S.E., Ross, M., Elliott, B., Normandeau, P.X.Surface and subsurface till characteristics in a drumlin field south of Lac de Gras, NT; implications for drift prospecting. ( Dominion's Ekati and North Arrow)2018 Yellowknife Geoscience Forum , p. 80. abstractCanada, Northwest Territoriesdeposit - Ekati

Abstract: Successful diamond exploration is becoming increasingly challenging as the best expressed targets have been found. Areas of variable drift thickness and heterogeneous surficial deposits present several challenges to exploration. One particular aspect that is poorly understood is the effect of well-developed drumlin fields on the surface expression of dispersal trains. Our study focuses on drumlin fields and their potential effects in the expression of a dispersal pattern. Because drumlins are often stratified we hypothesize that multiple till layers of contrasting provenance, representing multiple ice-flow directions, can occur at the surface across drumlin fields due to erosional processes. This has the potential to affect analysis and interpretation of surficial till dispersion data. To test this hypothesis, we examined data from a large RC drilling dataset donated by Dominion Diamond Ekati Corp. and North Arrow Minerals Inc. and complemented it with field-based surficial geology observations and analysis of additional surficial till samples across targeted drumlins. The surficial samples were collected at the top and on the sides of drumlins to test whether any glacial stratigraphy is expressed, especially in areas where post-glacial erosion may have exposed internal drumlin stratigraphy. Based on the RC data and available maps drift thickness within the drumlin field ranges from 1 meter in the swales between drumlins to about 20 meters on the top of the highest amplitude drumlins. Locally measured ice-flow indicators (n=11) show three distinct ice-flow directions from older to youngest: 260, 290, 305 degrees. Preliminary analysis of textural and compositional data shows variations within the till at depth as well as across the drumlin field. Ongoing work focuses on determining the relationship (or lack thereof) between till characteristics, drumlins, and ice flow history (till provenance), as well as on three-dimensional dispersal patterns of kimberlite indicator minerals and related geochemical pathfinders. This work will highlight landform feature considerations by using multiple parameters to analyze sample data in areas with complex glacial geology and high diamond potential.
DS201812-2894
2018
Ugalde, H., Milkereit, B., Lenauer, I., Morris, W.A., Mirza, A.M., Elliott, B.Airborne Mag/EM data integration of Slave province kimberlites, NWT.2018 Yellowknife Geoscience Forum , p. 84. abstractCanada, Northwest Territoriesgeophysics - Mag, EM

Abstract: As part of the Slave Province Geophysical, Surficial Materials and Permafrost Study, the Northwest Territories Geological Survey (NTGS) commissioned high resolution geophysical surveys in the Slave Geological Province (SGP). This work focuses on the analysis of six horizontal gradient magnetic and frequency domain EM (FDEM) surveys that were flown from February to March 2017 (Munn Lake, Margaret Lake, Zyena Lake, Lac de Gras West, Big Blue and Mackay Lake). All surveys were acquired at 75 m line spacing with nominal terrain clearance of 60 m to maintain bird height of 25 m. They total 4,580 line-km. We use the FDEM data to locate areas of potential remanent magnetization, and thus additional areas that could be related to kimberlite bodies. The area is part of the central Slave Craton, which is dominated by Archean granitoid rocks and Archean metasedimentary rocks. Heaman et al. (2013) identifies several distinct domains based on kimberlite ages in the area. Central Slave is characterized by Tertiary/Cretaceous age kimberlites, whereas the southern part exhibits kimberlites of Cambrian age. This have important implications for the orientation of the remanent magnetization vector. The methodology involves the use of a homogeneous half-space model to invert the data for dielectric permittivity, relative magnetic permeability, apparent resistivity and magnetic susceptibility. Using this model, we calculated Conductivity-Depth-Images (CDIs) for all the EM data. The susceptibility distribution from the EM data (MagEM) is then plotted against an apparent susceptibility derived from the total field data for the main survey via standard FFT calculation (MagTMI). Major differences between both distributions are usually associated to remanence. Once we identify areas of potential remanent magnetization, we use Helbig analysis to estimate the direction of magnetization. The validity of this model is verified by comparison of the computed remanence direction with the appropriate Apparent Polar Wander Path (APWP). We find a good correlation of APWP directions with the estimated remanence, however, a viscous remanence component subparallel to the present's day Earth field is sometimes required. Finally, we show the integration of these results with a structural interpretation of the aeromagnetic data and potential alteration zones derived from Aster imagery for all 6 blocks
DS201812-2898
2018
Wickham, A.P., Winternurn, P.A., Elliott, B.Till geochemistry and lithogeochemical exploration for a concealed kimberlite.2018 Yellowknife Geoscience Forum , p. 88-89. abstractCanada, Northwest Territoriesdeposit - Kelvin

Abstract: Research at the Kelvin kimberlite, NWT is defining surface exploration practices and developing new exploration tools based on host rock lithogeochemical alteration, that will result in reduced costs and improved discovery success. In regions where recent glaciation has buried kimberlites under glacial sediments, surface geochemical detection methods are best interpreted when coupled with a comprehension of the landscape formation processes. The glacial, post-glacial, and cryoturbation processes that have affected the landscape have, in turn, affected the dispersal of geochemical signatures in the till that can be detected and exploited by detailed surface mapping, sampling, and geochemical analysis. Additionally, the application of geochemical and hyperspectral data to country rock alteration core can aid in the detection of kimberlites during near-miss drilling campaigns. The Kelvin kimberlite is located eight kilometers from the Gahcho Kué diamond mine in the Northwest Territories. The inclined pipe sub-crops beneath a lake and dips into gneiss country rock towards the northwest with a surface projection of more than 600 m long. Relative uniformity of surficial material (<6 m thick till veneer) allows for extensive b-horizon soil sampling above the kimberlite, up-ice, and up to 1 km in the down-ice direction. Samples were sieved to -180 microns and analyzed by four acid digest ICP-MS and aqua-regia digest ICP-MS. Results indicate the soils to be very immature and identify the presence of a subtle Ni-Cr-Mg-Nb train originating from the lake side extending for >1km from source following the most recent ice direction to the west. The material for the train was abraded by the ice from the kimberlite, now sub-cropping beneath a lake, and would have provided additional support to drill what was initially targeted from geophysics. Additional research is being carried out to detect alteration signatures in the country rock induced by the emplacement of the kimberlite. Lithogeochemical data from four drill holes aims to identify and quantify the metasomatic enrichment and depletion of elements sourced from the kimberlite while accounting for country-rock lithology variation. Hyperspectral imaging of the same drill core will aim to detect and quantify secondary mineralogy and subtle changes in mineral composition that otherwise cannot be detected visually. This data will be used to generate mineralogical and chemical vectors beneficial in near-miss situations when drilling kimberlites and defining diatreme geometries.
DS201812-2899
2018
Xia, X.Mineral inclusions in diamonds from Chidliak ( Nunavut, Canada): constraining the diamond substrates.Thesis, Msc. University of Alberta, 112p. Pdf availableCanada, Nunavutdeposit - Chidliak
DS201901-0029
2018
Dransfield, M.H., Chen, T.Heli-borne gravity gradiometry in rugged terrain. (mentions Margaret Lake)Geophysical Prospecting, doi.org/10.1111/1365-2478.12736 Canada, Northwest Territoriesgeophysics
DS201901-0034
2018
Fulop, A., Kopylova, M., Kurszlaukis, S., Hilchie, L., Ellemers, P., Squibb, C.Petrography of Snap Lake kimberlite dyke ( Northwest Territories, Canada) and its interaction with country rock granitoids.Journal of Petrology, Vol. 59, 12, pp. 2493-2518.Canada, Northwest Territoriesdeposit - Snap Lake

Abstract: Carbonate-rich intrusions in contact with felsic rocks theoretically should show the effects of interaction between the two rock types, due to their contrasting compositions. In reality, though, such interaction is rarely reported at kimberlite contacts. We present the first documented case of lithological and mineralogical zonation at the margin of a kimberlite, the Snap Lake dyke, in contact with the wall-rock granitoid. Our detailed petrographic, mineralogical and geochemical study shows that the fresh hypabyssal kimberlite consists of olivine macrocrysts and microcrysts, and phlogopite macrocrysts set in a groundmass of serpentinized monticellite, phlogopite, spinel, perovskite and apatite, with interstitial lizardite and calcite. This typical Group I kimberlite mineralogy does not match the bulk-rock composition, which resembles a Group II micaceous kimberlite. The mismatch between the chemical and mineralogical properties is ascribed to contamination by granitoid xenoliths and metasomatic reactions with the felsic country rocks, the Snap Lake kimberlite has extremely low bulk-Ca compared to other documented Group I kimberlites. Reaction with deuteric H2O and CO2 has led to Ca removal, serpentinization of olivine, replacement of calcite by dolomite, alteration of perovskite and decomposition of apatite. Adjacent to the contact with the host granitoid and in haloes around granitoid clasts, poikilitic phlogopite and lizardite are replaced by subsolidus phlogopite and a multiphase phyllosilicate composed of phlogopite+?lizardite+?chlorite+?talc. A modified isocon analysis accounts for felsic xenolith assimilation and isolates metasomatic changes. Enrichment of altered kimberlites in Si owes solely to xenolith incorporation. The metasomatic ingress of granitoid-derived Al for a limited distance inside the dyke was counteracted by a flux of Mg and Fe to the granitoid. Metasomatic changes in K and Ca tend to be positive in all lithologies of kimberlite and in the granitoids implying distal transport. The combination of xenolith digestion with metasomatic element transport is expected in hybrid zones where kimberlite magmas interact with felsic wall-rocks.
DS201902-0255
2019
Abersteiner, A., Kamenetsky, V.S., Goemann, K., Golovin, A.V., Sharygin, I.S., Giuliani, A., Rodemann, T., Spetsius, Z.V., Kamenetsky, M.Djerfisherite in kimberlites and their xenoliths: implications for kimberlite melt evolution.Contributions to Mineralogy and Petrology, Vol. 174, 8 22p. Africa, South Africa, Russia, Canada, Northwest Territoriesdeposit - Bultfontein, Roberts Victor, Udachnaya-East, Obnazhennaya, Vtorogodnitsa, Koala, Leslie

Abstract: Djerfisherite (K6(Fe,Ni,Cu)25S26Cl) occurs as an accessory phase in the groundmass of many kimberlites, kimberlite-hosted mantle xenoliths, and as a daughter inclusion phase in diamonds and kimberlitic minerals. Djerfisherite typically occurs as replacement of pre-existing Fe-Ni-Cu sulphides (i.e. pyrrhotite, pentlandite and chalcopyrite), but can also occur as individual grains, or as poikilitic phase in the groundmass of kimberlites. In this study, we present new constraints on the origin and genesis of djerfisherite in kimberlites and their entrained xenoliths. Djerfisherite has extremely heterogeneous compositions in terms of Fe, Ni and Cu ratios. However, there appears to be no distinct compositional range of djerfisherite indicative of a particular setting (i.e. kimberlites, xenoliths or diamonds), rather this compositional diversity reflects the composition of the host kimberlite melt and/or interacting metasomatic medium. In addition, djerfisherite may contain K and Cl contents less than the ideal formula unit. Raman spectroscopy and electron backscatter diffraction (EBSD) revealed that these K-Cl poor sulphides still maintain the same djerfisherite crystal structure. Two potential mechanisms for djerfisherite formation are considered: (1) replacement of pre-existing Fe-Ni-Cu sulphides by djerfisherite, which is attributed to precursor sulphides reacting with metasomatic K-Cl bearing melts/fluids in the mantle or the transporting kimberlite melt; (2) direct crystallisation of djerfisherite from the kimberlite melt in groundmass or due to kimberlite melt infiltration into xenoliths. The occurrence of djerfisherite in kimberlites and its mantle cargo from localities worldwide provides strong evidence that the metasomatising/infiltrating kimberlite melt/fluid was enriched in K and Cl. We suggest that kimberlites originated from melts that were more enriched in alkalis and halogens relative to their whole-rock compositions.
DS201902-0276
2018
Harris, G.Mantle composition, age and geotherm beneath the Darby kimberlite field, west central Rae Craton.University of Alberta, Msc thesis https://doi.org /10.7939/R3NC5SV24 availableCanada, Nunavutdeposit - Darby

Abstract: The Rae Craton, northern Canada, contains several diamondiferous kimberlite fields that have been a focus of episodic diamond exploration. Relatively little is known about the deep mantle lithosphere underpinning the architecturally complex crust. We present bulk and mineral element and isotopic compositional data for peridotite and pyroxenite/eclogite xenoliths from the Darby kimberlites representing fragments of the west central Rae lithosphere, as well as the first kimberlite eruption age of 542.2±2.6 Ma (2 ?; phlogopite Rb-Sr isochron). Darby peridotites have low bulk Al2O3 contents with highly-depleted olivine (median Mg#?=?92.5) characteristic of cratonic lithosphere globally, but more depleted than peridotites from other Rae Craton localities. One peridotite xenolith contains a harzburgitic G10D garnet. Re-Os TRD model ages appear to be the oldest measured to date from peridotites of the Rae lithosphere, having a mode in the early Neoarchean and ranging to the Paleoproterozoic (~2.3 Ga). Concentrate clinopyroxene defines a well constrained mantle geotherm indicating the existence of a ~200 km thick lithosphere at the time of kimberlite eruption, greater than the lithospheric thickness beneath Somerset Island and in good agreement with modern seismic constraints. Nickel-in-garnet thermometry in grains that record temperatures below the mantle adiabat, indicates mantle sampling dominantly in the graphite stability field whereas Al-in-olivine thermometry shows a distinct mantle sampling mode in the diamond stability field. Abundant pyroxenite and eclogite xenoliths are recovered across the Darby property and low-Cr garnet (Cr2O3?
DS201902-0288
2019
Krebs, M.Y., Pearson, D.G., Stachel, T., Laiginhas, F., Woodland, S., Chinn, I., Kong, J.A common parentage low abundance trace element data of gem diamonds reveals similar fluids to fibrous diamonds.Lithos, Vol. 324, 1, pp. 356-370.Canada, Ontario, Africa, South Africadeposit - Victor, Finsch, Newlands

Abstract: Quantitative trace element data from high-purity gem diamonds from the Victor Mine, Ontario, Canada as well as near-gem diamonds from peridotite and eclogite xenoliths from the Finsch and Newlands mines, South Africa, acquired using an off-line laser ablation method show that we see the same spectrum of fluids in both high-purity gem and near-gem diamonds that was previously documented in fibrous diamonds. "Planed" and "ribbed" trace element patterns characterize not only the high-density fluid (HDF) inclusions in fibrous diamonds but also in gem diamonds. Two diamonds from two Finsch harzburgite xenoliths show trace element patterns similar to those of saline fluids, documenting the involvement of saline fluids in the precipitation of gem diamonds, further strengthening the link between the parental fluids of both gem and fibrous diamonds. Differences in trace element characteristics are evident between Victor diamonds containing silicate inclusions compared with Victor diamonds containing sulphide inclusions. The sulphide-bearing diamonds show lower levels of inter-element fractionation and more widely varying siderophile element concentrations - indicating that the silicate and sulphide-bearing diamonds likely formed by gradations of the same processes, via melt-rock reaction or from a subtly different fluid source. The shallow negative LREEN-HREEN slopes displayed by the Victor diamonds establish a signature indicative of original derivation of the diamond forming agent during major melting (~10% melt). Consequently, this signature must have been passed on to HDFs separating from such silicate melts.
DS201902-0308
2018
Poitras, S.Kimberlite indicator minerals from the Central Mackenzie Valley, Northwest Territories, Canada: a reconnaissance geochemical survey.University of Alberta, Msc thesis https://doi.org/ 10.7939/R3C53FH3P availableCanada, Northwest Territoriesmineral chemistry

Abstract: The Central Mackenzie Valley (CMV) area of Northwest Territories is underlain by Precambrian basement belonging to the North American Craton. The potential of this area to host kimberlitic diamond deposits is relatively high judging from the seismologically-defined lithospheric thickness, the age of basement rocks (2.2-1.7 Ga) and presence of kimberlite indicator minerals (KIMs) in Quaternary sediments. This study presents new major, minor and trace element chemistry data for kimberlite indicator mineral (KIM) grains collected from two regions within the Central Mackenzie Valley, Northwest Territories. The data, along with new kimberlite-related rutile U-Pb ages and ilmenite Hf isotopic compositions are used to constrain the composition and thickness of the lithospheric mantle sampled by the source kimberlite(s) and age of these kimberlites for these two regions. In the processed samples, peridotitic garnets dominate (> 25 % at each location) while eclogitic garnet is almost absent in both regions (< 1 % each). KIM chemistry for the Horn Plateau indicates significant diamond potential, with a strong similarity to KIM systematics from the Central and Western Slave Craton. The most significant issue to resolve in assessing the local diamond potential is the degree to which KIM chemistry reflects local and/or distal kimberlite bodies. Radiogenic isotope analysis of detrital kimberlite-related CMV oxide grains requires at least two broad age groups for eroded source kimberlites. Statistical analysis of the data suggests that it is probable that some of these KIMs were derived from primary and/or secondary sources within the CMV area, while others may have been transported to the area from the east-northeast by Pleistocene glacial and/or glaciofluvial systems. At this stage, KIM chemistry does not allow the exact location of the kimberlitic source(s) to be constrained.
DS201902-0330
2019
Vasyukova, O.V., Williams-Jones, A.E.Closed system fluid-mineral-mediated trace element behaviour in peralkaline rare metal pegmatites: evidence from Strange Lake.Chemical Geology, Vol. 505, pp. 86-99.Canada, Quebec, Labradorgeochemistry

Abstract: Large peralkaline complexes are ‘factories’ that have produced a variety of ‘exotic’ minerals including high field strength element minerals. In most cases, these minerals are secondary and crystallise in a hydrothermal paragenesis that is extremely difficult to decipher due to the complexity of the textural relationships. The Strange Lake pluton is one of these complexes, and contains 37 exotic minerals, most of which are secondary. Adding to the difficulty in establishing a comprehensive paragenesis for these minerals and an alteration/precipitation path for the pluton is the fact that there were several stages of crystallisation of the same exotic and common secondary minerals, e.g., bastnäsite, fluocerite, gadolinite, aegirine, fluorite, and zircon. In this paper, we present a model, which describes a detailed path for the alteration and precipitation of minerals in the closed hydrothermal system of a peralkaline granitic pegmatite, based on direct measurements of the evolving composition of the aqueous fluid that exsolved from the late-stage magma crystallising rare-metal pegmatites in the Strange Lake pluton. The driving force for this evolution was cooling-induced oxidation that ultimately transformed the CH4-H2 gas in this fluid to CO2. This led to a large drop in the pH, which was a major control on the composition of the fluid and the crystallisation of secondary minerals. Although large numbers of minerals formed and were replaced during the different stages of fluid evolution, the changing chemistry of the fluid was largely a response to the alteration of four minerals, namely arfvedsonite, elpidite, narsarsukite and fluorite. The earliest stage of alteration, which took place at ~360?°C, was marked by the replacement of arfvedsonite by aegirine. This alteration decreased salinity and released K, Li, and Rb to the fluid, causing K-metasomatism. At ~300?°C, CH4 and higher hydrocarbons reacted to produce CO2. This caused a massive drop in pH from a value?>?10 to a value of ~3 and intense alteration, which included the dissolution of fluorite, the breakdown of elpidite to zircon and quartz and the replacement of narsarsukite by titanite. With ongoing dissolution of fluorite, Ca activity reached a level sufficient to promote the alteration of elpidite to armstrongite or gittinsite. This was accompanied by alteration of arfvedsonite to ferroceladonite and microcline to Al-phyllosilicates, enriching the fluid in Na, Fe and F. Soon after, there was a near total loss of CO2 (at ~230?°C). This loss was catastrophic and was focused along conical fractures (these developed as a result of the collapse of the roof of the pluton), with resultant fragmentation of the rocks along the fluid path. Alteration to phyllosilicates continued after the loss of CO2, as the system cooled to ~190?°C. This marked the beginning of the final stage of alteration, which involved the replacement of arfvedsonite by aegirine and hematite. It also coincided with large scale hematisation within the pluton. Finally, it led to the cementation of the fragments along the fluid path to form the fluorite-hematite ring breccia that is now evident at the margins of the pluton. The model of fluid evolution presented here is potentially applicable to many other peralkaline complexes. The only requirements are that the system was closed until a relatively late stage and that the exsolved fluid was saline and contained a reduced carbonic component. This is a feature of many peralkaline complexes, most notably, the Khibiny and Lovozero complexes in Russia, and Ilímaussaq in Greenland.
DS201903-0508
2019
Fedortchouk, Y.A new approach to understanding diamond surface features based on a review of experimental and natural diamond studies.Earth-Science Reviews, 10.1016/j.earscirev .2019.02.013 56p.Canada, Northwest Territories, Africa, Botswanadiamond morphology

Abstract: Diamonds originate deep in the Earth's mantle since billions of years ago. Through their long history diamonds accumulate information about the Earth's evolution, and preserve it owing to their extreme chemical and mechanical stability. The surface of natural diamonds shows a variety of growth and dissolution features, which reflect the diversity of conditions in the mantle and in kimberlite magma, providing an important clue for understanding the deep regions of subcratonic mantle. However, such studies are hampered by an absence of a systematic approach for studying diamond surface features and morphology. This review integrates studies of natural diamonds with the results of diamond dissolution experiments to explore the origin of the most typical resorption features of diamonds and the information they provide. It uses detailed studies of over ~ 3500 diamonds from eight kimberlite bodies in the Northwest Territories in Canada and Orapa kimberlite cluster in Botswana, and the data from diamond dissolution experiments covering a pressure range of between 0.1?MPa - 7.5?GPa, temperature range of between 900?°C - 1750?°C, and over 12 log units of oxygen fugacity values. Examining the effects of these parameters on diamond resorption morphology shows that the shape and size of the etch pits depends on the temperature and H2O:CO2 ratio in the fluid, whereas pressure affects the efficiency of diamond crystal shape transformation from octahedral into rounded resorbed forms. The effect of pressure on the physical properties of the reacting fluid / melt controls the character of diamond etching. A comparison between the experimentally-induced and naturally occurring diamond resorption demonstrates a clear difference between the features developed in kimberlite magma and features inherited from the mantle source. Kimberlite-induced resorption on diamonds shows a strong correlation with the geology and emplacement mode of the hosting kimberlite unit. Low-relief surfaces develop on diamonds from pyroclastic kimberlites in all kimberlite classes, whereas surface features on diamonds from coherent kimberlites differ between kimberlite localities and often show corrosive character. Diamond resorption morphology can offer a robust method to better understand emplacement processes in different kimberlite localities, which are a matter of significant debate. The proposed here classification scheme for diamond resorption features is based on the features observable under a stereomicroscope. It helps differentiating resorption produced in the mantle source from that in the kimberlite magma and assigning diamond resorption to a particular mode of kimberlite emplacement, or a mantle metasomatic event.
DS201903-0526
2019
Latypov, R., Chisryakova, S., Griev, R., Huhma, H.Evidence for igneous differentiation in Sudbury Igneous Complex and impact driven evolution of Terrestrial planet proto-crusts.Nature Communications, Vol. 10, # 508, pp. 1-13.Canada, Ontariometeorite

Abstract: Bolide impact is a ubiquitous geological process in the Solar System, which produced craters and basins filled with impact melt sheets on the terrestrial planets. However, it remains controversial whether these sheets were able to undergo large-scale igneous differentiation, or not. Here, we report on the discovery of large discrete bodies of melanorites that occur throughout almost the entire stratigraphy of the 1.85-billion-year-old Sudbury Igneous Complex (SIC) - the best exposed impact melt sheet on Earth - and use them to reaffirm that conspicuous norite-gabbro-granophyre stratigraphy of the SIC is produced by fractional crystallization of an originally homogeneous impact melt of granodioritic composition. This implies that more ancient and compositionally primitive Hadean impact melt sheets on the Earth and other terrestrial planets also underwent large-volume igneous differentiation. The near-surface differentiation of these giant impact melt sheets may therefore have contributed to the evolution and lithological diversity of the proto-crust on terrestrial planets.
DS201903-0537
2018
Pashkova, G.V., Panteeva, S.V., Ukhova, N.N., Chubarov, V.M., Finkelshtein, A.L., Ivanov, A.V., Asavin, A.M.Major and trace elements in meimechites - rare occurring volcanic rocks: developing optimal analytical strategy.Geochemistry: Exploration, Environment, Analysis, 10.1144/geochem2017-099 11p. Canada, Chinameimechites

Abstract: The determination of the chemical composition of meimechites which are unique and rarely occurring ultra-high MgO igneous rocks can be complicated due to their porphyric structure, the presence of acid-insoluble minerals, and wide variation of major and trace element contents. In the present study the optimal analytical strategy based on a combination of X-ray fluorescence (XRF) and inductively coupled plasma mass spectrometry (ICP-MS) methods was suggested for the determination of the elemental composition of meimechites. The preparation of glass beads using a lithium tetraborate and metaborate mixture proved to be suitable for the XRF determination of major oxides. A comparative study of the sample decomposition procedures for the determination of trace elements by ICP-MS clearly showed that fusion with lithium metaborate was the most appropriate sample preparation technique for complete digestion of meimechites. The open beaker HF-HNO3-HClO4 acid digestion was insufficient because the results for Nb, Ta, V, Zr, Cr and Hf were underestimated by 20-80% compared to those determined using the fusion method due to the presence in the rock samples of acid-resistant accessory minerals. It is shown that using analytical data from acid digestion may lead to erroneous interpretation of geochemical data.
DS201903-0553
2019
Young, G.Aspects of the Archean- Proterozoic transition: how the great Huronian glacial event was inititated by rift-related uplift and terminated at the rift-drift transition during breakup of Lauroscandia.Earth-Science Reviews, Vol. 190, pp. 171-189.Canada, Africa, South Africasedimentology

Abstract: The Archean-Proterozoic transition was among the most important in geological history for it includes evidence of establishment of ‘modern-style’ plate tectonics, unprecedented paleoclimatic upheavals, and oxygenation of the atmosphere. The early Paleoproterozoic sedimentary record includes evidence of the world's first widespread glacial episodes, which have come to be known as the ‘Huronian Glacial Event’. None of these important changes coincides precisely with the accepted date of 2.5?Ga for the ‘boundary’ between the two great Precambrian eons. Rather, the geological record contains evidence of gradual transitions over many millions of years. For example the Archean sedimentary record in areas such as South Africa includes evidence of stable conditions (e.g. the Pongola Supergroup) that were not achieved in the Laurentian craton until much later during the Paleoproterozoic Era. The Pongola Supergroup in South Africa contains some of the world's oldest (c. 2.9?Ga) but locally developed glacial deposits. Many of these important changes are now considered to have been gradual and oscillatory in nature, including evidence of ‘whiffs of oxygen’ in Archean rocks, long before the Paleoproterozoic Great Oxidation Event. Oxidation of the oceans was also a long and extremely complex process, the details of which are still poorly understood. Glaciations near the beginning of the Paleoproterozoic Era have been considered by some to have been world-spanning ‘snowball Earth’ events. Repeated Huronian glaciations were probably brought about by weathering of Lauroscandia, the world's first ‘supercraton’, controlled by episodic rift-related uplifts during its disintegration. Among these glaciations only the third, represented by the Gowganda Formation and equivalents, was widespread throughout Lauroscandia. Because the two older glaciogenic units are known from only two locations in North America, their formation and preservation were probably controlled by local tectonic events. In like fashion, Paleoproterozoic glaciogenic units in South Africa and Western Australia appear to be local deposits from mountain glaciers formed during periods of tectonically generated (compressional?) uplift. The restricted distribution and diachronous nature of such tectonic events, and associated glaciogenic deposits, cast doubt on the viability of attempts at global correlations of individual Paleoproterozoic glaciogenic formations and on the existence of a Paleoproterozoic (or Neoproterozoic?) snowball Earth.
DS201904-0732
2019
Esteve, C., Schaeffer, A.J., Audet, P.Upper mantle structure underlying the diamondiferous Slave craton from teleseismic body-wave tomography. Lac de GrasTectonophysics, in press available, 27p.Canada, Northwest Territoriesgeophysics - seismics

Abstract: Cratons are, by definition, the most tectonically stable and oldest parts of the continental lithosphere on Earth. The Archean Slave craton is located in the northwestern part of the Canadian Shield. The propensity of diamondiferous kimberlite pipes in the central Slave craton raises many questions regarding their structural environment and source. Here, we provide the most robust teleseismic P and S body wave tomography models over the Slave craton region based on 20,547 P-wave delay times, 6,140 direct S-wave delay times and 3,381 SKS delay times. The P-wave model reveals an alternating pattern of relative positive and negative anomalies over a fine broad scale region within the central Slave craton. Furthermore, the P-wave model revealed two fine structures located in the lithosphere beneath the Lac de Gras kimberlite cluster, with relatively slow anomalies (B - C) that extend from 75 km to 350 km depths with an apparent dip to the north. These relatively slow P- and S-wave anomalies are associated with metasomatised regions within the lithosphere. The S-wave model displays a slow S-wave anomaly lying from 300 km depth to the transition zone beneath the central Slave craton. This anomaly is located beneath the Lac de Gras kimberlite cluster. We suggest that this anomaly is not the cause of the actual kimberlites at the surface since last eruption occurred 75-45 Ma ago but may be related to a potential kimberlite magma ascent in the asthenosphere.
DS201904-0782
2019
Spiech, L.Update on project Quiddit .. Notes on Diavik diamond rims.researchgate.net, 2p. PdfCanada, Northwest Territoriesdiamond morphology
DS201905-1014
2019
Abersteiner, A., Kamenetsky, V.S., Goemann, K., Golovin, A.V., Gornova, M.A.Polymineralic inclusions in kimberlite hosted megacrysts: implications for kimberlite melt evolution.Lithos, doi.101016/j.lithos .2019.04.004 42p.Canada, Northwest Territories, Russiadeposit - Diavik, Jericho, Leslie, Udachnaya East

Abstract: Megacrysts are large (cm to >20?cm in size) mantle-derived crystals, which are commonly entrained by kimberlite magmas, comprising of olivine, orthopyroxene, clinopyroxene, phlogopite, garnet, ilmenite and zircon as common phases. Numerous studies have shown megacrysts to contain polymineralic inclusions, which have been interpreted to represent entrapped kimberlite melt. To constrain the origin of these inclusions in megacrysts and their relationship to kimberlite magmatism, we present a detailed petrographic and geochemical study of clinopyroxene and olivine megacrysts and their hosted inclusions from the Diavik, Jericho, Leslie (Slave Craton, Canada) and Udachnaya-East (Siberian Craton, Russia) kimberlites. The studied megacrysts are between 1 and 3?cm in size and representative of both the Cr-rich and Cr-poor suites. Megacrysts contain two types of inclusions: i. Large (<0.5-5?mm in size) round-to-irregular shaped polymineralic inclusions, which are composed of minerals similar to the host kimberlite groundmass, and consist of olivine, calcite, spinel, perovskite, phlogopite and apatite (± serpentine, alkali-carbonates, alkali-chlorides, barite). ii. Swarms/trails of ‘micro melt inclusions’ (MMI; <1-5??m in size), which surround polymineralic inclusions, veins and fractures, thereby forming a ‘spongy’ texture. MMIs generally contain multiphase assemblages similar to polymineralic inclusions as well as various additional phases, such as alkali-carbonates or alkali-chlorides, which are typically absent in polymineralic inclusions and the surrounding kimberlite groundmass. Textural and geochemical evidence suggests that polymineralic inclusions in megacrysts crystallised from kimberlite melt, which infiltrated along fracture/vein networks. The polymineralic inclusion assemblages resulted from disequilibria reactions between the host megacryst and infiltrating kimberlite melt, which was likely enhanced by rapidly changing conditions during magmatic ascent. The connectivity of polymineralic inclusions to the kimberlite groundmass via network veins/fractures suggests that they are susceptible to infiltrating post-emplacement fluids. Therefore, the vast majority of polymineralic inclusions are unlikely to represent ‘pristine’ entrapped kimberlite melt. In contrast, MMIs are isolated within megacrysts (i.e. not connected to fractures/veins and therefore shielded from post-magmatic fluids) and probably represent entrapped remnants of the variably differentiated kimberlite melt, which was more enriched in alkalis-Cl-S-CO2 than serpentinised polymineralic inclusions and the host rocks exposed at Earth's surface as kimberlites.
DS201905-1018
2019
Bohm, C.O., Hartlaub, R.P., Heaman, L.M., Cates, N., Guitreau, M., Bourdon, B., Roth, A.S.G., Mojzsis, S.J., Blichert-Toft, J.The Assean Lake Complex: ancient crust at the northwestern margin of the Superior Craton, Manitoba, Canada.Earths Oldest Rocks, researchgate.com Chapter 28, 20p. Pdf availableCanada, Manitobacraton

Abstract: This chapter describes the Assean Lake Complex (ALC) at ancient crust at the Northwestern margin of the Superior Craton, Manitoba, and Canada. An initial tectonic model for the Assean Lake area indicated that a regionally extensive high-strain zone running through the lake marks the suture between Archean high-grade crustal terranes of the Superior Craton to the southeast and Paleoproterozoic rocks of the Trans-Hudson Orogen to the northwest. Detailed geologic remapping combined with isotopic and geochemical studies led to a re-interpretation of the crust immediately north of the Assean Lake high-strain zone as Mesoarchean. The study area straddles the boundary between the Archean Superior Craton and the ca.1.90-1.84 Ga arc and marginal basin rocks of the Trans-Hudson Orogen, which represent the remains of ca. 1.83-1.76 Ga ocean closure and orogeny. It is indicated that the gneisses of the Split Lake Block consist primarily of meta-igneous protoliths of gabbroic to granitic composition. Tonalite and granodiorite are the most volumetrically dominant, but an anorthosite dome is also present in the northeast. Mapping, isotopic, and age data combined with high-resolution aero-magnetic data indicate that the Mesoarchean ALC is a crustal slice up to 10 km wide, and has a strike length of at least 50 km.
DS201905-1019
2019
Canil, D., Grundy, R., Johnston, S.T.Thermal history of the Donjek harzburgite massif in ophiolite from Yukon, Canada with implications for the cooling of oceanic mantle lithosphere.Lithos, Vol. 328-329, pp. 33-42.Canada, Yukongeothermometry

Abstract: We examine the partial melting and the cooling history of a ~5?km section of mantle lithosphere preserved in the Donjek massif, part of a Permian ophiolite in the northern Cordillera of Yukon, Canada. The mantle rocks are depleted spinel harzburgite containing <3% clinopyroxene displaying steep rare-earth element (REE) chondrite-normalized profiles and low (Gd/Yb)n (0.02 to 0.07) compared to most other ophiolites. The REE patterns of clinopyroxene can be modeled as 16-20% partial melts of typical depleted mid-ocean ridge (MOR) mantle. The REE exchange between coexisting ortho- and clinopyroxene preserves temperatures (TREE) of 1150-1360?°C, some of the highest values recorded in ophiolites and abyssal peridotites, and show a positive correlation with CaMg exchange (solvus) temperatures (TBKN) of 900-970?°C. The harzburgite represents lithosphere formed at an initial melting temperature of ~ 1350?°C that cooled at rate of 10?1 to 10?4?°C/year as deduced by TREE values with cation diffusion and grain size data. The TREE temperatures and cooling rates for the Donjek massif show a regular systematic variation with depth from the crust-mantle transition along a trend similar to the Samail ophiolite of Oman, consistent with conductive heat transfer beneath a cool lower crust. High near-solidus temperatures and the cooling rates in the massif were a consequence of rapid obduction against oceanic crust along either a transform or low angle detachment soon after melt extraction. Final emplacement of the ophiolite as klippen on underlying continental crust occurred ~ 40?m.y. later.
DS201905-1031
2019
Fulop, A., Kopylova, M., Kurszlaukis, S., Hilchie, L., Ellemers, P.A reply to the comment by Germon et al. on the Petrography of the Snap Lake kimberlite dyke ( Northwest Territories, Canada) and its interaction with country rock granitoids.Journal of Petrology, Vol. 60, 3, pp. 661-671.Canada, Northwest Territoriesdeposit - Snap Lake
DS201905-1033
2019
Giuliani, A., Martin, L.A.J., Soltys,A., Griffin, W.L.Mantle like oxygen isotopes in kimberlites determined by in situ SIMS analyses of zoned olivine.Geochimica et Cosmochimica Acta, in press available, 19p.Africa, South Africa, Canada, South America, Brazildeposit - Lac de Gras, Paranaiba

Abstract: Kimberlites are the deepest melts produced on Earth that are erupted at the surface and can therefore provide unique insights into the composition and evolution of the mantle. Radiogenic isotopes provide ambiguous evidence for the occurrence of recycled crustal material in kimberlite sources. Oxygen isotopes can fractionate significantly only in the shallow crust, and thus represent a powerful tracer of subducted material in the sources of kimberlite. To constrain the oxygen isotope composition of kimberlite melts, we have examined olivine grains in eleven Cretaceous to Eocene archetypal kimberlites from southern Africa, Lac de Gras (Canada) and Alto Paranaiba (Brazil), which exhibit radiogenic isotope evidence for recycled crustal material in their sources including highly radiogenic Pb isotopes and Nd-Hf isotope compositions deviating below the mantle array. Olivine grains are commonly zoned between a mantle-derived xenocrystic core and one or more magmatic overgrowths, i.e. occasional internal zones, ubiquitous rims and rare rinds (moving outward from the core). The oxygen isotope composition of different olivine zones was determined in situ within separated olivine grains by secondary ion mass spectrometry (SIMS) after point selection using back-scattered electron (BSE) images combined with major and minor element analyses. With the exception of a few cores, the ?18O values of different olivine zones do not deviate from typical mantle olivine values of 5.18?±?0.28‰ (Mattey et al., 1994). There are no correlations between oxygen isotopes and major/minor element compositions for internal zones and rims from individual localities or in the entire dataset. This indicates that the oxygen isotope composition of kimberlite melts is not affected by melt differentiation to the point of olivine rim crystallisation. However, olivine rinds from the Koala kimberlite (Canada) display an inverse correlation between ?18O and Mn-Ca concentrations, with ?18O values extending below the mantle range, which is probably due to carbonate fractionation, CO2 degassing and/or assimilation of serpentine-rich material after kimberlite emplacement in the upper crust. The mantle-like ?18O composition of olivine internal zones and rims suggests that assimilation of mantle material and liberation of a CO2-rich phase during ascent in the mantle do not significantly modify the original ?18O signature of kimberlite melts. Modelling of oxygen isotope fractionation shows that up to 15 wt% of CO2 can be lost by kimberlites en route to the upper crust. Our results combined with mass balance calculations indicate that only a limited amount (<5-10 wt%) of recycled crustal material could occur in the source of kimberlites from southern Africa, Lac de Gras and Alto Paranaiba, or that the recycled material had an oxygen isotope composition similar to the mantle.
DS201905-1065
2019
Pappas, S.In diamonds' flaw, finding the secret history of continents. Overview of Smit et al GIA paper.LiveScience.com, Apr. 25, 3p.Africa, Sierra Leone, Canada, Northwest Territoriesdiamond inclusions
DS201905-1073
2019
Reimink, J.R., Pearson, D.G., Shirey, S.B., Carlson, R.W., Ketchum, J.W.F.Onset of new, progressive crustal growth in the central Slave craton at 3.55 Ga.Geochemical Perspective Letters, Vol. 10, pp. 8-13. doi:10.7185/ geochemlet.1907Canada, Northwest Territoriesmagmatism

Abstract: Ancient rock samples are limited, hindering the investigation of the processes operative on the Earth early in its history. Here we present a detailed study of well-exposed crustal remnants in the central Slave craton that formed over a 1 billion year magmatic history. The tonalitic-granodioritic gneisses analysed here are broadly comparable to common suites of rocks found in Archean cratons globally. Zircon Hf isotope data allow us to identify a major change in the way continental crust was formed in this area, with a shift to distinctly positive ?Hf starting at ~3.55 Ga. The crust production processes and spatial distribution of isotopic compositions imply variable interaction with older crust, similar to the relationships seen in modern tectonic settings; specifically, long-lived plate margins. A majority of the Slave craton might have been formed by a similar mechanism.
DS201905-1084
2019
Vasyukova, O.V., Williams-Jones, A.E.Direct measurement of metal concentrations in fluid inclusions, a tale of hydrothermal alteration and REE ore formation from Strange Lake, Canada.Chemical Geology, Vol. 483, pp. 385-396.Canada, OntarioREE

Abstract: Granites and pegmatites in the Strange Lake pluton underwent extreme enrichment in high field strength elements (HFSE), including the rare earth elements (REE). Much of this enrichment took place in the most altered rocks, and is expressed as secondary minerals, showing that hydrothermal fluids played an important role in HFSE concentration. Vasyukova et al. (2016) reconstructed a P-T-X path for the evolution of these fluids and provided evidence that hydrothermal activity was initiated by exsolution of fluid during crystallisation of border zone pegmatites (at ~450-500?°C and 1.1?kbar). This early fluid comprised a high salinity (25?wt% NaCl) aqueous phase and a CH4?+?H2 gas. During cooling, the gas was gradually oxidised, first to higher hydrocarbons (e.g., C2H6, C3H8), and then to CO2, and the salinity decreased to 4?wt% (~250-300?°C), before increasing to 19?wt%, due to fluid-rock interaction (~150?°C). Here, we present crush-leach fluid inclusion data on the concentrations of the REE and major ligands at different stages of the evolution of the fluid. The chondrite-normalised REE profile of the fluid evolved from light REE (La-Nd)-enriched at high temperature (~400?°C, Stages 1-2a) to middle REE (Sm-Er)-enriched at 360 to 250?°C (Stages 2b-3) and strongly heavy REE (Tm-Lu)-enriched at low temperature (150?°C, Stage 5). These changes in the REE distribution were accompanied by changes in the concentrations of major ligands, i.e., Cl? was the dominant ligand in Stages 1, 2, 4 and 5, whereas HCO3? was dominant in Stage 3. Alteration of arfvedsonite to aegirine and/or hematite contributed strongly to the mobilisation of the REE. This alteration released middle REE (MREE) and heavy REE (HREE), which either partitioned into the fluid or precipitated directly as bastnäsite-(Ce), ferri-allanite-(Ce) or gadolinite-(Y). Replacement of primary fluorbritholite-(Ce), which crystallised from an immiscible fluoride melt and altered to bastnäsite-(Ce), was also important in mobilising the REE (MREE). This paper presents the first report of the distribution of the REE in an evolving hydrothermal fluid. Using this distribution, in conjunction with information on the changing physicochemical conditions, the study identifies the sources of REE enrichment, reconstructs the path of REE concentration, and evaluates the REE mineralising capacity of the fluid. Finally, this information is integrated into a predictive model for REE mobilisation applicable not only to Strange Lake but any REE ore-forming system, in which hydrothermal processes were important.
DS201906-1274
2019
Bedard, L.P., Desjardins, D., Matton, G.The importance of syenite enclaves in the evolution of the Saint-Honore alkaline complex.GAC/MAC annual Meeting, 1p. Abstract p. 60.Canada, QuebecCarbonatite

Abstract: The Saint-Honoré alkaline complex located near the Saguenay River (Grenville Province, Québec) has a syenite outer rim and concentric units of calcio-, magnesio- to ferro-carbonatite moving towards the centre. The Mg-carbonatite hosts a niobium deposit, and the Fe-carbonatite hosts a rare earth-rich zone at its centre. The Nb mineralization has a close spatial relationship to the syenite enclaves suggesting that the syenites may have played a critical role in concentrating the pyrochlore (Pcl). There are two forms of Nb mineralization: high- and low-grade. Low-grade mineralization is characterized by highly variable Pcl chemistry with higher U concentrations and a low abundance of fluoroapatite (Ap), whereas high-grade mineralization has a consistent Pcl chemistry (low-U), abundant Ap (with many acicular crystals) and more abundant phlogopite and magnetite. Some of the Pcl crystals have been altered to columbite by hydrothermal processes. It is interpreted that the metamict Pcl (rich in radioactive elements) was altered more readily than the Pcl having undamaged crystal structure. The high-grade mineralization is generally located near the syenite enclaves. Syenite enclaves (from a centimetre scale to several tens of metres in size) reacted with the carbonatite magma to produce a phlogopite rim. Ap is also abundant along the immediate contact between the enclaves and Mg-carbonatite. Large enclaves show hydro-fracturing by the carbonatite suggesting they were crystalline enough to be brittle. There are smaller textures (3-6 mm in diameter) that share many similarities with the syenite enclaves; however, these textures are rounded and could be interpreted as being related to liquid immiscibility. The interaction of carbonatite magma with syenite enclaves is interpreted to have started with abundant crystallization of acicular Ap which depleted the magma in F and lowered the magma's Nb-solubility. Pcl then crystallized in abundance in the vicinity of the syenite enclaves to create the economic Nb-rich zone.
DS201906-1280
2019
Campbell, D., Zurevinski, S., Elliott, B.Geochemistry and glacial dispersal patterns of kimberlite indicator minerals in the south Slave province, NT.GAC/MAC annual Meeting, 1p. Abstract p. 68.Canada, Northwest Territoriesgeochemistry

Abstract: Drift prospecting has been utilized throughout the Slave Province in the Northwest Territories for decades, where glaciation and erosion within the past 10 000 years has produced the dispersion of minerals from their original host to till in their surrounding areas. This study is part of the greater Slave Province geophysical, surficial materials and permafrost study: a Northwest Territories Geological Survey (NTGS) led government-academic-industry research program. The purpose of this particular research is to assess kimberlite indicator minerals (KIMs) for any potential signature that may coincide with glacial dispersal trains through quantitative mineralogical and geochemical analysis. The NTGS has recently published data on Southern Slave Province surficial materials, which is useful as a comparative tool in the analysis of potential dispersal trains. Samples were collected from surficial sediment at various targets throughout the 75N and M NTS zones. Sample locations were chosen based on their down-ice position with respect to known kimberlites and gravity anomalies previously identified by the NTGS. Samples were preferentially collected from active and recently inactive frost boils. Overall, twenty-one 10 kg samples were collected and examined for KIMs. Several samples contain KIMs in moderate to high concentrations. Positive identifications of Cr-pyrope, chromite, Mg-ilmenite, and Cr-diopside have been confirmed in preliminary analysis. Of the identified KIMs garnet is the most abundant at 78 %, followed by chromite at 13 %, ilmenite at 8.9 %, and Cr-diopside at 0.5 %. Quantitative analyses are reported on confirmed KIMs: Cr-pyrope, Mg-ilmenite, Cr-diopside, chromite, and olivine for each sample site. The results of the analyses will be used to make further insights into till and kimberlite geochemistry of the Southern Slave Province.
DS201906-1281
2019
Chakhmouradian, A., Reid, K.Wekusko Lake dikes ( central Manitoba): long -overdue kimberlites, oddball carbonatites, or "a missing link?"GAC/MAC annual Meeting, 1p. Abstract p. 70.Canada, ManitobaCarbonatite

Abstract: Manitoba, with its 400 000 km2 of exposed Precambrian basement, remains the most conspicuous "white spot" on the map of Canadian kimberlites. The apparent absence of these rocks from the regional geological record seems all the more paradoxical, given the existence of large Phanerozoic kimberlite fields just across the provincial border in eastern Saskatchewan, and abundant evidence of mantle-derived carbonate-rich magmatism (carbonatites and ultramafic lamprophyres) across central Manitoba. Interestingly, rocks of this type were first identified in the Province in 1983 at Wekusko Lake, where they crosscut supracrustal assemblages of the Paleoproterozoic Flin Flon belt, and were tentatively logged as kimberlites. This interpretation, based to a large extent on their high Cr + Ni contents and the presence of indicator minerals in their modal composition, was challenged in subsequent research. Similar rocks have been recognized recently in similar settings south of Wekusko Lake. These discoveries expanded not only the area of known post-Paleoproterozoic mantle magmatism, but also the petrographic and geochemical spectrum of its products. The primary carbonate phase in these rocks is dolomite that shows a variable degree of subsolidus isotopic re-equilibration under CO2-rich conditions. Fluid-rock interaction was also responsible for the replacement of olivine, phlogopite and groundmass perovskite by secondary minerals and deposition of hydrothermal carbonates in fractures, although the relative timing of these processes with respect to dike emplacement is poorly understood at present. Notably, indicator minerals indistinguishable from those in bona fide kimberlites are common in all of the examined dikes. These recent discoveries may hold key to understanding the genetic relations between kimberlites and primitive carbonatites, and have practical implications for heavy-mineral-based diamond exploration.
DS201906-1286
2019
Cone, D., Kopylova, M., Swerjensky, D.Determining the origin of megacrysts from the Muskox kimberlite pipe, northwest Canada.GAC/MAC annual Meeting, 1p. Abstract p. 73.Canada, Northwest Territoriesdeposit - Muskox

Abstract: Megacrysts are mineral grains of garnet, clinopyroxene, orthopyroxene, ilmenite, olivine, phlogopite and zircon larger than 10 mm frequently observed in kimberlite occurrences across the world, with reported sizes commonly exceeding 10 cm. Despite their common occurrence and decades of research into their origin, megacryst petrogenesis is still a debated topic amongst petrologists. A strictly phenocrystal origin is doubted, with recent research suggesting a multi-stage model involving isobaric formation over a wide temperature range, followed by metasomatism of a protokimberlite fluid that replaces mantle minerals. Our project aims to contribute to ongoing research by modeling the metasomatism of the ambient peridotitic mantle affected by the fluid using major and trace element data obtained from megacrysts from the Jurassic Muskox kimberlite pipe of the Slave province of Canada. We report major element compositions of 24 megacryst samples of garnet, olivine, clinopyroxene and ilmenite and employ DEW (Deep Earth Water) modelling to establish the composition of the potential metasomatizing agent and mineral trends that result from the mantle metasomatism. This project has important implications for not only constraining the composition of the source fluids, but also understanding the reactions in the cratonic mantle leading to the kimberlite melt formation.
DS201906-1292
2019
Frost, B.B., Frost, C.The Wyoming province, a long-lived craton on the periphery of Laurentia.GAC/MAC annual Meeting, 1p. Abstract p. 91.United States, Canadacraton

Abstract: The Wyoming craton is one of the three cratons, Wyoming, Slave, and Nain, with Hadean roots that lie on the margins of Laurentia. The Wyoming and Slave provinces show many similarities, most notably a widespread supracrustal sequence that formed around 2.86 Ga. It is possible that the two cratons rifted apart at 2.86 Ga and docked onto Laurentia as separate entities in the Paleoproterozoic. The Wyoming province is characterized by elevated 207Pb/204Pb indicative of cratons that have a Hadean origin. The earliest rocks contain 3.8 to 4.0 Ga detrital and xenocrystic zircon grains. The 3.82 Ga xenocrystic zircon grains from 3.4 Ga tonalitic gneisses in the Granite Mountains have Hf isotopic compositions requiring Hadean precursors. The transition from tonalitic to granodioritic plutonism is diachronous; it occurs around 3.3 Ga in the Granite Mountains and around 2.85 Ga in the Bighorn Mountains. Granitic plutonism since 2.85 Ga is dominantly magnesian and calc-alkalic, compositionally identical to Phanerozoic arc magmas. The Teton Range, on the western margin of the province, records the earliest Himalayan orogeny on Earth at 2.7 Ga, further evidence that much of the Wyoming Province was constructed by processes similar to those operating in the Phanerozoic. The latest structural and metamorphic event in the evolution of the craton was accretion of crustal fragments along structures that trend broadly NE-SW at 2.62 Ga. The latest major magmatic event was the intrusion of the peraluminous granites of the Mount Owen batholith in the Teton Range at 2.55 Ga. The Wyoming craton was accreted to Laurentia in the Paleoproterozoic, probably during the later stages of the Trans-Hudson orogeny.
DS201906-1299
2019
Hagedorn, G., Ross, M., Paulen, R., Smith, R., Neudorf, C., Gingerich, T., Lian, O.Ice-flow and deglacial history of the Laurentide Ice sheet in the southwestern Great Slave Lake area.GAC/MAC annual Meeting, 1p. Abstract p. 102.Canada, Northwest Territoriesgeomorphology

Abstract: Limited field studies and sparse chronological constraints in the southwestern Great Slave Lake area creates uncertainties about the Laurentide Ice Sheet (LIS) flow history and deglacial chronology. Improved understanding of the western LIS ice-margin morphology and retreat history is required to refine larger ice-sheet interpretations and timing for northwest drainage of glacial Lake McConnell. Using new field observations and geochronology we establish ice-flow history and better constrain regional deglaciation. Paleo-ice flow indicators (n = 66) show an oldest southwestern flow (230°), an intermediate northwesterly flow (305°), and a youngest westerly flow (250°). Till samples bulk sediment and matrix properties (n = 160) allowed identification of two till units. A lower grey till sourced mainly from local Paleozoic sediments produced clast fabrics indicating a southwesterly flow direction, overlain by a brown till that contained an increased Canadian Shield content with lodged elongate boulders a-axes and boulder-top striation orientations indicating a west to northwest ice-flow direction. Ice-flow results show a clockwise shift in direction interpreted as evidence for ice-divide migration followed by topographically controlled deglacial westward flow influenced by the Mackenzie River valley. Minimum deglacial timing estimates were constrained through optical dating of fine-sand deposits in a well-developed strandline (n = 2) and seven aeolian dunes; ages range from 9.9 ± 0.6 to 10.8 ± 0.7 ka BP. These ages are from dunes located below glacial Lake McConnell maximum water level and may thus provide new local lake level age constraints. Ice retreat is informed by a newly-mapped segment of the Snake River moraine, which is an understudied feature in the region. New ice-flow history and ice-margin retreat interpretations will be integrated into the larger body of work on the western LIS providing more confident conclusions on ice-sheet evolution and meltwater drainage pathways, specifically in the southwestern Great Slave Lake area.
DS201906-1300
2019
Harms, T., Baldwin, J.Paleoproterozoic metasupracrustal suites on the NW flank of the Wyoming province: the stories they do and do not tell about an evolving continent.GAC/MAC annual Meeting, 1p. Abstract p. 103.United States, Canadacraton

Abstract: Metasupracrustal sequences interlayered with quartzofeldspathic gneisses distinguish the Montana Metasedimentary terrane on the NW flank of the Wyoming Province (WP). Early thinking correlated marble-bearing suites and considered them younger than carbonate-absent sequences, promoting models of WP continental crust evolution toward thick lithosphere supporting a stable marine platform in the period ~ 3.5-2.5 Ga. Metasupracrustal suite depositional ages constrained by (1) detrital zircons; (2) times of metamorphism; and (3) cross-cutting meta-igneous rocks now indicate a more complex pattern of tectonic environments along the NW margin of the WP. Carbonate-bearing metasupracrustal suites in the Tobacco Root Mountains and Ruby Range include marble, amphibolite, orthoamphibolite, pelitic gneiss, quartzite, and iron formation. Detrital zircons constrain the protolith age to 2.45 Ga. Interlayered quartzofeldspathic gneiss with calc-alkaline geochemistry were previously interpreted as suggesting a continental fringing arc superimposed on Archean basement. An episode of metamorphism and anatexis followed at 2.45 Ga, demonstrated by metamorphic monazite and intrusive ages of cross-cutting mylonitic leucogneiss. We interpret this to be a time of collision along the NW WP. Cross-cutting mafic sills and dikes suggest continental rifting at 2.06 Ga. Diverse metasupracrustal suites whose protoliths must be 1.8 Ga occur in the Ruby, Tobacco Root, and Highland mountains. A carbonate-absent suite of amphibolite, orthoamphibolite, pelitic schist and quartzite in the Tobacco Root Mountains represents oceanic crust, while aluminous schist and interlayered amphibolite in the Highland Mountains are consistent with a back-arc basin setting. The Ruby Range suite includes prominent marble, amphibolite, orthoamphibolite, pelitic schist, quartzite and iron formation and may represent a second, post-rift carbonate platform facing that basin. These suites collapsed against the WP during the 1.78-1.72 Ga Big Sky orogeny as a consequence of subduction directed beneath the WP.
DS201906-1301
2019
Higgins, M., Bedard, L.P., dos Santos, E., Vander Auwera, J.Lamprophyres, carbonatites and phoscorites of the Saguenay City alkali province, Quebec, CanadaGAC/MAC annual Meeting, 1p. Abstract p. 108.Canada, QuebecCcrbonatite

Abstract: The Saguenay City alkali province (~ 580 Ma) comprises the Saint-Honoré alkaline complex (carbonatite-syenite), lesser-known minor subsurface carbonatite intrusions and several sets of lamprophyre (sl) dykes. Flat-lying, north-dipping dykes (l-100 cm) that crop out close the Saguenay River/Fjord were formed by multiple intrusions of a very fluid magma. The dykes are continuously variable in composition from carbonatite to ultramafic lamprophyre. Olivine phenocrysts (l-3 mm) are pseudomorphed by serpentine but phlogopite phenocrysts (l-5 mm) are well preserved in a matrix of a fine-grained serpentine, chlorite and carbonate. A few dykes are phoscorites, with abundant phenocrysts of phlogopite, oxides, apatite and accessory baddeleyite. In all dykes, the matrix may have been originally fine-grained or even glassy, and subsequently altered by water dissolved in the original magma. Several dykes contain abundant xenoliths: mostly crustal and possibly one of mantle origin. Low-carbonate dykes have a narrow range in Sr isotopes (0.7030-0.7033) versus the wider range of high-carbonate dykes (0.7032-0.7046), but this distinction is not seen in ?Nd (3.4-4.9). Overall, it appears that each batch of magma was small and came from independent mantle sources. Recently, we found a new set of vertical, NW-directed lamprophyres around the Baie des Ha! Ha!, about 15 km south of the main swarm. They have phlogopite phenocrysts to 50 mm and olivine pseudomorphs. Their contrasting orientation suggests that they have a different age to the Saguenay River dykes, but they have yet to be dated. The overall pattern is of an extensive mantle source that delivered small volumes of volatile-rich ultramafic magmas over a long period. We consider that some of these magma batches accumulated and differentiated in a magma chamber beneath the Saint-Honoré alkaline complex, whereas others rose uninterrupted to high levels of the crust where they were emplaced as dykes.
DS201906-1305
2019
Kopylova, M., Tso, E., Ma, F., Liu, J., Pearson, D.G.From regional to local metasomatism in the peridotitic mantle of the Chidliak kimberlite province ( Southern Baffin Island).GAC/MAC annual Meeting, 1p. Abstract p. 124.Canada, Baffin Islanddeposit - Chidliak

Abstract: We studied the petrography, mineralogy, thermobarometry and whole rock chemistry of 120 peridotite and pyroxenite xenoliths collected from the 156 - 138 Ma Chidliak kimberlites CH-1, -6, -7 and -44. The xenoliths have higher CaO contents relative to Al2O3, and high Al for a given Mg/Si ratio compared to other cratonic peridotites. We assign the complex Ca-Al systematics of the Chidliak peridotites to repeated episodes of Ca-rich, Si-poor metasomatism, which introduced clinopyroxene and garnet, and later replaced orthopyroxene and clinopyroxene with secondary clinopyroxene and monticellite. This carbonatitic metasomatism, manifest in formation of wehrlites, acted upon the entire sampled mantle depth on a regional scale, including the proximal blocks of the North Atlantic Craton and the Chidliak mantle, where clinopyroxene and garnet modes are uniformly and heterogeneously high in the ~ 110 km deep mantle segment. Another, more recent type of mantle metasomatism, is expressed as elevated Ti in clinopyroxene and elevated Na and Ti in garnet, typical of sheared peridotites from CH-1, -7, and -44, but absent from CH-6 xenolith suite. The Ti-Na imprint is most intense in xenoliths derived from depths equivalent to 5.5 to 6.5 GPa, where it is associated with higher strain, the presence of sheared peridotites and higher temperatures varying isobarically by up to 200 °C. The horizontal scale of the thermal-metasomatic imprint is more ambiguous and could be as regional as 10's of kilometers or as local as < 1 km. The latter is constrained by the varied abundance of Ti-enriched garnets within a single kimberlite. The time-scale of this metasomatism relates to a conductive length-scale and could be as short as 100's ka, shortly predating the kimberlite formation. The Ti-Na, megacryst-like metasomatism may have resulted from a highly localized influx of hot hydrous proto-kimberlite fluids that weakened the mantle and triggered the formation of sheared peridotites.
DS201906-1309
2019
Lab notesThe largest diamond ever discovered in North America 552.7 ct. DiavikGems & Gemology, Vol. 55, 1, p. 91-2.Canada, Northwest Territoriesdeposit - Diavik

Abstract: In October 2018, a diamond weighing a remarkable 552.7 ct was recovered from the Diavik mine in Canada. This is by far the largest known gem diamond found to date in North America. It is nearly three times larger than the 187.63 ct Diavik Foxfire which was unearthed from the same mine in August 2015, and about twice the size of a 271 ct white diamond mined from the Victor mine in Canada. GIA’s New York laboratory had the opportunity to examine this notable diamond in late January 2019, before it went on public display at the Phillips Auctions in New York...(no abstract, full article)
DS201906-1321
2019
Matte, S., Stevenson, R., Constantin, M.Metallogeny, mineralogy and isotopic geochemistry of the Kipawa rare earth deposit: genetic implications and comparison with other rare earth deposits in peralkaline syenites.GAC/MAC annual Meeting, 1p. Abstract p. 140.Canada, Quebecdeposit - Kipawa

Abstract: We propose to study the Kipawa peralkaline complex, a rare-earth deposit principally composed of eudialyte, mosandrite and britholite. The Kipawa complex is situated in the Parautochton zone of the Grenville Province in the Tesmiscamingue region of Quebec, 55 km south of contact with Superior Province. The complex consists of peralkaline syenites, amphibolites, gneisses that are intercalated with calc-silicate rocks and marble, and overlain by a peralkaline gneissic granite. The Kipawa complex differs geochemically and petrologically from other well-known peralkaline complexes such as the Illimausaq, Lovozero, Thor Lake or Strange Lake complexes. Classic peralkaline complexes are large, circular igneous complexes, with or without volcanism and have an isotopic signature reflecting mantle origin with different degrees of assimilation and crustal contamination (for example Illimausaq is reported with ?Nd values of 0.4 and -5.7). The Kipawa Complex is a thin, folded stack of sheet imbricates between Kikwissi Suite rocks, McKillop Lake sequence and Red Pine Chute gneiss, suggesting a regional tectonic control. Isotopic analyses carried out by other teamsindicate a strong crustal signature (?Nd = -8.7). Several hypotheses are possible: crustal contamination, hydrothermal activity, fluids alteration during formation, metamorphism or dominant crustal origin. Our objective is to characterize the geochemical and isotopic composition of the Kipawa complex in order to improve our understanding of the age and formation of the complex. Analyses of both whole rocks, eudialytes and zircons will be made to obtain isotopic signatures and determine formation ages and/or post-formation processes.
DS201906-1322
2019
McCausland, P., Higgins, M., LeCheminant, A., Jourdan, F., Hamilton, M., Murphy, J.B.Laurentia during the mid-Edicacaran: paleomagnetism and 580 Ma age of the Saint Honore alkali intrusion and related dykes, Quebec. GAC/MAC annual Meeting, 1p. Abstract p. 141.Canada, Quebecdeposit - Saint Honore

Abstract: We sampled the mid-Ediacaran Saint-Honoré alkali intrusion and related dykes in the Saguenay City region of Québec for paleomagnetic and U-Pb, 40Ar/39Ar geochonologic study. 40Ar/39Ar geochronology of phlogopite separates from carbonatite of the central intrusion return plateau ages with a weighted mean of 578.3 ± 3.5 Ma. Baddeleyite from a phoscorite dyke provides a concordant age of 580.25 ± 0.87 Ma for the crystallization of the dykes associated with the St-Honoré intrusive complex. Paleomagnetic results from the intrusion itself and related carbonatite and lamprophyre dykes exhibit some streaking between higher to moderate inclination directions, even at the site level, after screening to remove a steep, present-day viscous remanence. The predominant St-Honoré mean direction (13 sites), which is primary (baked contact test on the host Lac St-Jean anorthosite), is D = 119, I = 72.3°; ?95 = 9.5°, retained at higher coercivity and to high unblocking temperatures by titanomagnetite. Assuming a geocentric axial dipole, this result places the St. Honoré locality at 57° S at ~ 580 Ma, implying that Laurentia straddled mid-paleolatitudes at that time. Notably, the paleopole location at 27.2° N, 320.7 E (dp = 15°, dm = 17°) is consistent with similar mid-Ediacaran age paleopoles which place Laurentia at mid- to high paleolatitudes. The Saint-Honoré result implies that Laurentia had moved from low latitude in the early Ediacaran to higher southern paleolatitudes by 580-570 Ma, and then back to low paleolatitudes by as early as 564 Ma. Viewed as apparent polar wander (APW), this motion traces an 'Ediacaran loop' that can also be seen in similar-aged paleomagnetic results from at least two other paleocontinents. The similar APW loops suggest a role for true polar wander in Ediacaran geodynamics, and perhaps help to define a longitudinally-constrained global Ediacaran paleogeography.
DS201906-1324
2019
Mitchell, R., Wahl, R., Cohen, A.The Good Hope carbonatite, Ontario: a potential Nb deposit with pyrochlore-apatite cumulates.GAC/MAC annual Meeting, 1p. Abstract p. 145.Canada, Ontariodeposit - Good Hope

Abstract: The Good Hope carbonatite is located adjacent to the Prairie Lake ijolite-malignite-calcite carbonatite complex in northwestern Ontario. The carbonatite is a breccia consisting of diverse calcite and dolomite carbonatites, with lesser REE-rich ferrocarbonatites, containing xenoliths of amphibole syenite, potassium feldspar+phlogopite and pyrochlore-apatite cumulates. The occurrence outcrops over an area of 500 m x 500 m and has been proven by diamond drilling to extend to a minimum depth of 650 m. Pyrochlore-apatite cumulates occur as elongated and/or irregular clasts up to 5 cm in maximum dimension. In these, pyrochlore has crystallized before apatite and occurs as euhedral crystals (0.1-1 cm; up to 5 cm) and can comprise up to ca. 25 vol % of a clast. Prismatic apatite is commonly flow-aligned and in some instances forms isoclinal folds. The apatite does not exhibit optical- or BSE-compositional zonation. However, cathodoluminescence imagery shows blue-green cores with thin (< 500 ?m) blue margins. The cores are enriched in light REE (833-941 ppm La; 1790-2200 ppm Ce; 8.2-13.6 Yb ppm; (La/Yb)CN 62-42. The pyrochlores are Na-Ca-F-pyrochlore of relatively-uniform composition with fully-occupied A-sites, and minor SrO (l-1.5 wt %) and low Ta2O5 (< 0.5 wt %). Some pyrochlores have irregular cores of resorbed Sr-bearing (6-11 wt % SrO) pyrochlore with overgrowths of Na-Ca-F-pyrochlore. Others contain inclusions of fersmite and/or columbite-(Fe). Pyrochlore also occurs as discrete crystals in calcite and dolomite hosts and represents disaggregated clasts. In accord with experimental data on the liquidus phase relationships of apatite and pyrochlore in haplocarbonatite melts the formation of apatite-pyrochlore cumulates in the initial stages of crystallization of such melts is to be expected. These cumulates were subsequently disrupted, disaggregated, and transported by pulses of later batches of carbonatite of diverse composition.
DS201906-1331
2019
Niyazova, S., Kopylova, M., de Stefano, A.Metamorphism and metasomatism of felsic xenoliths in kimberlitesGAC/MAC annual Meeting, 1p. Abstract p. 151.Canada, Quebecdeposit - Renard 65

Abstract: Kimberlites often entrain crustal felsic xenoliths, which show alteration and metamorphism as a result of interaction with the host kimberlite. We studied granite and gneiss xenoliths in the Renard 65 kimberlite pipe (Northern Québec, Canada). The study comprised a detailed petrographic examination of 45 thin sections, a scanning electron microscopy and an X-ray powder diffractometry of a sample sub-set. Two major units of the Renard 65 pipe (Unit A and Unit B/D) distinguished by abundance of crustal xenoliths along with the degree of their alteration, were investigated. Unit A is a volcaniclastic kimberlite with 40-90 % xenoliths, whereas Unit B/D is a hypabyssal kimberlite with textures transitional to pyroclastic, containing 15-40 % more intensely altered xenoliths. Both units carry xenoliths of coarse-grained leucogranite (K-feldspar, plagioclase, quartz, biotite with accessory garnet, apatite, and zircon) and medium-grained gneiss (plagioclase, quartz, biotite, orthopyroxene with accessory garnet, apatite and zircon). The Unit A xenoliths are partially replaced by chlorite, sericite, epidote, serpentine, richterite, actinolite and clinochlore vermiculite. In Unit B/D four distinct metamorphic and metasomatic mineral assemblages almost completely replace xenoliths. The assemblages include aegirine, pectolite, garnet, wollastonite, xonotlite, prehnite, calcite, K-feldspar and richterite in various proportions. Secondary K-feldspar and calcite may indicate the granite protolith, whereas wollastonite may be the signature of the gneiss protolith. The presence of secondary garnet and wollastonite, the hallmark skarn minerals, suggests the analogy between the classical skarn geological processes at the contact between felsic rocks and the host hot carbonate-rich melts. The observed mineralogy of the Renard 65 felsic xenoliths will be compared with the theoretically predicted mineralogy modelled using Theriak-Domino or Perplex software for the known bulk hybrid kimberlite compositions. The comparison will enable constraints on temperatures, volatile contents and thermal history of the kimberlite melt during emplacement.
DS201906-1332
2019
Paulen, R., Smith, R., Ross, M., Hagedorn, G., Rice, J.Ice-flow history of the Laurentide Ice sheet in the southwestern Great Slave Lake area, a shield to Cordillera transect.GAC/MAC annual Meeting, 1p. Abstract p. 156. Canada, Northwest Territoriesgeomorphology

Abstract: Fieldwork conducted since 2010 by the Geological Survey of Canada under the GEM programs has revealed a more complex glacial history of the southern Great Slave Lake region of the Northwest Territories than was previously reported. New reconstructions of the Laurentide Ice Sheet paleo-ice flow history have been established from field observations of erosional and/or depositional ice-flow indicators (e.g. striae, bedrock grooves, till clast fabrics, and streamlined landforms), new geochronological constraints, and interpretations of glacial stratigraphy. Three distinct ice-flow phases are consistently observed in areas proximal to the western margin of the Canadian Shield between the Slave River near Fort Smith and Hay River further west. These phases are: 1) an oldest southwest flow; 2) a long-term sustained ice flow to the northwest; and, 3) a youngest west-southwest flow during Late Wisconsin deglaciation, which includes extensions of the Great Slave Lake and Hay River ice streams further east than previous mapped. At Hay River approaching the eastern limit of soft Cretaceous bedrock of the Western Canada Sedimentary Basin, the ice flow pattern no longer shows the aforementioned consistent chronology. From Hay River to the Liard River, near the zone where the Laurentide and Cordilleran ice sheet coalesced, a thinning ice profile, topographic highlands such as the Cameron Hills and Horn Plateau, and the deep basin that Great Slave Lake currently occupies, played a significant role on the dynamics of the Laurentide Ice Sheet during early ice advance, retreat during Marine Isotope Stage 3, Late Wisconsin advance and deglaciation. Other factors, such as increased sediment supply and clay content from Cretaceous shale bedrock were also significant in influencing ice-sheet behaviour. The role of elevated porewater pressures over subglacial clay-rich sediments controlled the extent and dynamics of several discordant ice streams in upland and lowland regions within the study area.
DS201906-1344
2019
Savard, J., Mitchell, R.Petrology of ijolites from the Prairie Lake carbonatite complex.GAC/MAC annual Meeting, 1p. Abstract p. 171.Canada, Ontariodeposit - Prairie Lake

Abstract: This study investigates the major and trace element composition of minerals of the ijolite series rocks occurring at the Prairie Lake Carbonatite Complex, northern Ontario, together with comparative data with ijolites from the Fen complex, Norway. Trace element data (Sr, Zr, REE) were collected by LA-ICP-MS for clinopyroxene, garnet, and apatite, and in conjunction with the major element data are used to develop a petrogenetic model for Prairie Lake. The ijolites and calcite ijolites (hollaites) of Prairie Lake Carbonatite Complex have been formed by magma mixing, crystal settling, solid-state deformation, and deuteric alteration. The complex represents at least three stages of intrusion by melts of differing composition. The initial stage is predominantly biotite pyroxenite and associated coarse carbonatite veins. The second stage is primarily members of the ijolite series together with solid state deformation creating meta-ijolites, with differentiation forming malignites (potassic nepheline syenites). The third major stage is the intrusion of the CII carbonatites derived from different batches of magmas. These rocks contain xenoliths of ijolite suite rocks and phoscorites. Pyroxene compositions show an evolutionary trend from diopside in biotite pyroxenites to Fe enriched diopside-augite in ijolites, to aegirine in malignites. These data are used to show that a continuously filled fractionating magma chamber was not present at Prairie lake and that the complex formed as result of small intrusions of nephelinite into pre-existing ijolites. A similar style of petrogenesis is suggested for the Fen complex.
DS201906-1352
2019
Stirling, R., Kelley, S., Ross, M., Elliott, B., Normandeau, P.Contrasting till dispersal patterns from kimberlites, southeast of Lac de Gras, Northwest Territories.GAC/MAC annual Meeting, 1p. Abstract p. 178.Canada, Northwest Territoriesgeochemistry, geomorphology

Abstract: Complex ice flow history, variable bedrock topography, landform types, and drift thickness may lead to complex glacial sediment dispersal patterns that are difficult to interpret, with implications for subglacial sediment provenance and related ice sheet research, as well as for mineral (drift) exploration. This study investigates the controls of bedrock topography, drift thickness, and landforms on 3D dispersal patterns in two study areas located southeast of Lac de Gras, Northwest Territories. The two areas are situated only about 25 km apart and have a similar ice flow history (clockwise shift from SW to NW). However, study area #1 hosts kimberlites within low topographic relief, while area #2 hosts kimberlites on a small granitic hill. The distribution and type of sediment-landform assemblages, as well as drift thickness, also differ between the two areas. Sediment characteristics, matrix geochemistry, and kimberlite indicator minerals (KIM) from surficial samples (n = 51) were analyzed and compared with a sample subset (n = 2000, from 250 boreholes) from a large RC drilling dataset donated by industry. Digital elevation models and a surficial geology map were also used. Results show contrasting patterns between the two areas, despite a similar ice flow record. Area #1 has a well-developed, yet fragmented 3D dispersal train consistent with the clockwise ice flow shift record. Area #2's dispersal patterns are less clearly-defined and appear unrelated or only weakly related to the known local source within the granitic hill. We find relationships between: 1) the strength of dispersal patterns and the bedrock topography in the kimberlitic source area; and, 2) the dispersal style and 3D shape within sediment-landform landsystems. These relationships have implications for drift prospecting survey design, as well as the interpretation of dispersal train patterns.
DS201906-1358
2019
Veglio, C., Lawley, C., Kjarsgaard, B., Pearson, D.G.Behaviour of ore forming elements in the subcontinental lithospheric mantle below the Slave craton.GAC/MAC annual Meeting, 1p. Abstract p. 187.Canada, Northwest Territoriesdeposit - Jericho, Muskox

Abstract: The fertility of the subcontinental lithospheric mantle as source for metal-rich magmas remains poorly understood. We report new major (EPMA), minor and trace element (LA-ICP-MS) results for olivine mantle xenocrysts sourced from the Jurassic age Jericho, Muskox and Voyageur kimberlites, western Nunavut in the Slave Craton, approximately 30 km north of the Lupin gold mine. Target elements include a suite of ore-forming elements that are unconventional for mantle petrology studies, but may represent important geochemical tracers for metal metasomatism. Using single-grain aluminum-in-olivine thermometry, formation temperatures for the olivine grains were calculated and projected on to a mantle geotherm to estimate PT conditions. The suite of xenocrysts corresponds to mantle sampling between 100-190 km depth. Their range in Mg# indicates that all 3 kimberlites sampled variably depleted mantle peridotite. The patterns of trace element enrichments found are consistent with those documented previously for mantle olivine xenocryst samples from the lithosphere below the Superior Craton in Kirkland Lake, Ontario. In both studies, some ore-forming elements were found to partition into mantle silicates more at the higher temperatures and pressure prevalent at the base of the lithospheric mantle, notably copper, with concentrations varying from ~ 1 ppm in shallow samples up to 11 ppm at the maximum depth sampled. Because the concentration of metals in melt-depleted lithospheric peridotite is expected to be low (< 20 ppm Cu), mantle silicates likely become a significant host for some ore elements at depth. Highly incompatible high field strength elements yield decreasing concentrations with depth, possibly the result of mantle metasomatic processes. Fluid metasomatized mantle peridotite domains are also inferred from olivine xenocrysts that yield unexpected trace element concentrations (ppb to ppm) for other highly incompatible ore-elements (e.g. As, Mo). We expect that some of these fluid-mobile and highly incompatible ore-elements represent trapped fluid and/or melt inclusions.
DS201906-1365
2019
Zhang, W., Johnston, S.T., Currie, C.A.Kimberlite magmatism induced by west-dipping subduction of the North American plate.Geology, Vol. 47, pp. 395-398.United States, Canadasubduction

Abstract: Kimberlite magmas are volatile-rich, potassic, and ultramafic, and they are host to most of the world’s diamond deposits. A continental-scale kimberlite magmatic belt (the central Cretaceous kimberlite corridor [CCKC]) is found in the interior of the North American continent. Parallel to and coeval with the CCKC, the Cretaceous Omineca magmatic belt (OMB) is located in the Cordilleran orogen. Cordilleran magmatism, including the OMB, is commonly explained through long-lived east-dipping subduction beneath the western margin of the continent. However, this does not explain the temporal and spatial relationships between the OMB and CCKC. We suggest that west-dipping subduction of North American lithosphere beneath the eastern side of the Cordillera explains both. In this model, subduction resulted in arc magmatism of the OMB. The contemporaneous CCKC was formed by extensional stress acting on the continent as it flexed upon entry into the trench. Using a semi-infinite elastic beam model, we show that flexure of a subducting continental plate (elastic thickness = 120 km) produces tensile stresses in the deep continental lithosphere, coincident with the location of the CCKC.
DS201907-1524
2019
Anzolini, C., Wang, F., Harris, G.A., Locock, A.J., Zhang, D., Nestola, F., Peruzzo, L., Jacobsen, S.D., Pearson, D.G.Nixonite, Na2Ti6O13, a new mineral from a metasomatized mantle garnet pyroxenite from the western Rae Craton, Darby kimberlite field, Canada.American Mineralogist, in press available 26p.Canada, Nunavutdeposit - Darby

Abstract: Nixonite (IMA 2018-133), ideally Na2Ti6O13, is a new mineral found within a heavily-metasomatized pyroxenite xenolith from the Darby kimberlite field, beneath the west central Rae Craton, Canada. It occurs as microcrystalline aggregates, 15 to 40 ?m in length. Nixonite is isostructural with jeppeite, K2Ti6O13, with a structure consisting of edge- and corner-shared titanium-centered octahedra that enclose alkali-metal ions. The Mohs hardness is estimated to be between 5 and 6 by comparison to jeppeite and the calculated density is 3.51(1) g/cm3. Electron microprobe wavelength-dispersive spectroscopic analysis (average of 6 points) yielded: Na2O 6.87, K2O 5.67 CaO 0.57, TiO2 84.99, V2O3 0.31, Cr2O3 0.04, MnO 0.01, Fe2O3 0.26, SrO 0.07, total 98.79 wt%. The empirical formula, based on 13 O atoms, is: (Na1.24K0.67Ca0.06)?1.97(Ti5.96V0.023Fe0.018)?6.00O13 with minor amounts of Cr and Mn. Nixonite is monoclinic, space group C2/m, with unit-cell parameters a = 15.3632(26) Å, b = 3.7782(7) Å, c = 9.1266(15) Å, ? = 99.35(15)º and V = 522.72(1) Å3, Z = 2. Based on the average of seven integrated multi-grain diffraction images, the strongest diffraction lines are [dobs in Å (I in %) (h k l)]: 3.02 (100) (3 1 0) , 3.66 (75) (1 1 0), 7.57 (73) (2 0 0), 6.31 (68) (2 0 -1), 2.96 (63) (3 1 -1), 2.96 (63) (2 0 -3) and 2.71 (62) (4 0 2). The five main Raman peaks of nixonite, in order of decreasing intensity, are at: 863, 280, 664, 135 and 113 cm-1. Nixonite is named after Peter H. Nixon, a renowned scientist in the field of kimberlites and mantle xenoliths. Nixonite occurs within a pyroxenite xenolith in a kimberlite, in association with rutile, priderite, perovskite, freudenbergite and ilmenite. This complex Na-K-Ti rich metasomatic mineral assemblage may have been produced by a fractionated Na-rich kimberlitic melt that infiltrated a mantle-derived garnet pyroxenite and reacted with rutile during kimberlite crystallization.
DS201907-1525
2019
Aulbach, S., Symes, C., Chacko, T.Elemental and radiogenic isotope perspective on formation and transformation of cratonic lower crust: Central Slave craton ( Canada). DiavikGeochimica et Cosmochimica Acta, in press available, 42p.Canada, Northwest Territoriesdeposit -Diavik A154 N & S

Abstract: Kimberlite-borne granulite xenoliths provide rare insights into the age, chemical composition and tectonothermal evolution of the otherwise largely inaccessible deep cratonic crust. The formation and transformation of the lower continental crust (LCC) beneath the central Slave craton (Canada) is here illuminated using whole-rock trace-element and Sr-Nd isotope compositions of nine metabasaltic (MBG), one gabbroic (MGG) and two metasedimentary/hybrid (MSG) granulite xenoliths. On the one hand, published sulphide Re-Os and a few zircon U-Pb data indicate that at least a portion of the LCC beneath the central Slave craton has a Palaeoarchaean origin (?3.3?Ga), which apparently coincides with a period of juvenile crust and deep lithospheric mantle formation during plume impingement beneath the pre-existing cratonic nucleus. On the other hand, enrichment in Li, Sr, LREE, Pb and Th, but relative depletion in Ti, Hf and HREE, suggest formation of (picro)basaltic protoliths by partial melting of a subduction-modified garnet-bearing source, Crystallisation in the crust after fractionation of plagioclase is inidicated by their Sr and Eu negative anomalies, which are complementary to the positive anomalies in the MGG. Samarium-Nd isotopes in MBG and MGG show large scatter, but fall on Neo- or Mesoarchaean age arrays. These elemental systematics are suggested to fingerprint deserpentinisation fluids plus small amounts of sedimentary melt as the main contaminants of the mantle source, supporting the operation of at least regional and transient subduction at 3.3?Ga. Evidence for quasi-coeval plume impingement and subduction beneath the central Slave craton in the Mesoarchaean is reconcilable in a dynamic regime where vertical tectonics, though waning, was still active and plate interactions became increasingly important. Unradiogenic 87Sr/86Sr (down to 0.7017) is consistent with significant loss of Rb and probably other heat-producing elements (K, Th, U) plus H2O during Neoarchaean metamorphism, which helped to enhance LCC viscosity and stabilise the cratonic lithosphere.
DS201907-1541
2019
Dransfield, M.H., Chen, T.Heli-borne gravity gradiometry in rugged terrain ( mentions Margaret Lake)Geophysical Prospecting, Vol. 67, 6, pp. 1626-1636.Global, Canada, Northwest Territoriesgeophysics - graviometry

Abstract: For airborne gravity gradiometry in rugged terrain, helicopters offer a significant advantage over fixed?wing aircraft: their ability to maintain much lower ground clearances. Crucially, this provides both better signal?to?noise and better spatial resolution than is possible with a fixed?wing survey in the same terrain. Comparing surveys over gentle terrain at Margaret Lake, Canada, and over rugged terrain at Mount Aso, Japan, demonstrates that there is some loss of spatial resolution in the more rugged terrain. The slightly higher altitudes forced by rugged terrain make the requirements for terrain correction easier than for gentle terrain. Transforming the curvature gradients measured by the Falcon gravity gradiometer into gravity and the complete set of tensor components is done by a Fourier method over gentle terrain and an equivalent source method for rugged terrain. The Fourier method is perfectly stable and uses iterative padding to improve the accuracy of the longer wavelengths. The equivalent source method relies on a smooth model inversion, and the source distribution must be designed to suit the survey design.
DS201907-1584
2019
Watchhorn, R.Superior craton seismic tomography. Not specific to diamonds Geotreks.com.au/ work/giant-ring-structures/ north-america/ superior-craton, May CS#1Canada, Ontariogeophysics - seismics

Abstract: This paper the first of a series of papers to describe the genesis and mineralisation of the North American Superior Greater Craton from the 60 to 300 km depth using detailed seismic tomography. Greater Superior Craton occupies the core of the North American continent.
DS201908-1775
2019
Cimen, O., Kuebler, C., Simonetti, S.S., Corcoran, L., Mitchell, R., Simonetti, A.Combined boron, radiogenic ( Nd, Pb, Sr) stable (C,O) isotopic and geochemical investigations of carbonatites from the Blue River region, British Columbia ( Canada): implications for mantle sources and recycling of crustal carbon.Chemical Geology, in press available, 59p. PdfCanada, British Columbiadeposit - Blue River

Abstract: This study reports the combined major, minor and trace element compositions, and stable (C, O), radiogenic (Nd, Pb, and Sr) isotopic compositions, and first ?11B isotopic data for the Fir, Felix, Gum, and Howard Creek carbonatites from the Blue River Region, British Columbia (Canada). These sill-like occurrences were intruded into Late Proterozoic strata during rifting and extensional episodes during the Late Cambrian and Devonian -Mississippian, and subsequently deformed and metamorphosed to amphibolite grade in relation to a collisional-type tectonic environment. The carbonatites at Fir, Gum, and Felix contain both calcite and dolomite, whereas the carbonatite at Howard Creek contains only calcite. The dolomite compositions reported here are consistent with those experimentally determined by direct partial melting of metasomatized peridotitic mantle. The combined major and trace element compositions and ?13CPDB (?5.37 to ?4.85‰) and ?18OSMOW (9.14 to 9.62‰) values for all the samples investigated are consistent with those for primary igneous carbonate and support their mantle origin. However, these signatures cannot be attributed to closed system melt differentiation from a single parental melt. The initial Nd, Pb, and Sr isotopic ratios are highly variable and suggest generation from multiple, small degree parental melts derived from a heterogeneous mantle source. The ?11B values for carbonates from Felix, Gum, and Howard Creek vary between ?8.67 and ?6.36‰, and overlap the range for asthenospheric mantle (?7.1?±?0.9‰), whereas two samples from Fir yield heavier values of ?3.98 and ?2.47‰. The latter indicate the presence of recycled crustal carbon in their mantle source region, which is consistent with those for young (<300?Ma) carbonatites worldwide. The radiogenic and B isotope results for the Blue River carbonatites are compared to those from contrasting, anorogenic tectonic settings at Chipman Lake, Fen, and Jacupiranga, and indicate that similar upper mantle sources are being tapped for carbonatite melt generation. The pristine, mantle-like ?11B values reported here for the Blue River carbonatites clearly demonstrate that this isotope system is robust and was not perturbed by post-solidification tectono-metamorphic events. This observation indicates that B isotope signatures are a valuable tool for deciphering the nature of the upper mantle sources for carbonates of igneous origin.
DS201908-1786
2019
Li, W-Y., Yu, H-M., Xu, J., Halama, R., Bell, K., Nan, X-Y., Huang, F.Barium isotopic composition of the mantle: constraints from carbonatites.Geochimica et Cosmochimica Acta, in press available doi.org/10.1016 / j.gca.2019.06.041 36p.Africa, Tanzania, Canada, East Africa, Europe, Germany, Greenlanddeposit - Oldoinyo Lengai

Abstract: To investigate the behaviour of Ba isotopes during carbonatite petrogenesis and to explore the possibility of using carbonatites to constrain the Ba isotopic composition of the mantle, we report high-precision Ba isotopic analyses of: (1) carbonatites and associated silicate rocks from the only active carbonatite volcano, Oldoinyo Lengai, Tanzania, and (2) Archean to Cenozoic carbonatites from Canada, East Africa, Germany and Greenland. Carbonatites and associated phonolites and nephelinites from Oldoinyo Lengai have similar ?137/134Ba values that range from +0.01 to +0.03‰, indicating that Ba isotope fractionation during carbonatite petrogenesis is negligible. The limited variation in ?137/134Ba values from ?0.03 to +0.09‰ for most carbonatite samples suggests that their mantle sources have a relatively homogeneous Ba isotopic composition. Based on the carbonatites investigated in this work, the average ?137/134Ba value of their mantle sources is estimated to be +0.04?±?0.06‰ (2SD, n?=?16), which is similar to the average value of +0.05?±?0.06‰ for mid-ocean ridge basalts. The lower ?137/134Ba value of ?0.08‰ in a Canadian sample and higher ?137/134Ba values of +0.14‰ and?+?0.23‰ in two Greenland samples suggest local mantle isotopic heterogeneity that may reflect the incorporation of recycled crustal materials in their sources.
DS201908-1792
2019
McLeish, D.F., Johnston, S.T.The Upper Devonian Aley carbonatite, NE British Columbia: a product of Antler orogenesis in the western Foreland belt of the Canadian Cordillera.Journal of the Geological Society, Vol. 176, 4, pp. 620-628.Canada, British Columbiacarbonatite

Abstract: Paleozoic continental margin strata in the western Foreland Belt of the Canadian Cordillera are characterized in part by alkaline volcanic sequences, carbonatite intrusions, coarse clastic sedimentary units, and erosional unconformities. These strata also contain a record of mid-Paleozoic contractional deformation unseen in coeval passive margin strata in the eastern Foreland Belt. In order to test potential genetic links between Paleozoic alkaline igneous activity, active margin sedimentation, and deformation in the western Foreland Belt, and better understand their implications for the evolution of the Foreland Belt as a whole, we have undertaken a detailed mapping and structural study of the Aley carbonatite intrusion and its host strata in the western Foreland Belt of NE British Columbia. Our work demonstrates that carbonatite emplacement was coeval with a Late Devonian contractional nappe-forming tectonic event. Interpreting tectonism as associated with continental collision along a long-lived active margin provides the best explanation for our structural and stratigraphic observations, and suggests that the western Foreland Belt is far-travelled and exotic relative to coeval passive margin strata in the eastern Foreland Belt. Deformed alkaline-carbonatite intrusions that characterize continental suture zones in Africa may provide an analogue for the Aley carbonatite and correlative alkaline-carbonatite complexes in the western Foreland Belt.
DS201909-2025
2019
Brooks, K.Layered intrusions: key to fundamental planetary processes. Description of book…. Comments.Geology Today, Vol. 35, 4, pp. 146-153.China, Canada, Africalayered complexes

Abstract: A large book entitled Layered Intrusions (edited by Bernard Charlier, Olivier Namur, Rais Latypov and Christian Tegner, Springer) has been published recently. This book (almost 750 pages) has 15 contributions by 36 experts in the field. While Part I deals with subjects such as geochronology, igneous layering, textures, silicate liquid immiscibility and behaviour of precious metals in these intrusions, Part II examines six examples that are reviewed by experts: Panzhihua (China), Sept Iles (Canada), Bushveld (South Africa), Kiglapait (Labrador), Ilímaussaq (Greenland) and ophiolitic magma chambers in the Canadian Appalachians. The publication of this book has led me to consider the geology of the most famous of them all-the Skaergaard Intrusion of Greenland-and my long history of studying it.
DS201909-2030
2019
Cimen, O., Kuebler, C., Simonetti, S.S., Corcoran, L., Mitchell, R., Simonetti, A.Combined boron, radiogenic (Nd, Pb, Sr), stable (C,O) isotopic and geochemical investigations of carbonatites from the Blue River region, British Columbia ( Canada): implications for mantle sources and recycling of crustal carbon.Chemical Geology, doi.org/10.1016/j.chemgeo.2019.07.015 59p.Canada, British Columbiacarbonatite - Blue River

Abstract: This study reports the combined major, minor and trace element compositions, and stable (C, O), radiogenic (Nd, Pb, and Sr) isotopic compositions, and first ?11B isotopic data for the Fir, Felix, Gum, and Howard Creek carbonatites from the Blue River Region, British Columbia (Canada). These sill-like occurrences were intruded into Late Proterozoic strata during rifting and extensional episodes during the Late Cambrian and Devonian -Mississippian, and subsequently deformed and metamorphosed to amphibolite grade in relation to a collisional-type tectonic environment. The carbonatites at Fir, Gum, and Felix contain both calcite and dolomite, whereas the carbonatite at Howard Creek contains only calcite. The dolomite compositions reported here are consistent with those experimentally determined by direct partial melting of metasomatized peridotitic mantle. The combined major and trace element compositions and ?13CPDB (?5.37 to ?4.85‰) and ?18OSMOW (9.14 to 9.62‰) values for all the samples investigated are consistent with those for primary igneous carbonate and support their mantle origin. However, these signatures cannot be attributed to closed system melt differentiation from a single parental melt. The initial Nd, Pb, and Sr isotopic ratios are highly variable and suggest generation from multiple, small degree parental melts derived from a heterogeneous mantle source. The ?11B values for carbonates from Felix, Gum, and Howard Creek vary between ?8.67 and ?6.36‰, and overlap the range for asthenospheric mantle (?7.1?±?0.9‰), whereas two samples from Fir yield heavier values of ?3.98 and ?2.47‰. The latter indicate the presence of recycled crustal carbon in their mantle source region, which is consistent with those for young (<300?Ma) carbonatites worldwide. The radiogenic and B isotope results for the Blue River carbonatites are compared to those from contrasting, anorogenic tectonic settings at Chipman Lake, Fen, and Jacupiranga, and indicate that similar upper mantle sources are being tapped for carbonatite melt generation. The pristine, mantle-like ?11B values reported here for the Blue River carbonatites clearly demonstrate that this isotope system is robust and was not perturbed by post-solidification tectono-metamorphic events. This observation indicates that B isotope signatures are a valuable tool for deciphering the nature of the upper mantle sources for carbonates of igneous origin.
DS201909-2072
2019
Pashkova, G.V., Panteeva, S., Ukhova, N.N., Chubarov, V.M., Finkelshtein, A.L., Ivanov, A.V., Asavin, A.M.Major and trace elements in meimechites - rarely occurring volcanic rocks: developing optimal analytical strategy.Geochemistry: Exploration, Environment, Analysis, Vol. 19, pp, 233-243.Russia, Canada, Chinameimechites

Abstract: The determination of the chemical composition of meimechites which are unique and rarely occurring ultra-high MgO igneous rocks can be complicated due to their porphyric structure, the presence of acid-insoluble minerals, and wide variation of major and trace element contents. In the present study the optimal analytical strategy based on a combination of X-ray fluorescence (XRF) and inductively coupled plasma mass spectrometry (ICP-MS) methods was suggested for the determination of the elemental composition of meimechites. The preparation of glass beads using a lithium tetraborate and metaborate mixture proved to be suitable for the XRF determination of major oxides. A comparative study of the sample decomposition procedures for the determination of trace elements by ICP-MS clearly showed that fusion with lithium metaborate was the most appropriate sample preparation technique for complete digestion of meimechites. The open beaker HF-HNO3-HClO4 acid digestion was insufficient because the results for Nb, Ta, V, Zr, Cr and Hf were underestimated by 20-80% compared to those determined using the fusion method due to the presence in the rock samples of acid-resistant accessory minerals. It is shown that using analytical data from acid digestion may lead to erroneous interpretation of geochemical data.
DS201910-2252
2019
Czas, J., Pearson, D.G., Stachel, T., Kjarsgaard, B.A., Read, G.A diamondiferous paleoproterozoic mantle root beneath the Sask craton ( western Canada).Goldschmidt2019, 1p. AbstractCanada, Saskatchewancraton

Abstract: Primary diamond deposits are typically restricted to the stable Archean cores of continents, an association known as Clifford’s rule. Archean to Palaeoproterozoic crustal ages (3.3 - 2.1 Ga) have been reported for the Sask Craton, a small terrane in Western Canada, which hosts the diamondiferous Cretaceous Fort à la Corne (FALC) Kimberlite Field. Yet the craton is enclosed by the Palaeoproterozoic (1.9 - 1.8 Ga) Trans Hudson Orogen (THO). In this study we evaluate the age and geochemistry (major, trace, and platinum group elements data, as well as Re-Os isotope systematics) of the lithospheric mantle root beneath the Sask Craton to assess the timing of craton formation and the potential role played by the THO in its evolution. The lithospheric mantle root is dominated by lherzolite with average olivine Mg# of 91.5, which is more fertile than observed in other cratons. Garnets from concentrate further highlight the rarity of harzburgite in the lithospheric mantle. Single clinopyroxene thermobarometry provides temperaturepressure constraints for the garnet-bearing lithospheric mantle (840 to 1250 °C and 2.7 to 5.5 GPa), indicative of a cool geotherm (38 mW/m2) and a large diamond window of ~100 km thickness (from ~120-220 km depth). Most of the studied xenoliths show evidence for melt metasomatism in their trace and major element compositions, while retaining platinum group element patterns expected for melt residues. 187Os/188Os compositions span a broad range from 0.1109 to 0.1507, corresponding to Re-depletion (TRD) ages between 2.4 to 0.3 Ga, with a main mode in the Palaeoproterozoic (2.4 to 1.7 Ga). With the absence of Archean ages, the main depletion and stabilisation of the Sask Craton occurred in the Palaeoproterozoic, closely associated with the Wilson cycle of the THO. From a diamond exploration perspective this indicates that major diamond deposits can be found on cratons that were stabilised in the Palaeoproterozoic.
DS201910-2260
2019
Graf, C., Sandner, T., Woodland, A., Hofer, H., Seitz, H-M., Pearson, G., Kjarsgaard, B.Metasomatism, oxidation state of the mantle beneath the Rae craton, Canada.Goldschmidt2019, 1p. AbstractCanadacraton

Abstract: The Rae craton is an important part of the Canadian Shield and was amalgamated to the Slave craton at ?? 1.9 Ga [1]. Recent geophysical and geochemical data indicate a protracted geodynamic history [1, 2]. Even though the oxidation state of the Earth’s mantle has an important influence of fluid compositions and melting behavior, no data on the oxidation state of the Rae’s mantle are available. The aims of this study were to 1) determine the oxidation state (ƒO2) of the lithosphere beneath the Rae craton, 2) link these results to potential metasomatic overprints and 3) compare the geochemical evolution with the Slave craton. We studied 5 peridotite xenoliths from Pelly Bay (central craton) and 22 peridotites from Somerset Island (craton margin). Pelly Bay peridotites give T < 905°C and depths of ??80- 130 km. Garnets have depleted or “normal” REE patterns, the latter samples recording fO2 values ??0.5 log units higher. The deeper samples are more enriched and oxidised. Peridotites from Somerset Island record T ??825-1190°C, a ?logfO2 ranging from ?? FMQ - FMQ-3.6 from a depth interval of ??100-150 km. Garnets exhibit two REE signatures - sinusoidal and “normal” - indicating an evolutionary sequence of increasing metasomatic re-enrichment and a shift from fluid to melt dominated metasomatism. Compared to the Slave craton, the Rae mantle is more reduced at ??80km but becomes up to 2 log units more oxidised (up to ??FMQ-1) at ??100-130 km. Similar oxidising conditions can be found >140 km in the Slave mantle [3]. Especially under Somerset Island, the lithospheric mantle has contrasting fO2 and metasomatic overprints in the same depth range, which may represent juxtaposed old and rejuvenated domains [2].
DS201910-2282
2019
Liu, J., Pearson, D.G., Mather, K., Kjarsgaard, B., Kopylova, M.Destruction and regeneration of cratonic lithosphere rocks: evidence from the Slave craton, Canada.Goldschmidt2019, 1p. AbstractCanada, Northwest Territoriesgeodynamics

Abstract: Cratons are the ancient landmasses that remain stable for billions of years on Earth but also have experienced episodic events of modification and rejuvenation throughout their history [1]. These alteration processes have modified the cratonic lithospheric mantle roots to different extents, e.g., ubiquitous cryptic/modal metasomatism, partial to entire loss of the mantle roots, to rifting apart of the craton. It remains unclear to what extent a cratonic mantle root can withstand modification and retain its integrity. We attempt to discuss this issue from the perspective of the Slave craton that has experienced the multiple impacts of major circum-cratonic Paleoproterozoic (1.93-1.84 Ga) orogenies and the intrusion of several 2.23-1.67 Proterozoic diabase dyke swarms. We use kimberlite-borne peridotite xenoliths to construct a N-S transect across the craton with an aim of probing the effects of these post-Archean events on the composition, age and depth of the lithospheric root. Chemically, all of these rocks are of typical cratonic refractory composition. P-T calculations and paleogeotherms show that they were derived from thick lithospheric mantle roots (>180 km), consistent with their diamondiferous nature. However, these peridotites exhibit variable N-S variation of modes in their Re-depletion Os model ages (TRD). Neoarchean TRD ages dominate in the Central and Southern Slave mantle. Progressing North there is a decreasing proportion of Archean TRD ages through Jericho to Artemisa in the Northern Slave craton. About 70% of the peridotites at Artemisia give TRD ages within error of the ~1.27 Ga Mackenzie LIP event, with the remaining (~ 30%) close to the Paleoproterozoic orogenic events. Combined with new data from regions to the N and NW of the Slave craton [2], the observed age spectrum in the far North of the craton indicates the likelihood of major new generation of lithospheric roots in both the Paleoproterozoic and Mesoproterozoic. Despite its complex history, the Northern Slave craton retains a ‘cratonic-like’ lithospheric root that allowed diamond mineralization.
DS201910-2304
2019
Tovey, M., Giuliani, A., Phillips, D., Moss, S.What controls the explosive emplacement of the diamondiferous Diavik kimberlites? New insights from mineral chemistry and petrography of hypbyssal and pyroclastic samples.Goldschmidt2019, 1p. AbstractCanada, Northwest Territoriesdeposit - Diavik

Abstract: Kimberlites are mantle-derived, CO2 and H2O rich magmas that entrain abundant mantle material, including diamonds during rapid ascent to the surface. Most kimberlite magmas that reach the upper crust either erupt explosively or are emplaced as shallow hypabyssal intrusions. Catastrophic volatile exsolution, local geology and stress regimes, and interaction with external water are suggested as possible controls of magma explosivity. A full understanding of the processes promoting the explosive emplacement of kimberlite magmas has been hindered by common alteration and crustal contamination of pyroclastic kimberlites (PK). To address this issue, we have undertaken a detailed petrographic and mineral-chemical study of fresh pyroclastic and hypabyssal kimberlites (i.e. dykes either cross-cutting or isolated from volcanic pipes) from the Diavik Diamond Mine (Lac de Gras, Canada). Diavik kimberlites feature the same olivine compositions regardless of emplacement style. The cross-cutting kimberlite dykes (xHK) and pyroclastic kimberlites also feature the same chromite (i.e. liquidus spinel) compositions, and spinel evolution to indistinguishable magnesian ulvospinel-magnetite compositions. These results demonstrate that primitive melt compositions, and early magmatic evolutionary trends are the same for kimberlite melts that erupt explosively or those that are emplaced as shallow intrusions. The magmaclasts in PKs contain higher abundances of phlogopite, and lower contents of carbonate than the groundmass of xHKs suggesting higher H2O/CO2 ratios in the magmas that erupt explosively. This finding highlights divergence of the PK and xHK parental melt compositions after late spinel formation, which underpins explosive CO2 exsolution only in some magmas. While the causes of explosive volcanism remain uncertain, our study indicates that primitive melt composition has no significant influence on the emplacement style of kimberlites.
DS201911-2507
2019
Akam, C., Simandl, G.J., Lett, R., Paradis, S., Hoshino, M., Kon, Y., Araoka, D., Green, C., Kodama, S., Takagi, T., Chaudhry, M.Comparison of methods for the geochemical determination of rare earth elements: Rock Canyon Creek REE-F-Ba deposit case study, SE British Columbia, Canada.Geochemistry: Exploration, Environment, Analysis, Vol. 19, pp. 414-430.Canada, British Columbiageochemistry

Abstract: Using Rock Canyon Creek REE-F-Ba deposit as an example, we demonstrate the need for verifying inherited geochemical data. Inherited La, Ce, Nd, and Sm data obtained by pressed pellet XRF, and La and Y data obtained by aqua regia digestion ICP-AES for 300 drill-core samples analysed in 2009 were compared to sample subsets reanalysed using lithium metaborate-tetraborate (LMB) fusion ICP-MS, Na2O2 fusion ICP-MS, and LMB fusion-XRF. We determine that LMB ICP-MS and Na2O2 ICP-MS accurately determined REE concentrations in SY-2 and SY-4, and provided precision within 10%. Fusion-XRF was precise for La and Nd at concentrations exceeding ten times the lower detection limit; however, accuracy was not established because REE concentrations in SY-4 were below the lower detection limit. Analysis of the sample subset revealed substantial discrepancies for Ce concentrations determined by pressed pellet XRF in comparison to other methods due to Ba interference. Samarium, present in lower concentrations than other REE compared, was underestimated by XRF methods relative to ICP-MS methods. This may be due to Sm concentrations approaching the lower detection limits of XRF methods, elemental interference, or inadequate background corrections. Aqua regia dissolution ICP-AES results, reporting for La and Y, are underestimated relative to other methods.
DS201911-2546
2019
McClenaghan, M.B., Paulen, R.C., Kjarsgaard, I.M.Rare metal indicator minerals in bedrock and till at the Strange Lake peralkaline complex, Quebec and Labrador, Canada.Canadian Journal of Earth Science, Vol. 56, pp. 957-969.Canada, Quebec, LabradorREE

Abstract: A study of rare metal indicator minerals and glacial dispersal was carried out at the Strange Lake Zr?-?Y?-?heavy rare earth element deposit in northern Quebec and Labrador, Canada. The heavy mineral (>3.2 specific gravity) and mid-density (3.0-3.2 specific gravity) nonferromagnetic fractions of mineralized bedrock from the deposit and till up to 50 km down ice of the deposit were examined to determine the potential of using rare earth element and high fileld strength element indicator minerals for exploration. The deposit contains oxide, silicate, phosphate, and carbonate indicator minerals, some of which (cerianite, uraninite, fluorapatite, rhabdophane, thorianite, danburite, and aeschynite) have not been reported in previous bedrock studies of Strange Lake. Indicator minerals that could be useful in the exploration for similar deposits include Zr silicates (zircon, secondary gittinsite (CaZrSi2O7), and other hydrated Zr±Y±Ca silicates), pyrochlore ((Na,Ca)2Nb2O6(OH,F)), and thorite (Th(SiO4))/thorianite (ThO2) as well as rare earth element minerals monazite ((La,Ce,Y,Th)PO4), chevkinite ((Ce,La,Ca,Th)4(Fe,Mg)2(Ti,Fe)3Si4O22), parisite (Ca(Ce,La)2(CO3)3F2), bastnaesite (Ce(CO3)F), kainosite (Ca2(Y,Ce)2Si4O12(CO3)•H2O), and allanite ((Ce,Ca,Y)2(Al,Fe)3(SiO4)3(OH)). Rare metal indicator minerals can be added to the expanding list of indicator minerals that can be recovered from surficial sediments and used to explore for a broad range of deposit types and commodities that already include diamonds and precious, base, and strategic metals.
DS201911-2549
2019
Mitchell, R.H., Wahl, R., Cohen, A.Mineralogy and geneis of pyrochlore-apatite from the Good Hope carbonatite, Ontario: a potential Nb deposit.Mineralogical Magazine, in press. 29p. Canada, Ontariodeposit - Good Hope
DS201911-2551
2019
Ootes, L., Sandemann, H., Cousens, B.L.,Luo, Y., Pearson, D.G., Jackson, V.Pyroxenite magma conduits ( ca 1.86 Ga) in Wopmay orogen and Slave craton: petrogenetic constrainst from whole rock and mineral chemistry.Lithos, in press available, 54p.Canada, Northwest Territorieslamprophyres
DS201911-2560
2019
Schumann, D., Martin, R.F., Fuchs, S., de Fourestier, J.Silicocarbonatitic melt inclusions in fluorapatite from the Yeates prospect, Otter Lake, Quebec: evidence of marble anatexis in the central metasedimentary belt of the Grenville Province.The Canadian Mineralogist, Vol. 57, pp. 583-604.Canada, Quebeccarbonatite

Abstract: We have investigated a locality very well known to mineral collectors, the Yates U-Th prospect near Otter Lake, Québec. There, dikes of orange to pink calcite enclose euhedral prisms of fluorapatite, locally aligned. Early investigators pointed out the importance of micro-inclusions in the prisms. We describe and image the micro-inclusions in two polished sections of fluorapatite prisms, one of them with a millimetric globule of orange calcite similar to that in the matrix. We interpret the globule to have been an inclusion of melt trapped during growth. Micro-globules disseminated in the fluorapatite are interpreted to have crystallized in situ from aliquots of the boundary-layer melt enriched in constituents rejected by the fluorapatite; the micro-globules contain a complex jigsawed assemblage of carbonate, silicate, and sulfate minerals. Early minerals to crystallize are commonly partly dissolved and partly replaced by lower-temperature phases. Such jigsawed assemblages seem to be absent in the carbonate matrix sampled away from the fluorapatite prisms. The pressure and temperature attained at the Rigolet stage of the Grenville collisional orogeny were conducive to the anatexis of marble in the presence of H2O. The carbonate melt is considered to have become silicocarbonatitic by assimilation of the enclosing gneisses, which were also close to their melting point. Degassing was important, and the melt froze quickly. The evidence points to a magmatic origin for the carbonate dikes and the associated clinopyroxenite, rather than a skarn-related association.
DS201912-2770
2019
Bachynski, R., Suchan, J., Suchan, D.Curiousity project - an update on a newly acquired diamondiferous kimberlite. LI-201 ( Ekati arena)Yellowknife Forum NWTgeoscience.ca, abstract Volume p. 5.Canada, Northwest Territoriesdeposit - Curiousity

Abstract: The Curiosity Property, located in the Slave Province to the southwest of Contwoyto Lake, is situated ~25 kilometers north of the Ekati Diamond Mine’s mineral rights. This newly acquired property hosts a known diamondiferous kimberlite, called “LI-201”, which was originally discovered in a 1997 diamond drill campaign. Multiple attempts have been made over the past twenty years to delineate the extent of the body using an assortment of traditional exploration methods, yet LI-201 continues to remain poorly understood in terms of its overall dimensions and diamond-bearing potential. As part of a ten-day exploration program in August 2019, 275 geochemical till samples and 170 biogeological samples were collected. Geochemical sampling along 100-meter spaced fences that are down-ice and approximately perpendicular to the main ice-flow direction were collected in an attempt to further prioritize key geophysical targets in the project area surrounding LI-201. In the vicinity of LI-201, geochemical and biogeological samples were collected as a pilot study in an attempt to investigate the potential microbial community’s response to the presence of kimberlite and to determine if a discernable relationship exists between soil geochemistry and microbial populations. Despite the inconclusive understanding of the kimberlitic body, historical samples of LI-201 show apparent geochemical endowment and bode well for the prospectivity of the project area as a whole. Currently, efforts are being made to compile, verify, and interpret historical data, in addition to integrating newly collected data and interpretations. At the time of presenting, only preliminary geochemical results will be available; microbiological results are pending. In the future, findings from this study will be used to assess the effectiveness of the microbiological method as a means of detecting the known footprint of LI-201, which may also offer insights to the true footprint of the kimberlitic body.
DS201912-2771
2019
Berrub, M.Diavik traditional knowledge panel.Yellowknife Forum NWTgeoscience.ca, abstract Volume p. 7.Canada, Northwest Territoriesdeposit - Diavik

Abstract: Diavik has a robust communities portfolio to ensure that our impacted communities are informed and trusted partners in the success of our operation. The Diavik Traditional Knowledge Panel has been in place since 2012 as a resource for developing and providing recommendations on a variety of operational and closure details. The Panel is comprised of a male elder, a female elder and a youth from each of the five Participation Agreement communities and, to date, have made 194 recommendations. Diavik will present on the benefits and opportunities that are created when we utilize traditional knowledge in our operations.
DS201912-2772
2019
Bilak, G.S., Cummings, D., Elliott, B.Investigating the nature and origin of the Exeter Lake esker and its application in mineral exploration; a preliminary report.Yellowknife Forum NWTgeoscience.ca, abstract volume p. 9-10.Canada, Northwest Territorieseskers

Abstract: Eskers are long ridges of glaciofluvial sand and gravel frequently sampled during mineral exploration campaigns. Sampling of the 700 km long Exeter Lake esker by Chuck Fipke and Stu Blusson in the 1980s led directly to the discovery of the Lac De Gras kimberlite field and establishment of the diamond industry in the Northwest Territories. Despite their significant role in mineral exploration, the details surrounding eskers formation remain controversial (e.g. long-conduit vs. short-conduit models). In my coming research I will use a combination of geomorphological and provenance data to gain insight into the nature of the Exeter Lake esker and the origin of its sediment to help further define the parameters surrounding esker formation and their application in the mining industry. The geomorphology of the esker will be characterized in ArcMap using (1) the new Arctic DEM (2 m resolution), supplemented by (2) aerial imagery (3) GoPro footage of the entire esker collected during a low-level fly-over, (4) ground observations and short foot traverses made at regularly spaced intervals, and (5) locally collected drone footage. Morpho-sedimentary building block elements of the esker system will be identified and interpreted. Esker provenance will be studied using two sample suites. The first suite (112 samples) was collected at coarsely spaced intervals (15-20 km) along the entire length of the esker and contains pared till and esker-ridge samples from both the pebble and finer fractions. These samples will be used to ascertain whether dispersal trains—such as those emanating from the Dubawnt Supergroup—extend the entire length of the esker, considerably overshooting the till dispersal trains from which they were sourced, or whether they are more local in scale. Mud fractions (<63 microns) will be analyzed geochemically; this fraction has never been analyzed previously in similar studies, but could be more indicative of subglacial stream length. Zircon grains from the sand fraction will be analyzed using uranium-lead dating and correlated to diversely aged rock units along the esker system. Finally, the lithology of the pebbles will be analyzed and compared against previously mapped bedrock lithologies along the esker transect. The second suite (62 samples) was collected at closely spaced intervals (300-600 m) from various geomorphological expressions of the greater esker system near the edge of the Lac de Gras kimberlite indicator mineral (KIM) plume, as defined in the KIDD database. KIM concentrations from the samples will be compared with one another, and if the KIM train in the esker considerably overshoots that in the till, a long-conduit model may be more likely. Additionally, by comparing multiple expressions of the esker system any bias in the concentration of KIMs should be detected. Due to the novel approach and large dataset this study has the potential to provide considerable insight into the nature of esker systems and how they are deposited. With this knowledge, mining and exploration companies will be able reassess their esker datasets backed by a scientifically robust exploration model.
DS201912-2775
2019
Czas, J., Pearson, G., Stachel, T., Kjarsgaard, B.A., Read, G.A Paleoproterozic diamond bearing lithospheric mantle root beneath the Archean Sask Craton.Lithos, 10.1016/j.lithos.2019.105301 63p. PdfCanada, Saskatchewancraton

Abstract: The recently recognised Sask Craton, a small terrane with Archean (3.3-2.5 Ga) crustal ages, is enclosed in the Paleoproterozoic (1.9-1.8 Ga) Trans Hudson Orogen (THO). Only limited research has been conducted on this craton, yet it hosts major diamond deposits within the Cretaceous (~106 to ~95 Ma) Fort à la Corne (FALC) Kimberlite Field. This study describes major, trace and platinum group element data, as well as osmium isotopic data from peridotitic mantle xenoliths (n = 26) from the Star and Orion South kimberlites. The garnet-bearing lithospheric mantle is dominated by moderately depleted lherzolite. Equilibration pressures and temperatures (2.7 to 5.5 GPa and 840 to 1250 °C) for these garnet peridotites define a cool geotherm indicative of a 210 km thick lithosphere, similar to other cratons worldwide. Many of the peridotite xenoliths show the major and trace element signatures of carbonatitic and kimberlitic melt metasomatism. The Re-Os isotopic data yield TRD (time of Re-depletion) model ages, which provide minimum estimates for the timing of melt depletion, ranging from 2.4 to 0.3 Ga, with a main mode spanning from 2.4 to 1.7 Ga. No Archean ages were recorded. This finding and the complex nature of events affecting this terrane from the Archean through the Palaeoproterozoic provide evidence that the majority of the lithospheric mantle was depleted and stabilised in the Palaeoproterozoic, significantly later than the Archean crust. The timing of the dominant lithosphere formation is linked to rifting (~2.2 Ga - 2.0 Ga), and subsequent collision (1.9-1.8 Ga) of the Superior and Hearne craton during the Wilson cycle of the Trans Hudson Orogen.
DS201912-2777
2019
Desrosiers, P., Ward, B.C., Sacco, D., Elliott, B.The effect of post depositional meltwater processes on kimberlite indicator mineral concentrations in glacial sediments.Yellowknife Forum NWTgeoscience.ca, abstract volume poster p.105-106.Canada, Northwest Territoriesdrift prospecting

Abstract: In the glaciated terrain of the Northwest Territories, successful diamond exploration projects depend on the implementation of drift prospecting. Drift prospecting combines surficial sediment sampling with an understanding of glacial sediment transport history so that geochemical anomalies can be properly interpreted. However, deglacial meltwater processes that may rework, erode, transport, and deposit previously emplaced till are commonly overlooked or misidentified in sample collection and data interpretation. Exactly how deglacial meltwater processes affect the concentration of kimberlite indicator minerals in glacial sediments is poorly understood. The aim of this study is to determine if syn- and post-depositional meltwater processes affect kimberlite indicator mineral concentrations and distributions. The study area is approximately 225 km2, located in the Winter Lake area, in the southern Slave region. This area was chosen for its multiple subglacial meltwater corridors with numerous meltwater related landforms adjacent to relatively unmodified till. It is a prospective area for kimberlites based on the kimberlite indicator minerals identified during previous till sampling programs. The project incorporates terrain mapping, fieldwork and geochemical analysis. Progress so far includes a desktop study using existing air photos and surficial maps of the region and fieldwork. Stereo image visualization and mapping software (Summit EvolutionTM) combined with digital air photos of the area were utilized to complete a preliminary 1:10 000 scale digital terrain map. Fieldwork was completed in the summer of 2019: the nature and distribution of surficial materials were described, ice flow indicators identified and recorded, and surficial material samples collected. Sampling targeted sediments that experienced varying degrees of meltwater modification; materials collected cover the spectrum from unmodified till to washed till to sorted glaciofluvial sand and gravel. Analysis and interpretation are ongoing. Clast shape and lithology analysis has been completed. Grain size analysis will be completed for the presentation. Samples have been sent to commercial labs for geochemical analysis of the silt and clay fraction as well as heavy mineral separation followed by picking of kimberlite, base metal and gold indicator minerals. Potential kimberlite indicator minerals will be analyzed by electron microprobe to verify the mineralogy; their chemistry will be related to diamond potential. The results of these analysis will not be available in time for the presentation. Field descriptions and photogrammetry indicate that many meltwater corridors contain hummocks and elongate ridges composed of diamicton that is sandier and contains less silt than an unmodified till. The morphology and directionality of these identified landforms suggest they are not esker segments. Comparison of grain size, clast shape and lithology data between till and modified sediments will be related to landform genesis. The observations of surficial materials, landforms and ice flow indicators are being used to update the preliminary 1:10 000 scale terrain map of the area, as well as to interpret the local glacial history of the study area. The results of this project will have significant implications in the planning and execution of diamond exploration programs in the Northwest Territories as well as in effectively interpreting the results of drift prospecting campaigns.
DS201912-2778
2019
Falck, H., Elliott, B., Cairns, S., Powell, L.NWT mineral exploration and mining overview 2019.Yellowknife Forum NWTgeoscience.ca, abstract volume p. 27.Canada, Northwest Territorieseconomics

Abstract: In spite of a poor year for sales of rough diamonds globally, diamond mining continues to provide a foundation for the NWT economy. Gahcho Kué mine, which has been operating slightly ahead of plan, announced the discovery of the diamondiferous Wilson kimberlite within the current mine plan area. Consistently high forecasts for zinc demand have encouraged both the rejuvenation of Pine Point by Osisko Metals Inc. and NorZinc Ltd.’s ongoing efforts to bring Prairie Creek into production. Gold prices have been buoyed by safe-haven sentiment after concerns over economic growth, tariffs and trade wars with China. Advanced projects have benefited with an improving investment climate encouraging on-going exploration by Nighthawk Gold Corp. and TerraX Minerals Inc. However, many smaller projects were suspended as the companies were not able to raise sufficient funds on in the investment market. This was particularly true for the commodities targeting green energy and battery technologies. Most of the projects focusing on lithium, cobalt and vanadium started the year strongly but were dormant by the summer. A notable exception was the reactivation of Avalon’s Nechalacho project with an infusion of resources from Cheetah Resources of Australia. One of the indicators of exploration activity – claims staked vs. lapsed – continued an upward trend that began in 2017. In 2018, a total of 268 claims covering 184,985 hectares were added and 70 claims covering 58, 876 hectares were released. In the first three quarters of 2019, 120 claims covering 45,000 Ha were added but a nearly equivalent area 55,000 Ha in 85 claims and leases were cancelled. There are also 37 active Prospecting Permits this year. New staking included large areas in the Mackenzie Mountains, the additional ground at Pine Point, re-staking of claims in the Lac de Gras region and expansion of claims in the Yellowknife area. In 2019-2020, the Government of Northwest Territories invested nearly $1 million in grassroots mineral exploration through the Mining Incentive Program. This funding was dispersed to 19 exploration projects comprising twelve prospectors and seven companies. The Mineral Resources Act has passed the legislature marking the NWT’s first-ever stand-alone Act governing mining in the territory.
DS201912-2786
2019
Gostlin, K., Brenton, K., Liu, W., Clark, L.Gahcho Kue mine update.Yellowknife Forum NWTgeoscience.ca, abstract volume p. 57.Canada, Northwest Territoriesdeposit - Gahcho Kue

Abstract: Gahcho Kué Mine is owned as a joint venture between Mountain Province Diamonds Inc. and De Beers Canada Inc. Located about 280 km northeast of Yellowknife, it is Canada’s newest diamond mine and the world’s largest in the last 14 years. After two years of construction, commercial operations began in September 2016. As the mine enters into its fourth year of operation, De Beers is pleased to provide an update on the current mine operations, updated mine plan, safety, environment, and social performance.
DS201912-2787
2019
Grunsky, E.C., de Caritat, P.State of the art analysis of geochemical data for mineral exploration. ( not specific to diamonds)Geochemistry: Exploration, Environment, Analysis, http://doi.org/10.1144/ geochem2019-031 16p. PdfCanada, Nunavut, Australiageochemistry

Abstract: Multi-element geochemical surveys of rocks, soils, stream/lake/floodplain sediments and regolith are typically carried out at continental, regional and local scales. The chemistry of these materials is defined by their primary mineral assemblages and their subsequent modification by comminution and weathering. Modern geochemical datasets represent a multi-dimensional geochemical space that can be studied using multivariate statistical methods from which patterns reflecting geochemical/geological processes are described (process discovery). These patterns form the basis from which probabilistic predictive maps are created (process validation). Processing geochemical survey data requires a systematic approach to effectively interpret the multi-dimensional data in a meaningful way. Problems that are typically associated with geochemical data include closure, missing values, censoring, merging, levelling different datasets and adequate spatial sample design. Recent developments in advanced multivariate analytics, geospatial analysis and mapping provide an effective framework to analyse and interpret geochemical datasets. Geochemical and geological processes can often be recognized through the use of data discovery procedures such as the application of principal component analysis. Classification and predictive procedures can be used to confirm lithological variability, alteration and mineralization. Geochemical survey data of lake/till sediments from Canada and of floodplain sediments from Australia show that predictive maps of bedrock and regolith processes can be generated. Upscaling a multivariate statistics-based prospectivity analysis for arc-related Cu-Au mineralization from a regional survey in the southern Thomson Orogen in Australia to the continental scale, reveals a number of regions with a similar (or stronger) multivariate response and hence potentially similar (or higher) mineral potential throughout Australia.
DS201912-2791
2019
Jung, J.Diavik diamond mine A21 orebody.Yellowknife Forum NWTgeoscience.ca, abstract volume p. 90.Canada, Northwest Territoriesdeposit - Diavik

Abstract: Diavik’s newest orebody, the A21 kimberlite pipe, was brought into production in December 2017 when surface mining began. This is the fourth kimberlite pipe to be mined at the Diavik Diamond Mine, located at Lac de Gras, 300 kilometres northeast of Yellowknife. To access this underwater orebody, Diavik constructed an engineered, 2.1 km long rock fill water retention dike during 2014 to 2017. This has now opened up the opportunity to study and evaluate possible mining methods below the open pit. Such additional kimberlite extraction would occur from 2023 to 2025.
DS201912-2801
2019
Lowing, M.D.North America's largest ice road - Tibbitt to Contwoyto winter road joint venture.Yellowknife Forum NWTgeoscience.ca, abstract volume p. 57.Canada, Northwest TerritoriesIce road

Abstract: The Tibbitt to Contwoyto Winter Road (TWCR) is North America’s largest ice road network that direct supports the operating diamond mines in the Northwest Territories. Operated by a Joint Venture between the Diavik Diamond Mines Inc, Dominion Diamond Mines ULC and De Beers Canada Inc., the ice road has an annual operating budget of $21 to 22 Million. The ice road is built through advanced flooding technologies, ice profiling radar and quality assurance engineering. Overseen by the Joint Venture, the ice road is constructed and maintained by 170 experienced personnel, 24 hours a day, operating out of three camps. Over the past five years, a yearly average of 8336 loads (281,363 tons) were transported using the Tibbitt to Contwoyto Winter Road. The TCWR Joint Venture is a unique example of collaboration in the North's mining industry and represents a critical lifeline to the success of the NWT's diamond mines.
DS201912-2812
2019
Peters, M.H.Extended care and maintenance and zero occupancy at Snap Lake mine: an update.Yellowknife Forum NWTgeoscience.ca, abstract volume p.69.Canada, Northwest Territoriesdeposit - Snap Lake

Abstract: The Snap Lake Mine is a former underground diamond mine operated by De Beers Canada Inc.( De Beers), located about 220 km northeast of Yellowknife in the Northwest Territories. The Snap Lake Mine operated from 2008 to 2015 and De Beers submitted the Final Closure and Reclamation Plan for the mine. The mine is currently in it fourth year of being managed in a state of Extended Care and Maintenance (ECM). Activities during ECM include monitoring of water quality and other environmental parameters, collecting and treating effluent and making sure that water leaving the site meets water license requirements. Physical infrastructure such as the airstrip, roadways, buildings, processed kimberlite containment facilities and associated surface water infrastructure such as pumps, sumps and channels need to be kept in a safe and operable condition. After a trail-run of reduced camp occupancy in 2017, the site was fully winterized and demobilized in September 2018. This update will review the first seasonal zero occupancy at Snap Lake, as well as the work completed in spring/summer of 2019.
DS201912-2813
2019
Peters, M.H., Mensah-Yeboah, F., Milne, I.Remote monitoring at Snap Lake mine.Yellowknife Forum NWTgeoscience.ca, abstract volume p. 70.Canada, Northwest Territoriesdeposit - Snap Lake

Abstract: The Snap Lake Mine is a former underground diamond mine operated by De Beers Canada Inc. (De Beers), located about 220 km northeast of Yellowknife in the Northwest Territories. The Snap Lake mine operated from 2008 to 2015, and entered a Care and Maintenance mode in December 2015. The mine is currently entering its fourth year of being managed in this Extended Care and Maintenance phase. In order to ensure continual remote monitoring of certain key geotechnical, meteorological and air quality instrumentation and to enable visual observation of key infrastructure, work was done in 2018 to integrate new and existing monitoring instrumentation into the existing Campbell Scientific PakBus network. In this presentation De Beers will share a summary of this work, with the emphasis on the type of technology, detail of installation and integration of systems between the various pieces of instrumentation. First we will discuss installation of the 5 data collection stations that relay geotechnical instrumentation information. The data collection system at each of the 5 stations consists of a solar panel, battery, data logger, multiplexor and short-wave radio. To enable redundancy, a manual data collection via USB was added, in the event that remote communication with the stations is lost. Second, an overview of the installation of camera monitoring stations as well as the communications protocol used for the integration of the weather and ambient air quality data transmitted via satellite will be presented. While the focus will be on the technology and systems used for remote monitoring, and not the actual monitoring results per se, it is our intention to share this and some of the successes and challenges experienced during the first year of remote monitoring during zero occupancy conditions.
DS201912-2814
2019
Phillips, I., Simister, R.L., Winterburn, P.A., Crowe, S.A.Microbial community fingerprinting as a tool for direct detection of buried kimberlites.Yellowknife Forum NWTgeoscience.ca, abstract volume p. 42-43.Canada, Northwest Territorieskimberlite

Abstract: Mineral exploration in northern latitudes is challenging in that undiscovered deposits are likely buried beneath significant glacial overburden. The development of innovative exploration strategies and robust techniques to see through cover is imperative to future discovery success. Microbial communities are sensitive to subtle environmental fluctuations, reflecting these changes on very short timescales. Shifts in microbial community profiles, induced by chemical differences related to geology, are detectable in the surficial environment, and can be used to vector toward discrete geological features. The modernization of genetic sequencing and big-data evaluation allows for efficient and cost-effective microbial characterization of soil profiles, with the potential to see through glacial cover. Results to date have demonstrated the viability of microbial fingerprinting to directly identify the surface projection of kimberlites in addition to entrained geochemical signatures in till. Soils above two kimberlites in the Northwest Territories, have undergone microbial community profiling. These community-genome derived datasets have been integrated with chemistry, mineralogy, surface geology, vegetation type and other environmental variables including Eh and pH. Analyses show significant microbial community shifts, correlated with the presence of kimberlites, with a distinct community response at the species level directly over known deposits. Diversity of soil bacteria is also depressed in the same regions of the microbial community response. The relationship between microbial profiles and buried kimberlites has led to the application of microbial fingerprinting as a method to accurately delineate potential ore deposits in covered terrain. The integration of microbial community information with soil chemistry and landscape development coupled with geology and geophysics significantly improves the drill / no-drill decision process and has proven to be far more accurate than traditional surficial exploration methods. There is high potential for application as a field-based technique as microbial databases for kimberlites in northern regions are refined, and as sequencing technology is progressively developed into portable platforms.
DS201912-2816
2019
Prather, C., Mclean, S., Willis, D.Chidliak project updates.Yellowknife Forum NWTgeoscience.ca, abstract volume p. 71-72.Canada, Nunavutdeposit - Chidliak

Abstract: The Chidliak exploration site was discovered in 2005 and acquired by De Beers Canada (De Beers) in September 2018. The Project is located on the Hall Peninsula of Baffin Island in the Qikiqtani Region of Nunavut and the closest communities are the Hamlet of Pangnirtung and the City of Iqaluit. The current Chidliak exploration site is not located within Inuit Owned Lands, Territorial or National Parks and is located entirely within Crown Lands. The current Chidliak exploration site includes 30 kimberlites two of which (CH-06 and CH-07) have been tested for grade and diamond value and are considered to be at an Inferred level of resource confidence. De Beers is currently engaged in a concept study to evaluate various FutureSmart Mining methods that would minimize environment impacts and enable relatively small kimberlites (diamond bearing rock) to be mined. De Beers is conducting desktop and field studies to evaluate options for mining methods, infrastructure, processing, information technology, and employee work models. In parallel, environmental field programs were conducted in 2019 to advance the environmental data collected in 2009 to 2017 and to support the evaluation of mining options. This presentation will provide a brief synopsis of the Project and work conducted in 2019 to advance the Project.
DS201912-2817
2019
Prather, C., Mclean, S., Willis, D.Water monitoring at Snap Lake mine.Yellowknife Forum NWTgeoscience.ca, abstract volume p. 72.Canada, Northwest Territoriesdeposit - Snap Lake

Abstract: The Snap Lake Mine (the Mine) is a former underground diamond mine operated by De Beers Canada (De Beers), located about 220 kilometres northeast of Yellowknife in the Northwest Territories. The Snap Lake Mine operated from 2008 to 2015, and entered a Care and Maintenance mode in December 2015. In February 2017, the Mine underground workings were decommissioned and allowed to flood, in December 2017, De Beers announced the intent to enter into final closure, and in March 2019, De Beers submitted the Final Closure and Reclamation Plan for the Mine. Water management has always been an important component at the Mine and was considered in development of the Final Closure Plan to achieve the overall goal of “returning the site and affected areas around the Mine to technically viable and, where practicable, self-sustaining ecosystems that are compatible with a healthy environment and with human activities”. Water management at the Mine has changed significantly since diamond mining operations ceased. During diamond mining operations, a large volume of water was pumped from the underground to the surface for management and release to Snap Lake and the downstream environment. This mine water was relatively high in total dissolved solids and total suspended solids and therefore had to be treated prior to discharge. Now that the underground is flooded, there is no longer a need to pump mine water to the surface and water management has been greatly simplified. Since 2017, small volumes of runoff water from the North Pile (a surface disposal facility that was used for processed kimberlite, waste rock, and non-hazardous solid waste during operations) is collected for management and release to the underground and to Snap Lake. Water quality and aquatic ecosystem monitoring has been conducted yearly since pre-mining. Results of these programs have informed adaptive management at the site and informed plans for closure. The focus of this presentation is on water management and monitoring, for the Mine to the receiving environment, covering the history of the Mine to present and into planning for closure.
DS201912-2822
2019
Shapka, C., Virgl, J., Mclean, S.Dust in the wind: vegetation, soils and dust deposition monitoring at the Gahcho Kue mine.Yellowknife Forum NWTgeoscience.ca, abstract volume p. 85.Canada, Northwest Territoriesdeposit - Gahcho Kue

Abstract: A vegetation and soils monitoring program was implemented at the Gahcho Kué Mine to test for mine-related changes to vegetation and soils from dust deposition. Besides measuring changes in vegetation and soils, one objective of the study is to inform the Wildlife Effects Monitoring Program with respect to the potential for dust as a mechanism for avoidance of habitats near the Mine by caribou and other wildlife. Soil properties, plant communities, and dust deposition have been monitored since 2013 with permanent vegetation plots and dust collectors using a gradient study design prior to and during construction and operation of the Mine. A single study area transect was established in a west-southwest direction extending 20 kilometres from the Mine footprint, which was based on the prevailing wind direction and terrain features (i.e., large lakes), and the distribution of the target plant community across the landscape. Dustfall deposition and associated metals concentrations, and soil moisture and temperature variables are monitored annually. Data on plant species richness and abundance and soil pH and salinity are collected every three years. Analysis of variance was performed to determine if fixed dustfall deposition rates varied among sampling areas, seasons, and years. A repeated measures analysis of variance was used to examine patterns of species abundance (percent cover) and species richness across sampling areas and years. Although dust deposition has shown increasing trends since the commencement of construction and operation, no effects on vegetation from dust were observed in the current analysis. Metals concentrations in dust were generally below detection limits or in trace amounts, consistent with baseline values, and soil pH and salinity were within baseline values. Minor observed changes in species richness are likely related to natural variation in site conditions among vegetation plots and associated sampling areas, annual variation in climate, surveyor variability, and foraging by caribou and other wildlife. Differences in annual dust deposition rates may be attributed to annual variations in temperature, wind, and rainfall. The results suggest that dust-related changes in vegetation community composition is likely not a factor influencing the avoidance of habitats near the Mine by caribou or other wildlife.
DS201912-2829
2019
Stirling, R.A., Ross, M., Kelley, S.E., Elliott, B., Normandeau, P.X.Bedrock topographic and till thickness controls on contrasting till dispersal patterns from kimberlites southeast of Lac de Gras, Northwest Territories.Yellowknife Forum NWTgeoscience.ca, abstract volume p. 89-90.Canada, Northwest Territoriesdeposit - lac de Gras

Abstract: Till dispersal patterns may appear as a consistent train of indicators extending in the direction of the latest ice-flow phase from a source, or along a direction defined by an older ice-flow phase. However, other dispersal patterns, sometimes even in the same area, may have poorly-defined, discontinuous trains, or even lack dispersal trains all together. This research investigates dispersal patterns from two sites southeast of Lac de Gras that were affected by the same ice-flow history, but show important differences in bedrock topography, till thickness, and subglacial landform assemblages. The goal is to improve our understanding of bedrock and till thickness effects on dispersal trains. New local ice-flow indicators (n=16) constrain local ice-flow history. Digital elevation models and a surficial map are used to identify surficial landforms and to loosely constrain bedrock topography. We also use a subset of KIM results from a large industry-donated RC-drilling database (n=502 from 185 boreholes) which includes information on subsurface sediment characteristics and depth-to-bedrock data, which further constrain bedrock topography. In addition, we use texture, matrix geochemistry, KIMs, and clast lithology from a smaller set of 51 surface samples to compare dispersal patterns at surface and at depth. Part of the eastern study area is characterized by a well-defined drumlin field associated with the young NW ice-flow phase, variable till thickness (0-18m), and relatively flat bedrock topography (<20m elevation change). Kimberlites WO-17/WO-20 exhibit a short, but well-defined KIM dispersal train in the direction of the last dominant flow phase (NW); the dispersal area is also characterized by thin discontinuous till. A second KIM dispersal train is also recognized in the thicker till of the drumlin field SW of WO-17/20. Based on its location relative to WO-17/20, and till geochemistry and lithology counts, this pattern is interpreted to be a palimpsest train associated to the oldest SW ice flow. The western study area, located 20km from the eastern area, is characterized by a similar ice-flow history, but its bedrock topography varies more (~70m), with thin till, generally under 4m. A known kimberlite within the western area (Big Blue) is nestled within a bedrock topographic high ~20m above the surrounding terrain. Fragmented and more elusive till anomalies occur down-ice from this source. The lack of a well-developed dispersal train associated with the kimberlite is noteworthy, and may be due to the evolution of subglacial conditions around the bedrock hill. Our current model involves initial basal sliding and erosion of the top of the kimberlite and englacial entrainment. This phase was followed by reduced local abrasion and erosion rates within the kimberlite depression, possibly related to the development of low-pressure cavities over several local depressions: an idea supported by evidence of late-stage meltwater activity. This research highlights the important role of bedrock topography and related subglacial conditions both in the source area and dispersal area, as well as the potential for enhanced preservation of palimpsest trains in drumlinized till blankets.
DS201912-2831
2019
Trefry, K., Petherbridge, W.Ekati Long Lake containment facility ( LLCF) reclamation research.Yellowknife Forum NWTgeoscience.ca, abstract volume p. 95-96.Canada, Northwest Territoriesdeposit - Ekati

Abstract: The Ekati Diamond Mine is a surface and underground diamond mine operated by Dominion Diamond Mines. It is located near Lac de Gras within the Northwest Territories, Canada approximately 300 km north of Yellowknife and roughly 200 km south of the Arctic Circle. The Long Lake Containment Facility (LLCF) is the primary containment area for processed kimberlite (PK) storage after the extraction of diamonds from kimberlite ore. The facility has been in operation since 1998 and is the main repository of PK from open pit and underground mines at the Ekati Mine. The overall reclamation goal for the LLCF is the design and construction of a long-term cover that will physically stabilize the PK, with a landscape that will be safe for human and wildlife use. The proposed final closure design for the LLCF includes the following components: 1) Combination of vegetation and rock cover system to physically stabilize the PK. Vegetation is planned to be the main stabilization component of the PK. Rock placement is intended to promote a localized environment for vegetation growth and provide larger-scale wind and water erosion protection. 2) Water drainage channels to convey surface water flow through the containment cells and into settling ponds. Since 2012, reclamation research has been ongoing at Cell B of the LLCF with the overall intent of addressing uncertainties with the proposed final LLCF cover design. Separate reclamation research programs focused on addressing the uncertainties of vegetation growth in PK are being carried out under this project. Dominion’s short-term research goal has been to establish and evaluate the vegetation growth directly within PK. Main components of the LLCF reclamation research includes evaluation of soil amendments, rock/vegetation combinations, annual crop cover, plant species trials, mine-generated organic matter application, seed collection/distribution, and natural vegetation colonization. The LLCF reclamation research aims to establish a best practice that could be adapted by other mining operations looking to reclaim PK containment sites. Annual vegetation monitoring and continued program expansion aid in reaching that goal. Recent program undertakings have included: 1)Surface water management research through trial channel construction and further bio-engineering of existing channels 2) Mycorrhizae inoculation to improve soil microbial communities 3) Implementation of rough and loose mounding as an erosion control measure 4) Evaluation of the feasibility of using organic matter generated from the Ekati composter facility 5) Harvesting of halophytic seed and live plant specimens from saline environments near Kugluktuk, Nunavut for planting in Cell B 6) Utilization of reclamation equipment for earthworks. The LLCF reclamation research has been a vessel for developing methods of utilizing PK as an effective growth medium. High sodium concentrations and low organic matter content present challenges, but also provide opportunities for innovative research to improve environmental conditions and lead to a final closure design. Dominion has included Traditional Knowledge, other scientific knowledge, as well as regulatory and community input as a key component of LLCF reclamation research planning and final cover design.
DS201912-2833
2019
Welsh, M., Gillander, A.Diamond policy framework.Yellowknife Forum NWTgeoscience.ca, abstract volume p. 97.Canada, Northwest Territorieslegal

Abstract: Established in 1999, the Diamond Policy Framework (DPF) was designed to facilitate the development of a diamond manufacturing industry in the Northwest Territories (NWT). In addition, agreements with NWT diamond producers were established which required them to offer 10 percent of their production, by value, to Approved NWT Diamond Manufacturers (ANDM) for manufacturing in the NWT. The NWT is the most expensive jurisdiction in which to operate a manufacturing facility and despite some early success, the policy was not successful in creating an operating environment for the secondary industry to flourish. In 2018, ITI commissioned a review of the DPF that sought recommendations on how to make this industry more attractive to investors. The report contained a detailed review of the global diamond market. It also presented a series of cost per carat analyses of NWT production costs versus costs in other diamond manufacturing regions. Policy recommendations included adopting an export provision for NWT rough diamonds (and making that export volume contingent on their investment in the NWT), permitting the development of a facility for high-skill planning and lasering services, and generally ensuring that the policy supported the acceptance of innovative business plans. In 2018, The Department of Industry, Tourism and Investment (ITI) amended the DPF. Accordingly, a new approach to the utilization of rough diamonds was developed to realize maximum economic benefits for the NWT and its residents. The amended DPF now has provisions that allow an ANDM to export a portion of their allocation based on their business proposal and an ANDM is no longer required to complete the entire manufacturing process in the NWT. To be eligible to export rough diamonds, ANDM applicants must provide a comprehensive business plan that outlines investment details. Business plans are reviewed and scored based on a comprehensive matrix that determines the export volume.
DS201912-2834
2019
Wickham, A.M., Winterburn, P.A., Elliott, B.Till geochemistry and lithogeochemical exploration for a concealed kimberlite. Yellowknife Forum NWTgeoscience.ca, abstract volume poster p. 123-124.Canada, Northwest Territoriesdeposit - Kelvin

Abstract: Research at the Kelvin kimberlite, NWT, is defining surface exploration practices and testing new host rock lithogeochemical exploration tools that will result in reduced costs and improved discovery success. In regions where recent glaciation has buried kimberlites under glacial sediments, surface geochemical detection methods are best interpreted when coupled with a comprehension of the landscape formation processes. The glacial, post-glacial, and cryoturbation processes that have affected the landscape have, in turn, affected the dispersal of geochemical signatures in the till that can be detected and exploited by detailed surface mapping, sampling, and geochemical analysis. The Kelvin kimberlite is an inclined pipe that subcrops from metaturbidite country rock beneath a lake. No indicator mineral train has been detected at Kelvin by traditional indicator mineral methods. Relative uniformity of surficial material (<6m thick till blanket) allows for extensive B horizon soil sampling above the kimberlite, up-ice, and up to 1 km down-ice. Four acid and aqua regia ICP-MS results of the -180 ?m fraction indicate the presence of subtle pathfinder element trains originating from the kimberlite subcrop location and extending for >1km down-ice. Dry sonic sieving and four acid digestion results provide interpretations of geochemical partitioning and the ideal size fraction for geochemical sampling. Trace elements demonstrate systematically elevated concentrations in the fine and very fine silt fractions; however, background is higher and anomalous to background contrast is not enhanced compared to bulk -180 ?m ratios. Elevated pathfinder concentrations in the fine to very fine sand fraction are attributed to fine kimberlite indicator minerals and their fragments, and display the best anomalous to background contrast ratio. Whole soil commercial Pb isotope analysis of select soils provide supplemental data to fingerprint the petrogenetic source of anomalous samples. Additional research is being carried out to detect alteration signatures in the country rock induced by the emplacement of the kimberlite. Lithogeochemical data from four drill holes aims to identify and quantify the metasomatic enrichment and depletion of elements sourced from the kimberlite, while hyperspectral imaging will aim to detect secondary mineralogy and subtle changes in mineral composition. This data will be used to generate mineralogical and geochemical vectors beneficial in near-miss situations when drilling kimberlites and defining diatreme geometries.
DS202001-0012
2019
Gauthier, M.S., Hodder, T., Ross, M., Kelley, S.E. Rochester, A., McCausland< P. The subglacial mosaic of the Laurentide ice sheet; a study of the interior region of southwestern Hudson Bay.Quaternary Science Reviews, Vol. 214, pp. 1-27.Canada, Manitobageomorphology

Abstract: Reconstructions of past ice-flow provide useful insights into the long-term behaviour of past ice sheets and help to understand how glaciated landscapes are shaped. Here, we present reconstruction of a 10-phase ice-flow history from southwestern Hudson Bay in northeastern Manitoba (Canada), a dynamic region situated between two major ice dispersal centres of the Laurentide Ice Sheet. We utilize a diverse geologic dataset including 1900 field-based erosional indicators, 12 streamlined-landform flowsets, esker and meltwater corridor orientations, 103 till-fabrics analyses, and 1344 till-clast lithology counts. Our reconstruction suggests that both pre-MIS 2 and MIS 2 glaciations followed similar growth patterns, where ice advanced into study area from ice centered to the east (probably in northern Quebec), followed by a switch in ice-flow direction indicating flow from the Keewatin ice centre to the northwest and north. The cause for this switch in ice-flow orientation is uncertain, but the youngest switch may relate to retreat of ice during MIS 3 that then left space for Keewatin-sourced ice to advance over the study area. While modelling experiments indicate widespread cold-based conditions in the study area during the last glacial cycle, uniformly relict landscapes are not common. Instead, the glaciated landscape is palimpsest and commonly fragmented, forming a subglacial bed mosaic of erosional and depositional assemblages that record both shifting ice-flow direction through time and shifting subglacial conditions. Each assemblage formed, or modified, during times of dynamic (warm-based) ice, and later preserved under conditions below or close to the pressure melting point (slow and sluggish, or cold-based).
DS202001-0014
2019
Groat, L.A.Adding logic to luck: recent advances in coloured stone exploration in Canada.Journal of Gemmology, Vol. 36, pp. 620-633.Canadagemstones
DS202001-0015
2018
Hodder, T. Kelley, S.E.Kimberlite indicator minerals and clast lithology composition of till, Kaskattama region northeastern Manitoba (parts of NTS 53N, O, 54 B,C.)Manitoba Report, GS2018-13 pdf 17p. Canada, Manitobageochemistry

Abstract: Canada exhibits many of the challenges involved with exploring for coloured stones in countries with very low population densities, temperate-to-arctic climates and a lack of infrastructure hindering access to most prospective areas. Despite this, a number of discoveries have occurred, mainly during the past two decades. These include emeralds from Northwest Territories (1997) and Yukon (1998); sapphire (2002) and spinel (from 1982)—including cobalt-blue stones—from Baffin Island in Nunavut; and ruby and pink sapphire (2002) from British Columbia. Such discoveries can be assisted by undertaking scientific research into gem formation, as well as by applying exploration criteria developed elsewhere to uncharted territory. Future exploration in Canada and other countries facing similar challenges will likely benefit from additional geological studies to identify prospective areas and features; innovative means of transportation, such as boats instead of aircraft; drones for exploring rugged terrain; hyperspectral imaging for mineral sensing; surveying with UV lamps to identify minerals associated with gem mineralisation; and careful prospecting (including field mapping and collecting heavy mineral concentrates) by experienced individuals. Quaternary geology fieldwork was conducted at a reconnaissance-scale in the Kaskattama highland area to document the Quaternary stratigraphy and till composition. The diamond potential of this region was investigated using kimberlite-indicator-mineral (KIM) counts from till samples. Indicator mineral results are the focus of this report and are combined with ice-flow and till-clast-lithology data to provide a context to interpret provenance. Kimberlite-indicator minerals were recovered from glacial sediments (till) in the Kaskattama highland area and KIM counts are elevated relative to data from the surrounding area. The lowest KIM counts were from till with a high Hudson Bay Basin (carbonatedominated) and low undifferentiated greenstone and greywacke (UGG) provenance signature. The highest KIM counts are associated with till samples that have a relatively elevated UGG or elevated granitoid provenance signature. Till samples with relatively elevated UGG concentration have an interpreted east or southeast provenance, which is supported by ice-flow data and the recovery of distinct east-sourced erratics. Till samples with a relatively elevated granitoid clast concentration have a correlation with the southwest- trending Hayes streamlined-landform flowset. Considering the likely provenance for granitoid clasts is to the northwest, the presence of relatively high concentrations of granitoid clasts in the Hayes flowset could be indicative of a higher inheritance from previous ice-flow events or a palimpsest dispersal pattern. Interpretation of till-composition and ice-flow data has indicated there are likely multiple sources for the KIMs recovered during this study. Detailed work is recommended to clarify local-scale dispersal patterns.
DS202001-0023
2019
Kelley, S.E., Ross, M., Elliott, B., Normandeau, P.X.Effect of shifting ice flow and basal topography in shaping three dimensional dispersal patterns , Lac de Gras region, Northwest Territories.Journal of Geochemical Exploration, Vol. 199, pp. 105-127.Canada, Northwest Territoriesgeomorphology

Abstract: Tracing indicator minerals and geochemical pathfinders in glacial sediments back to their up-ice source is a common mineral exploration approach in prospective, formerly glaciated regions. In this study, we utilize surface and subsurface data from the Lac de Gras area of the Northwest Territories to develop a three-dimensional understanding of till compositional anomalies emanating from two known kimberlite pipes, DO-18 and DO-27. Specifically, this study examines the three-dimensional shape of dispersal trains as defined by geochemical pathfinder elements and kimberlite indicator minerals shed from a pair of kimberlite pipes within a till cover of variable thickness. From our ninety-four reverse circulation boreholes (n?=?251 till samples), and other publicly-available geologic datasets, we have reconstructed bedrock topography, till thickness, and the subsurface geometry of two dispersal trains. Utilizing our three-dimensional dataset, we have documented the role of basal topography in creating dispersal patterns with contrasting geometries from two adjacent kimberlites, as well as in the preferential preservation of older till units. The combination of field observations of ice-flow indicators and till compositional data demonstrates that features produced by multiple ice flows are preserved in both the erosional and depositional records in this region. Three-dimensional dispersion patterns of kimberlite indicators reflect the effect of shifting ice-flow direction with respect to slope aspect of bedrock topography in governing compositional variability within glacial drift. Our findings suggest that surficial data do not capture the full extent of dispersion patterns even in areas of relatively thin and discontinuous till cover.
DS202002-0164
2020
Belley, P.M., Groat, L.A.Metamorphosed carbonate platforms and controls on the genesis of sapphire, gem spinel, and lapis Lazuli: insight from the Lake Harbour Group, Nunavut, Canada and implications for gem exploration.Ore Geology Reviews, Vol. 116, 10p. PdfCanada, Nunavutgemstones

Abstract: Baffin Island's Lake Harbour Group (LHG), a Paleoproterozoic granulite facies metasedimentary sequence rich in carbonates, contains occurrences of the gemstones sapphire (corundum), spinel (including vivid blue, cobalt-enriched spinel), and lapis lazuli (haüyne-bearing rock). Most occurrences of these gem minerals are uniquely metasedimentary (carbonates and calc-silicate rock), while a few spinel occurrences formed from metasomatic reactions between Si-Al-rich rock (syenogranite or gneiss) and marble. The metasedimentary corundum, spinel, and haüyne occurrences have similar protoliths: primarily dolomitic marls with a high Al/Si relative abundance (interpreted as sandy mud to clay siliciclastic fraction in the protolith). Kimmirut-type sapphire deposits formed via a multi-step metamorphic process under three different and specific P-T conditions. Lapis lazuli formation required the presence of evaporites to provide Na and possibly S for the blue mineral haüyne. In addition to high Al/Si calc-silicate rocks, spinel also occurs in impure dolomitic marbles with very low K/Al. Potential for Kimmirut-type sapphire deposits is expected to be restricted to metacarbonate sequences proximal to the thrust fault separating the LHG from the Narsajuaq Arc, where retrograde upper amphibolite facies mineralization is most pervasive. Spinel and Kimmirut-type sapphire deposits are expected to be found in dolomitic marble sequences rich in calc-silicate layers. The potential occurrence of lapis lazuli is more difficult to predict but deposits could be identified thanks to large geographical footprints and their color. Similar gem occurrences or deposits to those in the LHG may be found in other metacarbonate-bearing terranes with similar metamorphic conditions (and for Kimmirut-type sapphire, a similar metamorphic history). Aerial hyperspectral and photographic surveys are well-suited to gemstone exploration on southern Baffin Island thanks to excellent rock exposure with minimal sediment or plant/lichen cover. Spectral mapping of dolomite-, diopside-, phlogopite-, and scapolite-rich domains in LHG metacarbonate sequences using airborne hyperspectral data is expected to provide exploration targets. Remote sensing exploration could be used in other metacarbonate-bearing, upper amphibolite to granulite facies metamorphic terranes found in polar climates, arid climates, or at high elevation in mountainous regions where such rocks are well exposed with minimal vegetative cover.
DS202002-0167
2019
Bohm, C.O., Hartlaub, R.P., Heaman, L.M., Cates, N., Guitreau, M., Bourdon, B., Roth, A.S.G., Mojzsis, S.J., Blichert-Toft, J.The Assean Lake Complex: ancient crust at the northwestern margin of the Superior craton, Manitoba, Canada. ( not specific to diamonds)Earth's Oldest Rocks, Chapter 28, 20p. Pdf.Canada, Manitobacraton
DS202002-0172
2019
Czas, J., Pearson, D.G., Stachel, T., Kjarsgaard, B.A., Read, G.H.A Paleoproterozoic diamond bearing lithospheric mantle root beneath the Archean Sask craton, Canada.Lithos, DOI:10.1016/ j.lithos.2019.105301Canada, Saskatchewandiamond genesis

Abstract: The recently recognised Sask Craton, a small terrane with Archean (3.3-2.5 Ga) crustal ages, is enclosed in the Paleoproterozoic (1.9-1.8 Ga) Trans Hudson Orogen (THO). Only limited research has been conducted on this craton, yet it hosts major diamond deposits within the Cretaceous (~106 to ~95 Ma) Fort à la Corne (FALC) Kimberlite Field. This study describes major, trace and platinum group element data, as well as osmium isotopic data from peridotitic mantle xenoliths (n = 26) from the Star and Orion South kimberlites. The garnet-bearing lithospheric mantle is dominated by moderately depleted lherzolite. Equilibration pressures and temperatures (2.7 to 5.5 GPa and 840 to 1250 °C) for these garnet peridotites define a cool geotherm indicative of a 210 km thick lithosphere, similar to other cratons worldwide. Many of the peridotite xenoliths show the major and trace element signatures of carbonatitic and kimberlitic melt metasomatism. The Re-Os isotopic data yield TRD (time of Re-depletion) model ages, which provide minimum estimates for the timing of melt depletion, ranging from 2.4 to 0.3 Ga, with a main mode spanning from 2.4 to 1.7 Ga. No Archean ages were recorded. This finding and the complex nature of events affecting this terrane from the Archean through the Palaeoproterozoic provide evidence that the majority of the lithospheric mantle was depleted and stabilised in the Palaeoproterozoic, significantly later than the Archean crust. The timing of the dominant lithosphere formation is linked to rifting (~2.2 Ga - 2.0 Ga), and subsequent collision (1.9-1.8 Ga) of the Superior and Hearne craton during the Wilson cycle of the Trans Hudson Orogen.
DS202002-0181
2020
Elliott, B.A summary of the Slave geological province exploration development initiative - revitalizing mineral exploration and facilitating sustainable development in a a key economic region.Vancouver Kimberlite Cluster meeting, Jan. 23, 1/4p. AbstractCanada, Northwest Territoriesdata sets
DS202002-0188
2019
Ghent, E.D., Edwards, B.R., Russell, J.K.Pargasite bearing vein in spinel lherzolite from the mantle lithosphere of the North American Cordillera. Canadian Journal of Earth Sciences, Vol. 56, pp. 870-885.Canada, British Columbialherzolite

Abstract: Basanite lavas near Craven Lake, British Columbia, host a spinel lherzolite xenolith containing cross-cutting veins with pargasitic amphibole (plus minor apatite). The occurrence of vein amphibole in spinel lherzolite is singular for the Canadian Cordillera. The vein crosscuts foliated peridotite and is itself cut by the basanite host. The amphibole is pargasite, which is the most common amphibole composition in mantle peridotite. Rare earth element concentrations in the pargasite are similar to those for mafic alkaline rocks across the northern Cordilleran volcanic province (light rare earth elements ?50× chondrite and heavy rare earth elements ?5× chondrite). Two-pyroxene geothermometry suggests that the vein and host peridotite were thermally equilibrated prior to sampling by the basanite magma. Calculated temperature conditions for the sample, assuming equilibration along a model steady-state geotherm, are between 990 and 1050 °C and correspond to a pressure of 0.15 GPa (?52 ± 2 km depth). These conditions are consistent with the stability limits of mantle pargasite in the presence of a fluid having XH2O < ?0.1. The pargasite vein and associated apatite provide direct evidence for postaccretion fracture infiltration of CO2-F-H2O-bearing silicate fluids into the Cordilleran mantle lithosphere. Pargasite with low aH2O is in equilibrium with parts per million concentrations of H2O in mantle olivine, potentially lowering the mechanical strength of the lithospheric mantle underlying the Cordillera and making it more susceptible to processes such as lithospheric delamination. Remelting of Cordilleran mantle lithosphere containing amphibole veins may be involved in the formation of sporadic nephelinite found in the Canadian Cordillera.
DS202002-0199
2020
Lai, M.Y., Breeding, C.M., Stachel, T., Stern, R.A.Spectroscopic features of natural and HPHT treated yellow diamonds. EkatiDiamonds & Related Materials, Vol. 101, 107642, 8p. PdfCanada, Northwest Territoriesdeposit - Ekati

Abstract: High pressure high temperature (HPHT) treatment has long been applied in the gem trade for changing the body colour of diamonds. The identification of HPHT-treated diamonds is a field of on-going research in gemological laboratories, as different parameters of treatment will result in either the creation or the destruction of a variety of lattice defects in diamonds. Some features that exist in treated diamonds can also be found in natural diamonds, and consequently must not be employed for the separation of treated and natural diamonds. In this research, we investigated the properties of 11 natural yellow diamonds (directly obtained from the Ekati Diamond Mine to ensure that they are untreated) before and after HPHT treatment, conducted at a temperature of 2100 °C and a pressure of 6 GPa for 10 min. We report spectroscopic data and fluorescence characteristics, collected using PL mapping, FTIR mapping and fluorescence imaging showing the distribution of lattice defects and internal growth structures. PL mapping indicates SiV defects exist in one of the nitrogen-rich natural diamonds prior to treatment. Silicon-related defects can also be created by HPHT treatment, and they seem to show a relationship with pre-existing NV? centres. SIMS analysis was conducted to confirm the presence of silicon in these diamonds. The increase in the hydrogen-related infrared absorption peak at 3107 cm?1 (VN3H) is very strong in some diamonds that do not form B-centres during treatment. NVH was observed in our HPHT-treated natural diamonds, so it is possible that this strong increase in VN3H suppresses the aggregation of A- to B-centres as the newly formed A-centres were captured by NVH lattice defects to form VN3H. HPHT-altered and HPHT-induced platelet peaks are different from their natural counterparts in peak width and shape. Strong green fluorescence over a large area of a diamond, which is linked to relatively high concentration of H3 centres, was produced after HPHT treatment. We are confident that the unusual platelet peaks and strong emission of H3 centres are reliable indicators for HPHT-treated diamonds as they are not observed in untreated natural diamonds.
DS202003-0329
2020
Abersteiner, A., Kamenetsky, V.S., Goemann, K.A genetic study of olivine crystallization in the Mark kimberlite ( Canada) revealed by zoning and melt inclusions.Lithos, In press available 46p. pdf.Canada, Northwest Territoriesdeposit - Mark

Abstract: Elucidating the composition of primary kimberlite melts is essential to understanding the nature of their source, petrogenesis, rheology, transport and ultimately the origin of diamonds. Kimberlite rocks are typically comprised of abundant olivine (~2560 vol%), which occurs as individual grains of variable size and morphology, and includes xenocrysts and zoned phenocrysts. Zoning patterns and inclusions in olivine can be used to decipher the petrogenetic history of kimberlites, starting from their generation in the mantle through to emplacement in the crust. This study examines well-preserved, euhedral, zoned olivine crystals from the Mark kimberlite (Lac de Gras, Canada). Olivine typically consists of xenocrystic cores, which are homogeneous in composition but vary widely between grains (Fo88.193.6). These cores are in turn surrounded by (in order of crystallisation) magmatic rims and Mg-rich rinds (Fo95.398.1). In addition, we document a new type of olivine zone (‘outmost rind’) that overgrows Mg-rich rinds. Crystal and melt/fluid inclusions are abundant in olivine and preserve a record of kimberlite melt evolution. For the first time in the studies of kimberlite olivine, we report primary melt inclusions hosted in Mg-rich olivine rinds. In addition, we observe that pseudosecondary melt/fluid inclusions are restricted to interior olivine zones (cores, rims) and are considered to have formed prior to rind formation. Pseudosecondary melt/fluid inclusions are inferred to have been entrapped at depth, as evidenced by measured densities in thermometric experiments of CO2 and decrepitation haloes, indicating a minimum entrapment pressure of ~200450 MPa (or ~615 km). Both primary and pseudosecondary melt inclusions in olivine have daughter minerals dominated by CaMg and K-Na-Ba-Sr-bearing carbonates, K-Na-chlorides along with subordinate silicates (e.g., phlogopite, monticellite), Fe-Mg-Al-Ti-spinel, perovskite, phosphates and sulphates/sulphides and periclase. In addition to phases reported in primary melt inclusions, pseudosecondary melt inclusions contain more diverse and exotic daughter mineral assemblages, where they contain phases such as tetraferriphlogopite Ba- or K-sulphates, kalsilite and Na-phosphates. The daughter mineral assemblages are consistent with a silica-poor, alkali dolomitic carbonatite melt. We demonstrate that the different types of inclusions in olivine can assist in constraining the timing of multi-stage olivine growth and the composition of the crystallising melt. The large variance in olivine zoning patterns, morphologies and Ni distribution (i.e. both coupling with and decoupling from Fo) indicates that olivine in the studied Mark kimberlite samples represent an accumulation of olivine, where olivine was derived from successive stages of the ascending magma and/or from multiple, but related pulses of magma. Primary and pseudosecondary melt/fluid inclusions in olivine indicate that a variably differentiated silica-poor, halogen-bearing, alkali-dolomitic melt crystallised and transported olivine in the Mark kimberlite.
DS202003-0336
2020
Ethier, B.Analyzing entangled territorialities and indigenous use of maps: Atikamekw Nehirowisiwok ( Quebec, Canada) dynamics of territorial negotiations, frictions, and creativity.The Canadian Geographer, https://doi.org/ 10.1111/cag.12603Canada, Quebeclegal

Abstract: This paper highlights the relevance of analyzing entangled territorialities and Indigenous use of maps in order to better understand what Lévy describes in terms of “spatial capital”—the socio?economic dynamics and power relationships maintained and negotiated between the stakeholders interacting within the Indigenous forestland. More specifically, it discusses the entanglement dynamics of land tenures coexisting today within Nitaskinan, the ancestral territory claimed by the Atikamekw Nehirowisiwok. Within Nitaskinan, members of the First Nation negotiate the continuity of their practices, occupation, and use of ancestral hunting territories with state institutions, logging companies, and non?Indigenous members of civil society who have interests in the land resources. All these stakeholders implement different territorial regimes that interact and sometimes conflict. Based on concrete ethnographic examples, the analysis presented here focuses on the compromises, frictions, resistance, and creativity that are part of territorial coexistence between Indigenous and non?Indigenous people. This paper is about the entanglement of Indigenous and state's land tenures in a Canadian context. The study highlights the relevance of analyzing entangled territorialities to better understand the power relationships within Indigenous forestland. The study demonstrates the complex articulations between domination and resistance dynamics in Indigenous mapping in a territorial negotiation process. This paper is about the entanglement of Indigenous and state's land tenures in a Canadian context. The study highlights the relevance of analyzing entangled territorialities to better understand the power relationships within Indigenous forestland. The study demonstrates the complex articulations between domination and resistance dynamics in Indigenous mapping in a territorial negotiation process.
DS202003-0347
2020
Lai, M.Y., Stachel, T., Breeding, C.M., Stern, R.A.Yellow diamonds with colourless cores - evidence for episodic diamond growth beneath Chidliak and Ekati mine, Canada.Mineralogy and Petrology, in press available 13p. PdfCanada, Northwest Territoriesdeposit - Chidliak, Ekati

Abstract: Yellow diamonds from the CH-7 (Chidliak) and the Misery (Ekati Mine) kimberlites in northern Canada are characterised for their nitrogen characteristics, visible light absorption, internal growth textures, and carbon isotope compositions. The diamonds are generally nitrogen-rich, with median N contents of 1230 (CH-7) and 1030 at.ppm (Misery). Normally a rare feature in natural diamonds, single substitutional nitrogen (C centres) and related features are detected in infrared absorption spectra of 64% of the studied diamonds from CH-7 and 87% from Misery and are considered as the major factor responsible for their yellow colouration. Episodically grown diamonds, characterised by colourless cores containing some nitrogen in the fully aggregated form (B centres) and yellow outer layers containing C centres, occur at both localities. Carbon isotope compositions and N contents also are significantly different in such core and rim zones, documenting growth during at least two temporally distinct events and involving different diamond forming fluids. Based on their nitrogen characteristics, both the yellow diamonds and yellow rims must have crystallized in close temporal proximity (<<1 Ma) to kimberlite activity at CH-7 and Misery.
DS202003-0366
2020
Tovey, M., Giuliani, A., Phillips, D., Moss, S.Controls on the explosive emplacement of diamondiferous kimberlites: new insights from hypabyssal and pyroclastic units in the Diavik mine, Canada.Lithos, in press available, 55p. PdfCanada, Northwest Territoriesdeposit - Diavik

Abstract: Kimberlites are mantle-derived magmas that either crystallise as hypabyssal intrusions, erupt explosively after rapid ascent to the surface, or less commonly form lava lakes and flows, thereby creating texturally distinct kimberlite units. Efforts to fully understand the processes responsible for the explosive eruption of kimberlite magmas have been hindered by the widespread alteration and crustal contamination of most volcaniclastic kimberlites. To address this issue, we have undertaken a detailed petrographic and mineral chemical study of fresh (i.e. minimally altered) pyroclastic and hypabyssal kimberlites (HK) from the ca. 55-56?Ma A154 North and South kimberlite pipes in the Diavik Mine (Lac de Gras, Canada). These localities host exceptionally fresh kimberlites and are therefore ideally suited to this study. Kimberlite emplacement at A154 North and South initiated with the intrusion of hypabyssal kimberlite (external dykes), and was followed by the explosive formation of kimberlite pipes and volcaniclastic kimberlite infill. Subsequent kimberlite magmas intruded the volcaniclastic kimberlite units forming multiple cross-cutting, internal dykes. The studied volcaniclastic units feature abundant rounded magmaclasts and massive textures, suggestive of primary deposits. These units are classified as pyroclastic kimberlites (PK). Pyroclastic and hypabyssal kimberlite units at Diavik exhibit subtle mineral compositional differences. Samples from both internal HK units and PK units feature identical compositions for liquidus olivine rims (Mg#?=?90.5?±?0.1 and 90.7?±?0.2, respectively), with a marginally lower Mg# of 90.2?±?0.2 in olivine rims from the external HK dykes. Similarly, early-formed chromite compositions are the same for internal HK and PK units (Cr#?=?79.1?±?3.4 and 78.3?±?5.7; Mg#?=?60.0?±?1.3 and 60.0?±?2.2), but, differ in the external HK units (Cr#?=?86.9?±?2.7; Mg#?=?52.8?±?1.9). The internal HK and PK units also exhibit lower carbonate contents than the internal HK units. These compositional differences indicate that the external dykes were probably derived from slightly different primitive melt compositions to those parental to the internal HK and PK units. Spinel evolutionary trends from chromite to magnesian ulv?spinel-magnetite (MUM) compositions (Fe3+#?=?47.2?±?5.8 and 49.7?±?9.3; Cr#?=?25.7?±?11.0 and 17.0?±?14.0 for MUM) are indistinguishable in internal HK and PK samples. These results demonstrate that the primitive melt compositions and early magmatic evolution processes are identical for the internal kimberlite units, regardless of whether the kimberlite melts erupted explosively or were emplaced as shallow intrusions. However, magmaclasts in the PK units contain higher abundances of phlogopite (<52 vol%) and lower quantities of carbonate (<4 vol%) than the groundmass of the hypabyssal kimberlite samples (<2 vol% and 25-65 vol%, respectively). This indicates that the explosively erupted magmas featured higher H2O/CO2 ratios. In contrast, abundant carbonates, including dolomite, in the internal HK samples indicate that CO2, and therefore low H2O/CO2 ratios, were retained during the emplacement of this magma, which likely prevented phlogopite crystallisation. Lower K and Rb whole-rock compositions for internal HK samples compared to PK samples, are attributed to the removal of these components in late-stage kimberlitic fluids, as indicated by hydrothermal alteration of the adjacent volcaniclastic kimberlite units. The above results clearly rule out variations in primitive melt composition and melt evolution trajectories as a primary control on the explosive behaviour of the kimberlite magmas at Diavik. Our study also emphasises how volatile loss resulting from different emplacement styles can have a profound effect on the whole-rock compositions and petrography of kimberlite units. Controls on kimberlite explosivity at Diavik are likely due to external factors, such as local stress regimes, the availability of groundwater (i.e. phreatomagmatism) and differing magma supply rates.
DS202004-0501
2020
BBC NewsDiamond samples in Canada reveal size of lost continent. Chidliak and UBC Kopylovabbc.com, March 20, 1/2p.Canada, Baffin Islandcraton
DS202004-0505
2018
Cummings, D.I., Russell, H.A.J.Glacial dispersal trains in North America.Journal of Maps ( Taylor & Francis) on linkedin, Vol. 14, 2, pp. 476-485. pdfUnited States, CanadaGlaciation, geomorphology, map

Abstract: A map depicting glacial dispersal trains in North America has been compiled from published sources. It covers the Canadian Shield, the Arctic Islands, the Cordillera and Appalachian mountains, and Phanerozoic sedimentary basins south of the Shield. In total, 140 trains are portrayed, including those emanating from major mineral-deposit types (e.g. gold, base metal, diamondiferous kimberlite, etc.). The map took 10 years of on-and-off work to generate, and it culls data from over 150 years of work by government, industry, and academia. It provides a new tool to help companies find ore deposits in Canada: the trains are generally a better predictor of dispersal distance and direction than striations and streamlined landforms, the data typically depicted on surficial-geology maps, including the Glacial Map of Canada. It also gives new insight into sedimentation patterns and processes beneath ice sheets, a sedimentary environment that, because of its inaccessibility, remains poorly understood and controversial.
DS202004-0509
2020
Elling, R.P., Stein, S., Stein, C.A., Keller, G.R.Tectonics implications of the gravity signatures of the Midcontinent Rift and Grenville Front.Tectonophysics, Vol. 778, 228369, 6p. PdfUnited States, Canadamidcontinent rift

Abstract: North America's Midcontinent Rift (MCR) and Grenville Front (GF) jointly record aspects of the complex history of the assembly of Rodinia. The ~1100 Ma MCR, remaining from a failed major rifting event, is exposed along Lake Superior and well defined by gravity, magnetic, and seismic data. The GF, which results from collisions with Laurentia, is exposed in and identified by seismic and potential field data in Canada. In the eastern U.S., lineated gravity highs extending southward from Michigan to Alabama, along the trend of the front in Canada, have been interpreted either as a buried Grenville Front or as part of the MCR's east arm. We explore this issue by examining the gravity signatures of the MCR and GF. Both the MCR's arms have pronounced gravity highs, with the west arm's greater than the east arm's. Combining the gravity observations with seismic data suggests that the west arm contains 20-25 km thickness of volcanics, whereas the east arm contains 10-15 km of volcanics. Along the Grenville Front in Canada, thickened crust along the northern portion causes a broad gravity low, whereas the stacked thrusts along the southern portion cause essentially no gravity signature. Hence the lineated gravity highs in the eastern U.S. appear similar to those along the remainder of the MCR, and unlike those on either portion of the GF. These data favor the gravity anomalies traditionally interpreted as the Grenville Front in the eastern U.S. as instead being part of the MCR's east arm. A thrust sheet structure like that of the southern Canadian Grenville Front - which would have essentially no gravity effect - could also be present along the MCR's east arm, as implied by recent EarthScope seismic data.
DS202004-0517
2019
Gruber, B.H.Temperatures and heat production in the Slave Craton lower crust: evidence from exnoliths in the Diavik A-154 kimberlite.Thesis MSc University of Alberta , 123p. Pdf Canada, Northwest Territoriesdeposit - Diavik A-154

Abstract: Lower crustal heat production is poorly constrained due to the relative inaccessibility of lower crustal samples and their inherent complexity. To obtain the requisite information, the current project conducts spatially resolved geochemical analyses on minerals in 15 lower crustal xenoliths erupted via the Diavik A-154 kimberlite of the Northwest Territories, Canada. The aims are to: 1) conduct geothermometric measurements on lower crustal minerals, 2) construct a heatproducing element budget of the lower crust of the Slave craton, and 3) test the validity of these measurements in a parameter space relevant to geodynamic modeling and diamond exploration. The Diavik lower crustal xenolith suite comprises two main lithologies, mafic granulite (garnet-plagioclase-clinopyroxene ± orthopyroxene) and metasedimentary granulite (garnetplagioclase- orthopyroxene ± quartz ± K-feldspar ± kyanite), which are present in proportions of approximately 80:20, respectively. Application of mineral-pair, iron-magnesium exchange geothermometers (garnet-biotite, garnet-amphibole, and garnet-clinopyroxene) to these xenoliths indicates that the lower crust was at a maximum temperature of roughly 500 °C at the time of kimberlite eruption (~ 55 Ma). The actual temperature of the lower crust is likely lower than 500 °C as the geothermometers probably record the closure temperature of diffusional Fe2+-Mg exchange between touching mineral pairs rather than the ambient temperature of the rocks prior to their entrainment in the kimberlite magma. Heat-producing element (HPE) concentration measurements show that the lower crustal heat production of the Slave craton is likely 0.14 ± 0.02 ?W/m3, which is lower than most values in the literature but broadly comparable to some geophysical estimates. This estimate is the result of (20:80) bimodal mixing of idealized lower crustal endmembers: a metasedimentary lower crust (0.37 ± 0.06 ?W/m3) and a mafic lower crust (0.08 ± 0.01 ?W/m3). These endmembers were iii calculated via a reconstructed bulk rock calculation utilizing trace element concentrations of constituent lower crustal minerals and idealized lithologies from the lower crustal xenoliths. Using these heat production estimates and other crustal parameters such as continental heat flux, mantle heat flux, crustal thickness, and crustal thermal conductivity, I modeled a Moho temperature for the Slave craton of 425 °C, which is consistent with maximum lower crustal temperature estimate given by geothermometry. Adjusting the lower crustal heat production in the geotherm modeling program FITPLOT changes the temperature of the Moho in a similar fashion to the calculated models; however, the diamond propensity of the mantle lithosphere (partially a function of Moho temperature and heat production) does not appear to be strongly affected by a changing Moho temperature and is more strongly controlled by the conditions of the mantle P-T array.
DS202004-0522
2020
Kellett, D.A., Pehrsson, S., Skipton, D., Regis, D., Camacho, A., Schneider, D., Berman, R.Thermochronological history of the Northern Canadian Shield. Nuna, Churchill Province, Trans-Hudson orogen, Thelon, RaePrecambrian Research, doi.org/10.1016/j.precamres.2020.105703 in press available 80p. PdfCanadageothermometry

Abstract: The northern Canadian Shield is comprised of multiple Archean cratons that were sutured by the late Paleoproterozoic to form the Canadian component of supercontinent Nuna. More than 2000 combined K-Ar and 40Ar/39Ar cooling ages from across the region reveal a stark contrast in upper and lower plate thermal responses to Nuna-forming events, with the Churchill Province in particular revealing near complete thermal reworking during the late Paleoproterozoic. We review the detailed cooling history for five regions that span the Churchill Province and Trans-Hudson orogen (THO): Thelon Tectonic Zone, South Rae, Reindeer Zone, South Hall Peninsula, and the Cape Smith Belt. The cooling patterns across Churchill Province are revealed in two >1500 km transects. At the plate scale, Churchill’s cooling history is dominated by THO accretionary and collisional events, during which it formed the upper plate. Cooling ages generally young from west to east across both southern and central Churchill, and latest cooling in the THO is 50 myr older in southernmost Churchill (Reindeer Zone) compared to eastern Churchill (Hall Peninsula), indicating diachronous thermal equilibration across 2000 km strike length of the THO. Churchill exhibits relatively high post-terminal THO cooling rates of ~4 °C/myr, which support other geological evidence for widespread rapid exhumation of the THO upper plate following terminal collision, potentially in response to lithospheric delamination.
DS202004-0529
2020
Petrescu, L., Bastow, I.D., Darbyshire, F.A., Gilligan, A., Bodin, T., Menke, W., Levin, V.Three billion years of crustal evolution in eastern Canada: constraints from receiver functions.Journal of Geophysical Research: Solid Earth, in press available, 24p. PdfCanadageophysics - seismics

Abstract: The geological record of SE Canada spans more than 2.5Ga, making it a natural laboratory for the study of crustal formation and evolution over time. We estimate the crustal thickness, Poisson's ratio, a proxy for bulk crustal composition, and shear velocity (Vs) structure from receiver functions at a network of seismograph stations recently deployed across the Archean Superior craton, the Proterozoic Grenville and the Phanerozoic Appalachian provinces. The bulk seismic crustal properties and shear velocity structure reveal a correlation with tectonic provinces of different ages: the post-Archean crust becomes thicker, faster, more heterogenous and more compositionally evolved. This secular variation pattern is consistent with a growing consensus that crustal growth efficiency increased at the end of the Archean. A lack of correlation among elevation, Moho topography, and gravity anomalies within the Proterozoic belt is better explained by buoyant mantle support rather than by compositional variations driven by lower crustal metamorphic reactions. A ubiquitous ?20km thick high-Vs lower-crustal layer is imaged beneath the Proterozoic belt. The strong discontinuity at 20km may represent the signature of extensional collapse of an orogenic plateau, accommodated by lateral crustal flow. Wide anorthosite massifs inferred to fractionate from a mafic mantle source are abundant in Proterozoic geology and are underlain by high Vs lower crust and a gradational Moho. Mafic underplating may have provided a source for these intrusions and could have been an important post-Archean process stimulating mafic crustal growth in a vertical sense.
DS202005-0771
2020
Witherly, K.Geophysics - past performance and future opportunity. Review and comments( not specific to diamonds but interestsSEG Discovery ( former NewsLetter), No. 121, April pp. 40-41.Canada, AustraliaGeophysics
DS202006-0909
2020
Aulbach, S., Symes, C., Chacko, T.Elemental and radiogenic isotope perspective on formation and transformation of cratonic lower crust: Central Slave craton ( Canada).Geochimica et Cosmochimica Acta, Vol. 278, pp. 78-83.Canada, Northwest Territorieskimberlites

Abstract: Kimberlite-borne granulite xenoliths provide rare insights into the age, chemical composition and tectonothermal evolution of the otherwise largely inaccessible deep cratonic crust. The formation and transformation of the lower continental crust (LCC) beneath the central Slave craton (Canada) is here illuminated using whole-rock trace-element and Sr-Nd isotope compositions of nine metabasaltic (MBG), one gabbroic (MGG) and two metasedimentary/hybrid (MSG) granulite xenoliths. On the one hand, published sulphide Re-Os and a few zircon U-Pb data indicate that at least a portion of the LCC beneath the central Slave craton has a Palaeoarchaean origin (?3.3?Ga), which apparently coincides with a period of juvenile crust and deep lithospheric mantle formation during plume impingement beneath the pre-existing cratonic nucleus. On the other hand, enrichment in Li, Sr, LREE, Pb and Th, but relative depletion in Ti, Hf and HREE, suggest formation of (picro)basaltic protoliths by partial melting of a subduction-modified garnet-bearing source, Crystallisation in the crust after fractionation of plagioclase is inidicated by their Sr and Eu negative anomalies, which are complementary to the positive anomalies in the MGG. Samarium-Nd isotopes in MBG and MGG show large scatter, but fall on Neo- or Mesoarchaean age arrays. These elemental systematics are suggested to fingerprint deserpentinisation fluids plus small amounts of sedimentary melt as the main contaminants of the mantle source, supporting the operation of at least regional and transient subduction at 3.3?Ga. Evidence for quasi-coeval plume impingement and subduction beneath the central Slave craton in the Mesoarchaean is reconcilable in a dynamic regime where vertical tectonics, though waning, was still active and plate interactions became increasingly important. Unradiogenic 87Sr/86Sr (down to 0.7017) is consistent with significant loss of Rb and probably other heat-producing elements (K, Th, U) plus H2O during Neoarchaean metamorphism, which helped to enhance LCC viscosity and stabilise the cratonic lithosphere.
DS202006-0920
2020
Foster, A., Darbyshire, F., Schaeffer, A.Anisotropic structure of the central North American craton surrounding the Mid-continent rift: evidence form Rayleigh waves.Precambrian Research, Vol. 342, 18p. PdfUnited States, Canadageophysics - seismics
DS202006-0931
2020
Li, W-Ye., Yu, H-M., Xu, J., Halama, R., Bell, K., Nan, X-Y., Huang, F.Barium isotopic composition of the mantle: constraints from carbonatites.Geochimica et Cosmochimica Acta, Vol. 278, pp. 235-243. pdfAfrica, Tanzania, Canada, Europe, Germany, Greenlanddeposit - Oldoinyo Lengai

Abstract: To investigate the behaviour of Ba isotopes during carbonatite petrogenesis and to explore the possibility of using carbonatites to constrain the Ba isotopic composition of the mantle, we report high-precision Ba isotopic analyses of: (1) carbonatites and associated silicate rocks from the only active carbonatite volcano, Oldoinyo Lengai, Tanzania, and (2) Archean to Cenozoic carbonatites from Canada, East Africa, Germany and Greenland. Carbonatites and associated phonolites and nephelinites from Oldoinyo Lengai have similar ?137/134Ba values that range from +0.01 to +0.03‰, indicating that Ba isotope fractionation during carbonatite petrogenesis is negligible. The limited variation in ?137/134Ba values from ?0.03 to +0.09‰ for most carbonatite samples suggests that their mantle sources have a relatively homogeneous Ba isotopic composition. Based on the carbonatites investigated in this work, the average ?137/134Ba value of their mantle sources is estimated to be +0.04?±?0.06‰ (2SD, n?=?16), which is similar to the average value of +0.05?±?0.06‰ for mid-ocean ridge basalts. The lower ?137/134Ba value of ?0.08‰ in a Canadian sample and higher ?137/134Ba values of +0.14‰ and?+?0.23‰ in two Greenland samples suggest local mantle isotopic heterogeneity that may reflect the incorporation of recycled crustal materials in their sources.
DS202006-0933
2020
Lutz, K,A., Long, M.D., Creasy, N., Deng, J.Seismic anisotropy in the lowermost mantle beneath North America from SKS-SKKS splitting intensity discrepancies.Physics of the Earth and Planetary Interiors, in press available, 51p. PdfUnited States, Canadageophysics - seismics

Abstract: We examined SKS-SKKS splitting intensity discrepancies for phases that sample the lowermost mantle beneath North America, which has previously been shown to exhibit seismic anisotropy using other analysis techniques. We examined data from 25 long-running seismic stations, along with 244 stations of the temporary USArray Transportable Array, located in the eastern, southeastern and western U.S. We identified 279 high-quality SKS-SKKS wave pairs that yielded well-constrained splitting intensity measurements for both phases. Of the 279 pairs, a relatively small number (15) exhibited discrepancies in splitting intensity of 0.4 s or greater, suggesting a contribution to the splitting of one or both phases from anisotropy in the lowermost mantle. Because only a small minority of SK(K)S phases examined in this study show evidence of being affected by lowermost mantle anisotropy, the traditional interpretation that splitting of these phases primarily reflects anisotropy in the upper mantle directly beneath the stations is appropriate. The discrepant pairs exhibited a striking geographic trend, sampling the lowermost mantle beneath the southern U.S. and northern Mexico, while other regions were dominated by non-discrepant pairs. We carried out ray theoretical modeling of simple anisotropy scenarios that have previously been suggested for the lowermost mantle beneath North America, invoking the alignment of post-perovskite due to flow induced by the impingement of the remnant Farallon slab on the core-mantle boundary. We found that our measurements are generally consistent with this model and with the idea of slab-driven flow, but relatively small-scale lateral variations in the strength and/or geometry of lowermost mantle anisotropy beneath North America are also likely present.
DS202006-0953
2020
Van Rytheoven, A.D., Schulze, D.J., Davis, D.W.Ultramafic xenoliths from the 1.15 Ga Certac kimberlite, eastern Superior craton.The Canadian Mineralogist, Vol. 56, pp. 267-286. pdfCanada, Quebecdeposit - Certac

Abstract: Xenoliths and xenocrysts of mantle material from kimberlite dikes located underground at the Certac Au mine, Québec, in the eastern Superior Craton, were studied in terms of the major element composition of their constituent minerals. The kimberlite was dated at 1151 ± 46 Ma by the U-Pb perovskite method. This suite thus provides a rare glimpse into the Mesoproterozoic mantle of the Superior Craton. Two parageneses of mantle material unrelated to the kimberlite magmatism occur: (1) an olivine + ilmenite ± magnetite association characterized by relatively Fe-rich olivine (Mg# = 0.68-0.84) and ilmenite enriched in Mg and Cr (4-13 wt.% MgO, Cr2O3 up to 3 wt.%), and (2) spinel peridotite characterized by Mg-rich olivine (Mg# = 0.91-0.94). The Fe-rich association is interpreted as a magmatic cumulate likely unrelated to the kimberlite. No mantle-derived garnet occurs in the xenoliths or as xenocrysts. The presence of Cr-rich spinel (Cr# = 0.84-0.98) in high temperature (860-953 °C) chromite peridotite indicates bulk compositions too depleted in Al for garnet to be stable, although geothermometry suggests they equilibrated at depths corresponding to garnet stability (90-131 km, depending on the geothermal gradient). Alternatively, the presence of phlogopite in two of the three high temperature (i.e., deepest) chromite peridotites suggests the absence of garnet and presence of low-Al chromite may have been caused by metasomatism from a K-rich fluid that replaced garnet with phlogopite + clinopyroxene ± chromite. Less depletion at shallower depths is indicated by a chromite (Cr# = 0.60) dunite that equilibrated at 831 °C and a low temperature (752 °C) Mg-Al-spinel lherzolite.
DS202007-1123
2020
Anzolini, C., Siva-Jothy, W., Locock, A.J., Nestola, F., Balic-Zunic, T., Alvaro, M., Stachel, T., Pearson, D.G.Heamanite-(Ce) (K0.5Ce0.5)Ti03 Mineralogical Magazine reports CNMNC Newsletter , No. 55, Vol. 84, https://doi.org/ 10.1180/mgm. 2020.39Canada, Northwest Territoriesdeposit - Gahcho Kue
DS202007-1129
2020
Chen, Y., Gu, Y/.J., Heaman, L.M., Wu, L., Saygin, E., Hung, S-H.Reconciling seismic structures and Late Cretaceous kimberlite magmatism in northern Alberta, Canada.Geology, Vol. 48, in press available, 5 p. pdfCanada, Albertadeposit - Birch Mountain, Mountain Lake

Abstract: The Late Cretaceous kimberlites in northern Alberta, Canada, intruded into the Paleoproterozoic crust and represent a nonconventional setting for the discovery of diamonds. Here, we examined the origin of kimberlite magmatism using a multidisciplinary approach. A new teleseismic survey reveals a low-velocity (-1%) corridor that connects two deep-rooted (>200 km) quasi-cylindrical anomalies underneath the Birch Mountains and Mountain Lake kimberlite fields. The radiometric data, including a new U-Pb perovskite age of 90.3 ± 2.6 Ma for the Mountain Lake intrusion, indicate a northeast-trending age progression in kimberlite magmatism, consistent with the (local) plate motion rate of North America constrained by global plate reconstructions. Taken together, these observations favor a deep stationary (relative to the lower mantle) source region for kimberlitic melt generation. Two competing models, mantle plume and slab subduction, can satisfy kinematic constraints and explain the exhumation of ultradeep diamonds. The plume hypothesis is less favorable due to the apparent age discrepancy between the oldest kimberlites (ca. 90 Ma) and the plume event (ca. 110 Ma). Alternatively, magma generation may have been facilitated by decompression of hydrous phases (e.g., wadsleyite and ringwoodite) within the mantle transition zone in response to thermal perturbations by a cold slab. The three-dimensional lithospheric structures largely controlled melt migration and intrusion processes during the Late Cretaceous kimberlite magmatism in northern Alberta.
DS202007-1137
2020
Dube, J-M., Darbyshire, F.A., Liddell, M.V., Stephenson, R.Seismic anisotropy of the Canadian High Arctic: evidence from shear wave splitting.Tectonophysics, Vol. 789, 228524, 13p. PdfCanada, Arcticgeophysics - seismics

Abstract: The Canadian High Arctic preserves a long and complex tectonic history, including craton formation, multiple periods of orogenesis, extension and basin formation, and the development of a passive continental margin. We investigate the possible preservation of deformational structures throughout the High Arctic subcontinental lithosphere using measurements of seismic anisotropy from shear wave splitting at 11 seismograph stations across the region, including a N-S transect along Ellesmere Island. The majority of measurements indicate a fast-polarisation orientation that parallels tectonic trends and boundaries, suggesting that lithospheric deformation is the dominant source of seismic anisotropy in the High Arctic; however, a sub-lithospheric contribution cannot be ruled out. Beneath Resolute in the central Canadian Arctic, distinct back-azimuthal variations in splitting parameters can be explained by two anisotropic layers. The upper layer is oriented E-W and correlates with tectonic trends and the inferred lithospheric deformation history of the region. The lower layer has a ?NNE-SSW orientation and may arise from present-day convective mantle flow beneath locally-thinned continental lithosphere. In addition to inferences of anisotropic structure beneath the Canadian High Arctic, measurements from the far north of our study region suggest the presence of an anisotropic zone in the lowermost mantle beneath northwest Alaska.
DS202007-1148
2020
Huang, F., Sverjensky, D.A.Mixing of carbonatitic into saline fluid fluid during Panda diamond formation.Geochimica et Cosmochimica Acta, in press available 59p. PdfCanada, Northwest Territoriesdeposit - Panda

Abstract: Diamonds containing fluid inclusions provide invaluable samples of upper mantle fluids, the study of which illuminates not only diamond formation but also the long-term evolution of the subcratonic, lithospheric mantle. The very large range of inclusion compositions worldwide has been interpreted to represent four end-member fluids: saline (rich in Na+K+Cl); silicic (rich in Si+Al); and carbonatitic (rich in Ca+Mg+Fe, with low-Mg and high-Mg end members). However, the sources and evolution of these fluids and the processes involved in diamond formation are still unclear. We used an unusual study of diamonds from the Panda kimberlite (Ekati Mine, Northwest Territories, Canada) in which both mineral and fluid inclusions in the diamonds were analyzed (Tomlinson et al., 2006) to develop models of the saline, silicic, and low-Mg carbonatitic fluids present in the Panda fluid inclusions. The models used aqueous speciation and solubility calculations to link the solid and fluid inclusion chemistry with model upper mantle rock types. We used the extended Deep Earth Water model to calculate equilibrium constants previously calibrated with experimental rock solubilities referring to upper mantle temperatures and pressures (Huang and Sverjensky, 2019). Our results at 950 °C and 4.5 GPa suggest that the saline fluid could originate from peridotite, the silicic fluid from eclogite, and the low-Mg carbonatitic fluid from carbonated dunite. The fluid models were then used to predict the irreversible, chemical mass transfer when the carbonatitic fluid infiltrated a harzburgite containing a saline fluid. Simultaneous reduction of formate and bicarbonate in the carbonatitic fluid and oxidation of aqueous hydrocarbons from the peridotitic fluid during mixing and reaction with harzburgite resulted in the formation of diamond, olivine, garnet, and clinopyroxene, and increases in the and . Olivine was predicted to become more Fe-rich and garnet more Ca and Fe-rich with reaction progress, in agreement with reported temporal trends (core-to-rim) in the Panda mineral inclusions. The fluid at the site of diamond formation became more saline with reaction progress and the predicted aqueous phase concentrations of all elements changed consistent with trends in Panda fluid inclusions. In contrast, a prediction for a saline fluid infiltrating a harzburgite containing a carbonatitic fluid resulted in trends of the silicate minerals and the salinity with reaction progress that were in the opposite direction to data from the Panda diamonds. Overall, our study strongly supports the notion that fluids from subducting slabs could mix and precipitate diamonds containing carbon from both oxidized and reduced sources, while adding Ca and Fe to the sub-lithospheric cratonic mantle through metasomatic reactions.
DS202007-1174
2020
Rooney, T., Girard, G., Tappe, S.The impact on mantle olivine resulting from carbonated silicate melt interaction. Allikite Superior cratonContributions to Mineralogy and Petrology, Vol. 175, 15p. Canadaolivine

Abstract: Interactions between carbonated ultramafic silicate magmas and the continental lithospheric mantle results in the formation of dunite—a ubiquitous xenolith type in kimberlites and aillikites. However, whether this process dominantly occurs in the mantle source region or by subsequent interactions between lithospheric mantle fragments and transporting silica-undersaturated magmas during ascent remains debated. Aillikite magmas, which are derived from the fusion of carbonate-phlogopite metasomes under diamond-stability field upper mantle conditions, have a mineralogically more complex source than kimberlites, providing an opportunity to more fully constrain the origin of dunite xenoliths in such deeply sourced carbonated silicate magmas. Here we present a major and trace element study of olivine occurring in xenoliths and as phenocrysts in an aillikite dike located on the southern Superior Craton. We show that olivine within the dunite microxenoliths exhibits extreme enrichment in Al, Cr, Na, and V when compared to equivalent xenoliths carried by kimberlites. We interpret these results as evidence for the presence of carbonate-phlogopite metasomes left residual in the cratonic mantle source during aillikite magma formation. Our results are inconsistent with models of dunite formation through orthopyroxene dissolution upon kimberlite/aillikite magma ascent, supporting an origin for such dunites that is more closely linked to primary melt generation at the base of relatively thick continental lithosphere. Our work demonstrates that it is possible to constrain the precursor composition of cratonic mantle dunite at depth, thereby facilitating the further exploration of how carbonated silicate magmas modify and weaken continental lithospheric roots.
DS202007-1187
2020
Zedgenizov, D., Kagi, H., Ohtani, E., Tsujimori, T., Komatsu, K.Retrograde phases of former bridgemanite inclusions in superdeep diamonds.Lithos, in press available, 25p. PdfSouth America, Brazil, Africa, South Africa, Guinea, Canada, Northwest Territoriesdeposit - Sao Luis, Juina

Abstract: Bridgmanite (Mg,Fe)SiO3, a high pressure silicate with a perovskite structure, is dominant material in the lower mantle at the depths from 660 to 2700 km and therefore is probably the most abundant mineral in the Earth. Although synthetic analogues of this mineral have been well studied, no naturally occurring samples had ever been found in a rock on the planet’s surface except in some shocked meteorites. Due to its unstable nature under ambient conditions, this phase undergoes retrograde transformation to a pyroxene-type structure. The identification of the retrograde phase as ‘bridgmanite’ in so-called superdeep diamonds was based on the association with ferropericlase (Mg,Fe)O and other high-pressure (supposedly lower-mantle) minerals predicted from theoretical models and HP-HT experiments. In this study pyroxene inclusions in diamond grains from Juina (Brazil), one single-phase (Sample SL-14) and two composite inclusions of (Mg,Fe)SiO3 coexisting with (Mg,Fe)3Al2Si3O12 (Sample SL-13), and with (Mg,Fe)3Al2Si3O12 and (Mg,Fe)2SiO4 (Sample SL-80) have been analyzed to identify retrograde phases of former bridgmanite. XRD and Raman spectroscopy have revealed that these are orthopyroxene (Opx). (Mg,Fe)2SiO4 and (Mg,Fe)3Al2Si3O12 in these inclusions are identified as olivine and jeffbenite (TAPP). These inclusions are associated with inclusions of (Mg,Fe)O (SL-14), CaSiO3 (SL-80) and composite inclusion of CaSiO3+CaTiO3 (SL-13). XRD patterns of (Mg,Fe)SiO3 inclusions indicate that they consist of polycrystals. This polycrystalline textures together with high lattice strain of host diamond around these inclusions observed from EBSD may be an evidence for the retrograde phase transition of former bridgmanite. Single-phase inclusions of (Mg,Fe)SiO3 in superdeep diamonds are suggested to represent a retrograde phase of bridgmanite and fully inherit its initial chemical composition, including a high Al and low Ni contents [Harte, Hudson, 2013; Kaminsky, 2017]. The composite inclusions of (Mg,Fe)SiO3 with jeffbenite and other silicate and oxide phases may be interpreted as exolusion products from originally homogeneous bridgmanite [Walter et al., 2011]. The bulk compositions of these composite inclusions are rich in Al, Ti, and Fe which are similar to Al-rich bridgmanite produced in experiments on the MORB composition. However, the retrograde origin of composite inclusions due to decomposition of Al-rich bridgmanite may be doubtful because each of observed phases may represent single-phase inclusions, i.e. bridgmanite and high pressure garnet (majoritic garnet), with similar compositional features.
DS202008-1365
2020
Abersteiner, A., Kamenetsky, V.S., Goemann, K., Kjarsgaard, B.A., Fedortchouk, Y., Ehrig, K., Kamenetsky, M.Evolution of kimberlite magmas in the crust: a case study of groundmass and mineral hosted inclusions in the Mark kimberlite ( Lac de Gras, Canada).Lithos, in press available, 55p. PdfCanada, Northwest Territoriesdeposit - Mark

Abstract: Kimberlites are the surface manifestation of deeply-derived (>150 km) and rapidly ascended magmas. Fresh kimberlite rocks are exceptionally rare, as most of them are invariably modified by pervasive deuteric and/or post-magmatic fluids that overprint the original mineralogy. In this study, we examined fresh archetypal kimberlite from the Mark pipe (Lac de Gras, Canada), which is characterised by well-preserved olivine and groundmass minerals. The sequence of crystallisation of the parental melt and its major compositional features, including oxygen fugacity, were reconstructed using textural relationships between magmatic minerals, their zoning patterns and crystal/melt/fluid inclusions. Crystal and multiphase primary, pseudosecondary and secondary melt/fluid inclusions in olivine, Cr-diopside, spinel, perovskite, phlogopite/kinoshitalite, apatite and calcite preserve a record of different stages of kimberlite melt evolution. Melt/fluid inclusions are generally more depleted in silica and more enriched in alkalis (K, Na), alkali-earth (Ba, Sr) and halogens (Cl, F) relative to the whole-rock composition of the Mark kimberlite. These melt/fluid inclusion compositions, in combination with presence of elevated CaO (up to 1.73 wt%), in Mg-rich olivine rinds, crystallisation of groundmass kinoshitalite, carbonates (calcite, Sr-Ba-bearing) and alkali-enriched rims around apatite suggest that there was progressive enrichment in CO2, alkalis and halogens in the evolving parental melt. The Mark kimberlite groundmass is characterised by the following stages of in-situ crystallisation: (1) olivine rims around xenocrystic cores + Cr-spinel/TIMAC. (2) Mg-rich olivine rinds around olivine rims/cores + MUM-spinel (followed by pleonaste and Mg-magnetite) + monticellite (+ partial resorption of olivine, along with the formation of ferropericlase and CO2 as a result of decarbonation reactions) + perovskite + apatite. (3) Olivine outmost rinds, which are coeval with phlogopite/kinoshitalite + apatite + sulphides + carbonate (calcite, Ba-Sr-Na-bearing varieties). In addition, oxygen fugacity of the Mark kimberlite was constrained by olivine-chromite, perovskite and monticellite oxygen barometry and showed that the parental melt became progressively more oxidised in response to fractional crystallisation. (4) Deuteric (i.e. late-stage magmatic) and/or post-magmatic (i.e. external fluids) alteration of magmatic minerals (e.g., olivine, monticellite, ferropericlase) and crystallisation of mesostasis serpentine, K-bearing chlorite and brucite (i.e. replacement of ferropericlase). The absence of any alkali (Na, K) and halogen (F, Cl) rich groundmass minerals in the Mark kimberlite may be attributed to these elements becoming concentrated in the late-stage melt where they potentially formed unstable, water-soluble carbonates (such as those observed in melt inclusions). Consequently, these minerals were most likely removed from the groundmass by deuteric and/or post-magmatic alteration.
DS202008-1366
2020
Artyushkov, E.V., Kolka, V.V., Chekhovich, P.A.The occurrence of lower viscosity layer in the crust of old cratons as a cause of the strongly differentiated character of postglacial uplift.Doklady Earth Sciences, Vol. 492, pp. 351-355.Europe, Fennoscandia, Kola Peninsula, Karelia, Canadacraton

Abstract: Rapid glacio-isostatic rebound in Fennoscandia and Canada that is nonuniform in time and space indicates that there is a layer with strongly decreased viscosity at shallow crustal depths. The upper boundary of the layer is near the depth of 15 km, which corresponds to the maximum depth of earthquake hypocenters in the Precambrian cratons of the Kola Peninsula and Karelia. The position of the lower boundary is less distinct; however, most likely it is located near the base of the crust. The formation of such a layer in the Pliocene-Quaternary occurred due to infiltration of a large volume of mantle fluids into the crust. In many regions, this has led to retrograde metamorphism with rock expansion and a strong decrease in rocks viscosity.
DS202008-1374
2020
Campbell, D., Zurevinski, S., Elliott, B.Geochemistry and glacial dispersal patterns of kimberlitic indicator minerals in the South Slave Province, NT.Goldschmidt 2020, 1p. AbstractCanada, Northwest Territoriesgarnets

Abstract: The geochemistry and distribution of garnets in the southern Slave Province could have considerable implications for drift prospecting and diamond potential. Presented here is a study interpretting geochemistry in dispersal trains of the Slave Province. Over one-hundred-thousand garnets have been sampled from the northern Slave Province with quantitative analyses conducted on each sample, and the data has been compiled for public release (NTGS Data Hub, 2018). A smaller subset of samples have been collected in the southern Slave Province by this study and the NTGS within recent years. Data from the NTGS is used in this study to construct regional maps showing dispersal trains of indicator minerals and chemistry of indicator garnets throughout the region. The variation in dispersal train pattern, size, mineralogy, and chemistry are being utilized to assess the southern Slave for it’s kimberlite potential. The geochemistry of garnets is used to make further observations into the diamond potential of the area using the garnet classifications G3D, G4D, G5D, and G10D (Grutter et al., 2004). It has been observed that there is an abundance of Na2O rich (>0.07 wt %) garnets in the northern Slave Province and a deficit of Na2O (<0.07 wt %) in garnets of the south. There is also a visible discrepency in olivine in the north and south, with the north Slave showing olivine in dispersal trains and the south lacking any olivine. These discrepancies in Na2O could be indicative of pressure/temperature conditions that coincide with diamond formation in the north (Grutter et al., 2004). The olivine dispersal may be the product of glacial dispersal in conjunction with the facies/mineralogy of kimberlites in the immediate area.
DS202008-1389
2020
Fedortchouk, Y., Chinn, I.L.Crystallization conditions of kimberlite magma.Goldschmidt 2020, 1p. AbstractAfrica, Botswana, Canada, Northwest Territoriesdeposit - Orapa, Lac de Gras

Abstract: Experiments on diamond crystallization in kimberlite melt were performed for 40 h at 6.3 GPa in the temperature range of 1300-1570 °C and at 7.5 GPa in the temperature range of 1450-1570 °C, using a multianvil high-pressure apparatus of split-sphere type. Group I kimberlite from the Udachnaya-East pipe and a synthetic multicomponent mixture modeling the average composition of group II kimberlites were used as starting materials. The experiments have shown that diamond growth on seed crystals in the kimberlite melt in equilibrium with olivine, pyroxene, and garnet starts from 1400 °C at 7.5 GPa and from 1520 °C at 6.3 GPa. Diamond nucleation requires higher temperature and pressure, 1570 °C and 7.5 GPa. The alkali-enriched and silicate-depleted derivates of kimberlite melts ensure the growth and nucleation of diamond at lower P and T values: 1400 °C at 7.5 GPa and 1520 °C at 6.3 GPa. The results obtained evidence that temperature, pressure, and the composition of crystallization medium are the main factors controlling diamond formation processes in the kimberlite melts and their derivates.
DS202008-1398
2020
Greene, S., Jacob, D.E., O'Reilly, S.Y., Henry, H., Pinter, Z., Heaman, L.Extensive prekimberlitic lithosphere modification recorded in Jericho mantle xenoliths in kimberlites, Slave Craton.Goldschmidt 2020, 1p. AbstractCanada, Northwest Territoriesdeposit - Jericho

Abstract: Wehrlite and pyroxenite xenoliths and megacrysts from the Jericho kimberlite were analyzed by ?XRF and EBSD, and for major elements, trace elements, and isotopes (Pb-Sr- O) in major phases. Thermobarometry places these samples at 60 - 180 km and 600 - 1200 ??C. While modes and textures vary, many samples have olivine-olivine grain boundaries with straight edges and 120° angle junctions, indicating granoblastic recrystallisation, while clinopyroxene and orthopyroxene are complexly intergrown. Clinopyroxene twins and subgrains recording orientations distinct from the encapsulating grain were detected using EBSD and are inferred to represent recent modification processes. Several distinct garnet compositions were measured, with multiple thin garnet rims in some samples suggesting possible successive stages of garnet crystallisation. Complex chromium zoning in garnet is detected by ?XRF in several samples (fig.1). Pb-Pb ages for most samples are similar to the age of kimberlite entrainment (173 Ma), but the shallowest pyroxenite sample preserves the most radiogenic Pb composition, intercecting concordia at 0.7 - 1.1 Ga, and is the only sample with ?18O above the mantle range (6.2±0.1 ‰). The deepest sample has the lowest ?18O (5.5±0.1 ‰) and radiogenic 87Sr/86Sr similar to MARID rocks (0.709±1 ‰). These results suggest the Jericho lithosphere experienced several melt/fluid injection events that modified substantial portions of the sampled section soon before kimberlite entrainment.
DS202008-1422
2020
McKensie, L., Kilgore, A.H., Peslier, A.D., Brandon, L.A., Schaffer, R.V., Graff, T.G., Agresti, D.G., O'Reilly, S.Y., Griffin, W.L., Pearson, D.G., Hangi, K., Shaulis, B.J.Metasomatic control of hydrogen contents in the layered cratonic mantle lithosphere sampled by Lac de Gras xenoliths in the central Slave craton, Canada.Geochimica et Cosmochimica Acta, in press available, doi.org/101016 /j.gca.2020.07.013 45p. PdfCanada, Northwest Territoriesdeposit - Lac de Gras

Abstract: Whether hydrogen incorporated in nominally anhydrous mantle minerals plays a role in the strength and longevity of the thick cratonic lithosphere is a matter of debate. In particular, the percolation of hydrogen-bearing melts and fluids could potentially add hydrogen to the mantle lithosphere, weaken its olivines (the dominant mineral in mantle peridotite), and cause delamination of the lithosphere's base. The influence of metasomatism on hydrogen contents of cratonic mantle minerals can be tested in mantle xenoliths from the Slave Craton (Canada) because they show extensive evidence for metasomatism of a layered cratonic mantle. Minerals from mantle xenoliths from the Diavik mine in the Lac de Gras kimberlite area located at the center of the Archean Slave craton were analyzed by FTIR for hydrogen contents. The 18 peridotites, two pyroxenites, one websterite and one wehrlite span an equilibration pressure range from 3.1 to 6.6 GPa and include samples from the shallow (? 145 km), oxidized ultra-depleted layer; the deeper (?145-180 km), reduced less depleted layer; and an ultra-deep (? 180 km) layer near the base of the lithosphere. Olivine, orthopyroxene, clinopyroxene and garnet from peridotites contain 30 - 145, 110 - 225, 105 - 285, 2 - 105 ppm H2O, respectively. Within each deep and ultra-deep layer, correlations of hydrogen contents in minerals and tracers of metasomatism (for example light over heavy rare-earth-element ratio (LREE/HREE), high-field-strength-element (HFSE) content with equilibration pressure) can be explained by a chromatographic process occurring during the percolation of kimberlite-like melts through garnet peridotite. The hydrogen content of peridotite minerals is controlled by the compositions of the evolving melt and of the minerals and by mineral/melt partition coefficients. At the beginning of the process, clinopyroxene scavenges most of the hydrogen and garnet most of the HFSE. As the melt evolves and becomes enriched in hydrogen and LREE, olivine and garnet start to incorporate hydrogen and pyroxenes become enriched in LREE. The hydrogen content of peridotite increases with decreasing depth, overall (e.g., from 75 to 138 ppm H2O in the deep peridotites). Effective viscosity calculated using olivine hydrogen content for the deepest xenoliths near the lithosphere-asthenosphere boundary overlaps with estimates of asthenospheric viscosities. These xenoliths cannot be representative of the overall cratonic root because the lack of viscosity contrast would have caused basal erosion of lithosphere. Instead, metasomatism must be confined in narrow zones channeling kimberlite melts through the lithosphere and from where xenoliths are preferentially sampled. Such localized metasomatism by hydrogen-bearing melts therefore does not necessarily result in delamination of the cratonic root.
DS202008-1429
2020
Palmato, M.G., Nestola, F., Novella, D, Pearson, D.G., Stachel, T.In-situ mineralogical characterization of sulphide inclusions in diamonds.Goldschmidt 2020, 1p. AbstractCanada, Ontariodeposit - Victor

Abstract: Among mineral inclusions in diamond, sulphides are the most abundant. Also, they are the keel tool for dating diamond formation given their high concentration of highlysiderophile elements. However, the mineralogical nature of these inclusions is not well understood, mainly due to the exsolution of the original, high temperature monosulphide solid solution (Mss) to Fe-, Ni- and Cu-rich endmembers during cooling, obscuring the original composition. This complex exsolution observed in sulphide inclusions in diamonds can also cause problems with Re-Os age determinations if the whole inclusion is not extracted. To overcome this issue, recently, sulphide inclusions have been homogenized at high temperature and controlled oxygen fugacity [1]. However, X-ray diffraction or Raman spectroscopy analyses, required to accurately identify the inclusion phases, and define their degree of crystallographic plus compositional homogeneity, have not been reported. Here we combine for the first time a thorough nondestructive multi-technique characterization of sulphide inclusions in diamonds from the Victor Mine (Canada) with homogenization experiments and isotopic analyses. In particular, we report X-ray diffraction data of the sulphides before and after homogenization, confirming a change from a polycrystalline assemblage of pyrrothite, pentlandite and chalcopyrite to single-crystal Mss. The data are used to reconstruct the Mss’ original bulk composition, define the true bulk isotopic ratios and document any difference in Re- Os isotope systematics.
DS202008-1434
2020
Pobric, V., Korolev, N., Kopylova, M.Eclogites of the North Atlantic Craton: insights from Chidliak eclogite xenoliths ( S. Baffin Island, Canada).Contributions to Mineralogy and Petrology, Vol. 175, 8, 25p. PdfCanada, Baffin Islanddeposit - Chidliak

Abstract: The 156-138 Ma Chidliak kimberlites on the Eastern Hall peninsula (EHP) of Baffin Island entrained mantle xenoliths interpreted to have been a part of the Archean North Atlantic Craton (NAC) lithospheric mantle. We studied 19 Chidliak eclogite xenoliths that comprise 10 bimineralic, 5 rutile-bearing, 3 orthopyroxene-bearing and 1 kyanite-bearing eclogites. We report major and trace element compositions of the minerals, calculated bulk compositions, pressures and temperatures of the rock formation and model melt extraction from viable protoliths. The eclogite samples are classified into three groups of HREE-enriched, LREE-depleted and metasomatized based on their reconstructed whole-rock REE patterns. PT parameters of the eclogites were calculated by projecting garnet-clinopyroxene temperatures onto the local P-T arrays for 65 Chidliak peridotite xenoliths. All Chidliak eclogites are equilibrated in the diamond P-T field and cluster in two groups, low-temperature (n?=?5, 840-990 °C at 4.1-5.0 GPa) and high-temperature (n?=?11, T?>?1320 °C at P?>?7.0 GPa). The reconstructed Mg-rich major element bulk compositions and trace elements patterns are similar to Archean basalts from the North Atlantic and Superior cratons and the oceanic gabbros. The LREE-depleted Chidliak eclogites could be residues after 15-55% partial melting of Archean basalt at the eclogite facies of metamorphism that led to extraction of a tonalite-trondhjemite-granodiorite melt from the EHP. The HREE-depleted eclogites may have experienced a lower degree (<10%) of partial melting. Two eclogites may have formed after the gabbro protolith based on the presence of kyanite, high Sr content of garnet and positive Eu anomalies in garnet and bulk eclogite compositions. The metasomatism is reflected in higher Ce/Yb, Sr/Y, TiO2 or MgO of the eclogites. The average contents of MgO, FeO and CaO in NAC eclogites are statistically distinct from those in Slave craton eclogites with a probability of?>95%. The former are more magnesian, less ferrous and calcic, contain more magnesian and less calcic garnets, and lower proportions of group C eclogites. The contrast may relate to the stronger NAC metasomatism by silicate-carbonate melt observed in Chidliak peridotitic mantle, or to the different formation ages of the eclogites beneath the two cratons.
DS202008-1435
2020
Pobric, V., Korolev, N., Kopylova, M.Eclogites of the North Atlantic Craton: insights from Chidliak eclogite xenoliths ( S. Baffin Island, Canada).Goldschmidt 2020, 1p. AbstractCanada, Baffin Islanddeposit - Chidliak
DS202008-1452
2020
Tovey, M., Giuliani, A., Phillips, D., Sarkar, C., Pearson, D.G., Nowicki, T., Carlson, J.Decoupling of kimberlite source and primitive melt compositions.Goldschmidt 2020, 1p. AbstractSouth America, Brazil, Africa, South Africa, Canada, Northwest Territoriesgeochronology

Abstract: Kimberlites emplaced since ~2 Ga show Nd and Hf isotopic compositions that follow a remarkably consistent linear evolution [1]. However, kimberlites emplaced <200 Ma within a few thousand kilometers of the western paleo-margin of Pangea (i.e. Brazil, southern Africa, and Lac de Gras in western Canada) deviate towards more enriched Nd and Hf isotopic compositions possibly due to contribution by recycled crustal material, introduced to the deep kimberlite source via subduction [1]. To address this anomaly further we have compared new and existing geochronological and Nd isotopic data for 28 kimberlites from Lac de Gras (LDG; ca. 47 - 75 Ma) with their olivine and spinel mineral chemistries. Olivine grains typically include mantle-derived xenocrystic cores (Mg# = 83.5-94.2) overgrown by magmatic rims with relatively constant Mg# values. Olivine rims and chromite are the first magmatic phases to crystallise from kimberlite and can be used as proxies for primitive melt compositions. The average Mg# of olivine cores from each kimberlite is positively correlated with average olivine rim Mg#, suggesting that assimilation of heterogeneous lithospheric mantle contributed to the primitive melt compositions. The ?Nd(i) values from whole-rock and perovskite from LDG kimberlites vary between -3.4 and -0.4 that are negatively correlated with their emplacement ages. This correlation is indicative of an evolving kimberlite source which may have resulted from a progressively lower contribution of recycled material. No systematic relationships were observed between olivine rim or chromite compositions and age or Nd isotopic composition. This observation highlights decoupling between kimberlite source evolution and primitive melt compositions due to the combined effects of crustal recycling in the kimberlite source and lithospheric mantle assimilation during kimberlite ascent.
DS202008-1460
2020
Zedgenizov, D., Kagi, H., Ohtaini, E., Tsujimori, T., Komatsu, K.Retrograde phases of former bridgemanite inclusions in superdeep diamonds.Lithos, Vol. 370-371, 105659 7p. PdfAfrica, South Africa, Guinea, Australia,South America, Brazil, Canada, Northwest Territoriesdeposit - Koffiefontein, Kankan, Lac de Gras, Juina, Machado, Orroroo

Abstract: (Mg,Fe)SiO3 bridgmanite is the dominant phase in the lower mantle; however no naturally occurring samples had ever been found in terrestrial samples as it undergoes retrograde transformation to a pyroxene-type structure. To identify retrograde phases of former bridgmanite single-phase and composite inclusions of (Mg,Fe)SiO3 in a series of superdeep diamonds have been examined with electron microscopy, electron microprobe, Raman spectroscopy and X-ray diffraction techniques. Our study revealed that (Mg,Fe)SiO3 inclusions are represented by orthopyroxene. Orthopyroxenes in single-phase and composite inclusions inherit initial chemical composition of bridgmanites, including a high Al and low Ni contents. In composite inclusions they coexist with jeffbenite (ex-TAPP) and olivine. The bulk compositions of these composite inclusions are rich in Al, Ti, and Fe, which are similar but not fully resembling Al-rich bridgmanite produced in experiments on the MORB composition. The retrograde origin of composite inclusions due to decomposition of Al-rich bridgmanite may be doubtful because each of observed minerals may represent coexisting HP phases, i.e. bridgmanite or ringwoodite.
DS202010-1873
2020
Sacco, D.Drift prospecting for kimberlite in the Slave geological Province: why your KIM-bearing sediment samples may not lead you to kimberlite.Vancouver Kimberlite Cluster, Sept. 30, 1p. AbstractCanada, Northwest territoriesgeochemistry

Abstract: Drift prospecting has been used for decades in the Slave Geological Province, NWT, to identify kimberlite indicator mineral and geochemical dispersals. These dispersals, in conjunction with geophysics and drilling, have led to many kimberlite discoveries. The sources of most well-defined dispersal patterns have been identified, and exploration must now focus on inauspicious regions where primary dispersal from kimberlite has been obscured by post-depositional changes to the landscape. Detailed surficial interpretations from readily available, high-resolution imagery and digital elevation data are a powerful asset when working in these challenging environments. Interpretations tailored to exploration provide the necessary context to unravel the complexities in the surficial geology and reconcile complex dispersal patterns. This presentation will demonstrate how the understanding and recognition of unique depositional environments and post-depositional modification of sediments can provide new insight into historical data, reduce the effort and resources required to collect new high-quality samples and inform data evaluations, ultimately providing lower-risk exploration targets.
DS202010-1875
2020
Service, R.F.The carbon vault. ( refers to Gahcho Kue crushed rock waste )as a vault to lock up CO2.Science, Vol. 369, 6508, pp. 1156-1159. pdfCanada, Northwest territoriesrock waste
DS202010-1878
2020
Smyth, D.Petrology, geochemistry, and geochronology of the Pikoo kimberlites, Saskatchewan.Thesis, Msc. University of Alberta, 245p. PdfCanada, Saskatchewandeposit - Pikoo

Abstract: The Pikoo kimberlites of east-central Saskatchewan are a relatively recent discovery, comprising at least ten discreet bodies thought to erupt through the Sask Craton, a small Archean microcontinent enclosed within the Paleoproterozoic Trans-Hudson Orogen. Since the Sask Craton also plays host to the 70+ bodies of the diamondiferous Cretaceous Fort à la Corne kimberlites, which are among the largest kimberlites in the world, significant interest lay in unraveling the genesis of the Pikoo bodies. This study presents the first detailed examination of the petrology and geochronology of the Pikoo kimberlites. A combination of detailed petrography, major and minor element chemistry analyzed by EPMA, and trace element determinations measured via LA-ICP-MS was employed to characterize the Pikoo samples as archetypal coherent (hypabyssal) kimberlite. Traditional criteria for diamond preservation potential were applied to the Pikoo ilmenite by assessing their Fe2O3 and MgO contents. The results indicated high MgO and low Fe2O3 within the grain interiors and rims with elevated MgO and MnO in PK150, PK151, PK314, and variably in PK312. The high-Fe mineral compositions of PK346 contradict the trends of the other intrusions, suggesting PK346 formed from an oxidized, high-carbonate late pulse of previously fractionated magma. The differences in magma evolution can explain the striking petrographic and chemical distinctions highlighted between the two most significant intrusions of PK150 and PK346, as well as the notably less favourable microdiamond results North Arrow reported for PK346. A robust U-Pb age of 417 ± 14 Ma was determined from PK150 perovskite analyzed in situ via LA-ICP-MS. The data were processed using two approaches to confirm the perovskite represented a single population with a uniform common Pb composition. This age is distinctly different from the nearby FALC kimberlites but overlaps with occurrences in the Slave Craton, the United States, Russia, and Namibia. This may suggest more widespread diamond-bearing kimberlite activity in circa Silurian times. Tracer isotopes were also measured in situ via LA-MC-ICP-MS on PK150 perovskite. The dominant range in ?Ndi (+1.8 to -2.0) is near chondritic, suggesting a deep mantle source isolated from contamination.
DS202011-2043
2019
Horvath, L., Gault, R.A., Pfenninger-Horvath, Poirier, G.Mont Saint-Hilaire: history, geology, mineralogy.The Canadian Mineralogist, Special Publication 14, 634p. Canada, QuebecBook

Abstract: This paper introduces a special section of the Canadian Journal of Development Studies, "The Africa Mining Vision: A Manifesto for More Inclusive Extractive Industry-Led Development?" Conceived by African ministers "in charge of mineral resources" with inputs and guidance from African Union Heads of State, the Africa Mining Vision (AMV) was officially launched in February 2009. The papers presented in this special section reflect critically on progress that has since been made with operationalising the AMV at the country level across Africa; the general shortcomings of the manifesto; and the challenges that must be overcome if the continent is to derive g Taking over 20 years of meticulous preparation, László and Elsa Horváth, a duo of dedicated and dynamic amateur mineralogists, along with two researchers, Robert Gault, a mineralogist, and Glenn Poirier, a geologist, have produced the ultimate book "Mont Saint-Hilaire: History, Geology, Mineralogy". The photography captures the colors of Vásárely, the symmetry of Escher, the form of Bartók and the intricate patterns of Mandelbrot, all found here, in this miracle of nature. One cannot but marvel at how this single, small quarry contains such mineral diversity. At last count, over 434 mineral species have been found at Mont Saint-Hilaire, representing 9% of all known mineral species. The 66 type minerals first described from this locality represent 1.3 % of all mineral species, placing the Poudrette quarry in an extremely rarified class for worldwide mineral localities. Almost half, 47, of all known chemical elements are included in this mineral mix. Beginning some 124 million years ago, several million years and a variety of geological processes were needed to accomplish this assemblage. Be captivated, learn and, most of all, enjoy!reater economic benefit from its abundant mineral wealth.
DS202011-2047
2020
Kilgore, M.L., Peslier, A.H., Brandon, A.D., Schaffer, L.A., Morris, R.V., Graff, T.G., Agresti, D.G., O'Reilly, S.Y., Griffin, W.L., Pearson, D.G., Barry, K.G., Shaulis, J.Metasomatic control of hydrogen contents in the layered cratonic mantle lithosphere sampled by Lac de Gras xenoliths in the central Slave Craton, Canada.Geochimica et Cosmochimica Acta, Vol. 286, pp. 29-83. pdfCanada, Northwest Territoriesxenoliths

Abstract: Whether hydrogen incorporated in nominally anhydrous mantle minerals plays a role in the strength and longevity of the thick cratonic lithosphere is a matter of debate. In particular, the percolation of hydrogen-bearing melts and fluids could potentially add hydrogen to the mantle lithosphere, weaken its olivines (the dominant mineral in mantle peridotite), and cause delamination of the lithosphere's base. The influence of metasomatism on hydrogen contents of cratonic mantle minerals can be tested in mantle xenoliths from the Slave Craton (Canada) because they show extensive evidence for metasomatism of a layered cratonic mantle. Minerals from mantle xenoliths from the Diavik mine in the Lac de Gras kimberlite area located at the center of the Archean Slave craton were analyzed by FTIR for hydrogen contents. The 18 peridotites, two pyroxenites, one websterite and one wehrlite span an equilibration pressure range from 3.1 to 6.6 GPa and include samples from the shallow (?145?km), oxidized ultra-depleted layer; the deeper (?145-180?km), reduced less depleted layer; and an ultra-deep (?180?km) layer near the base of the lithosphere. Olivine, orthopyroxene, clinopyroxene and garnet from peridotites contain 30-145, 110-225, 105-285, 2-105?ppm H2O, respectively. Within each deep and ultra-deep layer, correlations of hydrogen contents in minerals and tracers of metasomatism (for example light over heavy rare-earth-element ratio (LREE/HREE), high-field-strength-element (HFSE) content with equilibration pressure) can be explained by a chromatographic process occurring during the percolation of kimberlite-like melts through garnet peridotite. The hydrogen content of peridotite minerals is controlled by the compositions of the evolving melt and of the minerals and by mineral/melt partition coefficients. At the beginning of the process, clinopyroxene scavenges most of the hydrogen and garnet most of the HFSE. As the melt evolves and becomes enriched in hydrogen and LREE, olivine and garnet start to incorporate hydrogen and pyroxenes become enriched in LREE. The hydrogen content of peridotite increases with decreasing depth, overall (e.g., from 75 to 138?ppm H2O in the deep peridotites). Effective viscosity calculated using olivine hydrogen content for the deepest xenoliths near the lithosphere-asthenosphere boundary overlaps with estimates of asthenospheric viscosities. These xenoliths cannot be representative of the overall cratonic root because the lack of viscosity contrast would have caused basal erosion of lithosphere. Instead, metasomatism must be confined in narrow zones channeling kimberlite melts through the lithosphere and from where xenoliths are preferentially sampled. Such localized metasomatism by hydrogen-bearing melts therefore does not necessarily result in delamination of the cratonic root.
DS202011-2059
2020
Pearson, G.Diamonds found with gold in Canada's Far North offer clues to Earth's early history: discovery of diamonds in small rock sample hints at possibility of new deposits in area similar to world's richest gold mine in South Africa.www.sciencedaily.com/releases/2020/10/201006153459.htm>., Oct. 6, 3p. Canada, Nunavutdiamond genesis

Abstract: The presence of diamonds in an outcrop atop an unrealized gold deposit in Canada's Far North mirrors the association found above the world's richest gold mine, according to University of Alberta research that fills in blanks about the thermal conditions of Earth's crust three billion years ago.
DS202011-2068
2020
Woodruff, L.G., Schulz, K.J., Nicholson, S.W., Dicken, C.L.Mineral deposits of the Mesoproterozoic Midcontinent rift system in the Lake Superior region - a space and time classification. Not specific to diamondsOre Geology Reviews, Vol. 126, 103716, 21p. PdfCanada, United Statestectonics

Abstract: The Mesoproterozoic Midcontinent Rift System (MRS) of North America hosts a diverse suite of magmatic and hydrothermal mineral deposits in the Lake Superior region where rift rocks are exposed at or near the surface. Historically, hydrothermal deposits, such as Michigan’s native copper deposits and the White Pine sediment-hosted stratiform copper deposit, were major MRS metal producers. On-going exploration for and potential development of copper-nickel sulfide deposits hosted by the Duluth Complex of Minnesota and the opening of the Eagle nickel mine in Michigan indicate an expanding interest in MRS magmatic deposits. MRS hydrothermal and magmatic mineral deposits, many of which are significant past, present, and likely future providers of critical minerals, here are placed into a space and time metallogenic framework. To construct this framework, regional MRS mineral deposits extracted from the U.S. Geological Survey Mineral Resources Data System (MRDS) and the Ontario Ministry of Energy, Northern Development and Mines Mineral Deposit Inventory (MDI) were supplemented by other known and recently recognized mineral deposits described in the literature. All mineral deposits were classified by deposit type, host rock age and type, and estimated timing of mineralization. Deposits were then put into a tectonic evolutionary framework (stages) for the MRS, which shows that deposits formed within discrete spatial and temporal stages of rift evolution. Each stage of rift evolution is characterized by specific mineral deposit types that are largely confined both by their physical location in rift rocks and type and timing of mineralization. Examples include MRS nickel-rich conduit-type magmatic sulfide deposits, which are restricted to an early magmatic stage MRS history when magma compositions were characterized by Ni-rich picrites and high Mg basalts. In contrast, contact-type magmatic sulfide deposits with Cu > Ni were derived from more evolved Al-rich tholeiitic magmas that dominated a later time of voluminous magmatic activity. Hydrothermal sediment-hosted stratiform chalcocite mineralization along the margins of western Lake Superior in Michigan is economic only where fluid flow through red beds was concentrated by structures along the margins of a post-volcanic MRS sedimentary basin. Widespread native Cu and native Ag mineralization occurred about 40 million years after formation of host basalt lava flows and interflow sedimentary rocks. These descriptions of the diverse mineral deposits in the Lake Superior region cataloged within the space of the local and regional geology and over the more than 60-million-year mineralizing history of the MRS are indicative of the complex and at times overlapping magmatic and hydrothermal mineral systems that operated within this major large igneous province.
DS202012-2230
2020
McDannell, K.T., Flowers, R.M.Vestiges of the ancient: deep-time noble gas thermochronology.Elements, Vol. 16, pp. 325-330.Canada, Nunavut, Southampton Island, Africa, Kaapvaalcraton

Abstract: Ancient rocks have survived plate tectonic recycling for billions of years, but key questions remain about how and when they were exhumed to the surface. Constraining exhumation histories over long timescales is a challenge because much of the rock record has been lost to erosion. Argon and helium noble gas thermochronology can reconstruct deep-time <350 °C thermal histories by using the distinct temperature sensitivities of minerals such as feldspar, zircon, and apatite, while exploiting grain size and radiation damage effects on diffusion kinetics. Resolution of unique time-temperature paths over long timescales requires multiple chronometers, appropriate kinetic models, and inverse simulation techniques to fully explore and constrain possible solutions. Results suggest that surface histories of ancient continental interiors are far from uninteresting and may merely be misunderstood.
DS202012-2248
2020
Sahoo, S., Sreenivasan, B.Response of Earth's magnetic field to large lower mantle heterogeneity.Earth and Planetary Letters, Vol. 550, 116507, 11p. PdfRussia, Canadageophysics - magnetics

Abstract: A simplified two-fold pattern of convection in the Earth's core is often used to explain the non-axisymmetric magnetic flux concentrations in the present day geomagnetic field. For large lateral variations in the lower mantle heat flux, however, a substantial east-west dichotomy in core convection may be expected. This study examines the effect of a large lateral variation in heat flux at the outer boundary in cylindrical annulus experiments that achieve approximate geostrophy of the convection as well as in rapidly rotating spherical shell simulations. In either geometry, the imposed boundary heat flux is derived from the seismic shear wave velocity in the lowermost mantle. The pattern of large-scale convection in the simulations closely follows that in the annulus experiments, which suggests that the lateral buoyancy at the equator essentially determines the structure of core convection. In particular, the location of a coherent downwelling that forms beneath Canada in mildly driven convection entirely switches over to the Siberian region in strongly driven states. Spherical dynamo models in turn show that this eastward migration of convection causes the relative instability or even the disappearance of the high-latitude magnetic flux in the Western hemisphere. Finally, large radial buoyancy causes homogenization of convection, which may place an upper bound for the Rayleigh number in the core.
DS202012-2252
2020
Sun, C., Dasgupta, R.Thermobarometry of CO2-rich, silica-undersaturated melts constrains cratonic lithosphere thinning through time in areas of kimberlitic magmatism.Earth and Planetary Letters, Vol. 550, 116549, 13p.Global, United States, Wyoming, Canada, Northwest Territories, Europe, Baltic, Indiageothermometry

Abstract: Cratonic lithosphere is believed to have been chemically buoyant and mechanically resistant to destruction over billions of years. Yet the absence of cratonic roots at some Archean terrains casts doubt on the craton stability and longevity on a global scale. As unique mantle-derived melts at ancient continents, silica-poor, kimberlitic melts are ideal tools to constrain the temporal variation of lithosphere thickness and the processes affecting the lithosphere root. However, no reliable thermobarometer exists to date for strongly silica-undersaturated, mantle-derived melts. Here we develop a new thermobarometer for silica-poor, CO2-rich melts using high-temperature, high-pressure experimental data. Our barometer is calibrated based on a new observation of pressure-dependent variation of Al2O3 in partial melts saturated with garnet and olivine, while our thermometer is calibrated based on the well-known olivine-melt Mg-exchange. For applications to natural magmas, we also establish a correction scheme to estimate their primary melt compositions. Applying this liquid-based thermobarometer to the estimated primary melt compositions for a global kimberlite dataset, we show that the equilibration depths between primary kimberlite melts and mantle peridotites indicate a decrease of up to ?150 km in cratonic lithosphere thickness globally during the past ?2 Gyr. Together with the temporal coupling between global kimberlite frequency and cold subduction flux since ?2 Gyr ago, our results imply a causal link between lithosphere thinning and supply of CO2-rich melts enhanced by deep subduction of carbonated oceanic crusts. While hibernating at the lithosphere root, these melts chemically metasomatize and rheologically weaken the rigid lithosphere and consequently facilitate destruction through convective removal in the ambient mantle or thermo-magmatic erosion during mantle plume activities.
DS202101-0005
2020
Clements, B.Diamond Exploration in Covid times . 1hr 28 mins.Vancouver Kimberlite Cluster talk Dec. 4, https://www.youtube.com /channel/UCcZvay DnqDDazIHAh1OtregCanadaHistory of diamond discoveries in Canada
DS202101-0014
2020
Gruber, B., Chacko, T., Pearson, D.G., Currie, C., Menzies, A.Heat production and moho temperatures in cratonic crust: evidence from lower crustal xenoliths from the Slave craton.Lithos, doi.org/10.1016/ j.lithos.2020.105889 13p. PdfCanada, Northwest Territoriesdeposit - Diavik A-154

Abstract: Ambient Moho temperatures and lower crustal heat production are surprisingly poorly constrained in cratons. Here we address these problems using 15 lower crustal xenoliths from the Diavik A-154 kimberlite, Slave craton, Canada. Iron?magnesium exchange geothermometry on small biotite and amphibole inclusions in garnet indicates that the Slave craton lower crust was at a temperature of ?500 °C at the time of kimberlite eruption (~55 Ma). The ambient lower crustal temperature was likely lower than 500 °C because the thermometers record the closure temperature of diffusional Fe2+-Mg exchange between touching mineral pairs. New measurements of K, U and Th concentrations in the constituent minerals, together with xenolith modes, allow reconstruction of the heat-producing element (HPE) K, U, and Th budget of the Slave craton lower crust. Metasedimentary granulites have an average heat production of 0.29 ± 0.01 ?W/m3 (n = 3) whereas mafic granulites have an average heat production of 0.13 ± 0.03 ?W/m3 (n = 12). Our new data clearly show that plagioclase abundance in both lithologies has a major influence on overall lower crustal heat production, being an important reservoir of all three HPE. Combining the heat production of mafic and metasedimentary granulites in their observed 80:20 proportions results in an average heat production value for the Slave craton lower crust of 0.16 ± 0.03 ?W/m3. Using these heat production estimates, modeled Moho temperatures beneath Diavik of ~450-470 °C are broadly consistent with maximum lower crustal temperatures indicated by geothermometry. The low HPE contents predicted for cratonic lower crust must result in lower temperatures in the deep crust and mantle lithosphere, and in turn higher estimates for the thickness of mantle lithosphere. This effect becomes larger as the thickness of the low-HPE lower crustal layer increases. In the specific case of the central Slave craton, we find that model estimates of the diamond potential of the mantle lithosphere, as judged by the proportion of lithospheric mantle in the diamond stability field, are not strongly affected by small variations in lower crustal heat production and Moho temperature.
DS202102-0180
2021
Cone, D., Kopylova, M.Origin of megacrysts by carbonate-bearing metasomatism - case study for the Muskox kimberlite, Slave craton, Canada.Journal of the Geological Society, doi.org/10.1144 /jgs2020-184 53p. Pdf Canada, Northwest Territoriesdeposit - Muskox

Abstract: Low-Cr and high-Cr clinopyroxene, garnet, olivine, and ilmenite megacrysts from the Muskox kimberlite (Canada) have been analyzed for major and trace elements, as well as Sr, Nd, and Pb isotopes. Samples display compositional overlap with respective phases in websterite, while clinopyroxene isotope systematics reveal similarities with both websteritic and metasomatic clinopyroxene in peridotites from the same kimberlite, in addition to Muskox and Jericho kimberlite. All lithologies may represent the products of mixing between EM1 mantle, relic Proterozoic enriched mantle and HIMU carbonatitic fluid. Equilibrium melts calculated from clinopyroxene trace element data using experimental distribution coefficients for feasible proto-kimberlitic melts yield a range of possible metasomatic agents. Conclusion on the carbonate-bearing nature of the metasomatism was based on the presence of a HIMU isotopic signature and results obtained from thermodynamic modeling using the Deep Earth Water model. The latter shows that mineral compositions analogous to megacrysts cannot be produced by metasomatism of mantle peridotite by H2O-rich kimberlitic fluids, or fluids in equilibrium with either asthenospheric or eclogitic mantle. Isotope systematics argue against a strictly cognate relationship between megacrysts and their host kimberlite, instead suggesting megacrysts and websterites may represent products of regional metasomatism by carbonatitic HIMU fluids shortly predating kimberlite magmatism.
DS202102-0201
2021
Lebel, D.Geological survey of Canada 8.0: mapping the journey towards predictive geoscience.Hill, P.R., Lebel, D., Hitzman, M., Smelror, M., Thorleifson, H. eds The changing role of Geological Surveys . GSL SP 499, Vol. 499, pp. 28-30. pdfCanadatechnology

Abstract: The Geological Survey of Canada (GSC) has been furthering the geoscientific understanding of Canada since its inception in 1842, the equivalent of seven generations ago. The evolution of the activities of the GSC over this period has been driven by evolving geographic, economic and political contexts and needs. Likewise, new technologies and evolving scientific methods and models shaped broadly the successive generations of GSC geoscience activities. The most recent GSC generation presented a mixed portfolio of large framework mapping geoscience programmes, and more targeted, hypothesis-driven geoscience research, and the development of decision support products for a range of government, industry and other stakeholders needs. Entering its eighth generation, the GSC and related organizations are embracing digital technologies for applications such as the evaluation of mineral resource potential, the evaluation of risks and the early warning of earthquakes. In order to do so, the GSC will need to develop new methods and systems in co-operation with other geological survey organizations, and target its data acquisition and research to further advance its ability to respond to the evolving needs of society to navigate geology through space and time, from the past to the present, and from the present to the future.
DS202102-0210
2021
Mints, M.V., Dokukina, K.A., Afonina, T.B.Precambrian lithosphere beneath Hudson Bay: a new geological model based on the Hudson Bay lithospheric experiment ( HuBLE), Canadian shield.Tectonophysics, Vol. 799, 15p. Doi.org/10.1016/ j.tecto.2020.228701Canada, Ontario, Quebectomography

Abstract: The oval-shaped basin of Hudson Bay occurs near the center of the round-oval Archaean crustal domain of the North American continent. This paper presents models of the geological structure and evolution of the subcontinental lithospheric mantle underlying Hudson Bay and surrounding tectonic provinces based on geological interpretations of regional geological and geophysical data and results of seismic tomography investigations that have been conducted under the Hudson Bay Lithospheric Experiment. The experiment was aimed at lithospheric processes directly related to the origin of the North American craton and the Hudson Bay basin. Hudson Bay is located directly above the lithospheric keel of North America. The geological history demonstrates systematic "renovation" of the basin: (1) origin and evolution of the Neoarchaean Lake Minto basin (~2.75 Ga); (2) accumulation of the Palaeoproterozoic volcanic-sedimentary filling of the epicontinental basin, relics of which is preserved on its passive margins (2.03-1.87 Ga); (3) origin of Ordovician-Late Devonian sedimentary sequence whose maximum thickness reaches 2.5 km; and (4) the development of Late Jurassic-Miocene sediment-filled ring-shaped trough immediately above the lithospheric keel. The Hudson Bay basin occurs above the lithospheric keel in compliance with thermomechanical model of ascending plume. Tomography studies have not detected evidence of either production or transformation of the lithosphere in the Palaeoproterozoic, which are implied by the model of the United Plates of America. Interpretations of tomography data reveal a vertical axial zone in the lithosphere beneath Hudson Bay, which extends from the lithosphere-asthenosphere boundary to the base of the crust or, perhaps, even to the present day surface. The zone is made up of relatively light low-velocity igneous rocks, probably a swarm of kimberlite dikes or pipes. At 2.75 Ga, the North American continent was a single continental mass with Hudson Bay at its center.
DS202103-0375
2021
Corrigan, D., van Roogen, D., Wodicka, N.Indenter tectonics in the Canadian shield: a case study for Paleoproterozoic lower crust exhumation, orocline development, and lateral extrusion.Precambrian Research, Vol. 355, 106083, 23p. PdfCanada, Quebec, Ungava tectonics

Abstract: There are lingering questions about how far back in geologic time plate tectonic processes began. In the Paleoproterozoic of eastern Laurentia, accretion of intra-oceanic juvenile terranes along the leading edge of the Superior craton apex (Ungava indenter) during the interval 1.87-1.83 Ga was followed by collision with the Churchill plate at ca. 1.83-1.79 Ga. Orthogonal shortening along the indenter led to early obduction of the juvenile terranes including the ca. 2.0 Ga Watts Group ophiolite, followed by out-of-sequence thrusting at ca. 1.83 Ga of granulite-facies crystalline basement of the Sugluk block (Churchill plate) along the Sugluk suture. Exhumation and erosion of the Sugluk block led to deposition of a foreland/delta fan sequence in the Hudson Bay re-entrant (Omarolluk and Loaf formations of the Belcher Group), with detritus sourced exclusively from the Sugluk block. Continued collision led to critical wedge development and orocline formation in the Hudson Bay re-entrant, forming a strongly arcuate fold-thrust belt. On the other (eastern) side of the indenter, material flow during crustal shortening was accommodated by lateral extrusion of microplates towards a then open ocean basin, in a manner similar to present-day extrusion of Indochina as a response to India - South China craton convergence. In the Churchill plate hinterland W-NW of the indenter, propagating strike-slip faults resulted in the far-field extrusion and oblique exhumation of Archean crustal slices of the Rae crustal block. The 1.83-1.79 Ga Superior-Churchill collision accommodated a minimum of 500 km of continent-continent convergence, with resulting style and mechanisms of orogenic growth and material flow similar to those observed in the Alpine-Himalayan orogenic system.
DS202103-0387
2021
Kopylova, M.G.Constraining carbonation freezing and petrography of the carbonated cratonic mantle with natural samples.Lithos, in press available 49p. PdfCanada, Nunavut, Baffin Islanddeposit - Chidliak

Abstract: Peridotite xenoliths from the Cretaceous Chidliak kimberlite province (SE Baffin Island, Canada) were recently studied by Kopylova et al. (2019). Here, we focus on rare textures, with orthopyroxene grains invariably rimmed by 3-20??m coronas of clinopyroxene, while all clinopyroxenes are rimmed by equally thin monticellite coronas. Thicker, 0.1-0.5?mm texturally equilibrated clinopyroxene also mantles garnet, and there is a gradual transition from micron- to millimeter-thick clinopyroxene mantles. We investigated the origin of these rarely preserved textures using major and trace element zoning in minerals, and measured and reconstructed bulk compositions of xenoliths. Fluxes of major elements were identified based on the conserved element ratios while accounting for the closure effect due to normalization of bulk compositions to 100%. Ca dominates the absolute elemental gain, expressed in moles per 1000?mol of Fe. The observed mineralogical and compositional changes are associated with the significant metasomatic removal of Na (70% of its budget) Al, and Cr (35% loss), minor removal of Si, Mn, Mg and Ni and the gain of Ca (~ 20%), Ti, K and incompatible trace elements. The metasomatic fluid addition beneath Chidliak was likely below 10%. The fluid was very enriched and fractionated resembling volatile-rich low-degree melts like carbonatites or kimberlites. The Chidliak peridotites were affected by "“carbonation freezing", i.e. immobilization of a carbonate-rich metasomatic agent via reactions with pyroxenes. Clinopyroxene and monticellite coronas formed in decarbonation reactions, whereby ephemeral carbonatitic fluid readily gave away Ca to silicate minerals and exsolved CO2. Chidliak peridotites highlight that it would be deceptive to imagine "carbonated peridotites" storing carbon in a normal assemblage of peridotite plus carbonate. "Carbonated peridotites" are coarse peridotites with elevated modes of clinopyroxene, garnet and olivine, and with thin rims of calcic silicate minerals storing incompatible elements. The CO2-rich magmatism on cratons and the match between the temporal Ca addition to the cratonic mantle and the observed fluxes from the carbonate-rich metasomatism underscores the importance of the latter process in shaping up the lithospheric mantle and its melts.
DS202103-0396
2021
Neil, B.J.C., Gibson, H.D., Pehrsson, S.J., Martel, E., Thiessen, E.J., Crowley, J.L.Provenance, stratigraphic and precise depositional age constraints for an outlier of the 1.9 to 1.8 Ga Nonacho Group, Rae craton, Northwest Territories, Canada.Precambrian Research, Vol. 352, 105999, 15p. PdfCanada, Northwest Territoriesgeochronology

Abstract: The Nonacho Group comprises six formations of continental clastic rocks that were deposited between 1.91 and 1.83?Ga. The Nonacho Group is part of a broader assemblage of conglomerate and sandstone that was deposited atop the Rae craton in response to the amalgamation of Laurentia and supercontinent Nuna, but the details of its tectonic setting are contentious. This paper documents an outlier of Nonacho Group rocks ?50?km east of the main Nonacho basin. Field observations and LA-ICPMS (laser ablation inductively coupled plasma mass spectrometry) U-Pb detrital zircon geochronology are integrated with previous studies of the main basin to better understand the group’s depositional history, provenance and tectonic setting. The lithology and detrital zircon age spectra of the outlier allow for its correlation to the upper two formations of the Nonacho Group. CA-ID-TIMS (chemical abrasion isotope dilution thermal ionization mass spectrometry) analyses of two fragments of the youngest detrital zircon provide a maximum depositional age of 1901.0?±?0.9?Ma. A felsic volcanic cobble dated at ca. 2.38?Ga provides evidence of volcanism during the Arrowsmith orogeny. Detrital zircon dates recovered from the outlier (ca. 3.4-3.0, 2.7, 2.5-2.3 and 2.0-1.9?Ga) are consistent with derivation from topography of the Taltson and/or Thelon orogens on the western margin of the Rae craton. Taltson-Thelon (2.0 to 1.9?Ga) aged detritus is only abundant in the upper two formations of the Nonacho Group, marking a change in provenance from the lower formations. This change in provenance may have coincided with a period of renewed uplift and the unroofing of Taltson-Thelon plutons. The detrital zircon provenance and depositional age of the Nonacho Group is consistent with models that link its deposition to the Taltson and/or Thelon orogens. However, tectonism associated with the 1.9 to 1.8?Ga Snowbird and Trans-Hudson orogens to the east could also have affected basin formation or the change in provenance from the lower to upper Nonacho Group. This study highlights the importance of CA-ID-TIMS in establishing accurate and precise maximum depositional ages for sedimentary successions.
DS202103-0402
2021
Regis, D., Pehrsson, S., Martel, E., Thiessen, E., Peterson, T., Kellett, D.Post - 1.9 Ga evolution of the south Rae craton ( Northwest Territories), Canada: a paleoproterozoic orogenic collapse system.Precambrian Research, Vol. 355, 106105, 29p. PdfCanada, Northwest Territoriessunduction

Abstract: The Trans-Hudson Orogen (THO), formed from the convergence between the Superior craton and the composite Churchill Upper Plate (CUP), is one of the best-preserved examples of a collisional orogen in the Paleoproterozoic. Similar to modern collision systems such as the Himalayan orogen, it is characterized by a composite upper plate in which terrane accretion established a continental plateau that was tectonically and magmatically active for >100 myr. Our study presents new petrological and geochronological data for four samples collected in three lithotectonic domains of the south Rae craton (one of the CUP terranes). The results presented here allow us to re-define the previously proposed extent of THO reworking in the CUP and afford the opportunity to study and compare the evolution of various fragments that illustrate differing levels of a collapsed plateau in the CUP hinterland. The new data indicate that the south Rae craton locally preserves evidence for burial at 1.855-1.84 Ga with peak metamorphic conditions at approximately 790 °C and 9.5-12.5 kbar followed by rapid cooling and decompression melting (P < 6 kbar) at ca. 1.835-1.826 Ga. These results, which provide important and so far missing Pressure-Temperature-time (P-T-t) constraints on the evolution of the south Rae craton in the Northwest Territories at Trans-Hudson time, coupled with existing regional geochronological and geochemical data, are used to propose an updated model for the post-1.9 Ga THO collision and extensional collapse. Our results reveal that: i) initial thickening in the upper plate started at Snowbird time (ca. 1.94 Ga), then continued via Sask collision (with high-grade metamorphism recorded in the south Rae craton, ca. 1.85 Ga), and ended with Superior collision (ca. 1.83 Ga); ii) the extent of the THO structural and metamorphic overprint in the SW CUP is much broader across strike than previously recognized, and iii) T-t data in the south Rae are indicative of relatively fast cooling rates (8-25 °C/Ma) compared to other known Precambrian orogens. We suggest that the Paleoproterozoic THO represents the first record of a major ‘modern-style’ orogenic plateau collapse in Earth’s history.
DS202103-0422
2021
Woodland, A.B., Graf, C., Sandner, T., Hofer, H.E., Seitz, H-M., Pearson, D.G., Kjarsgaard, B.A.Oxidation state and metasomatism of the lithospheric mantle beneath the Rae craton, Canada: strong gradients reflect craton formation and evolution.Nature Scientific Reports, 10.1038/s41598-021-83261-6 11p. PdfCanada, Northwest Territoriesmetasomatism

Abstract: We present the first oxidation state measurements for the subcontinental lithospheric mantle (SCLM) beneath the Rae craton, northern Canada, one of the largest components of the Canadian shield. In combination with major and trace element compositions for garnet and clinopyroxene, we assess the relationship between oxidation state and metasomatic overprinting. The sample suite comprises peridotite xenoliths from the central part (Pelly Bay) and the craton margin (Somerset Island) providing insights into lateral and vertical variations in lithospheric character. Our suite contains spinel, garnet-spinel and garnet peridotites, with most samples originating from 100 to 140 km depth. Within this narrow depth range we observe strong chemical gradients, including variations in oxygen fugacity (ƒO2) of over 4 log units. Both Pelly Bay and Somerset Island peridotites reveal a change in metasomatic type with depth. Observed geochemical systematics and textural evidence support the notion that Rae SCLM developed through amalgamation of different local domains, establishing chemical gradients from the start. These gradients were subsequently modified by migrating melts that drove further development of different types of metasomatic overprinting and variable oxidation at a range of length scales. This oxidation already apparent at ~?100 km depth could have locally destabilised any pre-existing diamond or graphite.
DS202104-0567
2021
Brzozowski, M., Samson, I.M., Gagnon, J.E., Linnen, R.L., Good, D.J.Effects of fluid-induced oxidation on the composition of Fe-Ti oxides in the eastern gabbro, Coldwell Complex, Canada: implications for the application of Fe-Ti oxides to petrogenesis and mineral exploration.Mineralium Deposita, Vol. 56, pp. 601-618. pdfCanada, Ontariodeposit - Coldwell

Abstract: Magnetite (mag)-ilmenite (ilm) intergrowths are more common than mag-ulvöspinel (usp) intergrowths in mafic-ultramafic Ni-Cu-PGE systems, yet the former has no known solid solution. The most accepted model for the formation of mag-ilm intergrowths in terrestrial environments is fluid-induced oxidation of mag-usp assemblages by oxygen in water. In this study, we re-examine this model in light of the fact that crustal fluids have very low pO2 and that mag-ilm intergrowths commonly occur in rocks that show little or no evidence of hydrothermal alteration. We also characterize the chemical changes that occurred during the formation of mag-ilm intergrowths and how they affect the use of Fe-Ti oxide chemistry for petrogenesis and mineral exploration. In the Eastern Gabbro, Coldwell Complex, a continuum of Fe-Ti oxide intergrowths occur ranging from cloth (mag-usp) to trellis (mag-ilm) types. Trellis-textured intergrowths have higher bulk Fe3+:Fe2+ ratios and are predominantly enriched not only in some multivalent (Ge, Mo, W, Sn) elements, but also in Cu and Ga, consistent with their formation via oxidation by a metal-rich fluid. These compositional changes are significant relative to typical elemental abundances in Fe-Ti oxides and could potentially lead to erroneous interpretations regarding primary magmatic processes if they are not taken into consideration. The irregular distribution of the intergrowths throughout the Eastern Gabbro suggests that different rock series and mineralized zones experienced variable degrees of fluid-induced oxidation. It is proposed that C in CO2 rather than O2 in water could potentially be an important oxidizing agent in mafic systems: 9Fe2+2TiO4+0.75CO2+1.5H2O?9Fe2+TiO3+3Fe3+2Fe2+O4+0.75CH4. The applicability of this model is supported by the common occurrence of CO2 and CH4 in fluid inclusions in mafic rocks.
DS202104-0568
2021
Brzozowski, M.J., Samson, I.M., Gagnon, J.E., Good, D.J., Linnen, R.L.Oxide mineralogy and trace element chemistry as an index to magma evolution and Marathon-type mineralization in the eastern gabbro of the alkaline Coldwell Complex, Canada.Mineralium Deposita, Vol. 56, pp. 621-642. pdfCanada, Ontariodeposit - Coldwell

Abstract: The Eastern Gabbro of the alkaline Coldwell Complex, Canada, represents a Ni-poor conduit-type system that comprises two rock series, the Layered Series and Marathon Series, which intruded into a metabasalt package. Based on distinct variations in magnetite compatible (e.g., Ni, Cr) and incompatible (e.g., Sn, Nb) elements in Fe-Ti oxide intergrowths, the metabasalts, Layered Series, and Marathon Series must have crystallized from magmas that originated from compositionally distinct sources. Of these rock units, the metabasalts crystallized from a more primitive melt than the Layered Series as Fe-Ti oxides in the former have higher concentrations of magnetite-compatible elements. Unlike the metabasalts and Layered Series, the Marathon Series crystallized from multiple, compositionally distinct magmas as Fe-Ti oxides in this series exhibit large variations in both magnetite compatible and incompatible elements. Accordingly, the various rock types of the Marathon Series cannot be related by fractional crystallization of a single batch of magma. Rather, the magmas from which the rock types crystallized had to have interacted to variable degrees with a late input of more primitive melt. The degree of this magma interaction was likely controlled by the geometry of the conduit and the location of emplacement given that Fe-Ti oxides in the oxide-rich rocks occur in pod-like bodies and exhibit no compositional evidence for magma mixing. Mirrored variations in magnetite compatible and incompatible elements in Fe-Ti oxides in the Footwall Zone, Main Zone, and W Horizon of the Marathon Cu-PGE deposit indicate that these zones could not have formed from a single, evolving magma, but rather multiple batches of compositionally distinct magmas. Fe-Ti oxides exhibit no compositional difference between those hosted by barren and mineralized rock. This is likely because sulfide liquated at depth in all of the magmas from which the Marathon Series crystallized. The composition of Fe-Ti oxides in the Eastern Gabbro fall outside of the compositional fields for Ni-Cu mineralization defined by Dupuis and Beaudoin (Mineral Deposita 46:319-335, 2011) and Ward et al. (J Geochem Explor 188:172-184, 2018) demonstrating that their discrimination diagrams can distinguish between Ni-rich and Ni-poor systems that contain disseminated and massive sulfides.
DS202104-0579
2021
Godet, A., Guilmette, C.,Labrousse, L., Smit, M.A., Cutts, J.A., Davis, D.W., Vanier, M-A.Lu-Hf garnet dating and the timing of collisions: Paleoproterozoic accretionary tectonics revealed in the southeastern Churchill Province Trans-Hudson Orogen, Canada. Torngat, New QuebecJournal of Metamorphic Geology, doi:10.1111/jmg.12599Canada, Quebeccratons

Abstract: Dating the onset of continental collision is fundamental in defining orogenic cycles and their effects on regional tectonics and geodynamic processes through time. Part of the Palaeoproterozoic Trans?Hudson Orogen, the Southeastern Churchill Province (SECP) is interpreted to result from the amalgamation of Archean to Palaeoproterozoic crustal blocks (amalgamated as the central Core Zone) that diachronically collided with the margins of the North Atlantic and Superior cratons, resulting in two bounding transpressive orogens: the Torngat and New Quebec Orogens. The SECP exposes mainly gneissic middle to lower orogenic crust in which deformation and amphibolite to granulite facies metamorphism and anatexis overprinted the early geological features classically used to constrain the timing of collisional events. To enable improved tectonic models for the development of the SECP, and the Trans?Hudson as a whole, we investigated granulite facies supracrustal sequences from the Tasiuyak Complex (TC) accretionary prism and the western margin of the North Atlantic Craton-that is, Saglek Block (upper plate)-using a multi?chronometer approach coupled with trace element geochemistry. In particular, the use of garnet Lu-Hf geochronology provides an important minimal time constraint for crustal thickening and collision. Garnet growth in the TC is constrained at 1885 ± 12 Ma (Lu-Hf), indistinguishable from U-Pb age of prograde monazite at 1873 ± 5 Ma. Zircon growth during melt crystallization occurred at 1848 ± 12 Ma. Garnet from the overriding Saglek Block is dated at 2567 ± 4.4 Ma (Lu-Hf) and indicates that gneissic rocks from the upper plate did not record the metamorphic imprint of the Torngat Orogeny. The diachronicity of the integrated metamorphic record across the strike of the SECP is explained by the location of terrane boundaries, consistent with the westward growth of the Churchill plate margin through sequential amalgamation of narrow crustal blocks during accretionary tectonics from c. 1.9 to 1.8 Ga.
DS202104-0580
2019
Grass, C., Woodland, A., Hoferm H,m Seitz, H-M., Pearson, G., Kjarsgaard, B.Metasomatism and oxidation state of the lithospheric mantle beneath the Rae Craton, Canada as revealed by xenoliths from Somerset Island and Pelly Bay. ***note dateGeophysical Research abstracts, EGU, EGU2019-9348, 1p. PdfCanadageodynamics

Abstract: We present the first oxidation state measurements for the subcontinental lithospheric mantle (SCLM) beneath the Rae craton, northern Canada, one of the largest components of the Canadian shield. In combination with major and trace element compositions for garnet and clinopyroxene, we assess the relationship between oxidation state and metasomatic overprinting. The sample suite comprises peridotite xenoliths from the central part (Pelly Bay) and the craton margin (Somerset Island) providing insights into lateral and vertical variations in lithospheric character. Our suite contains spinel, garnet-spinel and garnet peridotites, with most samples originating from 100 to 140 km depth. Within this narrow depth range we observe strong chemical gradients, including variations in oxygen fugacity (ƒO2) of over 4 log units. Both Pelly Bay and Somerset Island peridotites reveal a change in metasomatic type with depth. Observed geochemical systematics and textural evidence support the notion that Rae SCLM developed through amalgamation of different local domains, establishing chemical gradients from the start. These gradients were subsequently modified by migrating melts that drove further development of different types of metasomatic overprinting and variable oxidation at a range of length scales. This oxidation already apparent at ~?100 km depth could have locally destabilised any pre-existing diamond or graphite.
DS202104-0583
2020
Krivovichev, V.G., Charykova, M.V., Krivovichev, S.V.Mineral systems based on the number of species-defining chemical elements in minerals: their diversity, complexity, distribution, and the mineral evolution of the Earth's crust: a review.Geology of Ore Deposits, Vol. 62,8, pp. 704-718. pdfRussia, Canadaalkaline rocks

Abstract: The chemical diversity of minerals can be analyzed in terms of the concept of mineral systems based on the set of chemical elements that are essential for defining a mineral species. Only species-defining elements are considered to be essential. According to this approach, all minerals are classified into ten types of mineral systems with the number of essential components ranging from 1 to 10. For all known minerals, only 70 chemical elements act as essential species-defining constituents. Using this concept of mineral systems, various geological objects may be compared from the viewpoint of their mineral diversity: for example, alkali massifs (Khibiny and Lovozero in Russia; Mont Saint Hilaire in Canada), evaporite deposits (Inder in Kazakhstan and Searles Lake in the United States), fumaroles of active volcanoes (Tolbachik in Kamchatka and Vulcano in Sicily, Italy), and hydrothermal deposits (Otto Mountain in the United States and El Dragon in Bolivia). Correlations between chemical and structural complexities of the minerals were analyzed using a total of 5240 datasets on their chemical compositions and 3989 datasets on their crystal structures. The statistical analysis yields strong and positive correlations (R2 > 0.95) between chemical and structural complexities and the number of different chemical elements in a mineral. The analysis of relationships between chemical and structural complexities provides strong evidence for the overall trend of a greater structural complexity at a higher chemical complexity. Following R. Hazen, four groups of minerals representing four mineral evolution stages have been considered: (I) “Ur-minerals,” (II) minerals from chondrite meteorites, (III) Hadean minerals, and (IV) contemporary minerals. According to the obtained data, the number of species-defining elements in minerals and their average contents increase regularly and significantly from stage I to stage IV. The analyzed average chemical and structural complexities in these four groups demonstrate that both are gradually increasing in the course of mineral evolution. The increasing complexity follows an overall trend: the more complex minerals were formed in the course of geological time, without replacing the simpler ones. The observed correlations between chemical and structural complexities understood in terms of the Shannon information suggest that chemical differentiation is the major force that drives the increase of mineral complexity over the course of geological time.
DS202104-0589
2021
Lollar, B.S., Heuer, V.B., McDermott, J., Tille, S., Warr, O., Moran, J.J., Telling, J., Hinrichs, K-U.A window into the abiotic carbon cycle - acetate and formate in fracture waters in 2.7 billion year-old host rocks of the Canadian shield. ( Not specific to diamonds just interest)Geochimica et Cosmochimica Acta, Vol. 294. pp. 295-314. pdfCanadacarbon

Abstract: The recent expansion of studies at hydrothermal submarine vents from investigation of abiotic methane formation to include abiotic production of organics such acetate and formate, and rising interest in processes of abiotic organic synthesis on the ocean-world moons of Saturn and Jupiter, have raised interest in potential Earth analogs for investigation of prebiotic/abiotic processes to an unprecedented level. The deep continental subsurface provides an attractive target to identify analog environments where the influence of abiotic carbon cycling may be investigated, particularly in hydrogeological isolated fracture fluids where the products of chemical water-rock reactions have been less overprinted by the biogeochemical signatures of the planet’s surficial water and carbon cycles. Here we report, for the first time, a comprehensive set of concentration measurements and isotopic signatures for acetate and formate, as well as the dissolved inorganic and organic carbon pools, for saline fracture waters naturally flowing 2.4?km below surface in 2.7 billion year-old rocks on the Canadian Shield. These geologically ancient fluids at the Kidd Creek Observatory were the focus of previous investigations of fracture fluid geochemistry, microbiology and noble gas-derived residence times. Here we show the fracture waters of Kidd Creek contain high concentrations of both acetate and formate with concentrations from 1200 to 1900?µmol/L, and 480 to 1000?µmol/L, respectively. Acetate and formate alone account for more than 50-90% of the total DOC - providing a very simple "organic soup". The unusually elevated concentrations and profoundly 13C-enriched nature of the acetate and formate suggest an important role for abiotic organic synthesis in the deep carbon cycle at this hydrogeologically isolated site. A variety of potential abiotic production reactions are discussed, including a radiolytically driven H, S and C deep cycle that could provide a mechanism for sustaining deep subsurface habitability. Scientific discoveries are beginning to reveal that organic-producing reactions that would have prevailed on Earth before the rise of life, and that may persist today on planets and moons such as Enceladus, Europa and Titan, can be accessed in some specialized geologic settings on Earth that provide valuable natural analog environments for the investigation of abiotic organic chemistry outside the laboratory.
DS202105-0772
2021
Krivovichev, V.G., Charykova, M.V., Krivovichev, S.V.Mineral systems based on the number of species-defining chemical elements in minerals: their diversity, complexity, distribution, and the mineral evolution of the Earth's crust: a review. Mentions Khibiny, Lovozero, Mount St. HilaireGeology of Ore Deposits, Vol. 62, 8, pp. 704-718. pdfRussia, Canada, QuebecMineralogy

Abstract: The chemical diversity of minerals can be analyzed in terms of the concept of mineral systems based on the set of chemical elements that are essential for defining a mineral species. Only species-defining elements are considered to be essential. According to this approach, all minerals are classified into ten types of mineral systems with the number of essential components ranging from 1 to 10. For all known minerals, only 70 chemical elements act as essential species-defining constituents. Using this concept of mineral systems, various geological objects may be compared from the viewpoint of their mineral diversity: for example, alkali massifs (Khibiny and Lovozero in Russia; Mont Saint Hilaire in Canada), evaporite deposits (Inder in Kazakhstan and Searles Lake in the United States), fumaroles of active volcanoes (Tolbachik in Kamchatka and Vulcano in Sicily, Italy), and hydrothermal deposits (Otto Mountain in the United States and El Dragon in Bolivia). Correlations between chemical and structural complexities of the minerals were analyzed using a total of 5240 datasets on their chemical compositions and 3989 datasets on their crystal structures. The statistical analysis yields strong and positive correlations (R2 > 0.95) between chemical and structural complexities and the number of different chemical elements in a mineral. The analysis of relationships between chemical and structural complexities provides strong evidence for the overall trend of a greater structural complexity at a higher chemical complexity. Following R. Hazen, four groups of minerals representing four mineral evolution stages have been considered: (I) “Ur-minerals,” (II) minerals from chondrite meteorites, (III) Hadean minerals, and (IV) contemporary minerals. According to the obtained data, the number of species-defining elements in minerals and their average contents increase regularly and significantly from stage I to stage IV. The analyzed average chemical and structural complexities in these four groups demonstrate that both are gradually increasing in the course of mineral evolution. The increasing complexity follows an overall trend: the more complex minerals were formed in the course of geological time, without replacing the simpler ones. The observed correlations between chemical and structural complexities understood in terms of the Shannon information suggest that chemical differentiation is the major force that drives the increase of mineral complexity over the course of geological time.
DS202105-0774
2021
Liu, J., Pearson, D.G., Wang, L.H., Mather, K.A., Kjarsgaard, B.A., Schaeffer, A.J., Irvine, G.J., Kopylova, M.G., Armstrong, J.P.Plume-driven recratonization of deep continental lithospheric mantle.Nature, doi.org/101038/ s41586-021-03395-5 5p. PdfCanada, Northwest Territoriescraton

Abstract: Cratons are Earth’s ancient continental land masses that remain stable for billions of years. The mantle roots of cratons are renowned as being long-lived, stable features of Earth’s continents, but there is also evidence of their disruption in the recent1,2,3,4,5,6 and more distant7,8,9 past. Despite periods of lithospheric thinning during the Proterozoic and Phanerozoic eons, the lithosphere beneath many cratons seems to always ‘heal’, returning to a thickness of 150 to 200 kilometres10,11,12; similar lithospheric thicknesses are thought to have existed since Archaean times3,13,14,15. Although numerous studies have focused on the mechanism for lithospheric destruction2,5,13,16,17,18,19, the mechanisms that recratonize the lithosphere beneath cratons and thus sustain them are not well understood. Here we study kimberlite-borne mantle xenoliths and seismology across a transect of the cratonic lithosphere of Arctic Canada, which includes a region affected by the Mackenzie plume event 1.27 billion years ago20. We demonstrate the important role of plume upwelling in the destruction and recratonization of roughly 200-kilometre-thick cratonic lithospheric mantle in the northern portion of the Slave craton. Using numerical modelling, we show how new, buoyant melt residues produced by the Mackenzie plume event are captured in a region of thinned lithosphere between two thick cratonic blocks. Our results identify a process by which cratons heal and return to their original lithospheric thickness after substantial disruption of their roots. This process may be widespread in the history of cratons and may contribute to how cratonic mantle becomes a patchwork of mantle peridotites of different age and origin.
DS202105-0781
2021
Pamato, M.G., Novella, D., Jacobs, D.E., Oliveira, B., Pearson, D.G., Greene, S., Alfonso, J.C., Favero, M., Stachel, T., Alvaro, M., Nestola, F.Protogenetic sulfide inclusions in diamonds date the diamond formation event using Re-Os isotopes. Victor, JerichoGeology , Vol. 49, 4, 5p. Canada, Ontario, Nunavutdiamond inclusions

Abstract: Sulfides are the most abundant inclusions in diamonds and a key tool for dating diamond formation via Re-Os isotopic analyses. The manner in which fluids invade the continental lithospheric mantle and the time scale at which they equilibrate with preexisting (protogenetic) sulfides are poorly understood yet essential factors to understanding diamond formation and the validity of isotopic ages. We investigated a suite of sulfide-bearing diamonds from two Canadian cratons to test the robustness of Re-Os in sulfide for dating diamond formation. Single-crystal X-ray diffraction (XRD) allowed determination of the original monosulfide solid-solution (Mss) composition stable in the mantle, indicating subsolidus conditions of encapsulation, and providing crystallographic evidence supporting a protogenetic origin of the inclusions. The results, coupled with a diffusion model, indicate Re-Os isotope equilibration is sufficiently fast in sulfide inclusions with typical grain size, at mantle temperatures, for the system to be reset by the diamond-forming event. This confirms that even if protogenetic, the Re-Os isochrons defined by these minerals likely reflect the ages of diamond formation, and this result highlights the power of this system to date the timing of fluid migration in mantle lithosphere.
DS202105-0783
2021
Podolsky, M.Primary asset development standard model - deposit to reserve desktop to feasibility governance - example Gahcho Kue mine, Northwest Territories, Canada.Vancouver Kimberlite Cluster recorded,  https://youtu.be/ GMyoKHoQrJECanada, Northwest Territoriesdeposit - Gahcho Kue

Abstract: A primary rock-hosted diamond Deposit to Reserve Asset Development Standard model governed under the 2014 Canadian Institute of Mining, Metallurgy and Petroleum definition standards on Mineral Resources and Reserves and 2016 Toronto Stock Exchange National Instrument 43-101 - Standards of Disclosure for Mineral Projects, is presented and discussed. The Gahcho Kué Mine De Beers Canada - Mountain Province Diamonds joint venture project roadmap from exploration commencing in 1992 to definitive Feasibility Study in 2010 is reviewed under the incorporated 2003 Guidelines for the Reporting of Diamond Exploration Results and 2008 Estimation of Mineral Resources and Mineral Reserves Best Practices Guidelines for Rock Hosted Diamonds. Karowe and Ekati-Sable diamond mines histories are also compared. The Asset Development Standard model utilizes a published De Beers system of kimberlite Deposit to Reserves geo-scientific scorecard classification, that is aligned with reporting of Desktop, Conceptual and Pre-Feasibility to Feasibility Studies.
DS202106-0949
2021
Lawley, C.J.M., Somers, A.M., Kjarsgaard, B.A.Rapid geochemical imaging of rocks and minerals with handheld laser induced breakdown spectroscopy. ( LIBS)Journal of Geochemical Exploration, Vol. 222, 106694, 16p. PdfCanada, Nunavutdeposit - Jericho, Muskox

Abstract: Geochemical imaging is a powerful tool for unravelling the complex geological histories of rocks and minerals. However, its applications have until recently been restricted to geological research in a lab environment due to the cost and size of conventional instrumentation, long analysis times, and extensive sample preparation for some methods. Herein we present a rapid, qualitative geochemical imaging method for rocks and minerals using handheld LIBS. Analyses were completed directly on sawed drill core surfaces for a suite of kimberlite-hosted mantle xenoliths (Jericho and Muskox kimberlites, Nunavut, Canada). Semi-automated LIBS spectral processing following a new open-source workflow allows stitching of multiple small-area maps (each approximately 3 × 3 mm that take 2-3 min to complete) to produce cm-scale geochemical images of variably altered mantle xenolith samples (total data acquisition in 1-2 h). Replicate analyses of a Znsingle bondAl alloy reference material (NZA-1; CANMET) that were undertaken during standard-sample bracketing suggests that the relative standard deviation (RSD) is typically 15-20% for sum-normalized emission intensities above the estimated background. We demonstrate with open-source machine learning tools how qualitative LIBS spectral data can be converted to Feature-Of-Interest (FOI) maps to distinguish a variety of metasomatic and alteration features (e.g., Cr-diopside, kelyphite rims on pyrope garnet, and calcite veinlets) from the primary mantle mineralogy (e.g., olivine and orthopyroxene). Our results further demonstrate that the resolution of handheld LIBS-based geochemical imaging is sufficient to map veinlets and grain boundaries lined with metasomatic minerals. The LIBS approach is particularly sensitive for mapping the microscale distribution of elements with low atomic number (e.g., Li and Na). These light elements are difficult to detect at low concentrations with other handheld and field-portable technologies, but represent important geochemical tracers of hydrothermal and magmatic processes. Rapid LIBS mapping thus represents an emerging geochemical imaging tool for unravelling the complex geological history of rocks and minerals in the field with minimal to no sample preparation.
DS202106-0953
2021
Li, Y., Sun, J., Shuling, L., Leao-Santos, M.A paradigm shift in magnetic data interpretation; increased value through magnetization inversions.Geophysics Leading Edge, Vol. 40, 2, pp. 89-98.Canada, South America, Brazilgeophysics

Abstract: Magnetic data are sensitive to both the induced magnetization in rock units caused by the present earth's magnetic field and the remanent magnetization acquired by rock units in past geologic time. Susceptibility is a direct indicator of the magnetic mineral content, whereas remanent magnetization carries information about the formation process and subsequent structural movement of geologic units. The ability to recover and use total magnetization, defined as the vectorial sum of the induced and remanent magnetization, therefore enables us to take full advantage of magnetic data. The exploration geophysics community has achieved significant advances in inverting magnetic data affected by remanent magnetization. It is now feasible to invert any magnetic data set for total magnetization. We provide an overview of the state of the art in magnetization inversion and demonstrate the informational value of inverted magnetization through a set of case studies from mineral exploration problems. We focus on the methods that recover either the magnitude of the total magnetization or the total magnetization vector itself.
DS202106-0969
2021
Savard, J.J., Mitchell, R.H.Petrology of ijolite series rocks from the Prairie Lake ( Canada) and Fen ( Norway) alkaline rock-carbonatite complexes.Lithos, Vol. 396-397, 106188 20p.Canada, Ontariodeposit - Prairie Lake

Abstract: This study reports the mineralogy and petrology, together with the major and trace element composition of pyroxenes, garnets and apatite from ijolite series rocks occurring at the Prairie Lake carbonatite complex, northwestern Ontario, with comparative data for ijolites from the Fen complex, Norway. The ijolites and calcite ijolites (hollaites) of Prairie Lake record the effects of magma mixing, crystal settling, solid-state re-equilibration and deuteric alteration. The Prairie Lake complex was formed by at least three stages of intrusion. The initial stage was predominantly biotite pyroxenite and associated coarse carbonatite veins. The second stage is represented primarily by members of the ijolite series together with meta-ijolites created by solid state re-equilibration of previously crystallized rocks. Differentiation of the magmas which formed the ijolite suite resulted in the formation of calcite ijolites (hollaites) and malignites (potassic nepheline syenites). The final stage was the intrusion of the heterogeneous carbonatites derived from different batches of carbonatite related magmas. These rocks contain xenoliths of ijolite suite rocks, pyroxene apatitite, wollastonite apatitite, and phoscorite. Pyroxene compositions show an evolutionary trend from diopside in biotite pyroxenites through Fe-enriched diopside-augite in ijolites to aegirine in malignites. Clinopyroxene major and trace element data show that the cores of clinopyroxene in biotite pyroxenites formed as antecrysts at depth and were emplaced as part of a later event. Trace element data from pyroxenes, garnets and apatite from Prairie Lake and Fen are similar to each other and those found in carbonatite complexes worldwide. It is proposed that a continuously-filled fractionating magma chamber was not present at Prairie Lake and that the ijolite-malignite members of the complex formed as result of small intrusions of nephelinitic magma into pre-existing ijolites. Similar styles of magmatic evolution by fractional crystallization are indicated for the Prairie Lake, Fen, and Belaya Zima ijolite?carbonatite complexes and there is no evidence that liquid immiscibility played any role in their petrogenesis.
DS202107-1090
2021
Bedard, J.H., Troll, V.R., Deegan F.M., Tegner, C., Sauumur, B. M., Evenchick, C.A., Grasby, S.E., Dewing, K.High Arctic large igneous province alkaline rocks in Canada: evidence for multiple mantle components.Journal of Petrology, 113p. In press availableCanada, Ellesmerealkaline rocks

Abstract: The Cretaceous High Arctic Large Igneous Province (HALIP) in Canada, although dominated by tholeiites (135-90?Ma), contains two main groups of alkaline igneous rocks. The older alkaline rocks (?96?Ma) scatter around major fault and basement structures. They are represented by the newly-defined Fulmar Suite alkaline basalt dykes and sills, and include Hassel Formation volcanics. The younger alkaline group is represented by the Wootton Intrusive Complex (92.2-92.7?Ma), and the Audhild Bay Suite (83-73?Ma); both emplaced near the northern coast of Ellesmere Island. Fulmar Suite rocks resemble EM-type ocean island basalts (OIB) and most show limited crustal contamination. The Fulmar Suite shows increases of P2O5 at near-constant Ba-K-Zr-Ti that are nearly orthogonal to predicted fractionation- or melting-related variations; which we interpret as the result of melting composite mantle sources containing a regionally widespread apatite-bearing enriched component (P1). Low-P2O5 Fulmar Suite variants overlap compositionally with enriched HALIP tholeiites, and fall on common garnet lherzolite trace element melting trajectories, suggesting variable degrees of melting of a geochemically similar source. High-P2O5 Hassel Formation basalts are unusual among Fulmar rocks, because they are strongly contaminated with depleted lower crust; and because they involve a high-P2O5-Ba-Eu mantle component (P2), similar to that seen in alkali basalt dykes from Greenland. The P2 component may have contained Ba-Eu-rich hawthorneite and/or carbonate minerals as well as apatite, and may typify parts of the Greenlandic sub-continental lithospheric mantle (SCLM). Mafic alkaline Audhild Bay Suite (ABS) rocks are volcanic and hypabyssal basanites, alkaline basalts and trachy-andesites, and resemble HIMU ocean island basalts in having high Nb, low Zr/Nb and low 87Sr/86Sri. These mafic alkaline rocks are associated with felsic alkaline lavas and syenitic intrusions, but crustally-derived rhyodacites and rhyolites also exist. The Wootton Intrusive Complex (WIC) contains geochemically similar plutonic rocks (alkali gabbros, diorites and anatectic granites), and may represent a more deeply eroded, slightly older equivalent of the ABS. Low-P2O5 ABS and WIC alkaline mafic rocks have flat heavy rare-earth (HREE) profiles suggesting shallow mantle melting; whereas High-P2O5 variants have steep HREE profiles indicating deeper separation from garnet-bearing residues. Some High-P2O5 mafic ABS rocks seem to contain the P1 and P2 components identified in Fulmar-Hassel rocks, whereas other samples trend towards possible High-P2O5+Zr (PZr) and High-P2O5+K2O (PK) components. We argue that the strongly alkaline northern Ellesmere Island magmas sampled mineralogically heterogeneous veins or metasomes in Greenlandic-type SCLM, which contained trace phases like apatite, carbonates, hawthorneite, zircon, mica or richterite. The geographically more widespread apatite-bearing component (P1), could have formed part of a heterogeneous plume or upwelling mantle current that also generated HALIP tholeiites when melted more extensively, but may also have resided in the SCLM as relics of older events. Rare HALIP alkaline rocks with high K-Rb-U-Th fall on mixing paths implying strong local contamination from either Sverdrup Basin sedimentary rocks or granitic upper crust. However, the scarcity of potassic alkaline HALIP facies, together with the other trace element and isotopic signatures, provide little support for an ubiquitous fossil sedimentary subduction zone component in the HALIP mantle source.
DS202107-1100
2019
Graf, C., Woodland, A., Hofer, H., Seitz, H-M., Pearson, G., Kjarsgaard, B.Metasomatism and oxidation state of lithospheric mantle beneath the Rae Craton, Canada as revealed by xenoliths from Somerset Island and Pelly Bay. ** Note dateGeophysical Research Abstracts , 1p. PdfCanada, Somerset Island , Nunavutcratons

Abstract: We present the first oxidation state measurements for the subcontinental lithospheric mantle (SCLM) beneath the Rae craton, northern Canada, one of the largest components of the Canadian shield. In combination with major and trace element compositions for garnet and clinopyroxene, we assess the relationship between oxidation state and metasomatic overprinting. The sample suite comprises peridotite xenoliths from the central part (Pelly Bay) and the craton margin (Somerset Island) providing insights into lateral and vertical variations in lithospheric character. Our suite contains spinel, garnet-spinel and garnet peridotites, with most samples originating from 100 to 140 km depth. Within this narrow depth range we observe strong chemical gradients, including variations in oxygen fugacity (ƒO2) of over 4 log units. Both Pelly Bay and Somerset Island peridotites reveal a change in metasomatic type with depth. Observed geochemical systematics and textural evidence support the notion that Rae SCLM developed through amalgamation of different local domains, establishing chemical gradients from the start. These gradients were subsequently modified by migrating melts that drove further development of different types of metasomatic overprinting and variable oxidation at a range of length scales. This oxidation already apparent at ~?100 km depth could have locally destabilised any pre-existing diamond or graphite.
DS202107-1108
2021
Krueger, H.E., Gama, I., Fischer, K.M.Global patterns in cratonic mid-lithospheric discontinuities from Sp receiver functions. ( shield)Geochemistry, Geophysics, Geosytems, 19p. PdfCanada, Ontariogeophysics - seismics

Abstract: We investigate the structure of the continental lithosphere (tectonic plate) in regions that have had negligible tectonic activity, such as mountain building, for the past 500 million years. The internal structure of the lithosphere in these regions can be indicative of the ancient processes that first formed continents. Due to challenges in methodology, layering within the upper 150 km of the continental lithosphere is poorly understood. We carefully process earthquake data to avoid problems that previous studies encountered. We observe layering in 50% of the ancient continental regions. Most of this layering can be explained by the presence of minerals that have lower seismic velocities than the surrounding rock because they have been altered by fluids during the formation of the continent. In regions closer to more recent tectonic activity, some layering has stronger seismic velocity decreases, indicating the effects of more recent alteration. We also find that layering is more prevalent in the continental regions that last experienced tectonic activity no later than 1.6 billion years ago. This corresponds with a global transition in the depth to which the subducting lithosphere carries fluids into the mantle, indicating that subduction has a key role in generating layering in the ancient continental lithosphere.
DS202107-1125
2021
Roy, D.J.W., Merriman, J.D., Whittington, A.G., Hofmeister, A.M.Thermal properties of carbonatite and anorthosite from the Superior Province, Ontario, and implications for non-magmatic local thermal effects of these intrusions.International Journal of earth Sciences, Vol. 110, pp. 1593-1609.Canada, Ontariocarbonatite

Abstract: Igneous intrusions are important to the thermomechanical evolution of continents because they inject heat into their relatively cold host rocks, and potentially change the distribution of radiogenic heat production and thermal properties within the crust. To explore one aspect of the complex evolution of the continental crust, this paper investigates the local thermal effects of two intrusive rock types (carbonatites and anorthosites) on the Archean Superior Province of the Canadian shield. We provide new data on their contrasting properties: rock density near 298 K, thermal diffusivity, and heat capacity up to 800 K (which altogether yield thermal conductivity), plus radiogenic element contents. The volumetrically small carbonatites have widely varying radiogenic heat production (2–56 µW m?3) and moderate thermal conductivity at 298 K (~?1 to 4 W m?1 K?1) which decreases with temperature. The massive Shawmere anorthosite has nearly negligible radiogenic heat production (
DS202107-1134
2021
Snyder, D.B., Savard, G., Kjarssgaard, B.A., Vaillancourt, A., Thurston, P.C., Ayer, J.A., Roots, E.Multidisciplinary modeiling of mantle lithosphere structure within the Superior craton, North America.Geochemistry, Geophysics, Geosytems, 20p. PdfCanada, United Statesgeophysics - seismics

Abstract: Structure within the Earth is best studied in three dimensions and using several coincident overlays of diverse information with which one can best see where unusual properties match up. Here we use regional surfaces causing discontinuities in seismic waves a few hundred kilometers deep in the Earth, intersected and thus calibrated by rebuilt rock columns using rare rock samples erupted to the surface in two locations. Electrically conductive regions can be mapped using natural (magnetotelluric) currents. East- and west-dipping seismic discontinuity surfaces match surface structures that developed about 1.8 billion years ago marginal to the Superior crustal block. Surfaces dipping to the southeast and northwest match some boundaries between crustal blocks that are over 2.5 billion years old, but many such crustal boundaries trend more east-west. Conductive rocks appear more commonly above these discontinuity surfaces where gas-rich fluids apparently flowed and that the discontinuities somehow filtered these fluids. The mismatch in orientation and dip between the most ancient deep and exposed structures suggests that plate tectonic processes operating today differed earlier than 2.5 billion years ago.
DS202107-1138
2021
Sturrock, C.P., Flowers, R.M., Macdonald, F.A.The late great unconformity of the central Canadian shield.Geochemistry, Geophysics, Geosytems, 49p. PdfCanada, Ontariogeochronology

Abstract: The Great Unconformity is a distinctive feature in the geologic record that separates more ancient rocks from younger (<540 Ma) sedimentary rocks. It commonly marks a substantial time gap in the rock record. When and why the Great Unconformity developed is much debated. We present new thermochronologic data that constrain when ancient rocks across the central Canadian Shield last cooled during exhumation to the surface before deposition of overlying sedimentary rocks that mark the Great Unconformity. These data and the geologic context indicate that the basement below the Great Unconformity erosion here was last exhumed after 650 Ma, in contrast to the pre-650 Ma timing inferred elsewhere in North America. This result is inconsistent with the notion that the Great Unconformity formed worldwide in a single erosion event.
DS202108-1274
2021
Bedard, J.H., Troll, V.R., Deegan, F.M., Tegner, C., Saumor, B.M., Evenchick, C.A., Grasby, S.E., Dewing, K.High arctic large igneous province alkaline rocks in Canada: evidence for multiple mantle components.Journal of Petrology, 113p. PdfCanada, Ellesmere Islandalkaline rocks

Abstract: The Cretaceous High Arctic Large Igneous Province (HALIP) in Canada, although dominated by tholeiites (135-90?Ma), contains two main groups of alkaline igneous rocks. The older alkaline rocks (?96?Ma) scatter around major fault and basement structures. They are represented by the newly-defined Fulmar Suite alkaline basalt dykes and sills, and include Hassel Formation volcanics. The younger alkaline group is represented by the Wootton Intrusive Complex (92.2-92.7?Ma), and the Audhild Bay Suite (83-73?Ma); both emplaced near the northern coast of Ellesmere Island. Fulmar Suite rocks resemble EM-type ocean island basalts (OIB) and most show limited crustal contamination. The Fulmar Suite shows increases of P2O5 at near-constant Ba-K-Zr-Ti that are nearly orthogonal to predicted fractionation- or melting-related variations; which we interpret as the result of melting composite mantle sources containing a regionally widespread apatite-bearing enriched component (P1). Low-P2O5 Fulmar Suite variants overlap compositionally with enriched HALIP tholeiites, and fall on common garnet lherzolite trace element melting trajectories, suggesting variable degrees of melting of a geochemically similar source. High-P2O5 Hassel Formation basalts are unusual among Fulmar rocks, because they are strongly contaminated with depleted lower crust; and because they involve a high-P2O5-Ba-Eu mantle component (P2), similar to that seen in alkali basalt dykes from Greenland. The P2 component may have contained Ba-Eu-rich hawthorneite and/or carbonate minerals as well as apatite, and may typify parts of the Greenlandic sub-continental lithospheric mantle (SCLM). Mafic alkaline Audhild Bay Suite (ABS) rocks are volcanic and hypabyssal basanites, alkaline basalts and trachy-andesites, and resemble HIMU ocean island basalts in having high Nb, low Zr/Nb and low 87Sr/86Sri. These mafic alkaline rocks are associated with felsic alkaline lavas and syenitic intrusions, but crustally-derived rhyodacites and rhyolites also exist. The Wootton Intrusive Complex (WIC) contains geochemically similar plutonic rocks (alkali gabbros, diorites and anatectic granites), and may represent a more deeply eroded, slightly older equivalent of the ABS. Low-P2O5 ABS and WIC alkaline mafic rocks have flat heavy rare-earth (HREE) profiles suggesting shallow mantle melting; whereas High-P2O5 variants have steep HREE profiles indicating deeper separation from garnet-bearing residues. Some High-P2O5 mafic ABS rocks seem to contain the P1 and P2 components identified in Fulmar-Hassel rocks, whereas other samples trend towards possible High-P2O5+Zr (PZr) and High-P2O5+K2O (PK) components. We argue that the strongly alkaline northern Ellesmere Island magmas sampled mineralogically heterogeneous veins or metasomes in Greenlandic-type SCLM, which contained trace phases like apatite, carbonates, hawthorneite, zircon, mica or richterite. The geographically more widespread apatite-bearing component (P1), could have formed part of a heterogeneous plume or upwelling mantle current that also generated HALIP tholeiites when melted more extensively, but may also have resided in the SCLM as relics of older events. Rare HALIP alkaline rocks with high K-Rb-U-Th fall on mixing paths implying strong local contamination from either Sverdrup Basin sedimentary rocks or granitic upper crust. However, the scarcity of potassic alkaline HALIP facies, together with the other trace element and isotopic signatures, provide little support for an ubiquitous fossil sedimentary subduction zone component in the HALIP mantle source.
DS202108-1285
2021
Greenman, J.W., Rooney, A.D., Patzke, M., Ielpi, A., Halverson, G.P.Re-Os geochronology highlights widespread latest Mesoproterozoic ( ca 1090-1050 Ma) cratonic basin development on northern Laurentia.Geology, Vol. 49, March pp. 779-783.Canada, Greenlandgeochronology

Abstract: The terminal Mesoproterozoic was a period of widespread tectonic convergence globally, culminating in the amalgamation of the Rodinia supercontinent. However, in Laurentia, long-lived orogenesis on its eastern margin was punctuated by short-lived extension that generated the Midcontinent Rift ca. 1110-1090 Ma. Whereas this cratonic rift basin is typically considered an isolated occurrence, a series of new depositional ages demonstrate that multiple cratonic basins in northern Laurentia originated around this time. We present a Re-Os isochron date of 1087.1 ± 5.9 Ma from organic-rich shales of the Agu Bay Formation of the Fury and Hecla Basin, which is one of four closely spaced cratonic basins spanning from northeastern Canada to northwestern Greenland known as the Bylot basins. This age is identical, within uncertainty, to ages from the Midcontinent Rift and the Amundsen Basin in northwestern Canada. These ages imply that the late Mesoproterozoic extensional episode in Laurentia was widespread and likely linked to a common origin. We propose that significant thermal anomalies and mantle upwelling related to supercontinent assembly centered around the Midcontinent Rift influenced the reactivation of crustal weaknesses in Arctic Laurentia beginning ca. 1090 Ma, triggering the formation of a series of cratonic basins.
DS202108-1302
2021
Pamato, M.G., Novella, D., Jacob, B., Oliveira, B., Pearson, D.G.Petrogenetic sulfide inclusions in diamonds date the diamond formation event using Re-Os isotopes.Geology, Vol. 49, pp. 941-945.Canada, Ontario, Nunavutdeposit - Victor, Jericho

Abstract: Sulfides are the most abundant inclusions in diamonds and a key tool for dating diamond formation via Re-Os isotopic analyses. The manner in which fluids invade the continental lithospheric mantle and the time scale at which they equilibrate with preexisting (protogenetic) sulfides are poorly understood yet essential factors to understanding diamond formation and the validity of isotopic ages. We investigated a suite of sulfide-bearing diamonds from two Canadian cratons to test the robustness of Re-Os in sulfide for dating diamond formation. Single crystal X-ray diffraction (XRD) allowed determination of the original monosulfide solid-solution (Mss) composition stable in the mantle, indicating subsolidus conditions of encapsulation, and providing crystallographic evidence supporting a protogenetic origin of the inclusions. The results, coupled with a diffusion model, indicate Re-Os isotope equilibration is sufficiently fast in sulfide inclusions with typical grain size, at mantle temperatures, for the system to be reset by the diamond-forming event. This confirms that even if protogenetic, the Re-Os isochrons defined by these minerals likely reflect the ages of diamond formation, and this result highlights the power of this system to date the timing of fluid migration in mantle lithosphere.
DS202109-1469
2021
Good, D.J., Hollings, P., Dunning, G., Epstein, R., McBride, J., Jedemann, A., Magnus, S., Bohav, T., Shore, G.A new model for the Coldwell Complex and associated dykes of the Midcontinent Rift, Canada.Journal of Petrology, Vol. 62, 7, 10.1093/petrology/ega036Canadadeposit - Coldwell

Abstract: Mafic intrusions on the NE shoulder of the Midcontinent Rift (Keweenawan LIP), including Cu-PGE mineralized gabbros within the Coldwell Complex (CC), and rift parallel or radial dykes outside the CC are correlated based on characteristic trace element patterns. In the Coldwell Complex, mafic rocks are subdivided into four groups: (1) early metabasalt; (2) Marathon Series; (3) Layered Series; (4) Geordie-Wolfcamp Series. The Marathon Series are correlated with the rift radial Abitibi dykes (1140?Ma), and the Geordie-Wolfcamp Series with the rift parallel Pukaskwa and Copper Island dykes. U-Pb ages determined for five gabbros from the Layered and Marathon Series are between 1107•7 and 1106•0?Ma. Radiogenic isotope ratios show near chondritic (CHUR) ?Nd(1106?Ma) and 87Sr/86Sri values that range from -0•38 to +1•13 and 0•702537 to 0•703944, respectively. Distinctive geochemical properties of the Marathon Series and Abitibi dykes, such as Ba/La (14-37), Th/Nb (0•06-0•12), La/Sm (3•8-7•7), Sr/Nd (21-96) and Zr/Sm (9-19), are very different from those of the Geordie-Wolfcamp Series and a subset of Copper Island and Pukaskwa dykes with Ba/La (8•7-11), Th/Nb (0•12-0•13), La/Sm (6•7-7•9), Sr/Nd (5-7•8) and Zr/Sm (18-24). Each unit exhibits covariation between incompatible element ratios such as Zr/Sm and Nb/La or Gd/Yb, Sr/Nd and Ba/La, and Nb/Y and Zr/Y, which are consistent with mixing relationship between two or more mantle domains. These characteristics are unlike those of intrusions on the NW shoulder of the MCR, but resemble those of mafic rocks occurring in the East Kenya Rift. The results imply that an unusual and long-lived mantle source was present in the NE MCR for at least 34?Myr (spanning the 1140?Ma Abitibi dykes and the 1106?Ma Marathon series) and indicate potential for Cu-PGE mineralization in an area much larger than was previously recognized.
DS202109-1470
2021
Helmstaedt, H., Pehrsson, S.J., Stubley, M.P.The Slave Province, Canada - geological evolution of an archean diamondiferous craton.Geological Association of Canada Bookstore, https://gac.ca/publications/bookstore Special Paper 51, 216p. Prices 42.50 member, $75.00 non-member isbn:978-1-897095-89-8Canada, Northwest TerritoriesCraton

Abstract: With its well-exposed geologic record from the Hadean Acasta gneiss complex through to Phanerozoic kimberlites, the Slave craton of northwestern Canada has long been a focus for research into early Earth evolution of both the crust and lithosphere. As a result, it has become one of the most extensively studied Archean cratons in the world. This multidisciplinary volume provides an authoritative overview of the Slave craton literally from the bottom up, integrating the nature of its lithosphere based on kimberlitic mantle samples with its upper crustal geology to provide a new model for its Archean assembly and cratonization. All aspects of Slave craton geology are covered, from the stratigraphy of its famous gold camps to the history of exploration and nature of its world-class diamondiferous kimberlite fields. Detailed and well-illustrated chapters cover its terranes and greenstone belts, magmatism, geophysical character, tectono-metamorphic evolution, and Paleoproterozoic marginal sequences. The book’s wealth of data and up-to-date bibliography provide a unique resource for understanding, researching and teaching Archean geology and subcrustal and cratonic evolution. It elegantly integrates diverse fields to provide one of the most comprehensive models for the craton and the protracted, multiphase formation of its diamond-bearing lithospheric root. (JK Note: the link above takes you to the GAC web site where Special Paper 51 can be purchased. Because the GAC only provides the abstract and a photo of the front page, I am providing a Table of Contents pdf.)
DS202109-1478
2021
Li, Y., Levin, V., Nikulin, A., Chen, X.Systematic mapping of upper mantle seismic discontinuities beneath northeastern North America.Geochemistry, Geophysics, Geosystems, 10.1029/2021GC009710 20p. PdfUnited States, Canadageophysics- seismic

Abstract: We probe the properties of upper mantle rocks beneath northeastern North America using the observations of seismic waves from distant earthquakes. We examine signals of converted P-S waves that originate from locations of rapid vertical or directional changes in seismic velocities. These abrupt velocity boundaries are thought to originate from rock deformation, variations in composition, temperature, or melt content. The sharp transitions detectable by this method are compositionally more plausible within the cold tectonic plate than within the hot convecting asthenosphere. Previous studies in this region that analyzed the same type of seismic data report boundaries with sharp downward reduction in seismic velocities between the depths of 60 and 100 km. Their widespread distribution and local consistency with seismic velocity models was used as evidence of them marking the transition between the cold tectonic plate and the hot convecting asthenosphere. Here we expand our search to other types of boundaries and find numerous examples at much greater depths (down to ?185 km). These deeper boundaries primarily reflect changes in directional variation of seismic velocities (anisotropy). The distribution of our deep boundaries broadly agrees with lithospheric thickness estimates in global upper mantle models that consider seismic, gravity, and heat flow data.
DS202109-1491
2021
Sturrock, C.P., Flowers, R.M., Macdonald, F.A.The Late unconformity of the central Canadian Shield.Geochemistry, Geophysics, Geosystems, Vol. 22, e2020GC009567Canada, Saskatchewancraton

Abstract: The Great Unconformity is a distinctive feature in the geologic record that separates more ancient rocks from younger (<540 Ma) sedimentary rocks. It commonly marks a substantial time gap in the rock record. When and why the Great Unconformity developed is much debated. We present new thermochronologic data that constrain when ancient rocks across the central Canadian Shield last cooled during exhumation to the surface before deposition of overlying sedimentary rocks that mark the Great Unconformity. These data and the geologic context indicate that the basement below the Great Unconformity erosion here was last exhumed after 650 Ma, in contrast to the pre-650 Ma timing inferred elsewhere in North America. This result is inconsistent with the notion that the Great Unconformity formed worldwide in a single erosion event.
DS202110-1602
2021
Boneh, Y., Chin, E.J., Hirth, G.Microstructural analysis of a mylonitic mantle xenolith sheared laboratory-like strain rates from the edge of the Wyoming craton.Minerals MDPI, Vol. 11, 995, 18p. PdfUnited States, Montana, Wyoming, Utah, Canada, Alberta, Saskatchewancraton

Abstract: Combined observations from natural and experimental deformation microstructures are often used to constrain the rheological properties of the upper mantle. However, relating natural and experimental deformation processes typically requires orders of magnitude extrapolation in strain rate due to vastly different time scales between nature and the lab. We examined a sheared peridotite xenolith that was deformed under strain rates comparable to laboratory shearing time scales. Microstructure analysis using an optical microscope and electron backscatter diffraction (EBSD) was done to characterize the bulk crystallographic preferred orientation (CPO), intragrain misorientations, subgrain boundaries, and spatial distribution of grains. We found that the microstructure varied between monophase (olivine) and multiphase (i.e., olivine, pyroxene, and garnet) bands. Olivine grains in the monophase bands had stronger CPO, larger grain size, and higher internal misorientations compared with olivine grains in the multiphase bands. The bulk olivine CPO suggests a dominant (010)[100] and secondary activated (001)[100] that are consistent with the experimentally observed transition of the A to E-types. The bulk CPO and intragrain misorientations of olivine and orthopyroxene suggest that a coarser-grained initial fabric was deformed by dislocation creep coeval with the reduction of grain size due to dynamic recrystallization. Comparing the deformation mechanisms inferred from the microstructure with experimental flow laws indicates that the reduction of grain size in orthopyroxene promotes activation of diffusion creep and suggests a high activation volume for wet orthopyroxene dislocation creep.
DS202110-1618
2021
Haugaard, R., Waterton, P., ootes, L., Pearson, D.G., Luo,Y., Konhauser, K.Detrital chromites reveal Slave craton's missing komatite.Geology, Vol. 49, 9, pp. 1079-1083. pdfCanada, Northwest Territorieschromites

Abstract: Komatiitic magmatism is a characteristic feature of Archean cratons, diagnostic of the addition of juvenile crust, and a clue to the thermal evolution of early Earth lithosphere. The Slave craton in northwest Canada contains >20 greenstone belts but no identified komatiite. The reason for this dearth of komatiite, when compared to other Archean cratons, remains enigmatic. The Central Slave Cover Group (ca. 2.85 Ga) includes fuchsitic quartzite with relict detrital chromite grains in heavy-mineral laminations. Major and platinum group element systematics indicate that the chromites were derived from Al-undepleted komatiitic dunites. The chromites have low 187Os/188Os ratios relative to chondrite with a narrow range of rhenium depletion ages at 3.19 ± 0.12 Ga. While these ages overlap a documented crust formation event, they identify an unrecognized addition of juvenile crust that is not preserved in the bedrock exposures or the zircon isotopic data. The documentation of komatiitic magmatism via detrital chromites indicates a region of thin lithospheric mantle at ca. 3.2 Ga, either within or at the edge of the protocratonic nucleus. This study demonstrates the applicability of detrital chromites in provenance studies, augmenting the record supplied by detrital zircons.
DS202110-1636
2021
Shi, Y-N., Li, Z-H., Chen, L., Morgan, J.P.Connection between a sublithocontinental plume and the mid-lithospheric discontinuity leads to fast and intense craton lithospheric thinning. Tectonics, e2021TC006711 22p. PdfAustralia, China, Canada, Russia, South Americacraton

Abstract: Removal and thinning of cratonic lithosphere is believed to have occurred under different tectonic settings, for example, near subduction zones and above mantle plumes. Subduction-induced cratonic modification has been widely discussed; however, the mechanisms and dynamic processes of plume-induced lithospheric removal remain elusive and require further systematic investigation. In this study, we conduct a series of 2-D thermo-mechanical models to explore the dynamics of the removal and thinning of cratonic lithosphere due to the interaction between a mantle plume and a weak mid-lithosphere discontinuity (MLD) layer. Our modeling results suggest that the interaction between a mantle plume and weak MLD layer can lead to a large-scale removal of the cratonic lithosphere as long as the connection between the hot upwelling and weak MLD layer is satisfied. The presence of a vertical lithospheric weak zone and its closeness to the plume center play critical roles in creating a connection between the weak MLD and hot plume/asthenosphere. Furthermore, delamination of cratonic lithosphere is favored by a larger plume radius/volume, a higher plume temperature anomaly, and a lower viscosity of the MLD layer. A systematic comparison between subduction-induced and plume-induced lithospheric thinning patterns is further conducted. We summarize their significant differences on the origin and migration of melt generation, the water content in melts, and topographic evolution. The combination of numerical models and geological/geophysical observations indicates that mantle plume-MLD interaction may have played a crucial role in lithospheric removal beneath South Indian, South American and North Siberian Cratons.
DS202110-1643
2007
Whitmeyer, S.J., Karlstrom, K.E.Tectonic model for the Proterozoic growth of North America. **** NOTE DATEGeosphere via Researchgate, Vol. 3, 4, pp. 220-259.Canada, United Statescraton

Abstract: This paper presents a plate-scale model for the Precambrian growth and evolution of the North American continent. The core of the North American continent (Canadian shield) came together in the Paleoproterozoic (2.0-1.8 Ga) by plate collisions of Archean continents (Slave with Rae-Hearne, then Rae-Hearne with Superior) as well as smaller Archean continental fragments (Wyoming, Medicine Hat, Sask, Marshfield, Nain cratons). The resulting Trans-Hudson orogen was a collisional belt similar in scale to the modern Himalayas. It contains mainly reworked Archean crust, but remnants of juvenile volcanic belts are preserved between Archean masses. The thick, buoyant, and compositionally depleted mantle lithosphere that now underlies North America, although dominantly of Archean age, took its present shape by processes of collisional orogenesis and likely has a scale of mantle heterogeneity similar to that exhibited in the overlying crust. In marked contrast, lithosphere of southern North America (much of the conti nental United States) was built by progressive addition of a series of dominantly juvenile vol canic arcs and oceanic terranes accreted along a long-lived southern (present coordinates) plate margin. Early juvenile additions (Pembine-Wausau, Elves Chasmarcs) formed at the same time (1.84-1.82 Ga) the core was assembling. Following final assembly of the Archean and Paleoproterozoic core of North America by 1.8 Ga, major accretionary provinces (defined mainly by isotopic model ages) were added by arc-continent accretion, analogous to present-day convergence between Australia and Indonesia. Also similar to Indonesia, some accreted terranes contain older continental crustal material [Archean(?) Mojavia], but the extent and geometry of older crust are not well known. Accretionary provinces are composed of numerous 10 to 100 km scale terranes or blocks, separated by shear zones, some of which had compound histories as terrane sutures and later crustal-assembly structures. Major northeast-trending provinces are the Yavapai province (1.80-1.70 Ga), welded to North America during the 1.71-1.68 Ga Yavapai orogeny; the Mazatzal province (1.70-1.65 Ga), added during the 1.65-1.60 Ga Mazatzal orogeny; the Granite-Rhyolite province (1.50-1.30 Ga), added during the 1.45-1.30 Ga tectonic event associated with A-type intracratonic magmatism; and the Llano-Grenville province (1.30-1.00 Ga), added during the 1.30-0.95 Ga broader Grenville orogeny. During each episode of addition of juvenile lithosphere, the transformation of juvenile crust into stable continental lithosphere was facilitated by voluminous granitoid plutonism that stitched new and existing orogenic boundaries. Slab roll back created transient extensional basins (1.70 and 1.65 Ga) in which Paleoproterozoic quartzite-rhyolite successions were deposited, then thrust imbricated as basins were inverted. The lithospheric collage that formed from dominantly juvenile terrane accretion and stabilization (1.8-1.0 Ga) makes up about half of the present-day North American continent. Throughout (and as a result of) this long-lived convergent cycle, mantle lithosphere below the accretionary provinces was more hydrous, fertile, and relatively weak compared to mantle lithosphere under the Archean core.
DS202111-1757
2021
Bedard, J.H., Troll, V,R., Deegan, F.M., Tegner, C., Saumur, B.M., Evenchick, C.A., Grasby, S.E., Dewing, K.High Arctic large igneous province alkaline rocks in Canada: evidence for multiple mantle components.Journal of Petrology, Vol. 62, 9, pp. 1-31. pdfCanada, Ellesmere Islandalkaline rocks

Abstract: The Cretaceous High Arctic Large Igneous Province (HALIP) in Canada, although dominated by tholeiites (135-90?Ma), contains two main groups of alkaline igneous rocks. The older alkaline rocks (?96?Ma) scatter around major fault and basement structures. They are represented by the newly defined Fulmar Suite alkaline basalt dykes and sills, and include Hassel Formation volcanic rocks. The younger alkaline group is represented by the Wootton Intrusive Complex (92•2-92•7?Ma), and the Audhild Bay Suite (83-73?Ma), both emplaced near the northern coast of Ellesmere Island. Fulmar Suite rocks resemble EM-type ocean island basalts (OIB) and most show limited crustal contamination. The Fulmar Suite shows increases of P2O5 at near-constant Ba-K-Zr-Ti that are nearly orthogonal to predicted fractionation- or melting-related variations, which we interpret as the result of melting composite mantle sources containing a regionally widespread apatite-bearing enriched component (P1). Low-P2O5 Fulmar Suite variants overlap compositionally with enriched HALIP tholeiites, and fall on common garnet lherzolite trace element melting trajectories, suggesting variable degrees of melting of a geochemically similar source. High-P2O5 Hassel Formation basalts are unusual among Fulmar rocks, because they are strongly contaminated with depleted lower crust; and because they involve a high-P2O5-Ba-Eu mantle component (P2), similar to that seen in alkali basalt dykes from Greenland. The P2 component may have contained Ba-Eu-rich hawthorneite and/or carbonate minerals as well as apatite, and may typify parts of the Greenlandic sub-continental lithospheric mantle (SCLM). Mafic alkaline Audhild Bay Suite (ABS) rocks are volcanic and hypabyssal basanites, alkaline basalts and trachy-andesites, and resemble HIMU ocean island basalts in having high Nb, low Zr/Nb and low 87Sr/86Sri. These mafic alkaline rocks are associated with felsic alkaline lavas and syenitic intrusions, but crustally derived rhyodacites and rhyolites also exist. The Wootton Intrusive Complex (WIC) contains geochemically similar plutonic rocks (alkali gabbros, diorites and anatectic granites), and may represent a more deeply eroded, slightly older equivalent of the ABS. Low-P2O5 ABS and WIC alkaline mafic rocks have flat heavy rare earth element (HREE) profiles suggesting shallow mantle melting; whereas High-P2O5 variants have steep HREE profiles indicating deeper separation from garnet-bearing residues. Some High-P2O5 mafic ABS rocks seem to contain the P1 and P2 components identified in Fulmar-Hassel rocks, whereas other samples trend towards possible High-P2O5 + Zr (PZr) and High-P2O5 + K2O (PK) components. We argue that the strongly alkaline northern Ellesmere Island magmas sampled mineralogically heterogeneous veins or metasomes in Greenlandic-type SCLM, which contained trace phases such as apatite, carbonates, hawthorneite, zircon, mica or richterite. The geographically more widespread apatite-bearing component (P1) could have formed part of a heterogeneous plume or upwelling mantle current that also generated HALIP tholeiites when melted more extensively, but may also have resided in the SCLM as relics of older events. Rare HALIP alkaline rocks with high K-Rb-U-Th fall on mixing paths implying strong local contamination from either Sverdrup Basin sedimentary rocks or granitic upper crust. However, the scarcity of potassic alkaline HALIP facies, together with the other trace element and isotopic signatures, provides little support for a ubiquitous fossil sedimentary subduction-zone component in the HALIP mantle source.
DS202111-1767
2021
Godet, A., Guilmette, C., Labrousse, L., Smit, M.A., Cutts, J.A., Davis, D.W., Vanier, M-A.Lu-Hf garnet dating and the timing of collisions: Paleoproterozoic accretionary tectonics revealed in the southeastern Churchill Province, Trans-Hudson orogen, Canada.Journal of Metamorphic Geology, Vol. 39, 8, 31p. PdfCanadageochronology

Abstract: Dating the onset of continental collision is fundamental in defining orogenic cycles and their effects on regional tectonics and geodynamic processes through time. Part of the Palaeoproterozoic Trans-Hudson Orogen, the Southeastern Churchill Province (SECP) is interpreted to result from the amalgamation of Archean to Palaeoproterozoic crustal blocks (amalgamated as the central Core Zone) that diachronically collided with the margins of the North Atlantic and Superior cratons, resulting in two bounding transpressive orogens: the Torngat and New Quebec Orogens. The SECP exposes mainly gneissic middle to lower orogenic crust in which deformation and amphibolite to granulite facies metamorphism and anatexis overprinted the early geological features classically used to constrain the timing of collisional events. To enable improved tectonic models for the development of the SECP, and the Trans-Hudson as a whole, we investigated granulite facies supracrustal sequences from the Tasiuyak Complex (TC) accretionary prism and the western margin of the North Atlantic Craton—that is, Saglek Block (upper plate)—using a multi-chronometer approach coupled with trace element geochemistry. In particular, the use of garnet Lu-Hf geochronology provides an important minimal time constraint for crustal thickening and collision. Garnet growth in the TC is constrained at 1885 ± 12 Ma (Lu-Hf), indistinguishable from U-Pb age of prograde monazite at 1873 ± 5 Ma. Zircon growth during melt crystallization occurred at 1848 ± 12 Ma. Garnet from the overriding Saglek Block is dated at 2567 ± 4.4 Ma (Lu-Hf) and indicates that gneissic rocks from the upper plate did not record the metamorphic imprint of the Torngat Orogeny. The diachronicity of the integrated metamorphic record across the strike of the SECP is explained by the location of terrane boundaries, consistent with the westward growth of the Churchill plate margin through sequential amalgamation of narrow crustal blocks during accretionary tectonics from c. 1.9 to 1.8 Ga.
DS202111-1779
2021
Niyazova, S., Kopylova, M., Dyck, B., Benisek, A., Dachs, E., Stefano, A.The assimilation of felsic xenoliths in kimberlites: insights into temperature and volatiles during kimberlite emplacement. ( Renard)Contributions to Mineralogy and Petrology, Vol. 176, 10, 28p. PdfCanada, Quebecdeposit - Renard

Abstract: This study aims to constrain the nature of kimberlite-xenolith reactions and the fluid origin for Kimberley-type pyroclastic kimberlite (KPK). KPKs are characterized by an abundance of basement xenoliths (15-90%) and display distinct pipe morphology, textures, and mineralogy. To explain the KPK mineralogy deviating from the mineralogy of crystallized kimberlite melt, we study reactions between hypabyssal kimberlite transitional to KPK and felsic xenoliths. Here, we characterize the pectolite-diopside-phlogopite-serpentine-olivine common zonal patterns using petrography, bulk composition, thermodynamic modelling, and conserved element ratio analysis. To replicate the observed mineral assemblages, we extended the thermodynamic database to include pectolite, using calculated density functional theory methods. Our modelling reproduces the formation of the observed distinct mineralogy in reacted granitoid and gneiss. The assimilation of xenoliths is a process that starts from high temperatures (1200-600 °C) with the formation of clinopyroxene and wollastonite, continues at 600-200 °C with the growth of clinopyroxene, garnet, and phlogopite finishing at temperatures?
DS202111-1782
2021
Sader, J.A., Harrison, A.L., McClenaghan, M.B., Hamilton, S.M., Clark, I.D.Sherwood Lollar, B., Leybourne, M.I.Generation of high-pH groundwaters and H2 gas by groundwater-kimberlite interaction, northeastern Ontario.The Canadian Mineralogist, Vol. 59, pp. 1261-1276. doi:10.3749/canmin.2000048 pdfCanada, Ontariodeposit - Kirkland Lake

Abstract: We report new isotopic data for H2 and CH4 gases and Sr for groundwater collected from Jurassic Kirkland Lake kimberlites in northern Ontario, Canada. Groundwaters interacting with kimberlites have elevated pH (up to 12.4), are reducing (Eh as low as the H2-H2O couple), are dominated by OH? alkalinity, and have non-radiogenic (mantle) 87Sr/86Sr values (?0.706-0.707). Most significantly, the highest pH groundwaters have low Mg, high K/Mg, and are associated with abundant reduced gases (H2 ± CH4). Open system conditions favor higher dissolved inorganic carbon and CH4 production, whereas under closed system conditions low DIC, elevated OH? alkalinity, and H2 production are enhanced. Hydrogen gas is isotopically depleted (?2HH2 = ?771 to ?801‰), which, combined with ?2HH2O, yields geothermometry temperatures of serpentinization of 5-25 °C. Deviation of H2-rich groundwaters (by up to 10‰) from the meteoric water line is consistent with Rayleigh fractionation during reduction of water to H2. Methane is characterized by ?13CCH4 = ?35.8 to ?68‰ and ?2HCH4 = ?434‰. The origin of CH4 is inconclusive and there is evidence to support both biogenic and abiogenic origins. The modeled groundwater-kimberlite reactions and production of elevated concentrations of H2 gas suggest uses for diamond-production tailings, as a source of H2 for fuel cells and as a carbon sink.
DS202201-0003
2021
Bachynski, R.Carbonatite-associated REE exploration in the Squalus Lake alkaline complex.NWTgeoscience.ca, 1p. AbstractCanada, Northwest Territoriescarbonatite

Abstract: A preliminary field evaluation of rare earth elements (REE) mineralization in the Squalus Lake Alkaline Complex (SLAC) was undertaken for 9 days in the summer of 2021. The focus of the fieldwork was on identifying and characterizing sources of historical anomalous REE assays contained in assessment and government survey reports. The Squalus Lake Alkaline Complex is a syenite-dominated concentric Proterozoic intrusion within the Archean Morose Granite. The intrusion is situated along the Phoenix Fault - a major NNE-trending crustal structure. The core of the complex coincides with a regional-scale magnetic high. These features suggest a classic concentric lithological zonation of the complex with a syenite rim and a carbonatite core. The magnetic anomaly is probably associated with a magnetite-rich ferro-carbonatite phase that typically occurs in the cores of most zoned alkaline/carbonatite complexes. During the fieldwork, evidence for several carbonatite dykes were observed, both in outcrop and in angular float. The dykes are probably emanating from a carbonatite intrusion at the core of the complex, which is interpreted to be underneath Squalus Lake. Sites with reported anomalies were visited and re-sampled. An effort was also made at sampling the different lithological units that were observed. Historically anomalous samples (obtained from the previous prospector) have been re-analyzed to confirm the results and attempts are being made at characterizing the potentials of the various host units. In classic alkaline/carbonatite complex models, high grade REE mineralization is generally associated with the younger ferro-carbonatite phase at the core of the complex. High grade REE mineralization tends to occur in late ferro-carbonatite phases. Previously collected ground-magnetic surveys provide strong discrete targets for the locations of the theorized ferro-carbonatite core, which is a primary target for REE endowment. Curiously, the ~2180 Ma age of the SLAC is similar to the age of several other alkaline complexes in the Slave structural province, including the Big Spruce Lake Complex (~2188Ma) and the Grace Lake Granite (~2176Ma). The Grace Lake Granite is part of the Blatchford Lake Intrusive Suite, which is host to Canada's first REE mine at the Nechalacho Deposit at Thor Lake.
DS202201-0010
2021
Ciadullo, E., Flemming, R., Currie, L., Duk-Rodkin, A.Provenance of kimberlite indicator minerals from Saglek basin, Labrador Sea, Canada.GAC/MAC Meeting UWO, 1p. Abstract p. 72.Canada, Labradordeposit - Saglek

Abstract: The Mokami and Saglek formations are comprised of Middle Eocene to Plio-Pleistocene deltaic deposits in the Labrador Sea, at the mouth of the Hudson Strait. In this study we use the provenance of KIM minerals to investigate the origin of these sediments. Fifty one mineral grains were obtained from Miocene to possibly Pliocene Mokami and Saglek formation strata by sub-sampling ocean cuttings from the Petro-Canada et al. Rut H-11 well. These grains were examined by optical methods, micro X-ray diffraction (?XRD) and Electron Probe Microanalysis (EPMA) at Western University for identification purposes, and 20 grains were determined to be of peridotitic mantle origin, based on the well-established compositional and mineral-formula discrimination criteria. The compositions of these Kimberlite Indicator Minerals (KIMs) have been compared to equivalent mineral grains from known Canadian kimberlite deposits, in a preliminary attempt to determine their provenance. Out of eleven garnets in the suite, nine garnets were classified as G9, thus establishing their lherzolitic mantle origin; one garnet was wehrlitic (G12), and one garnet was crustal (G0) (Fig 1A). The presence of G9 garnets, however, does not indicate provenance, as G9 garnets are ubiquitous in the mantle. Three Cr-diopside grains were found in the suite. They all passed compositional and mineral-formula criteria established by Ziberna et al. (2016) to be recognized as peridotitic. On Al+Cr-Na-K versus Ca/(Ca+Mg+Fe) plots (e.g. Grütter 2009, Fig. 4), these grains plotted in a region occupied by both garnet peridotite and spinel-garnet peridotite, such that formation in the presence of garnet is confirmed, but the type of peridotite is not definitive. These grains were used to calculate P-T conditions of formation using the Nimis and Taylor (2000) thermobarometer, and the Cr-diopside grains revealed P-T formation conditions ranging from 1304-1417 °C and 4.5-5.2 GPa (Fig 1B). These grains plot in the P-T region representing an extension of that occupied by both Somerset and Kirkland Lake kimberlites, however, calculated temperatures significantly above 1300 °C should be treated the caution because this has not been reported for Cr-diopside from any Canadian kimberlites. It is worth noting that the Cr-diopside grains definitively do not match those from the Chidliak kimberlites, although that kimberlite field is located geographically proximal to the Saglek deposit. Seven orthopyroxene grains found in the suite had compositions matching kimberlites from the Slave craton (Fig. 1C). This provenance agrees with the paleo-drainage pattern of the Bell River basin, which extended from the Northern Interior plains to the Sea of Labrador until the late Pleistocene.
DS202201-0015
2021
Gao, S., Campbell, K., Flemming, R., Kupsch, B., Armstrong, K.Characterizing zinc-bearing chromite cores in uvarovite garnets from the Pikoo diamondiferous kimberlite field, central eastern Saskatchewan, Canada.GAC/MAC Meeting UWO, 1p. Abstract p. 100.Canada, Saskatchewandeposit - Pikoo

Abstract: Zinc-rich chromite [(Fe,Zn)Cr2O4] is an important repository for chromium (Cr) that has been observed sporadically in kimberlite-bearing deposits worldwide. As another source reservoir for Cr, the green uvarovite garnet [ideally Ca3Cr2(SiO4)3] is the rarest variety among anhydrous garnets. Despite being reported from a wide range of localities, the occurrences of uvarovite are predominately restricted to hydrothermal and metamorphic settings rarely associated with kimberlite. Here, we present a detailed petrographic, mineralogical, and geochemical characterization of 71 uvarovite garnets with zinc-bearing chromite cores recovered from the Pikoo Property (central eastern Saskatchewan), which also hosts recently discovered kimberlites proven to be diamondiferous. In this work, euhedral to anhedral unzoned chromite occurs as kernels or cores and, in some cases, as irregular inclusions enclosed by uvarovite mantles. They contain moderate to high Cr [41.63-66.70 wt.% Cr2O3; Cr/(Cr+Al) = 0.64-0.99], Fe2+ (16.71-28.67 wt.% FeO) and Zn (1.64-15.52 wt.% ZnO) contents (Fig. 1), accompanied by an appreciable amount of Mn (0.63-2.32 wt.% MnO). The core with the highest Zn content gave structural formula (Zn0.409Fe2+0.555Mg0.018Mn0.019)1.00(Cr1.174Al0.674Fe3+0.152)2.00O4, which corresponds to Zn-rich chromite with a minor proportion of other end-members (e.g., hercynite, FeAl2O4). The garnets are compositionally zoned and occasionally devoid of inclusions. Formula calculations indicate that they are mainly members of the uvarovite-grossular series (up to 93% mol.% Uv) enriched in Ca (22.99-35.57 wt.% CaO) and Cr (up to 28.10 wt.% Cr2O3), but consistently depleted in Mg (mean = 0.10 wt.% MgO) and Ti (mean = 0.26 wt.% TiO2). Most garnets exhibit a core-rim zoning pattern, whereas the remainder are irregularly zoned and show evidence of resorption. The core to rim trend is characterized by an increase in grossular proportion at the expense of the uvarovite component. Morphological characteristics, textural interrelations, and compositional trends suggest that uvarovite garnet formed through interaction of Zn-rich chromite with late metasomatic (Ca,Al)-enriched hydrothermal fluids capable of precipitating secondary grossular.
DS202201-0016
2021
Grutter, H., Stachel, T., Sarkar, C., Pearson, G.Profound ~ 1075 Ma (re)fertilization of the central Superior craton lithosphere, based on composition and Pb-isotope data for clinopyroxenes from the Victor mine, Ontario, Canada.GAC/MAC Meeting UWO, 1p. Abstract p.117.Canada, Ontariodeposit - Victor

Abstract: The Victor diamond mine in Ontario, Canada opened in 2008 and ceased operations in June 2019. Previous researchers documented that Victor diamonds are unusually young (~ 720 Ma, Aulbach et al., 2018) and grew predominantly in unusually fertile peridotite substrates, specifically garnet lherzolite and garnet wehrlite (Stachel et al., 2018). Our recent work on n=157 lherzolitic clinopyroxene (Cpx) xenocrysts from the Victor mine reveals profound major- and trace-element (re)fertilization of the deepest 1/3rd of the central Superior craton lithosphere. For example, Cpx Mg/(Mg+Fe) of 0.93 in shallow peridotite decreases across a steep gradient to Mg/(Mg+Fe) of 0.89 at depths of 4.2 to 5.6 GPa. We document marked compositional gradients over a similar depth range for certain minor (Ti, Mn, Ni) and trace elements (LREE and HREE) and attribute the gradients to chromatographic and/or crystal-chemical fractionation effects. We carefully categorized the Victor cpx xenocrysts in nine depth-composition classes and determined Pb-isotope ratios for representative grains from each class in a bold experiment aimed at capturing geochronological data from mantle Cpx. A resultant 207Pb/206Pb secondary isochron array at ~ 1075 Ma identifies craton-scale events related to the Mid-Continent Rift as the source of fluids and/or melts that (re)fertilized the central Superior craton at depth, some 355 Ma prior to diamond growth. Coordinated, systematic major- and trace-element relationships in clinopyroxene permit compositional discrimination of mantle (re)fertilization at ~1075 Ma from fluid-metasomatism attending diamond growth at ~ 720 Ma. Roughly 10% of the clinopyroxene xenocrysts analyzed in this work exhibit diamond-associated compositions.
DS202201-0022
2021
Kopylova, M.Carbonated cratonic mantle without carbonate.GAC/MAC Meeting UWO, 1p. Abstract p. 163.Canada, Baffin Islanddeposit - Chidliak

Abstract: Petrologists all agree that the “carbonated mantle”, i. e. peridotite with accessory carbonate, is necessary to generate CO2-bearing melts. Carbonated peridotite is also a useful theoretical concept for geochemists seeking to explain trace element enrichment of the lithospheric mantle. Melting of peridotite with addition of carbonate has been the subject of hundreds of experimental studies. Yet mantle samples from below cratons do not contain carbonate. Our work tries to reconcile the theoretical view of the carbonated mantle with the empirical observations on cratonic mantle xenoliths. Peridotite xenoliths from the Chidliak kimberlite province (SE Baffin Island, Canada) suggest that the natural carbonated mantle are peridotites with elevated modes of clinopyroxene, garnet and olivine, and with thin rims of calcic silicate minerals. Observations on Chidliak peridotites provide an excellent “reality check” for theoretical mobility models of the carbonate-rich melts in the mantle. The “carbonation freezing front” is often theoretically imagined as the solidus of mantle peridotites infiltrated by CO2-rich melts. Our observations suggest that melting is not necessary for immobilization of carbonatitic metasomatic agent. The latter is highly reactive, readily giving away Ca to silicate minerals and exsolving CO2. At Chidliak, clinopyroxene and monticellite rims produced by carbonation do not show signs of partial melting during their formation; moreover, thicker mantles of clinopyroxene in Chidliak peridotites are equilibrated at P-Ts below the CO2- saturated peridotite solidus. Petrography of Chidliak peridotites also constrains the melt flux in the carbonation freezing model. At melt fluxes >10%, the model predicts elevated fractions of the reacted melt in comparison with the reacting melt. This should lead to loss of Ca. Natural samples, on the contrary, demonstrate addition of Ca; this is observed from quantification of compositional fluxes at Chidliak and in temporal trends of mineral and bulk compositions of the cratonic mantle. This suggests that the carbonatitic fluxes are always below 10%, and the carbonate-rich melt always "freezes in" in peridotites. We further submit that CO2-rich magmas on cratons are byproducts of carbonate metasomatism, since deep decarbonation is a necessary prerequisite to generation of CO2-rich melts. Theoretically, carbonate-rich fluids should be able to traverse the peridotitic mantle in the reacted channels where the fluids overcome the limits of the mineralogical, thermal and redox instability in deep peridotites. This study suggests the channels can be made of garnet or clinopyroxene, as only these initial products of reactive decarbonation of the deep peridotitic mantle are observed to contain fluid microinclusions and modal macro- grains of carbonates. Future research will better recognize stealth signs of carbonatitic metasomatism under cratons and enable us to better document its extent and localization.
DS202201-0026
2021
NWT & Nunavut Chamber of MinesEkati future.Northern Mining News - November 2021, Vol 15, No. 11, pages 7-8Canada, Northwest Territoriesdeposit - Ekati
DS202201-0032
2021
Pedersen, C.Geology and mining of the Nechalacho rare earth deposits, Thor Lake, Northwest Territories.NWTgeoscience.ca, 1p. AbstractCanada, Northwest TerritoriesREE

Abstract: Cheetah’s Nechalacho rare earth deposits are located at Thor Lake, 110 kms southeast of Yellowknife, 8 kms north shore of the Hearne Channel on Great Slave Lake. The two principal deposits are the North T deposit, the focus of the current Stage 1 rare earth mining program, and the Nechalacho Tardiff deposit currently in the planning stages for Stage 2 mining. The North T deposit, at 101,000 tonnes grading 9.01% TREO, consists of a 4-metre thick layer of the light rare earth (LREE) mineral bastnaesite, which occurs in coarse grained to massive aggregates in a gangue of pure quartz. The ellipsoidal sub-zone is one of several concentric mineralogically-distinct zones in the ovoid North-T deposit, which is approximately 150 metres in diameter and 150 metres in depth. The bastnaesite sub-zone crops out on surface and dips inward before flattening out in the centre at an average depth of 30 metres. Open-cast extraction commenced in June of 2021, providing feed-stock ore which was processed by XRT sensor-based ore sorting technology which produced a high-grade bastnaesite concentrate for shipment to Hay River and ultimately to Cheetah’s Saskatoon will facility. Stage 2 will see the development of the much larger Tardiff deposit, one of several high-grade LREE sub-zones in the 94.7 million tonnes Nechalacho deposit. The mineralogy is similar to the North T deposit, consisting primarily of bastnaesite, with sub-ordinate REE minerals monazite and allanite. Cheetah has off-take agreements with the Norwegian firm REEtec for Stage 1 production of 1000 tonnes REE (ex-Ce)/year for an initial 5-year period, and an MOU with UCore Rare Metals Inc to supply rare-earth concentrate to their planned separation facility in Alaska.
DS202201-0034
2021
Podolsky, M.What is a primary rock hosted diamond deposit, resource and reserve? Desktop to feasibility study governance example under CIM and NI 43-101 guidelines and definition standards and De Beers scorecard classification, Gahcho Kue mine, Northwest Territories.GAC/MAC Meeting UWO, 1p. Abstract p. 245.Canada, Northwest Territoriesdeposit - Gahcho Kue

Abstract: A primary Rock Hosted Diamond Deposit, Resource and Reserve Asset Development Standard (ADS) model governed under the 2014 Canadian Institute of Mining, Metallurgy and Petroleum (CIM) Definition Standards on Mineral Resources and Reserves and 2016 Toronto Stock Exchange National Instrument 43-101 - Standards of Disclosure for Mineral Projects (NI 43-101), is presented. The De Beers Canada - Mountain Province Diamonds joint venture Gahcho Kué Project roadmap from exploration commencing in 1992, reporting of initial Desktop Study in 2000 to definitive Feasibility Study in 2010 and 2014 Study update is reviewed under the incorporated 2003 Guidelines for the Reporting of Diamond Exploration Results and 2008 Estimation of Mineral Resources and Mineral Reserves Best Practices Guidelines for Rock Hosted Diamonds. A published De Beers system of diamond Deposit to Resource geo-scientific scorecard classification is summarized and compared against the CIM and NI 43-101 Definition Standards and reporting guidelines. The ADS governance model utilizes the De Beers classification system, that is aligned with reporting of Desktop, Conceptual and Pre-Feasibility to Feasibility Studies.
DS202201-0044
2021
Toyama, C., Sumino, H., Okabe, N., Ishikawa, A., Yamamoto, J., Kaneoka, I., Muramatsu, Y.Halogen heterogeneity in the subcontinental lithospheric mantle revealed by I/Br ratios in kimberlites and their mantle xenoliths from South Africa, Greenland, China, Siberia, Canada and Brazil.American Mineralogist, Vol. 106, pp. 1890-1899.Africa, South Africa, Europe, Greenland, China, Russia, Siberia, Canada, South America, Brazilsubduction, metasomatism

Abstract: To investigate halogen heterogeneity in the subcontinental lithospheric mantle (SCLM), we measured the concentrations of Cl, Br, and I in kimberlites and their mantle xenoliths from South Africa, Greenland, China, Siberia, Canada, and Brazil. The samples can be classified into two groups based on halogen ratios: a high-I/Br group (South Africa, Greenland, Brazil, and Canada) and a low-I/Br group (China and Siberia). The halogen compositions were examined with the indices of crustal contamination using Sr and Nd isotopes and incompatible trace elements. The results indicate that the difference between the two groups was not due to different degrees of crustal contamination but from the contributions of different mantle sources. The low-I/Br group has a similar halogen composition to seawater-influenced materials such as fluids in altered oceanic basalts and eclogites and fluids associated with halite precipitation from seawater. We conclude that the halogens of the high-I/Br group are most likely derived from a SCLM source metasomatized by a fluid derived from subducted serpentinite, whereas those of the low-I/Br group are derived from a SCLM source metasomatized by a fluid derived from seawater-altered oceanic crust. The SCLM beneath Siberia and China could be an important reservoir of subducted, seawater-derived halogens, while such role of SCLM beneath South Africa, Greenland, Canada, and Brazil seems limited.
DS202201-0047
2021
Xu, Y., Pearson, G., Harris, G., Kopylova, M., Liu, J.Age and provenance of the lithospheric mantle beneath the Chidliak kimberlite province, southern Baffin Island: implications for the evolution of the North Atlantic craton.GAC/MAC Meeting UWO, 1p. Abstract p. 312.Canada, Baffin Islanddeposit - Chidliak

Abstract: A suite of peridotite xenoliths from the Chidliak kimberlite province provides an ideal opportunity to assess the age of the mantle lithosphere beneath the eastern Hall Peninsula Block (EHPB) in southern Baffin Island, Nunavut and to provide constraints on the lithospheric architecture of this region. The new dataset comprises highly siderophile element (HSE) abundances and Re-Os isotopic compositions for 32 peridotite xenoliths sampled from four Late Jurassic-Early Cretaceous kimberlite pipes (CH-1, -6, -7, and -44). These peridotites represent strongly depleted mantle residues, with bulk-rock and olivine chemistry denoting melt extraction extents of up to 40%. The vast majority of samples show PPGE (Pt and Pd) depletion relative to IPGE (Os, Ir, and Ru) ((Pt/Ir)N: 0.10-0.96, median = 0.57; (Pd/Ir)N: 0.03-0.79, median = 0.24), coupled with mostly unradiogenic Os isotopic compositions (187Os/188Os = 0.1084-0.1170). These peridotites display strong correlations between 187Os/188Os and melt depletion indicators (such as olivine Mg number and bulk-rock Al2O3, (Pd/Ir)N), suggesting that an ancient (~2.8 Ga) melt depletion event governed the formation of the Chidliak lithosphere. The prominent mode of TRDerupt model ages at ca. 2.8 Ga matches the main crust-building ages of the EHPB, demonstrating temporal crust-mantle coupled in the Meso-Neoarchean. These ancient melt-depletion ages are present throughout the depth of the ~ 200 km thick lithospheric mantle column beneath Chidliak. The Meso-Neoarchean formation age of the EHPB mantle broadly coincides with the timing of stabilization of the lithospheric mantle beneath the Greenlandic portion of the North Atlantic Craton (NAC). This, along with the similarity in modal mineralogy, chemical composition and evolutionary history, indicates that the EHPB, southern Baffin Island was once -contiguous with the Greenlandic NAC. The mantle lithosphere beneath both the EHPB and the NAC show a similar metasomatic history, modified by multiple pulses of metasomatism. These multiple metasomatic events combined to weaken and thin the lithospheric mantle, culminating in the formation of the Labrador Sea and Davis Strait separating the EHPB from the Greenlandic NAC in the Paleocene.
DS202202-0192
2022
Gong, Z., Evans, D.A.D.Paleomagnetic survey of the Goulburn Supergroup, Kilohigok Basin, Nunavut Canada: toward an understanding of the Ososirian apparent polar wander path of the Slave craton.Precambrian Research, Vol. 369, 106516, 16p.Canada, Nunavutgeophysics - magnetics

Abstract: The Orosirian paleopoles from the three circum-Slave basins (i.e., the Great Slave, Coronation, and Kilohigok Basins) of the Slave craton show large (?110°) and back-and-forth swings at 1.96-1.87 Ga, known as the Coronation loops. The Coronation loops, taken at face value, would imply rapid and substantial spin motions of the Slave craton, which is at odds with modern plate tectonics. Alternatively, the Coronation loops have been interpreted as a product of basin-scale rotations, local-scale vertical-axis rotations, or inertial interchange true polar wander (IITPW). One way to differentiate these models is to take advantage of the well-correlated stratigraphy in three circum-Slave basins and directly compare the time-equivalent paleomagnetic results. In this study, we collected ?300 samples from nine formations from the Goulburn Supergroup of the Kilohigok Basin, in shallowly dipping autochthonous sections east of the Bathurst Fault. We provide seven new reconnaissance-level paleopoles of the Slave craton, namely from the Kenyon, Hackett, Rifle, Beechey, Link, Kuuvik, and Brown Sound Formations of the Goulburn Supergroup. Our results and the compiled Orosirian paleomagnetic data of the Slave craton suggest that although basin-scale rotation or local vertical-axis rotation in fault zones are able to explain some of the disagreements among time-correlative paleopoles, they could not account for the large declination variation within the homoclinal sections in individual basins. Notably, our results from the ?1963 Ma Rifle Formation show progressive changes in declination through the stratigraphy, which cannot be explained by either basin-scale or local vertical-axis rotations. Selective remagnetization is also considered unlikely to be the cause. Instead, we suggest that IITPW could potentially be responsible for the Coronation loops, which could also provide an explanation for some discrepant paleomagnetic data observed globally during the Orosirian time.
DS202202-0209
2022
Petite, B.Vertical Rewind: Dr. Hans Lundberg: The prospecting pioneer. History of H. Lundberg and EM survey … ** not specific to diamonds https://verticalmag.com/features/vertical-rewind-dr-hans-lundberg-the-prospecting-pioneer/, 10p. Photographs and textCanadageophysics - history
DS202203-0343
2022
Desbarats, A.J., Percival, J.B., Bilot, I., Polivchuk, M.J., Venance, K.E.Drainage geochemistry of mine tailings from a carbonatite-hosted Nb-REE deposit, Oka Quebec, Canada.Applied Geochemistry, Vol. 138, 14p. PdfCanada, Quebecdeposit - Oka

Abstract: Potential environmental issues associated with the mining of carbonatites are receiving increased attention due to the importance of critical metals for green technologies. This study investigates the chemistry of tailings seepage at the former Saint Lawrence Columbium mine near Oka, Québec, Canada, which produced pyrochlore concentrate and ferroniobium from a carbonatite-hosted Nb-REE deposit. Detailed field sampling and laboratory methods were used to characterize the hydraulic properties of the tailings, their bulk chemistry, mineralogy, pore water and effluent chemistries. The tailings are composed of REE-enriched calcite (64-89 wt %) and fluorapatite (2-22 wt %), as well as biotite (6-17 wt %) and chlorite (0-7 wt %). Minor minerals include ankerite, pyrite, sphalerite, molybdenite, magnetite and unrecovered pyrochlore. Secondary minerals include gypsum, barite, strontianite and rhodochrosite. Geochemical mass balance modeling, constrained by speciation modeling, was used to identify dissolution, precipitation and exchange reactions controlling the chemical evolution of pore water along its flow path through the tailings impoundment. In the unsaturated zone, these reactions include sulfide oxidation and calcite dissolution with acid neutralization. Below the water table, gypsum dissolution is followed by sulfate reduction and FeS precipitation driven by the oxidation of organic carbon in the tailings. Incongruent dissolution of biotite and chlorite releases K, Mg, Fe, Mn, Ba and F and forms kaolinite and Ca-smectite. Cation exchange reactions further remove Ca from solution, increasing concentrations of Na and K. Fluoride concentrations reach 23 mg/L and 8 mg/L in tailings pore water and effluent, respectively. These values exceed Canadian guidelines for the protection of aquatic life. In the mildly alkaline (pH 8.3) pore waters, Mo is highly mobile and reaches an average concentration of 83 ?g/L in tailings effluent, which slightly exceeds environmental guidelines. Concentrations (unfiltered) of Zn reach 1702 ?g/L in tailings pore water although values in effluent are usually less than 20 ?g/L. At the ambient pH, Zn is strongly adsorbed by Fe-Mn oxyhydroxides. Although U forms mobile complexes in tailings pore water, concentrations do not exceed 16 ?g/L due to the low solubility of its pyrochlore host. Adsorption and the low solubility of pyrochlore limit concentrations of Nb to less than 49 ?g/L. Cerium, from calcite dissolution, is strongly adsorbed although it reaches concentrations (unfiltered) in excess of 1 mg/L and 100 ?g/L in pore water and effluent, respectively. Results of this study show that mine tailings from carbonatite deposits are enriched in a wide variety of incompatible elements with multiple mineral hosts of varying solubility. Some of these elements, such as F and Mo, may represent contaminants of concern because of their mobility in alkaline tailings waters.
DS202204-0530
2022
Niyazova, S., Kopylova, M., Gaudet, M.Petrographic and geochemical characteristics associated with felsic xenolith assimilation in kimberlite.The Canadian Mineralogist, Vol. 60, pp. 1-25. pdfCanada, Quebecdeposit - Renard

Abstract: Assimilation of country rock xenoliths by the host kimberlite can result in the development of concentric reaction zones within the xenoliths and a reaction halo in the surrounding contaminated kimberlite. Petrographic and geochemical changes across the reaction zones in the xenoliths and the host kimberlite were studied using samples with different kimberlite textures and contrasting xenolith abundances from the Renard 65 kimberlite pipe. The pipe, infilled by Kimberley-type pyroclastic (KPK) and hypabyssal kimberlite (HK) and kimberlite with transitional textures, was emplaced into granitoid and gneisses of the Superior Craton. Using samples of zoned, medium-sized xenoliths of both types, mineralogical and geochemical data were collected across xenolith-to-kimberlite profiles and contrasted with those of fresh unreacted country rock and hypabyssal kimberlite. The original mineralogy of the unreacted xenoliths (potassium feldspar-plagioclase-quartz-biotite in granitoid and plagioclase-quartz-biotite-orthopyroxene in gneiss) is replaced by prehnite, pectolite, and diopside. In the kimberlite halo, olivine is completely serpentinized and diopside and late phlogopite crystallized in the groundmass. The xenoliths show the progressive degrees of reaction, textural modification, and mineral replacement in the sequence of kimberlite units KPK — transitional KPK — transitional HK. The higher degree of reaction observed in the HK-hosted xenoliths as compared to the KPK-hosted xenoliths in this study and elsewhere may partly relate to higher temperatures in xenoliths included in an HK melt. The correlation between the degree of reaction and the kimberlite textures suggests that the reactions are specific to and occur within each emplaced batch of magma and cannot result from external post-emplacement processes that should obliterate the textural differences across the kimberlite units. Xenolith assimilation may have started in the melt, as suggested by the textures in the xenoliths and the surrounding halos and proceeded in the subsolidus. Elevated CaO at the kimberlite-xenolith contact appears to be an important factor in producing the concentric mineralogical zoning in assimilated xenoliths.
DS202204-0540
2022
Van Rythoven, A.D., Schulze, D.J., Stern, R.A., Lai, M, Y.Composition of diamond from the 95-2 pipe, Lake Timiskaming kimberlite cluster, Superior craton, Canada.The Canadian Mineralogist, Vol. 60, pp. 67-90. pdfCanada, Ontariocathodluminenescence

Abstract: Forty-one samples of diamond from the Jurassic 95-2 kimberlite pipe in the Lake Timiskaming Kimberlite Cluster, Superior Craton, Canada, were imaged using cathodoluminescence and analyzed by secondary ion mass spectrometry and Fourier-transform infrared absorbance spectrometry to determine carbon stable isotope composition, total nitrogen abundance, and nitrogen aggregation state. The carbon isotope compositions results (?13CVPDB) range from -9.11 to -3.57‰, with a mean value of -5.8‰. Intra-stone variation is small (maximum ?2.2‰, and in most individual diamond samples <1‰). Nitrogen contents range from 0.5 to 2040 ppm (mean of 483 ppm). The greatest range of values in a single stone is 825 ppm. The samples are poorly aggregated in terms of nitrogen. The samples are mostly type IaA or IaAB, with a few bordering on type Ib. Diamond growth was episodic, with nitrogen behaving highly compatibly (i.e., D = [N]diamond/[N]fluid >> 1). Precipitation was likely from a carbonate-rich fluid in a peridotitic (lherzolitic) environment within the mantle of the central Superior Craton. This generation of diamond growth is very similar to those reported from the Jurassic age Victor and U2 pipes of the Attawapiskat Kimberlite Cluster, and distinct from a possibly much older (>1.1 Ga) generation of diamond reported in other older host rocks (T1, Wawa, Lynx, and Renard). This older generation of diamond at these other localities is also predominantly of the peridotitic (harzburgitic) paragenesis but contains far less nitrogen (although typically more aggregated as B centers) and has higher ?13CVPDB. The younger generation of diamond formed after mantle heating during formation of the Mid-Continental Rift (ca. 1.1 Ga) destroyed any proximal prior generation(s) of diamond. Igneous activity after 1.1 Ga subsequently refertilized the cratonic mantle to a lherzolitic paragenesis in which the younger generation precipitated.
DS202205-0709
2022
Niayzova, S., Kopylova, M., Gaudet, M., de Stefano, A.Petrographic and geochemical characteristics associated with felsic xenolith assimilation in kimberlite.Canadian Mineralogist, Vol. 60, 2, pp. 283-307.Canada, Quebecdeposit - Renard

Abstract: Assimilation of country rock xenoliths by the host kimberlite can result in the development of concentric reaction zones within the xenoliths and a reaction halo in the surrounding contaminated kimberlite. Petrographic and geochemical changes across the reaction zones in the xenoliths and the host kimberlite were studied using samples with different kimberlite textures and contrasting xenolith abundances from the Renard 65 kimberlite pipe. The pipe, infilled by Kimberley-type pyroclastic (KPK) and hypabyssal kimberlite (HK) and kimberlite with transitional textures, was emplaced into granitoid and gneisses of the Superior Craton. Using samples of zoned, medium-sized xenoliths of both types, mineralogical and geochemical data were collected across xenolith-to-kimberlite profiles and contrasted with those of fresh unreacted country rock and hypabyssal kimberlite. The original mineralogy of the unreacted xenoliths (potassium feldspar-plagioclase-quartz-biotite in granitoid and plagioclase-quartz-biotite-orthopyroxene in gneiss) is replaced by prehnite, pectolite, and diopside. In the kimberlite halo, olivine is completely serpentinized and diopside and late phlogopite crystallized in the groundmass. The xenoliths show the progressive degrees of reaction, textural modification, and mineral replacement in the sequence of kimberlite units KPK — transitional KPK — transitional HK. The higher degree of reaction observed in the HK-hosted xenoliths as compared to the KPK-hosted xenoliths in this study and elsewhere may partly relate to higher temperatures in xenoliths included in an HK melt. The correlation between the degree of reaction and the kimberlite textures suggests that the reactions are specific to and occur within each emplaced batch of magma and cannot result from external post-emplacement processes that should obliterate the textural differences across the kimberlite units. Xenolith assimilation may have started in the melt, as suggested by the textures in the xenoliths and the surrounding halos and proceeded in the subsolidus. Elevated CaO at the kimberlite-xenolith contact appears to be an important factor in producing the concentric mineralogical zoning in assimilated xenoliths.
DS202205-0710
2022
Ontario Geological SurveyRecommendation for exploration special edition: Critical mineral compilation 2000-2022.[email protected], Apr. 26, 329p. FreeCanada, OntarioREE

Abstract: Pdf, 150MB, 329 pages.
DS202205-0721
2022
Stefano, C.J., Betts, J.H.The Ekati and Diavik diamond mines, Lac de Gras, Northwest Territories. Diamond photosMineralogical Record, Vol. 53, 2, pp. 243-259.Canada, Northwest TerritoriesDeposit - Ekati, Diavik
DS202205-0723
2022
Tovey, M., Giuliani, A., Phillips, D., Nowicki, T., Pearson, D.G., Fedorchouk, Y., Russell, J.K.Controls on the emplacement style of coherent kimberlites in the Lac de Gras Field, Canada.Journal of Petrology, 10.1093/petrology/egac028/6553928 24p. pdf Canada, Northwest Territoriesdeposit - Lac de Gras

Abstract: In the Lac de Gras (LDG) kimberlite field, Northwest Territories, Canada, coherent kimberlites (CKs) occur as tabular dykes, pipe-shaped diatremes, and irregular bodies without well-defined geometries. Combining the morphology of CK bodies with the occurrence of fragmented olivine microcrysts allows distinction of four CK types at LDG: (1) dykes with no broken olivine; (2) CK without well-defined but probable sheet geometry and no broken olivine; (3) pipe-filling CK (pfCK) with abundant broken olivine and (4) pfCK with no broken olivine. These features suggest an intrusive origin for type 1 and, probably, type 2 CK; a high-energy extrusive emplacement for CK type 3 and a low-energy intrusive or extrusive emplacement for the CK type 4. Here, we compare petrographic and whole-rock, olivine and spinel compositional data for high-energy extrusive pfCK, low-energy pfCK and intrusive CK units to understand the factors controlling their variable emplacement styles. Extrusive CK contain more abundant groundmass phlogopite and monticellite, lower carbonate/silicate mineral abundance ratios and significantly lower dolomite and pleonaste-spinel abundances compared to intrusive CK. This indicates greater CO2 loss and higher H2O/CO2 in the melt phase for the extrusive CK during emplacement. Lower incompatible element concentrations in the extrusive CKs and different chromite Ti# and olivine rim Mg# indicate derivation from distinct primitive melt compositions. The extrusive CK feature higher ?Ndi and marginally higher ?Hfi compositions than the intrusive CK, pointing to derivation from distinct sources. These findings strongly imply that distinct primary melt compositions were largely responsible for the differences in emplacement styles of CK at LDG. Low-energy pfCKs have similar olivine rim Mg#, chromite Ti# and, hence, primitive melt compositions to the high-energy extrusive CK samples. Their marginally different emplacement styles may depend on local factors, such as changing stress regimes, or slightly different volatile concentrations. Both types of pfCK might reflect the waning stages of volcanic sequences resulting from the eruption of a segregated magma column that started with pipe excavation and the explosive emplacement of gas-rich magma (volcaniclastic kimberlite), followed by the less energetic emplacement of melt-rich magma (pfCK). This hypothesis underscores different primary melt compositions for dyke vs pipe-forming (and filling) kimberlites and hence a fundamental primary melt control on the explosivity of kimberlites.
DS202205-0726
2022
Veglio, C., Lawley, C.J.M., Kjarsgaard, B., Petts, D., Pearson, G., Jackson, S.E.Olivine xenocrysts reveal carbonated mid-lithosphere in the northern Slave craton.Lithos, 10.1016/j.lithos.2022.106633, 14p. PdfCanada, Northwest Territoriesolivine

Abstract: The cold, rigid, and melt-depleted mantle underlying Archean cratons plays an important role in the preservation of the overlying continental crust and is one of the main sources of diamonds. However, with the possible exception of rare earth elements (REE) and platinum group-elements (PGE), the concentrations and host mineral phases for many other critical trace elements within lithospheric mantle remain very poorly understood. Here we address that knowledge gap, presenting new electron microprobe and laser-ablation inductively-coupled-plasma mass-spectrometry results for a suite of mantle xenoliths (n = 12) and olivine xenocrysts (n = 376) from the Jericho, Muskox, and Voyageur kimberlites (northern Slave craton, Canada). Low-temperature (<1000 °C) harzburgite xenoliths and olivine xenocrysts suggest that the shallowest portions of the garnet-bearing mantle (?160 km) underlying the northern Slave craton is chemically depleted and becomes increasing re-fertilized from 160 to 200 km. High-temperature (>1000 °C) garnet and clinopyroxene crystals with Ti/Eu ratios > > 1000, and olivine xenocrysts suggest that interaction with ultramafic silicate melts is the most likely mechanism to re-fertilize melt-depleted peridotite with incompatible elements toward the base of the lithosphere (~200 km). In contrast, lower temperature garnet and clinopyroxene with Ti/Eu ratios <1000 are more likely related to metasomatism by carbonatitic melts and/or fluids. Carbonatitic metasomatism is also interpreted as the preferred explanation for the trend of Nb (4 ppm)- and Ta (185 ppb)-rich concentrations of olivine xenocrysts sampled from mid-lithosphere depths (~140 km). With the exception of a few elements that substitute into the olivine crystal structure during sub-solidus re-equilibration (e.g., Ca, Cr, Cu, Na, Sc, V, Zn), most other olivine-hosted trace elements do not systematically vary with depth. Instead, we interpret olivine-hosted trace element concentrations that are significantly above the analytical detection and/or quantification limits to reflect trapped fluid (e.g., As, Mo, Sb, Sn), base-metal sulphide (e.g., Ag, Au, Bi, Pd, Pt, Se, Te), and other mineral inclusions (e.g., U, Th) rather than enrichments of these elements due to substitution reactions or analytical artefacts. We interpret that these inclusions occur in olivine throughout the garnet stability field, but are relatively rare. As a result, these trapped carbonatitic, proto-kimberlite, and/or other ultramafic silicate melts do not represent a significant source for the suite of trace elements that become enriched to economic levels in the crust.
 
 

You can return to the Top of this page


Copyright © 2024 Kaiser Research Online, All Rights Reserved