Kaiser Bottom Fish OnlineFree trialNew StuffHow It WorksContact UsTerms of UseHome
Specializing in Canadian Stocks
SearchAdvanced Search
Welcome Guest User   (more...)
Home / Education
Education
 

SDLRC - Region: Russia - Technical 2000 onwards


The Sheahan Diamond Literature Reference Compilation - Technical Articles based on Major Region - Russia: 2000 onwards
The Sheahan Diamond Literature Reference Compilation is compiled by Patricia Sheahan who publishes on a monthly basis a list of new scientific articles related to diamonds as well as media coverage and corporate announcements called the Sheahan Diamond Literature Service that is distributed as a free pdf to a list of followers. Pat has kindly agreed to allow her work to be made available as an online digital resource at Kaiser Research Online so that a broader community interested in diamonds and related geology can benefit. The references are for personal use information purposes only; when available a link is provided to an online location where the full article can be accessed or purchased directly. Reproduction of this compilation in part or in whole without permission from the Sheahan Diamond Literature Service is strictly prohibited. Return to Diamond Region Index
Sheahan Diamond Literature Reference Compilation - Scientific Articles by Author for all years
A-An Ao+ B-Bd Be-Bk Bl-Bq Br+ C-Cg Ch-Ck Cl+ D-Dd De-Dn Do+ E F-Fn Fo+ G-Gh Gi-Gq Gr+ H-Hd He-Hn Ho+ I J K-Kg Kh-Kn Ko-Kq Kr+ L-Lh
Li+ M-Maq Mar-Mc Md-Mn Mo+ N O P-Pd Pe-Pn Po+ Q R-Rh Ri-Rn Ro+ S-Sd Se-Sh Si-Sm Sn-Ss St+ T-Th Ti+ U V W-Wg Wh+ X Y Z
Sheahan Diamond Literature Reference Compilation - Media/Corporate References by Name for all years
A B C D-Diam Diamonds Diamr+ E F G H I J K L M N O P Q R S T U V W X Y Z
Each article reference in the SDLRC is tagged with one or more key words assigned by Pat Sheahan to highlight the main topics of the article. In addition most references have been tagged with one or more region words. In an effort to make it easier for users to track down articles related to a specific region, KRO has extracted these region words and developed a list of major region words presented in the Major Region Index to which individual region words used in the article reference have been assigned. Each individual Region Report contains in chronological order all the references with a region word associated with the Major Region word. Depending on the total for each reference type - technical, media and corporate - the references will be either in their own technical, media or corporate Region Report, or combined in a single report. Where there is a significant number of technical references there will be a technical report dedicated to the technical articles while the media and corporate references are combined in a separate region report. References that were added in the most recent monthly update are highlighted in yellow within the Region Report. The Major Region words have been defined by a scale system of "general", "continent", "country", "state or province" and "regional". Major Region words at the smaller scales have been created only when there are enough references to make isolating them worthwhile. References not tagged with a Region are excluded, and articles with a region word not matched with a Major Region show up in the "Unknown" report.
Kimberlite - diamondiferous Lamproite - diamondiferous Lamprophyre - diamondiferous Other - diamondiferous
Kimberlite - non diamondiferous Lamproite - non diamondiferous Lamprophyre - non diamondiferous Other - non diamondiferous
Kimberlite - unknown Lamproite - unknown Lamprophyre - unknown Other - unknown
Future Mine Current Mine Former Mine Click on icon for details about each occurrence. Works best with Google Chrome.
CITATION: Faure, S, 2010, World Kimberlites CONSOREM Database (Version 3), Consortium de Recherche en Exploration Minérale CONSOREM, Université du Québec à Montréal, Numerical Database on consorem.ca. NOTE: This publicly available database results of a compilation of other public databases, scientific and governmental publications and maps, and various data from exploration companies reports or Web sites, If you notice errors, have additional kimberlite localizations that should be included in this database, or have any comments and suggestions, please contact the author specifying the ID of the kimberlite: [email protected]
Russia: 2000 onwards - Technical
Posted/
Published
AuthorTitleSourceRegionKeywords
DS2000-0003
2000
Abdrahmanov, K.A.New petrologic geodynamic model of diamond bearing magmatic formations And diamond deposit forecast.Igc 30th. Brasil, Aug. abstract only 1p.RussiaMagmatism - lamproite-kimberlite-picrite
DS2000-0004
2000
Abe, N., Arai, S., Shcheka, S., Yurimoto, H.Petrology of harzburgite and related xenoliths from Avacha volcano, Kamchatka Arc and its implication for..Igc 30th. Brasil, Aug. abstract only 1p.RussiaMantle - wedge mantle processes, Xenoliths
DS2000-0006
2000
Afanasev, V.P., Pokhilenko, Loginova, Zinchuk, EfimovaProblem of false kimberlite indicators: a new morphogenetic type Cr spinellide Diamondiferous areas.Russian Geology and Geophysics, Vol.41,12,pp.1676-89., Vol.41,12,pp.1676-89.RussiaGeochemistry - indicators, Chrome spinellide
DS2000-0007
2000
Afanasev, V.P., Pokhilenko, Loginova, Zinchuk, EfimovaProblem of false kimberlite indicators: a new morphogenetic type Cr spinellide Diamondiferous areas.Russian Geology and Geophysics, Vol.41,12,pp.1676-89., Vol.41,12,pp.1676-89.RussiaGeochemistry - indicators, Chrome spinellide
DS2000-0008
2000
Agashev, A.M., Orihashi, Watanabe, Pkhilenko, SerenkoIsotope geochemical features of the Siberian Platform kimberlites in connection with problem of their origin.Russ. Geol. and Geophys., Vol. 41, No. 1, pp. 87-97.Russia, SiberiaGeochemistry, geochronology, Genesis
DS2000-0009
2000
Ahall, K.I., Connelly, J.N., Brewer, T.S.Episodic rapakivi magmatism due to distal orogenesis? correlation of 1.69-1.50 Ga orogenic and inboard....Geology, Vol. 28, No. 9, Sept. pp. 823-6.Baltic Shield, Norway, Sweden, Finland, Russia, KolaMagmatism, Orogenic growth
DS2000-0012
2000
Alekseev, A.A., Alekseeva, G.V.Graphite eclogite from the Maksyutovo metamorphic complex, southern UralsDoklady Academy of Sciences, Vol. 372, No. 4, May-June pp. 669-71.Russia, UralsEclogite, Metamorphic Complex
DS2000-0016
2000
Alvarez-Marron, J., Brown, D., Gorozhanina, Y.Accretionary complex structure and kinematics during Paleozoic arc continent collision in the southern UralsTectonophysics, Vol. 235, No. 1-2, Oct. 15, pp. 175-Russia, UralsTectonics
DS2000-0022
2000
Anfilogov, V.N., Kabanova, L.Ya., Korablev, A.G.Origin of Diamondiferous tuffisites in the northern UralsDoklady Academy of Sciences, Vol. 371a, No. 3, Mar-Apr. pp. 437-9.Russia, UralsDiamond genesis, Tuffisites
DS2000-0023
2000
Anfilogov, V.N., Korablev, A.G., Kabanova, L.Y.Fluid tectonic mobilization of the buried crusts of kimberlite weathering and origin Urals diamond depositsJournal of Geochem. Exp., Vol. 69-70, pp. 327-31.Russia, UralsAlluvials, placers, weathering, kimberlite, Source, genesis of diamonds
DS2000-0026
2000
Arazamastev, A.A., Glaznev, V.N., Raevsky, A.B., et al.Morphology and internal structure of the Kola alkaline province, northeast Fennoscandian Shield: 3D density modelingJournal of Asian Earth Science, Vol. 18, No.2, Apr. pp.213-28.Russia, Kola, FennoscandiaGeophysics - density, structure, tectonics, Kola alkaline province
DS2000-0034
2000
Artyushkov, E.V., Baer, M.A., Chekhovich, P.A.Mechanisms of an Early Paleozoic subsidence of continental crust inUrals: metamorphism lower crustDoklady Academy of Sciences, Vol. 373, No. 5, June-July, pp.777-81.Russia, UralsTectonics - subsidence, metamorphism
DS2000-0035
2000
Ashchepkov, V., Kamanov, KanakinXenoliths in kimberlite, melilitite and carbonatite dykes from the East Sayan foothill carbonatite complexIgc 30th. Brasil, Aug. abstract only 1p.Russia, East SayanCarbonatite, Dike swarm
DS2000-0037
2000
Ashchepkov, V., Salters, Ionov, Litasov, Travin, StrizhovGeochemistry of lherzolite and pyroxenites mantle inclusions from different stages of development VitiM.Igc 30th. Brasil, Aug. abstract only 1p.RussiaMetasomatism, Vitim Volcanic plateau
DS2000-0043
2000
Ayala, C., Kimbell, G.S., Brown, D., Ayarza, P.Magnetic evidence for the geometry and evolution of the eastern margin of East European Craton southern UralsTectonophysics, Vol. 320, No.1, Apr.30, pp. 31-44.Russia, UralsTectonics, Craton - East European
DS2000-0044
2000
Ayala, C., Kimbell, G.S., Menshikov, Y.P.Magnetic evidence for the geometry and evolution of the eastern margin of the East European Craton - s. UralsTectonophysics, Vol. 320, No. 1, Apr. 30, pp. 31-Europe, Russia, UralsGeophysics - magnetics, Craton - East European
DS2000-0045
2000
Ayarza, P., Brown, D., Juhlin, C.Contrasting tectonic history of arc-continent suture in southern and middle Urals: evolution of orogen.Journal of Geological Society of London, Vol. 157, No. 5, Sept.pp.1065-76.Russia, UralsTectonics, Orogeny
DS2000-0048
2000
Babushkina, M.S., Lepekhina, Nikitina, et al.Structural distortion of micas from lamproites: evidence from Mossbauer and IR spectroscopy.Doklady Academy of Sciences, Vol. 371a, No. 3, Mar-Apr. pp. 575-8.RussiaLamproites, Mineralogy - micas
DS2000-0056
2000
Balykin, P.A., Petrova, T.E.Petrological types and genesis of komatiite basalt, picrite basalt, and picrite dolerite complexes.Russian Geology and Geophysics, Vol.41,No.8, pp. 1063-77.RussiaKomatiites, picrites
DS2000-0060
2000
Barron, L.M.Subduction diamonds: New South Wales and SiberiaMinfo, 67, pp. 34-5.Australia, New South Wales, Russia, SiberiaBlank
DS2000-0064
2000
Basharin, A.K., Belyaev, S.Y., Guodu, L.Riphean Phanerozoic tectonics and evolution of the Yenisei Baikit region of Siberian Craton and Tarim...Russian Geology and Geophysics, Vol. 41, No. 4, pp. 468-77.Russia, SiberiaTectonics, Petroleum emphasis - not specific to diamonds
DS2000-0067
2000
Bayanova, T.B., Mitrofanov, F.P.Plume processes from Archean to Paleozoic in the eastern Baltic ShieldIgc 30th. Brasil, Aug. abstract only 1p.Russia, Baltic Shield, Kola PeninsulaAlkaline rocks
DS2000-0078
2000
Belyatsky, B.V., Tikhomirova, SavvaRUbidium-Strontium and Samarium-neodymium isotope characteristics of Proterozoic carbonatite of Tiksheozero Massif... Northern Karelia.Igc 30th. Brasil, Aug. abstract only 1p.Russia, KareliaGeochronology, isochrons, Carbonatite
DS2000-0085
2000
Bernstein, S., Leslie, A.G., Brooks, C.K.Tertiary alkaline volcanics in the Nunatak region: new observations and comparison with Siberian meymechites.Lithos, Vol. 53, No.1, July pp. 1-20.Greenland, Russia, SiberiaAlkaline rocks, Meymechites
DS2000-0086
2000
Beskrovanov, V.V., Shamshina, E.A.New hypothesis of genesis of diamonds placer of Ural and BrasilIgc 30th. Brasil, Aug. abstract only 1p.Russia, Urals, BrazilAlluvials - ontogenetic cycle, Diamond - morphology
DS2000-0101
2000
Borzdov, Y.M., Sokol, Palyanov, Khokhryakov, SobolevGrowth of synthetic diamond monocrystals weighing up to six carats and perspectives of their application.Doklady Academy of Sciences, Vol. 374, No. 7, Sept-Oct. pp. 1113-5.RussiaDiamond - morphology, Diamond - synthesis, Crystallography
DS2000-0104
2000
Boyd, F.R.The origin of cratonic peridotites: a major element approach #2In: Planetary Petrology and Geochemistry, Snyder, Ernst, pp. 5-14.Russia, Siberia, South AfricaCraton - xenolith bulk composition, Deposit - Premier, Kimberley
DS2000-0114
2000
Brown, D., Hetzel, R., Scarrow, J.H.Tracking arch ... continent collision subduction zone processes from high pressure rocks in southern UralsJournal of Geological Society of London, Vol. 157, No. 5, Sept.pp. 901-4.Russia, UralsMetamorphism - ultra high pressure (UHP)
DS2000-0120
2000
Bulakh, A.G.Carbonatites of the Kola alkaline province - 100 years of investigation. in RUSSIAN.Proceedings Russ. Min. Soc. *RUSS, Vol. 129, No. 2, pp. 133-Russia, Kola PeninsulaCarbonatite
DS2000-0121
2000
Bulakh, A.G., Nesterov, A.R., Kirillov, A.S.Sulphur containing monazite ( ce) from late stage mineral assemblages at the Kandaguba Vuoriyarvi KolaNeues Jahrbuch f?r Mineralogie, No. 5, May pp. 217-40.Russia, Kola PeninsulaCarbonatite, monazite
DS2000-0122
2000
Bulnaev, K.B.Rare earth element mineralization in the linear carbonatites of the Arshandeposit, Western TransbaikalGeol. Ore Dep., Vol. 42, No. 3, pp. 247-52.Russia, TransbaikalCarbonatite
DS2000-0129
2000
Bushenkova, N.A., Tychkov, S.A., Kulakov, I.Yu.Lateral heterogeneities in the upper mantle beneath southern Siberia and eastern Kazakhstan from PP SS P..Russian Geology and Geophysics, Vol.41,No.8, pp. 1080-95.Russia, SiberiaGeophysics - seismics
DS2000-0137
2000
Carbonell, R., Gallart, J., Knapp, J.Seismic wide angle constraints on the crust of the southern UralsJournal of Geophysical Research, Vol. 105, No. 6, June 10, pp. 13755-78.Russia, Urals, KolaGeophysics - seismics
DS2000-0152
2000
Chakhmouradian, A.R., Mitchell, R.H.Occurrence, alteration patterns and compositional variation of perovskite in kimberlites.Canadian Mineralogist, Vol. 38, 4, Aug. pp.975-94.Northwest Territories, Ontario, Russia, YakutiaPerovskites, Alteration, textures
DS2000-0154
2000
Chernysheva, E.A., Belozerova, O.Y.Composition of mantle xenoliths from melilitites and evolution of primary alkaline melt NizhnesayanskiiGeochemistry International, Vol. 38, No. 7, pp. 713-16.Russia, SiberiaCarbonatite - melilitite, Alkaline rocks
DS2000-0199
2000
Daly, J.S., Hjelt, S.E.Geometry and evolution of the northern Fennoscandian lithosphere - the Europrobe SVEKALAPKO project.Igc 30th. Brasil, Aug. abstract only 1p.Russia, Lapland, Kola, KareliaSvecofennian Orogen, Tomography, seismics
DS2000-0226
2000
Demaiffe, D., Verhulst, A., Balaganskaya, E., KirnarskyThe Kovdor carbonatitic and alkaline complex ( Kola Peninsula) evidence for multi source evolution.Igc 30th. Brasil, Aug. abstract only 1p.Russia, Kola PeninsulaCarbonatite, Deposit - Kovdor
DS2000-0273
2000
Eremin, N.I.Two important monographs on primary diamond deposits. Book reviews ( one book only in Russian).Geol. Ore Dep., Vol. 42, No. 3, pp. 267-71.RussiaBook - reviews, Kharkiv 1998 and (Vasnitsa 1999* have xerox this one)
DS2000-0276
2000
Ernst, R.E., Buchan, K.L., Hamilton, Okrugin, TomshinIntegrated paleomagnetism and uranium-lead (U-Pb) geochronology of mafic dikes of Eastern Anabar Shield Region: LaurentiaJournal of Geology, Vol. 108, pp. 381-401.Russia, SiberiaMesoproterozoic paleolatitude comparison Laurentia, Geophysics - magnetics
DS2000-0288
2000
Fedorenko, V., Czamanske, G., Diems, D.Field and geochemical studies of the melilite bearing Arydzhangsky suite and overall perspective on alkalineInternational Geology Review, Vol. 42, No. 9, Sept. pp. 769-804.Russia, SiberiaAlkaline - ultramafic - flood - volcanics, Melilite
DS2000-0302
2000
Friberg, M., Juhlin, C., Green, A.G., Hortsmeyer, RothEuroprobe seismic reflection profiling across the eastern middle Urals and West Siberian Basin.Terra Nova, Vol. 12, No. 6, Dec.pp. 252-7.Urals, Russia, SiberiaGeophysics - seismics
DS2000-0309
2000
Gallet, Y., Pavlov, V.E., Petrov, P.Y.Late Mesoproterozoic magnetostratigraphic results from Siberia: Paleogeographic implications and magnetics ..Journal of Geophysical Research, Vol.105, No.7, July 10, pp.16481-Russia, SiberiaGeophysics - magnetics
DS2000-0344
2000
Golovin, A.V., Sharygin, V.V., Malkovets, V.G.Evolution of melt during crystallization of the Bele pipe basanites. North Minusa depression.Russian Geology and Geophysics, Vol.41,12,pp.1710-31., Vol.41,12,pp.1710-31.RussiaBasanite
DS2000-0345
2000
Golovin, A.V., Sharygin, V.V., Malkovets, V.G.Evolution of melt during crystallization of the Bele pipe basanites. North Minusa depression.Russian Geology and Geophysics, Vol.41,12,pp.1710-31., Vol.41,12,pp.1710-31.RussiaBasanite
DS2000-0353
2000
Gornova, M.A., Glazunov, O.M.Mantle peridotites and pyroxenites of the Saramanta Massif in the Precambrian gneiss granitoid complex.Russian Geology and Geophysics, Vol. 40, No. 7, pp. 986-999.RussiaPeridotites
DS2000-0434
2000
Isanina, E.V., Verba, M.L., Ivanova, N.M., KazanskyDeep structure and seismogeological boundaries of the Pechenga District, Baltic Shield -Geol. Ore Dep., Vol. 42, No. 5, pp. 429-39.Russia, Baltic ShieldTectonics, seismics
DS2000-0473
2000
Karpukhina, E.V., Pervov, V.A., Zhuravlev, TikhovaIsotope and geochemical indicators of the intraplate origin of mafic ultramafic rocks western slope of UralsDoklady Academy of Sciences, Vol. 370, No. 1, Jan-Feb pp. 153-6.Russia, UralsGeochemistry, Alkaline rocks
DS2000-0484
2000
Kepezhinskas, P.K., Defant, M.J., Barron, L.M., BarronMeymechites - a new clan of diamond bearing ultramafic rocksIgc 30th. Brasil, Aug. abstract only 1p.Russia, Australia, New South WalesDiamond - genesis, Geochemistry - eclogite
DS2000-0495
2000
Khomyakov, A.P.Symmetry anomaly of new minerals four unique localities : Khibina, Lovozero,Ilimaussaq, Mont. St. HilaireIgc 30th. Brasil, Aug. abstract only 1p.Russia, Greenland, QuebecNepheline syenites
DS2000-0496
2000
Khomyakov, A.P.Concept of transformation mineral species and varietiesIgc 30th. Brasil, Aug. abstract only 1p.Russia, Kola PeninsulaMineralogy
DS2000-0497
2000
Khomyakov, A.P.Hyper alkaline state of natural substance: its mineralogical criteria and role in the formation ...Igc 30th. Brasil, Aug. abstract only 1p.Russia, Kola PeninsulaNepheline syenites, Deposit - Khibina, Lovozero
DS2000-0504
2000
Kislev, A.I., Popov, A.M.The Baikal Rift as a portrayal of dynamic, structural and compositional differences between lithosphere...Doklady Academy of Sciences, Vol. 371, No. 2, pp. 226-229.Russia, Siberia, AsiaSiberian Platform, Central Asian Mobile Belt, Geodynamics, Rifting
DS2000-0509
2000
Kogarko, L.N., Ryabchikov, I.D.Geochemical evidence for meimechite magma generation in the subcontinental lithosphere of Polar Siberia.Journal of Asian Earth Science, Vol. 18, No.2, Apr. pp.195-203.Russia, SiberiaGeochemistry, Meimechite
DS2000-0510
2000
Kogarko, L.N., Williams, C.T., Woolley, A.R.Loparite in the Lovozero Massif, Kola Pen.: evidence for hidden layering in giant peralkaline intrusion.Igc 30th. Brasil, Aug. abstract only 1p.Russia, Kola PeninsulaLamprophyre - loparite
DS2000-0513
2000
Konikov, E.G.Distribution of sulphides and norites in the Elan intrusive body Voronezh Crystalline Massif .. boniniteRussian Geology and Geophysics, Vol. 41,9,pp.1214-24.RussiaMagmas - boninite
DS2000-0514
2000
Konnikov, E.G.Distribution of trace elements in sulphides and norites of Elan intrusive body and genesis of boninite magmas.Russian Geology and Geophysics, Vol.41,9,pp.1214-24.RussiaLayered intrusions, Deposit - Elan, Voronezh Crystalline Massif
DS2000-0515
2000
Kononova, V.A., Pervov, Bogatikov, Parsadanyan et al.Potassic mafic rocks with megacrysts from northwestern Ladoga Lake area: diversity of mantle sources potassicGeochemistry International, Vol. 38, No.S1, pp. S39-58.Russia, Karelia, FennoscandiaTectonics, geochronology, alkaline, Shonkinite, minette
DS2000-0516
2000
Kononova, V.A., Pervov, V.A., Ilupin, I.P.Geochemical and mineralogical correlation of kimberlites from Timan and Zimnii Bereg.Doklady Academy of Sciences, Vol. 372, No. 4, May-June pp. 724-7.RussiaGeochemistry, Deposit - Timan, Zimnii
DS2000-0517
2000
Kononova, V.A., Pervov, V.A., Parsdanyan, K.S.Strontium-neodymium isotope age and geochemistry of megacryst bearing lamprophyres of Ladoga region: evidence lithospheric..Doklady Academy of Sciences, Vol. 370, No. 1, Jan-Feb pp.157-9.RussiaGeochronology, Lamprophyres
DS2000-0520
2000
Kopnichev, Y.F.Fine structure of the Earth's crust and upper mantle at the boundary of the northern Tien Shan.Doklady Academy of Sciences, Vol. 375, No. 8, Oct. Nov. pp. 1304-8.Russia, Tien ShanTectonics
DS2000-0525
2000
Korobeinikov, A.N., Lajoki, K., Gehor, S.Nepheline bearing feldspar syenite (pulaskite) Khibin a pluton, Kola Peninsula -petrological investigationJournal of Asian Earth Science, Vol. 18, No.2, Apr. pp.205-12.Russia, Kola PeninsulaPetrology, Pulaskite
DS2000-0526
2000
Korzhenkov, A.M.Cenozoic tectonics and seismicity of the northwestern Issyk-Kul basin ( Tien Shan)Russian Geology and Geophysics, Vol. 41,7,pp.940-50.Russia, AsiaTectonics
DS2000-0528
2000
Kostrovitsky, S.I., Chernysheva, E.A., De Bruin, D.The compositional features of kimberlites on the eastern slope of the Anabar Shield, Russia, Yakutia.Igc 30th. Brasil, Aug. abstract only 1p.Russia, YakutiaMesozoic kimberlite volcanism., Geochemistry
DS2000-0529
2000
Kostrovitsky, S.I., Spivak, A.V.Approaches to create the model of kimberlite field formationIgc 30th. Brasil, Aug. abstract only 1p.Russia, YakutiaDiamond - genesis, Deposit - Alakit, Kuoik
DS2000-0530
2000
Kovach, V.P., Kotov, A.B., Smelov, A.P.Evolutionary stages of the continental crust in the buried basement of the eastern Siberian Platform..Petrology, Vol. 8, No. 4, July-Aug. pp. 353-65.Russia, SiberiaGeochronology - isotopic data, Tectonics
DS2000-0540
2000
Krotkov, V.V.A new approach to the exploration of diamond deposits by large diameter boreholes.Doklady Academy of Sciences, Vol. 373A, No. 6, Aug-Sept. pp.930-2.RussiaDiamond - exploration, drilling, sampling
DS2000-0575
2000
Litasov, K.D.Xenoliths from Miocene picritic basalts of Vitim volcanic field: implications geochemistry Upper MantleDoklady Academy of Sciences, Vol. 373, No. 5, June-July, pp.837-40.RussiaXenoliths, Picrites
DS2000-0576
2000
Litasov, K.D., Foley, S.F., Litasov, Y.D.Magmatic modification and metasomatism of the subcontinental mantle beneath the Vitim volcanic fieldLithos, Vol. 54, No. 1-2, Oct. pp. 83-114.Russia, Siberia, VitiM.Xenoliths - peridotite, pyroxenite, Miocene picrobasalt, Metasomatism
DS2000-0577
2000
Litasov, K.D., Mekhonoshin, A.S.Zinc in spinels of peridotite xenoliths from Pliocene basanites of the Vitim volcanic field.Geochemistry International, Vol. 38, No. 8, pp. 738-43.RussiaBasanites, peridotites, Geochemistry
DS2000-0578
2000
Litasov, K.D., Mekhonoshin, A.S., Malkovets, V.G.Mineralogy of mantle xenoliths from Pliocene basanites of Dzhilinda River.Vitim volcanic field.Russian Geology and Geophysics, Vol.41,11,pp.1477-1501., Vol.41,11,pp.1477-1501.RussiaXenoliths, Basanites
DS2000-0579
2000
Litasov, K.D., Mekhonoshin, A.S., Malkovets, V.G.Mineralogy of mantle xenoliths from Pliocene basanites of Dzhilinda River.Vitim volcanic field.Russian Geology and Geophysics, Vol.41,11,pp.1477-1501., Vol.41,11,pp.1477-1501.RussiaXenoliths, Basanites
DS2000-0580
2000
Litasov, K.D., Mekhonoshin, A.S., Malkovets, V.G.Geochemistry of clinopyroxenes and petrogenesis of mantle xenoliths from Pliocene basanites.. Vitim field.Russian Geology and Geophysics, Vol.41,11,pp.1502-19., Vol.41,11,pp.1502-19.RussiaXenoliths, Geochemistry
DS2000-0581
2000
Litasov, K.D., Mekhonoshin, A.S., Malkovets, V.G.Geochemistry of clinopyroxenes and petrogenesis of mantle xenoliths from Pliocene basanites.. Vitim field.Russian Geology and Geophysics, Vol.41,11,pp.1502-19., Vol.41,11,pp.1502-19.RussiaXenoliths, Geochemistry
DS2000-0583
2000
Lobach-Zhuchenko, S.B., Chekulaev, V.P., Krylov, I.N.Lamprophyres of western KareliaDoklady Academy of Sciences, Vol. 370, No. 1, Jan-Feb pp. 43-5.Russia, KareliaLamprophyres, Petrology
DS2000-0596
2000
Lutkov, V.S.Clinopyroxenes of pyroxenite eclogite xenoliths from Neogene diatremes of the Pamirs: implications ...Doklady Academy of Sciences, Vol. 375, No. 8, Oct. Nov. pp. 1219-21.Russia, mantleXenoliths - potassium occurrence
DS2000-0597
2000
Lutkov, V.S.Geochemistry of pyroxenite gabbroid nodules in alkaline basalts of the southern Tien Shan: context ...Geochemistry International, Vol. 38, No. 3, Mar. pp. 297-303.Russia, TajikistanMantle mix layer mobile belt, Genesis
DS2000-0600
2000
Lyutoev, V.P., Glukhov, Y.V., Isaenko, S.I.Epigene nitrogen defects and metallic films on the surface of diamonds from the middle Timan region.Doklady Academy of Sciences, Vol. 375, No. 8, Oct. Nov. pp. 1251-54.Russia, TimanDiamond - morphology
DS2000-0607
2000
Makeyev, A.B.Metal membranes on natural diamondsIgc 30th. Brasil, Aug. abstract only 1p.Russia, Urals, TimanDiamond - morphology, Deposit - Ichetju
DS2000-0608
2000
Makeyev, A.B., Dudar, V.A., Bryanchaninova, N.I.Original rocks of Uralian and Timanian diamondsIgc 30th. Brasil, Aug. abstract only 1p.Russia, Urals, TimanDiamond - morphology, Deposit - Ichetju
DS2000-0617
2000
Markwick, A.J.W., Downes, H.Lower crustal granulite xenoliths from the Arkangelsk kimberlite pipes, petrological, geochemical, geophysicsLithos, Vol. 51, No. 1-2, pp. 135-Russia, Kola Peninsula, ArkangelskXenoliths
DS2000-0656
2000
Migulin, V.V., Larkina, V.I., Sergeeva, N.G., Senin, B.Reflection of geodynamic processes in characteristics of electromagnetic radiation above Baltic Shield...Doklady Academy of Sciences, Vol. 373, No. 5, June-July, pp.845-50.Russia, Baltic Shield, Barents-Kara regionTectonics, Geophysics
DS2000-0665
2000
Mints, M.V.Late Archean tectonic evolution and related metallogeny of the Kola Karelian region in eastern Baltic Shield.Igc 30th. Brasil, Aug. abstract only 1p.Russia, Kola, Baltic ShieldTectonics, Alkaline rocks
DS2000-0671
2000
Mitrofanov, F.P., Zozulya, Bayanova, LevkovichThe world's oldest anorogenic alkali granitic magmatism in Keivy structure on Baltic Shield.Doklady Academy of Sciences, Vol. 374, No. 7, Sept-Oct. pp. 1145-48.Russia, Baltic ShieldMagmatism
DS2000-0684
2000
Moralev, V.M., Glukhovsky, M.Z.Diamond bearing kimberlite fields of the Siberian Craton and the Early Precambrian geodynamics.Ore Geology Review, Vol. 17, pp. 141-53.Russia, SiberiaTectonics - basement, structure, magmatism, seismics, Deposit - Udachnaya, Mir
DS2000-0702
2000
Neprochov, Y.P., Semenov, G.A., Heikkinen, P.Comparison of the crustal structure of the Barents Sea and the Baltic Shield from seismic data.Tectonophysics, Vol.321, No.4, June 30, pp.429-48.Baltic States, Norway, Sweden, Kola, RussiaTectonics, Geophysics - seismics
DS2000-0708
2000
Nikiforov, A.V., Yarmoluk, Pkovski et al.Late Mesozoic carbonatites of western Transbaikalia: mineralogical, chemical and isotopic characteristics ..Petrology, Vol. 8, No. 3, pp. 278-RussiaAlkaline magmatism, Carbonatite
DS2000-0716
2000
Nozhkin, A.D., Turkina, O.M., Rumyantsev, M. Yu.Paleoproterozoic complexes of south western margin of the Siberian cratonIgc 30th. Brasil, Aug. abstract only 1p.Russia, Sayan, SiberiaCraton - alkaline rocks
DS2000-0727
2000
Ohnenstetter, D., Verhulst, A., et al.Cathodluminescence study of the carbonatite suites of the Kola Peninsula (Russia).Igc 30th. Brasil, Aug. abstract only 1p.Russia, Kola PeninsulaCarbonatite
DS2000-0738
2000
Osokin, E.D., Altukhov, E.N., Kravchenko, S.M.Criteria and formation and localization conditions of giant rare element deposits.Geol. Ore Dep., Vol. 42, No. 4, pp. 351-7.RussiaCarbonatite
DS2000-0744
2000
Paneyakh, N.A.Diamondiferous potential of kimberlites and lamproites evidenced by their spinellids.Igc 30th. Brasil, Aug. abstract only 1p.RussiaChromespinel, Diamond - genesis
DS2000-0748
2000
Parkinson, C.D., Katayama, I.Over pressured coesite inclusions in zircon and garnet: evidence from laser Raman microspectroscopy.Igc 30th. Brasil, Aug. abstract only 1p.Russia, Kazakhstan, Indonesia, ChinaCoesites
DS2000-0754
2000
Perchuk, L.L., Gerya, T.V., Krotov, A.V.P-T paths and tectonic evolution of shear zones separating high grade terrains from cratons:Min. Petrol., Vol. 69, No. 1-2, pp. 109-42.South Africa, Russia, Kola PeninsulaHigh grade terrains - comparison, Tectonics - Kola and Limpopo
DS2000-0761
2000
Petit, C., Ebinger, C.Flexure and mechanical behaviour cratonic lithosphere: gravity models of East African and Baikal riftsJournal of Geophysical Research, Vol. 105, No.8, Aug. 10, pp.19151-62.Russia, East Africa, Tanzania, KenyaGeophysics - gravity, Craton
DS2000-0766
2000
Piskarev, A.L., Lipkov, L.Roots of the Diamondiferous kimberlite field and gravity anomaliesGeological Association of Canada (GAC)/Mineralogical Association of Canada (MAC) Calgary May 2000, 4p.Russia, east SiberiaGeophysics - gravity, Deposit - Malobotuobinsky, Daldyn-Alakitsky, Verkhenmun
DS2000-0770
2000
Podvysotsky, V.T.Stages of shaping of magmatogene and terrigene Diamondiferous formations of the Siberian PlatformIgc 30th. Brasil, Aug. abstract only 1p.Russia, SiberiaMagmatism, Kimberlites and placers, alluvials
DS2000-0771
2000
Pokhilenko, N.P., Sobolev, N.V., Chernyi, S.D., YanginPyropes and chromites from kimberlites in the Nakyn Field, and Snipe Lake (Slave River region) Evidence...Doklady Academy of Sciences, Vol. 372, No. 4, May-June pp. 638-42.Northwest Territories, Russia, YakutiaLithosphere - structure, Deposit - Nakyn, Snipe Lake
DS2000-0794
2000
Rass, I.T.Melilite rocks in the alkaline ultrabasic complexes of northwestern Siberia: petrochemistry. geochemistry..Geochemistry International, Vol. 38, No. 10, pp. 1003-12.Russia, SiberiaAlkaline rocks - origin
DS2000-0795
2000
Rass, I.T.Melilite rocks in the alkaline ultrabasic complexes of the northwestern Siberia: petrochemistry, geochemistryGeochemistry International, Vol. 38, No. 10, pp. 1003-12.Russia, SiberiaMelilite, Maimecha Kotui Province
DS2000-0796
2000
Rass. I.T., Plechov, P. Yu.Melt inclusions in olivines from the olivine-melilitite rock of the Guli Massif, northwestern Siberian PlatformDoklady Academy of Sciences, Vol. 375A, No. 9, pp. 1399-02.RussiaMelilitite
DS2000-0797
2000
Rasskazov, S.V., Ivanov, A.V., Demonterova, E.I.Deep seated inclusions in Zun Murin basanites (Tunka Rift Valley, Baikal region).Russian Geology and Geophysics, Vol. 41, No. 1, pp. 98-108.RussiaBasanite
DS2000-0812
2000
Reinitz, I.M., Buerki, P.R., Shigley, J.E., McClureIdentification of HPHT treated yellow to green diamonds. the saturated neon green colour is not only..Gems and Gemology, Vol. 36, No. 2, Summer, pp. 128-37.United States, Russia, SwedenDiamond - GE, Novatek, treated, colour
DS2000-0816
2000
Reutskii, V.N., Efimova, E.S., Sobolev, N.V.Isotopic composition of carbon in polycrystalline aggregates of diamond with inclusions of garnet/rutileRussian Geology and Geophysics, Vol.41,12,pp.1690-6., Vol.41,12,pp.1690-6.Russia, YakutiaDiamond inclusions, Deposit - Mir
DS2000-0817
2000
Reutskii, V.N., Efimova, E.S., Sobolev, N.V.Isotopic composition of carbon in polycrystalline aggregates of diamond with inclusions of garnet/rutileRussian Geology and Geophysics, Vol.41,12,pp.1690-6., Vol.41,12,pp.1690-6.Russia, YakutiaDiamond inclusions, Deposit - Mir
DS2000-0818
2000
Reyhaniyyih, I., KassimovaThe complex method of study the typomorphism of the chromospinellids from kimberlites.Igc 30th. Brasil, Aug. abstract only 1p.Russia, Yakutia, South AfricaGeochemistry, Deposit - Archangel
DS2000-0820
2000
Ripp, G.S.Geochemical features of the late Mesozoic carbonatites in west TransbaikaliIgc 30th. Brasil, Aug. abstract only 1p.Russia, BaikalGeochemistry, Carbonatite
DS2000-0821
2000
Ripp, G.S.Effusive carbonatites in West TransbaikaliaIgc 30th. Brasil, Aug. abstract only 1p.Russia, BaikalGeochemistry, Phonolites, teshenites
DS2000-0831
2000
Rosen, O.M.Phanerozoic mantle magmatism at the Siberian platform: some constraints on the model of mantle convection.Doklady Academy of Sciences, Vol. 371, No. 2, pp. 243-6.Russia, SiberiaMagmatism, Convection
DS2000-0844
2000
Rudahevsky, N., Kretser, Y., Rudashevsky, V., BulakhNoble metal mineralization in carbonatites from Kovdor, Kola Peninsula, and Phalabora, South Africa.Igc 30th. Brasil, Aug. abstract only 1p.Russia, Kola Peninsula, South AfricaCarbonatite - mineralogy, Deposit - Kovdor, Phalabora
DS2000-0849
2000
Sablukov, S.M., Sablukova, L.I., Shavyrina, M.V.Mantle xenoliths from Zimnii Bereg kimberlite deposits of rounded Arkangelsk Diamondiferous ProvincePetrology, Vol. 8, No. 5, pp. 466-94.Russia, Arkangelsk, Kola PeninsulaXenoliths, diamond morphology, Deposit - Zmnii Bereg
DS2000-0859
2000
Saveleva, V.B., Zyryanov, A.S.Alkaline metasomatic rocks of the main Sayan fault zoneDoklady Academy of Sciences, Vol. 371, No. 2, pp. 318-21.RussiaMagmatism - alkaline
DS2000-0879
2000
Sekerin, A.P., Menshagin, Y.U., Egorov, K.N.Mantle magmatism and diamond potential of the Tumanshet Graben, northeastern Sayany Region.Doklady Academy of Sciences, Vol. 371, No. 2, pp. 247-50.RussiaMagmatism, Tumanshet region
DS2000-0884
2000
Sharkov, E.V.Phanerozoic anorogenic magmatism... Chapter 4. Alkaline provinces, kimberlites, lamproites.In: Bogatikov Magmatism and Geodynamics, Overseas Publishing pp. 170-218.Russia, Siberia, AfricaMagmatism
DS2000-0885
2000
Sharkov, E.V., Bogatikov, O.A.Early Proterozoic magmatism and geodynamics - evidence of a fundamental change in Earth's evolution. Chapter 5In: Bogatikov Magmatism and Geodynamics, Overseas Publishing pp. 219-252.Russia, Norway, Kola, Baltic StatesMagmatism
DS2000-0886
2000
Shatskii, V.S., Simonov, Jagoutz, Kozmenko, KurenkovNew dat a on the age of eclogites from the Polar UralsDoklady Academy of Sciences, Vol. 371a, No. 3, Mar-Apr. pp. 534-8.Russia, UralsEclogites, Geochronology
DS2000-0901
2000
Slodkevich, V.V., Shafranovskii, G.I.Diamondiferous phlogopite plagioclase lherzolite from the Beltau layered pluton, Uzbekistan.Doklady Academy of Sciences, Vol. 371a, No. 3, Mar-Apr. pp. 486-9.Russia, UzbekistanDiamond genesis, Lherzolite
DS2000-0907
2000
Sobolev, N.V., Logvinova, A.M., et al.Anomously high nickel admixture in olivine inclusions from microdiamonds, the Juileinaya kimberlite pipe, YakutiaDoklady Academy of Sciences, Vol. 375A, No. 9, pp. 1403-6.Russia, Siberia, YakutiaMicrodiamonds, Deposit - Yubileinaya
DS2000-0909
2000
Sobolev, N.V., Yefimova, E.S.Composition and petrogenesis of Ti oxides associated with diamondsInternational Geology Review, Vol. 42, No. 8, pp. 758-RussiaDiamond - inclusions, Petrology
DS2000-0915
2000
Soloveva, L.V., Gornova, M.A., Lozhkin, V.I.Trace elements in the xenoliths of pyroxenites, eclogites and mafic granulites from Udachnaya ...Doklady Academy of Sciences, Vol. 373A, No. 6, Aug-Sept. pp.1004-7.Russia, YakutiaGeochemistry, Deposit - Obnazhennaya, Udachnaya
DS2000-0916
2000
Sonin, V.M., Federov, I.I., Pokhilenko, L., PokhilenkoDiamond oxidation rate as related to oxygen fugacityGeol. Ore Dep., Vol. 42, No. 6, pp. 496-503.RussiaDiamond - geochemistry
DS2000-0919
2000
Sorokhtina, N.V., Voloshin, A.V., Pakhomovsky, Y.A.Hemimorphite from carbonatites of the Kola Peninsula. IN RUSSIANProceedings Russ. Min. Soc. *RUSS, Vol. 129, No. 2, pp.80-84.Russia, Kola PeninsulaCarbonatite
DS2000-0942
2000
Subbotin, V.V., Volshin, A.V., Sorokhtina, N.V.New mineral phases of niobium in carbonatites of the Kola alkaline province,Russia.Igc 30th. Brasil, Aug. abstract only 1p.Russia, Kola PeninsulaCarbonatite
DS2000-0949
2000
Taylor, L.A., Keller, R.A., Snyder, G.A., Wang, W., et al.Diamonds and their mineral inclusions and that they tell us: detailed pullapart a Diamondiferous eclogiteInternational Geology Review, Vol. 42, No. 11, Nov. pp. 959-83.Russia, YakutiaDiamond - morphology, eclogite, Mineral chemistry, cathodluminescence
DS2000-0952
2000
Theunissen, K., Dobtretsov, N., Korsakov, A.The diamond bearing Kokchetav ultra high pressure (UHP) Massif in northern Kazakhstan: exhumation structure.Terra Nova, Vol, 12, No. 4, pp. 181-187.Russia, KazakhstanUltrahigh pressure
DS2000-0974
2000
Vasilenko, V.B., Zinchuk Krasavchikov, Budaev, KuznetsCriteria for petrochemical identfication of kimberlitesRussian Geology and Geophysics, Vol.41,12,pp.1697-1709., Vol.41,12,pp.1697-1709.RussiaPetrology - classification
DS2000-0975
2000
Vasilenko, V.B., Zinchuk Krasavchikov, Budaev, KuznetsCriteria for petrochemical identfication of kimberlitesRussian Geology and Geophysics, Vol.41,12,pp.1697-1709., Vol.41,12,pp.1697-1709.RussiaPetrology - classification
DS2000-0976
2000
Vasilenko, V.B., Zinchuk, N.N., Kuznetsova, L.G.Autolithic kimberlites as products of the viscous differentiation of kimberlite melts in diatremes.Petrology, Vol. 8, No. 5, pp. 495-504.RussiaKimberlite - diatremes, magmatism
DS2000-0985
2000
Vladykin, N.V.The Malyi Murun volcano- plutonic complex: an example of differentiated mantle magmas of lamproitic type.Geochemistry International, Vol. 38, No.S1, pp. S73-83.RussiaLamproite, charoite, benstonite, Deposit - Malyi Murun
DS2000-0987
2000
Vladykin, V., Ivanuch, W.Carbonatite tuffs of Siberia and Mongolia as promising rare metal raw material.Igc 30th. Brasil, Aug. abstract only 1p.Russia, Siberia, MongoliaTuffites - Tomtor Massif
DS2000-0989
2000
Voinova, I.P., Prikhodko, V.S.Magmatic rocks in accretionary prisms and their diamond bearing potential ( Central Sikhote Alin).Igc 30th. Brasil, Aug. abstract only 1p.RussiaBasaltoids, xenoliths
DS2000-0991
2000
Vorobev, E.I.Mechanism of the diamond formation in the Kumdykol deposit, Kokchetav Massif, Northern Kazakhstan.Doklady Academy of Sciences, Vol. 371a, No. 3, Mar-Apr. pp. 417-9.RussiaDiamond genesis, metamorphism, Deposit - Kokchetav Massif
DS2000-0992
2000
Vrublevsky, V.V., Gertner, I.F., Anoshin, G.N.Geochemistry of ultrapotassic rocks from Gonry Altai South SiberiaIgc 30th. Brasil, Aug. abstract only 1p.Russia, SiberiaTectonics - rifting, Minette - geochemistry
DS2000-0993
2000
Vrublevsky, V.V., Nikolayev, V.V.Seismic activity of the Tanlu Kursk lineamentIgc 30th. Brasil, Aug. abstract only 1p.Russia, Asia, MongoliaGeophysics - seismics, Lineament
DS2000-1019
2000
Windley, B.F.Continental growth in the Proterozoic: a global perspectiveIgc 30th. Brasil, Aug. abstract only 1p.Canada, United States, Russia, AfricaPlate tectonics - brief overview
DS2000-1036
2000
Yakubovich, O.V., Massa, W., Liferovich, PakhomovskyThe crystal structure of bakhchisaraitsevite: hydrothermal origin from Kovdor phoscorite carbonatiteCanadian Mineralogist, Vol. 38, 4, Aug. pp. 831-8.RussiaCarbonatite, Deposit - Kovdor
DS2000-1040
2000
Yatsenko, G.M., Panov, Belousoba, Lesnov, GriffinThe rare earth elements (REE) distribution in zircon from minettes of the Kirovograd Ukraine.Doklady Academy of Sciences, Vol. 370, No. 1, Jan-Feb pp.196-200.Russia, UkraineGeochronology, Minettes
DS2000-1052
2000
Zintchouk, N.N.Complex approach to diverse in scale zoning of territories according to the degree perspectiveness ..Igc 30th. Brasil, Aug. abstract only 1p.Russia, YakutiaMineralogy - morphology
DS2000-1053
2000
Zintchouk, N.N.Problems of kimberlite diaphthoresisIgc 30th. Brasil, Aug. abstract only 1p.Russia, YakutiaMineralogy - morphology
DS2001-0005
2001
Afanasev, V.P., Zinchuk, Pkhilenko, Krivonos, YanyginKarst role in the formation of diamond placers of the Muno Markhinskii interfluve Yakutsk diamond provinceGeol. Ore Depos., Vol. 43, No. 3, pp. 234-8.Russia, SiberiaAlluvials, Geomorphology
DS2001-0007
2001
Agashev, A.M., Watanabe, Bydaev, Pokhilenko, FominGeochemistry of kimberlites from the Nakyn field, Siberia: evidence for unique source composition.Geology, Vol. 29, No. 3, Mar. pp. 267-70.Russia, SiberiaGeochronology, geochemistry
DS2001-0008
2001
Agashev, A.M., Watanabe, T., Kuligin, S.S., PokhilenkoRubidium-Strontium and Samarium-neodymium isotopes in garnet pyroxenite xenoliths from Siberian kimberlites: an insight into lith. mantleJournal of Mineralogy and Petrology. Sciences, Vol. 96, No. 1, pp. 7-18.Russia, SiberiaGeochronology, Lithospheric - xenoliths
DS2001-0031
2001
Andreeva, I.A., Kovalenko, V.I., Naummov, V.B.Crystallization conditions, magma compositions, and genesis of silicate rocks Mushugai Khuduk carbonatitePetrology, Vol. 9, No. 6, pp. 489-515.Russia, MongoliaAlkaline complex, Melt inclusions
DS2001-0035
2001
Anfilogov, V.N.Impact origin of ancient diamonds with eclogitic and meteoritic parageneses of mineral inclusions.Doklady Academy of Sciences, Vol. 377, No. 2, Feb-Mar. pp.219-20.RussiaEclogites, Diamonds - mineral inclusions
DS2001-0041
2001
Aris, B.Alrosa seeks funds to unfreeze god's treasury Russia largest diamond producer was created in 1993 to bolsterEuromoney, Oct. pp. 32-49.RussiaEconomics - history, Company looking to expand operations beyond borders
DS2001-0051
2001
Arzamastsevm A.A., Bea, F., Glaznev, V.N., Arzamasteva, L.V., Montero, P.Kola alkaline province in the Paleozoic: evaluation of primary mantle magma composition and magma generation conditions.Russian Journal of Earth Science, Vol. 3, 1, March, pp.Russia, Kola PeninsulaMagmatism
DS2001-0055
2001
Ashchepkov, I.V. , Vladykin, Gerasimov, Saprykin, et al.Temperature gradient and structure of the lithospheric block beneath the southeastern margin of Siberia cratonDoklady Academy of Sciences, Vol. 378, No. 4, May-June pp. 530-35.Russia, Siberia, Aldan shieldXenolith evidence from kimberlites, Geothermometry
DS2001-0056
2001
Ashchepkov, I.V., Gerasimov, Saprykin, Vladykin, AnoshinTrace element composition of deep seated mineral inclusions from Aldan lamproites: first la ICP MS studyGeological Association of Canada (GAC) Annual Meeting Abstracts, Vol. 26, p.5, abstract.RussiaLamproites, Amga River basin
DS2001-0058
2001
Ashchepkov, L.V., Vladykin, Gerasimov, SaprykinPetrology and mineralogy of disintegrated mantle inclusions of kimberlite like diatremes from Aldan areaAlkaline Magmatism -problems mantle source, pp. 161-76.Russia, Aldan shieldMantle reconstructions - Chompolo field
DS2001-0076
2001
Balaganskaya, E., et al.Kola carbonatites: new insights into their origin as shown by Strontium, neodymium and geochemical studies..Journal of South African Earth Sciences, Vol. 32, No. 1, p. A 11 (abs)Russia, Baltic ShieldCarbonatite - geochronology, Vuorijarvi Massif
DS2001-0094
2001
Bea, F., Arzamastev, A., Arzamastseva, L.Anomalous alkaline rocks of Soustov, Kola: evidence of mantle derived metasomatic fluids affecting crustal ..Contributions to Mineralogy and Petrology, Vol. 140, No. 5, pp. 554-66.Russia, Kola PeninsulaMetasomatism
DS2001-0117
2001
Bogatikov, O.A., Kononova, V.A., Pervov, ZhuravlevSources, geodynamic setting of formation and diamond bearing potential of kimberlites from northern marginPetrology, Vol. 9, No. 3, pp. 191-203.RussiaPlate - Sr neodymium isotopic and ICP MS, Geochronology, geochemistry
DS2001-0135
2001
Brown, D., Alvarez-Marron, J., Perez-Estaun, PuchkovStructure and evolution of the Magnitogorsk forearc basin: identifying upper crustal processes during arcTectonics, Vol. 20, No. 3, June pp. 364-75.Russia, UralsTectonics, arc terranes, subduction zone
DS2001-0145
2001
Bulin, N.K., Bulina, L.V., Dragunov, V.I.Deep extension zones beneath the Siberian platformDoklady Academy of Sciences, Vol. 381, No. 8, Oct/Nov. pp. 901-5.Russia, SiberiaTectonics, lineaments
DS2001-0146
2001
Bulnaev, K.B.Origin of mantle shaped carbonatite bodies in the Khalyuta deposit, western Transbaikal region, Russia.Lithology and Mineral Resources, Vol. 36, No. 1, pp. 63-76.RussiaCarbonatite, Deposit - Khalyuta
DS2001-0160
2001
Cartigny, P.The origin and formation of metamorphic microdiamonds from the Kokchetav Massif, Kazakhstan: a nitrogen andChemical Geology, Vol. 176, No. 1-4, July pp.265-81.Russia, KazakhstanGeochronology - nitrogen and carbon isotopic study, Microdiamond, ultra high pressure (UHP)
DS2001-0164
2001
Chakhnouradian, A.R., Reguir, E.P., Mitchell, R.H.Strontium apatite: new occurrence and the extent of the Calcium, Strontium substitution.Geological Association of Canada (GAC) Annual Meeting Abstracts, Vol. 26, p.24, abstract.Russia, Kola PeninsulaMineralogy, Lovozero
DS2001-0184
2001
Chernysheva, E.A., Belozerova, O.Y.Redox conditions of the crystallization of melilitic rocksGeochemistry International, Vol. 39, No. 8, pp. 824-29.RussiaMelilites
DS2001-0193
2001
Churkikova, T., Dorendorf, F., Worner, G.Sources and fluids in the mantle wedge below Kamchatka, evidence from across arc geochemical variation.Jour. Petrol., Vol. 42, No. 8, pp. 1567-93.Russia, KamchatkaMantle - geochemistry
DS2001-0233
2001
Davis, W.J.Geochronological perspectives on the formation and evolution of Archean cratonic roots.Prospectors and Developers Association of Canada (PDAC) Short Course, KEGS diamond workshop, 30p.Northwest Territories, Russia, Siberia, South AfricaGeochronology - geothermometry, metasomatism, diamonds, Craton - eclogites
DS2001-0241
2001
Deev, E.V., Votakh, O.A., Belyaev, S.Y., Zinovev, S.V., Levchuk, M.A.Tectonics of the basement of the mid-Ob plate complex ( West Siberia)Russian Geology and Geophysics, Vol. 42, 6, pp. 920-9.Russia, SiberiaTectonics
DS2001-0245
2001
Demaiffe, D., et al.The Kovdor ultramafic, carbonatitic and alkaline complex ( Kola ) : evidence for multi source evolutionJournal of South African Earth Sciences, Vol. 32, No. 1, p. A 15 (abs)Russia, Kola PeninsulaCarbonatite, Kovdor Complex
DS2001-0256
2001
Djomani, Y.H.P., Griffin, W.L., O'Reilly, S.Y., et al.Lithospheric boundaries on the eastern Siberian platformPreview (Australian Society of Exploration Geophysics), 15th. Conference abstract p. 94.RussiaGeophysics - gravity
DS2001-0265
2001
Donskaya, T.V., Salnikova, Sklyarov, GladkochubEarly Proterozoic Post collision magmatism at the southern flank of the Siberian Craton: geochronological...Doklady, Vol.383, No. 1-2, Feb-Mar. pp. 125-8.Russia, SiberiaGeodynamic - magmatism, Geochronology
DS2001-0274
2001
Dudkin, O.B.Geochemistry of carbonatite from the Khibiny pluton and its place among similar rocksGeochemistry International, Vol. 39, No. 7, pp. 711-15.RussiaCarbonatite
DS2001-0290
2001
Egorkin, A.V.Upper mantle structure below the Daldyn Alakitsk kimberlite fieldGeol. Ore Dep., Vol. 43, No. 1, pp. 19-32.RussiaTectonics, Geophysics - seismics
DS2001-0291
2001
Egorkin, A.V.Upper mantle structure below the Daldyn - Alakitsk kimberlite field by nuclear explosion seismograms.Geology Ore Deposits, Vol. 43, No. 1, pp. 19-22.Russia, YakutiaGeophysics - seismics, Deposit - Daldyn - Alakitsk
DS2001-0300
2001
Erinchek, Y.M., Milshtein, E.D., Saltykov, RykhlovaStructural control of kimberlite pipes in the Zolotitsa cluster ( Arkangelsk diamond field).Mineral deposits 21st. century, pp. 951-4.Russia, ArkangelskTectonics, Deposit - Zolotitsa
DS2001-0308
2001
Evdorkimov, M.D., Ladygina, M.Y., Nesterov, A.R.Morphology of diamonds as possible indicator of their genesisNeues Jahrbuch Mineralogische Abhandlung, Vol. 176, No. 3, pp. 153-77.RussiaDiamond - morphology, Genesis
DS2001-0356
2001
Garanin, V.K., Gonzaga, G., Campos, J., Kudryavtseva, G.A new theory of the glacial origin of diamond placers in the Ural regionMoscow University of Geol. Bulletin., Vol. 55, No. 5, pp. 54-8.Russia, UralsAlluvials - placers, Geomorphology
DS2001-0357
2001
Garanin, V.K., Kudryavtseva, Possoukhova, TikhovaTwo types of the Diamondiferous kimberlites from the Arkangelsk province, RussiaMineral deposits 21st. century, pp. 955-8.Russia, ArkangelskTectonics, Deposit - Zolotitsa
DS2001-0385
2001
Gladkochub, D.P., Sklyarov, Donskaya, MazukabzovPetrology of gabbro dolerites from Neoproterozoic dike swarms in the Sharyzhalgai block - problem breakup...Petrology, Vol. 9, No. 6, pp. 560-75.RussiaTectonics - Rodinia supercontinent, Dike swarms
DS2001-0386
2001
Gladkochub, D.P., Sklyarov, Donskaya, Mazukabzov, et al.Petrology of gabbro dolerites from Neoproterozoic dike swarms in Sharyzhalgai Block with reference to problemPetrology, Vol.9, 6, pp. 560-75.Russia, SiberiaCraton - breakup of the Rodinia supercontinent, Magma - melt
DS2001-0387
2001
Gladkochub, D.P., Sklyarov, E.V., Menshagin, MazukabzovGeochemistry of ancient ophiolites of the Sharyzhalgai upliftGeochemistry International, Vol. 39, No. 10, pp. 947-58.RussiaOphiolite - geochemistry
DS2001-0389
2001
Glukhovskii, M.Z., Moralev, V.M., Borisovskii, S.E.Zirconium and hafnium in zircons from Archean enderbites of Sunnagin dome, evolution of ancient crustDoklady, Vol.381A,No.9, Nov-Dec. pp. 1088-91.Russia, Aldan shieldPetrology
DS2001-0397
2001
Gornova, M.A., Solovjeva, L.V., Glazunov, BelozerovaFormation of Precambrian lithosphere mantle geochemical analysis of coarseAlkaline Magmatism -problems mantle source, pp. 223-41.Russia, SiberiaCraton, Geochemistry
DS2001-0398
2001
Gornova, M.A., Tsypukov, Sandimirova, SmirnovaMelting of the Precambrian mantle: geochemistry of residual peridotites from peripheral blocks of PlatformDoklady Academy of Sciences, Vol. 378, No. 4, May-June pp. 379-82.Russia, SiberiaPeridotites, Mantle - melting
DS2001-0432
2001
Ha'aretzLeviev seeks cut of lucrative Russian rough diamond marketHaaretz, Sept. 24, 1p.RussiaNews item, Africa Israel
DS2001-0476
2001
Hermann, J., Rubatto, D., Korsakov, A., Shatsky, V.S.Multiple zircon growth during fast exhumation of Diamondiferous deeply subducted continental crust.Contributions to Mineralogy and Petrology, Vol. 141, No. 1, pp. 66-82.Russia, Kazakhstanultra high pressure (UHP), Kokchetav Massif
DS2001-0500
2001
Ilupin, I.P.Intricate structure of the Zarnitsa kimberlite pipeDoklady, Vol.383, No. 1-2, Feb-Mar. pp. 215-7.Russia, YakutiaStructure, Deposit - Zarnitsa
DS2001-0506
2001
Industrial Information Resources IncRussians and De Beers cutting a diamond supply dealIndustrialinfo.com, Oct. 25, 1p.Russia, GlobalNews item, De Beers
DS2001-0516
2001
Izokh, A.E., et al.The Late Ordovician age of camptonites from the Agardag Complex of southeastern Tuva as an indicator of plumeDoklady Academy of Sciences, Vol. 379, No. 5, June-July pp. 511-14.RussiaMagmatism - during collision processes
DS2001-0558
2001
Kaban, M.K.A gravity model of the North Eurasia crust and upper mantle: 1. mantle and isostatic residual gravity anomalies.Russian Journal of Earth Science, Vol. 3, 2, May, pp.Europe, Asia, RussiaGeophysics - gravity
DS2001-0576
2001
Karchevsky, P.I.Thermodynamic model of sulphide formation in the carbonatites of Turiy alkaline complex, Kola PeninsulaJournal of South African Earth Sciences, Vol. 32, No. 1, p. A 21 (abs)Russia, Kola PeninsulaCarbonatite, Turiy Complex
DS2001-0580
2001
Kascheeva, N.New dat a about carbonatites of the Tiksheozero Massif, northern KareliaJournal of South African Earth Sciences, Vol. 32, No. 1, p. A 22 (abs)Russia, KareliaCarbonatite, Tiksheozero Massif
DS2001-0581
2001
Katayama, I., Maruyama, Parkinson, Terada, SanoIon micro probe uranium-lead (U-Pb) zircon geochronology of peak and retrograde stages of ultrahigh pressure metamorphic...Earth and Planetary Science Letters, Vol. 188, No. 1, May 30, pp.185-198.Russia, KazakhstanGeochronology - ultra high pressure (UHP), Kokchetav Massif
DS2001-0585
2001
Kempton, P.D., Downes, Neymark, Wartho, Zartman SharkovGarnet granulite xenoliths from the Northern Baltic Shield - underplated lower crust of paleoproterozoic ..Journal of Petrology, Vol. 42, No. 4, pp. 731-63.Russia, Kola Peninsula, Baltic ShieldLarge igneous province, Metasomatism, geochronology
DS2001-0595
2001
Khain, V.E.Problems of Early Precambrian tectonicsMoscow University of Geol. Bulletin., Vol. 55, No. 4, pp. 1-13.RussiaTectonics
DS2001-0613
2001
Klishin, V.I., Sher, E.N., Kramaskov, Vlasov, BasheevUnderground mining of kimberlite pipes under alluviaJournal of Mining Science, Vol.37,4,pp. 421-6.RussiaMining
DS2001-0621
2001
Konstantinovskii, A.A.Potential mineral resources of the Anabar anteclise coverLithology and Mineral Resources, Vol. 36, No. 5, pp. 406-418.RussiaAlluvials - placers, not specific to diamonds
DS2001-0624
2001
Koreshkova, M.Y., Levskii, L.K., Ivanikov, V.V.Petrology of a lower crustal xenolith suite from dikes and explosion pipes of the Kandalaksha Graben.Petrology, Vol. 9, No. 1, pp. 79-RussiaXenoliths
DS2001-0631
2001
Kramm, U., Sindern, S., Downes, H.Timing of magmatism in the Kola alkaline province and the translation of isotope dates - geological processesJournal of South African Earth Sciences, Vol. 32, No. 1, p. A 23 (abs)Russia, Kola Peninsula, Baltic ShieldCarbonatite, Kola
DS2001-0632
2001
Krasnova, N.I.The Kovdor phlogopite deposit, Kola Peninsula, RussiaCan. Mineralog., Vol. 39, No. 1, Feb. No. 33-44.Russia, Kola PeninsulaCarbonatite, alkaline, Deposit - Kovdor
DS2001-0633
2001
Krasnova, N.I.Calcite carbonatite pegmatite with perovskite from the Kovdor Massif, KolaPeninsula, Russia.Journal of South African Earth Sciences, Vol. 32, No. 1, p. A 24 (abs)Russia, Kola Peninsula, Baltic ShieldCarbonatite, Kovdor Massif
DS2001-0638
2001
Kudryavtseva, G.P., Tikhova, M.A., Gonzaga, G.M.Comparative charcteristics of specific morphological features of diamonds from northern and northeastern European Russia ( Urals, Timan, and Arkhangelsk).Moscow University Geology Bulletin, Vol. 56, 6, pp. 26-30.Russia, Urals, TimanDiamond - morphology
DS2001-0642
2001
Kuznetsov, I.E.Eclogites in the ultramafic rocks of the Rai-Iz Massif, Polar UralsMoscow University Geology Bulletin, Vol. 56, No. 2, pp.21-5., Vol. 56, No. 2, pp.21-5.Russia, UralsEclogites
DS2001-0643
2001
Kuznetsov, I.E.Eclogites in the ultramafic rocks of the Rai-Iz Massif, Polar UralsMoscow University Geology Bulletin, Vol. 56, No. 2, pp.21-5., Vol. 56, No. 2, pp.21-5.Russia, UralsEclogites
DS2001-0652
2001
Landen, L.S., Ramo, O.T.Silicic magmatism and Early Paleoproterozoic continental rifting, east FIn land and adjacent RussiaGeological Association of Canada (GAC) Annual Meeting Abstracts, Vol. 26, p.81.abstract.Finland, RussiaMagmatism
DS2001-0656
2001
Latypov, R.M., Chistakova, S.Yu.Physiochemical aspects of magnetite gabbro formation in the layered intrusion of the Western Pansky Tundra.Petrology, Vol. 9, No. 1, pp. 25-45.Russia, Kola PeninsulaLayered intrusion
DS2001-0662
2001
Layer, P.W., Newberry, Fujita, Parfenov, TrunlinaTectonic setting of the plutonic belts of Yakutia, northeast Russia based on 40 Ar 39 Ar geochronology..Geology, Vol. 29, No. 2, Feb. pp. 167-70.Russia, YakutiaGeochemistry - trace element, Subduction - not specific to diamonds
DS2001-0679
2001
Letnikov, F.A., Watanabe, Kotov, Yokayama, Zyryanov..Problem of the age of metamorphic rocks of the Kokchetav Block, northern Kazakhstan.Doklady, Vol. 381A, Nov-Dec. pp. 1025-7.Russia, KazakhstanGeochronology
DS2001-0681
2001
Levskii, L.K.Is there an ultradepleted mantle?Geochemistry International, Vol. 39, S1, pp. S39-42.South Africa, Russia, YakutiaGeochronology, Deposit - Roberts Victor
DS2001-0684
2001
Li, P., Cui, J., Gao, R.Estimation of shortening between Siberian and Indian plates since the Early CretaceousJour. Asian Earth Sci., Vol. 20, No. 3, pp. 241-5.Russia, Siberia, IndiaTectonics - compression Himalayan Block
DS2001-0688
2001
Lifrovich, R.P., Pakhomovsky, Bogdanova, BalaganskayaCollinsite in hydrothermal assemblages related to carbonatites in the Kovdor Complex, northwestern RussiaCanadian Mineralogist, Vol. 39, No. 4, Aug. pp.1081-94.RussiaCarbonatite, mineralogy, Deposit - Kovdor
DS2001-0692
2001
Litvin, Yu.A., Jones, A.P., Beard, Divaev, ZharikovCrystallization of diamond and syngenetic minerals in melts of Diamondiferous carbonatites of Chagatai MassifDoklady, Vol.381A, No.9, Nov-Dec. pp. 1066-9.Russia, UzbekistanCarbonatite - diamond bearing, Deposit - Chagatai Massif
DS2001-0698
2001
Logvinova, A.M., Zedgenizov, D.A., Sobolov, N.V.Pyroxenite paragenesis of abundant mineral and probable fluid inclusions in microdiamonds from Mir kimberliteDoklady Academy of Sciences, Vol. 380, No. 7, Sept-Oct. pp.795-800.Russia, SiberiaMineralogy - micro diamonds, Deposit - Mir
DS2001-0721
2001
Maksimov, S.O., Moiseenko, V.G., Sakho, V.G.High Potassium basalts of eruptive pipes from the eastern part of the Bureya Massif, Russian far east.Doklady Academy of Sciences, Vol. 379A, No. 6, July-August pp. 640-3.Russia, SiberiaPetrology, Bureya Massif
DS2001-0722
2001
Malevsky-Malevich, S.P., Molkentin, NadyozhinaNumerical simulation of permafrost parameters distribution in RussiaCold Regions Science and Tech., Vol. 32, No. 1, pp. 1-11.RussiaPermafrost, climate change - not specific to diamonds
DS2001-0723
2001
Malov, A.I.Magnesium in brines from the Svernaya Dvin a Artesian basin as an indicator of kimberlite magmatism.Doklady Academy of Sciences, Vol. 377, No. 2, Feb-Mar. pp.225-28.RussiaGeochemistry, Magmatism
DS2001-0731
2001
Marakushev, A.A., Shakhotko, L.I.Formation stages and nature of the Popigai Diamondiferous ring structureDoklady Academy of Sciences, Vol. 3771, March/April pp. 274-77.RussiaTectonics - structure, Deposit - Popigai
DS2001-0735
2001
Marwick, A.J., Downes, H., Verennikov, N.The lower crust of southeast Belarus: petrological, geophysical and geochemical constraints from xenoliths.Tectonophysics, Vol. 339, No. 1-2, pp. 215-37.RussiaPetrology, Xenoliths
DS2001-0766
2001
Medvedev, V.Ya., Egorov, K.N., Ivanova, L.A.Experimental modeling of the regressive transformation of picroilmenites from kimberlite rocks.Doklady Academy of Sciences, Vol. 376, No. 1, Jan-Feb. pp. 54-6.RussiaPetrology - experimental
DS2001-0767
2001
Medvedev, V.Ya., Ivanova, Egorov, Lashkevich, UshchapovKelyphitic rims around garnet in kimberlites: an experimental studyDoklady, Vol.381A, No.9, Nov-Dec. pp. 1096-98.RussiaKimberlite - garnet mineralogy
DS2001-0780
2001
Mints, M.V., et al.Collision structures in the early Precambrian crust of the eastern Baltic Shield: a geological interpretationDoklady Academy of Sciences, Vol. 379, No. 5, June-July pp. 515-20.Russia, Kola, Baltic ShieldTectonics, Geophysics - seismics
DS2001-0781
2001
Mironov, V.P., Mityukhin, S.I.Absorption, luminesence and internal morphology of diamonds from placers of the Tunguska area ( Nizhnyaya Tunguska Basin).Russia Geology and Geophysics, Vol. 42, 5, pp. 790-99.RussiaDiamond morphology
DS2001-0801
2001
Morikiyo, Miyazaki, Kagami, Vldadykin, ChernyshevaStrontium, neodymium, Carbon, and Oxygen isotope characteristics of Siberian carbonatites.Alkaline Magmatism -problems mantle source, pp. 69-84.Russia, SiberiaAlkaline rocks, Geochronology
DS2001-0838
2001
Nivin, V.A., Ikorsky, S.V., Kamensky, I L.Noble gas (lle Ar) isotope evidence for sources of Devonian alkaline magmatism and ore formation related..Alkaline Magmatism -problems mantle source, pp. 177-88.Russia, Kola PeninsulaGeochronology, Argon
DS2001-0887
2001
Panina, L.I., Usoltseva, L.M.The role of liquid immiscibility in the origin of calcite carbonatites from Malyi Murun massif (Aldan)Russian Geology and Geophysics, Vol. 41, No. 5, pp. 633-48.Russia, Aldan shieldCarbonatite, Deposit - Malyi Murun
DS2001-0895
2001
Pearson, D.G.New isotopic techniques for dating diamonds: examples from the Siberian Craton29th. Yellowknife Geoscience Forum, Nov. 21-23, abstract p. 64-5.RussiaGeochronology
DS2001-0897
2001
Pearson, N.J., Griffin, Spetsius, O'ReillyIn situ Re Os analysis of mantle sulphides: a new microanalytical technique to unravel the evolution...Slave-Kaapvaal Workshop, Sept. Ottawa, 6p. abstractRussia, Siberia, YakutiaGeochronology, Deposit - Udachnaya
DS2001-0908
2001
Perepelov, A.B., Volynets, O.N., Anoshin, Puzankov etcWestern Kamchatka alkali basaltoid volcanism: geological and geochemical review.Alkaline Magmatism -problems mantle source, pp. 52-68.Russia, KamchatkaAlkaline rocks, Geochemistry
DS2001-0914
2001
Peyton, V., Levin, V., Ozerov, A.Mantle flow at a slab edge: seismic anisotropy in the Kamchatka regionGeophysical Research Letters, Vol. 28, No. 2, Jan. 15, pp.379-82.RussiaSubduction
DS2001-0923
2001
Pilipiuk, A.N., Ivanikov, V.V., Bulakh, A.G.Unusual rocks and mineralization in a new carbonatite complex at Kandaguba Kola Peninsula, Russia.Lithos, Vol. 56, pp. 333-47.Russia, Kola PeninsulaChemistry - alkaline rocks, Kandaguba Complex
DS2001-0937
2001
Pokrovskii, B.G., et al.Oxygen and carbon isotopic compositions of carbonatite like rocks in the Tunguska synclise.Petrology, Vol. 9, No. 4, pp. 376-RussiaCarbonatite, Geochronology
DS2001-0938
2001
Pokrovskii, B.G., Kravchenko, S.M.Stable isotopes in the Khibiny and Lovozero Massifs: magma sources and conditions postmagmatic alterationsGeochem, International, Vol. 39, No. S1 S88-98.RussiaGeochronology
DS2001-0944
2001
Potter, P.E., Huh, Y., Edmond, J.M.Deep freze petrology of Lena River sand, SiberiaGeology, Vol. 29, No. 11, Nov. pp. 999-1002.Russia, SiberiaGeomorphology - modern sand not specific to diamonds
DS2001-0945
2001
Potts, A.Crystal clear... site visit to InternatsionalnayaWorld Mining Equipment, Sept. pp. 26-8.Russia, SiberiaMining, Deposit - Internatsionalnaya
DS2001-0954
2001
Puffer, J.H.Contrasting high field strength element contents of continental flood basalts from plume versus arc..Geology, Vol. 29, No. 8, Aug. pp. 675-8.Russia, SiberiaPlumes, arcs, geochemistry
DS2001-0989
2001
Rudashevsky, N.S., Kretser, Bulakh, RudashevskyTwo types of platinum group elements (PGE) mineralization in carbonatite deposits Phalaborwa Kovdor Massif.Journal of South African Earth Sciences, Vol. 32, No. 1, p. A 30.(abs)South Africa, RussiaCarbonatite, Palaborwa, Kovdor
DS2001-0990
2001
Rukhlov, A., Bell, K., Ivanikov, V.Archean mantle below the Baltic Shield: isotopic evidence from intrusive carbonatites.Journal of South African Earth Sciences, Vol. 32, No. 1, p. A 30-1.(abs)Russia, Kola Peninsula, Baltic ShieldCarbonatite, Geochronology - data
DS2001-0991
2001
Rukhlov, A., Bell, K., Ivanikov, V.Kola carbonatites and carbonatites: glimpses into the sub-continental margiJournal of South African Earth Sciences, Vol. 32, No. 1, p. A 32-3.(abs)Russia, Kola Peninsula, Baltic ShieldCarbonatite, Geochronology - data
DS2001-0997
2001
Ryabichikov, I.D., Ntaflos, Th., Buchl, A., Solovena, I.Subalkaline picrobasalts and plateau basalts from the Putorana Plateau: mineral compositions and geochemistryGeochemistry International, Vol. 39, No. 5, pp. 415-31.Russia, SiberiaContinental flood basalt province, Picrites
DS2001-0998
2001
Ryabichikov, I.D., Solovova, I.P., Ntaflos, Th., BuchlSubalkaline picrobasalts: melt inclusion chemistry, composition of primary magmas and P T regime -Geochemistry International, Vol. 39, No. 5, pp. 432-46.Russia, SiberiaSuperplume
DS2001-1003
2001
Sakhno, V.G., Matyunin, A.P., Moiseenko, V.G.Isotopic signatures of kimberlites in the Kurkhan Diamondiferous diatreme, Primore region.Doklady Academy of Sciences, Vol. 380, No. 7, Sept-Oct. pp.833-6.RussiaGeochronology
DS2001-1011
2001
Sarayev, A.K., et al.Magnetotelluric exploration for kimberlite pipes in Yakutian Province, Sakha Republic, Russia.Geological Association of Canada (GAC) Annual Meeting Abstracts, Vol. 26, p. 132.abstract.Russia, YakutiaGeophysics - magnetotellurics
DS2001-1012
2001
Sarayev, A.K., et al.Possibilities of magnetotellurics for kimberlite exploration at Russian platform.Geological Association of Canada (GAC) Annual Meeting Abstracts, Vol. 26, p. 132.abstract.Russia, YakutiaGeophysics - magnetotellurics
DS2001-1013
2001
Sarayev, A.L., Pertel, Garat, Manakov, AlexandrovPossibilities of magnetotellurics for kimberlite exploration in the Russian PlatformNorth Atlantic Minerals Symposium held May 27-30, pp. 149. abstract.RussiaGeophysics - magnetotellurics
DS2001-1052
2001
Serov, I.V., Garanin, V.K., Zinchuk, N.N., Rotman, A.Ye.Mantle sources of the kimberlite volcanism of the Siberian PlatformPetrology, Vol.9, No. 6, pp. 576-88.Russia, Siberia, YakutiaGeochemistry - major, trace, ratios, mantle metasomatism, analyses, Deposit - Middle Markha, Daldyn-Alakit, Upper Muna
DS2001-1071
2001
Shumilova, T.G.Carynoid carbon and its pseudomorphs after diamond in the eclogitization zone (Shumikha Complex).Doklady, Vol.383, No. 1-2, Feb-Mar. pp. 222-4.Russia, central UralsDiamond - carbon
DS2001-1072
2001
Shumilova, T.G., Mikhalitsyn, Bukalov, LeitesInvestigation of the ordering of skeletal diamonds from the Kumdykol deposit by Raman spectroscopy and lumin.Doklady Academy of Sciences, Vol. 378, No. 4, May-June pp. 390-3.RussiaDiamond - morphology, Luminesence
DS2001-1073
2001
Shumilova, T.G., Shanina, S.N., Lyubozhenko, L.N.Role of gases in formation of carbonaceous substance and the possible diamond potential of black shale typeDoklady Academy of Sciences, Vol. 3771, March/April pp. 382-6.RussiaBlack shales - diamonds
DS2001-1084
2001
Sitnikova, M.A., Zaitsev, Wall, Chakmouradian, SubbotinEvolution of chemical composition of rock forming carbonates in Sallanlatvi carbonatites, Kola PeninsulaJournal of South African Earth Sciences, Vol. 32, No. 1, p. A 34.(abs)Russia, Kola PeninsulaCarbonatite, Sallanlatvi Complex
DS2001-1085
2001
SKF Inc.SKF contract advances communications for Russian diamond producer. Area communications for Alrosa.Skf Inc., Oct. 24, 1p.RussiaNews item, Alrosa
DS2001-1096
2001
Sobolev, N.V., Efimova, E.S., Loginova, SukhodolskayaAbundance and composition of mineral inclusions in large diamonds from Yakutia.Doklady Academy of Sciences, Vol. 376, No. 1, Jan-Feb. pp. 34-8.Russia, YakutiaDiamond - inclusions
DS2001-1097
2001
Sobolev, N.V., Schertl, H.P., Burchard, M., Shatsky, V.An unusual pyrope grossular garnet and its paragenesis from Diamondiferous carbonate silicate rocks KokchetavDoklady Academy of Sciences, Vol. 380, No. 7, Sept-Oct. pp.791-4.Russia, KazakhstanMineralogy - pyrope, Deposit - Kokchetav Massif
DS2001-1099
2001
Sokjolov, S.V., Sidorenko, G.A., Chukanov, ChistyakovaOn benstonite and benstonite carbonatiteGeochemistry International, Vol. 39, No. 12, Dec. pp.Russia, IndiaCarbonatite, Deposit - Murun, Aldan, Jogipatti
DS2001-1100
2001
Sokol, A.G., Borzdov, Y.M., Palynov, Y.M.An experimental demonstrator of diamond formation in the dolomite carbon and dolomite fluid carbon systems.Eur. Jour. Min., Vol. 13, No. 5, pp. 893-900.RussiaCarbonatite, Petrology - experimental
DS2001-1101
2001
Sokolova, E.V., Hawthorne, F.C.The crystal chemistry of malinkoite and Lisitsynite from the Khibin a Lovozero Complex, Kola Peninsula.Can. Mineralog., Vol. 39, No. 1, Feb. No.159-69.Russia, Kola PeninsulaMineralogy, alkaline, Deposit - Khibina Lovozero
DS2001-1103
2001
Soloveva, L.V., Gornova, M.A.Geochemical prototypes of basic granulites from Yakutian kimberlitesDoklady Academy of Sciences, Vol. 377, No. 2, Feb-Mar. pp.204-6.Russia, YakutiaChemistry - granulites
DS2001-1111
2001
Spetius, Z.V.A xenolith of high temperature Diamondiferous peridotites from the Udachnaya kimberlite pipe.Doklady Academy of Sciences, Vol. 379, No. 5, June-July pp. 550-2.Russia, SiberiaXenolith - petrology, Deposit - Udachnaya
DS2001-1160
2001
Titkov, S.V., Gorshkov, Vinokurov, Bershov, SolodovGeochemistry and genesis of carbonado from Yakutian diamond depositsGeochemistry International, Vol. 39, No. 3, pp. 228-36.Russia, YakutiaMicroinclusions, Carbonado
DS2001-1172
2001
Ulyanov, A.A., Ustinov, V.I., Turchkova, A.G., Pekov, I.V.Oxygen isotope composition of minerals from highly alkalic rocks of the Khibiny Massif ( Kola Peninsula).Moscow University Bulletin, Vol.56,4,pp.56-63.Russia, Kola PeninsulaAlkaline rocks - not specific to diamonds
DS2001-1196
2001
Vasilenko, V.B., Zinchuk, N.N., Kuznetsova, L.G.On the correlation between the compositions of mantle inclusions and petrochemical varieties of kimberlitesPetrology, Vol. 9, No. 2, pp. 179-189.Russia, YakutiaDiatremes - geochemistry
DS2001-1205
2001
Vladykin, N.V.The Aldan province of Potassium alkaline rocks and carbonatites: problemsAlkaline Magmatism -problems mantle source, pp. 16-40.Russia, Aldan shieldAlkaline rocks - Carbonatite, Magmatism
DS2001-1207
2001
Volkova, N.I., Frenkel, Budanov, Kholodova, LepezinEclogites of the Maksyutov Complex, southern Urals: geochemistry and the nature of the Protolith.Geochemistry International, Vol. 39, No. 10, pp. 935-46.Russia, UralsEclogites
DS2001-1274
2001
Yakubchuk, A., Seltmann, R., Shatov, V., Cole, A.The Altoids: tectonic evolution and metallogenySeg Newsletter, No. 46, July pp. 1, 7-14.Europe, Siberia, Russia, ChinaCraton, Tectonics
DS2001-1281
2001
Yarmolyuk, V.V., Kovalenko, V.I.Late Riphean break up between Siberia and Laurentia: evidence from intraplate magmatism.Doklady Academy of Sciences, Vol. 379, No. 5, June-July pp. 525-8.Russia, SiberiaMagmatism, Gondwana
DS2001-1282
2001
Yarmolyuk, V.V., Nikiforov, A.V., Kovalenko, IvanovSources of Late Mesozoic carbonatites of western Transbaikalia: trace element and Sr neodymium isotopic data.Geochem, International, Vol. 39, No. S1 S99-109.RussiaGeochronology
DS2001-1289
2001
Zaitseva, T.S., Goncharov, G.N., Gittsovich, SemenovCrystal chemistry of chromium spinel from Imandra Layered pluton, Kola PeninsulaGeochemistry International, Vol. 39, No. 5, pp. 479-81.Russia, Kola PeninsulaSpinels
DS2001-1290
2001
Zakharov, V.S.A model for the deformation of rheologically layered crust during continental collisionMoscow University Geology Bulletin, Vol. 55, No. 6, pp. 9-16.RussiaTectonics
DS2001-1296
2001
Zedgenizov, D.A., Yefimova, E.S.Ferropericlase inclusions in a diamond microcrystal from the Udachnaya kimberlite pipe Yakutia.Doklady Academy of Sciences, Vol. 3771, March/April pp. 319-21.Russia, YakutiaMicrodiamonds, Deposit - Udachnaya
DS2002-0012
2002
Ahmedov, A., Panova, E., Krupenik, V., Svehnikova, K.Diamond from Early Proterozoic and Devonian rocks of the joint zone of the Baltic Shield and Russian platform.18th. International Mineralogical Association Sept. 1-6, Edinburgh, abstract p.272.Russia, Baltic ShieldLithogenesis - sedimentary basins
DS2002-0019
2002
Alexeev, S.V., Alexeeva, L.P.Ground ice in the sedimentary rocks and kimberlites of Yakutia, RussiaPermafrost and Periglacial Processes, Vol.13,1,pp. 53-60.RussiaKimberlite - stratigraphy
DS2002-0044
2002
Andreev, G.V., Posokhov, V.F.Rb Sr age of metasomatic rocks from the southern Saku Massif of alkaline rocksGochemistry International, Vol.40, 3, pp.306-8.RussiaGeochronology, Alkaline rocks, rubidium, strontium, stable isotope geochronology
DS2002-0045
2002
Andreev, G.V., Posokohov, V.F.Rb Sr age of metasomatic rocks from the southern Saku Massif of alkaline rocksGeochemistry International, Vol.40,3,pp.306-8., Vol.40,3,pp.306-8.RussiaAlkaline rocks, Saku Massif
DS2002-0046
2002
Andreev, G.V., Posokohov, V.F.Rb Sr age of metasomatic rocks from the southern Saku Massif of alkaline rocksGeochemistry International, Vol.40,3,pp.306-8., Vol.40,3,pp.306-8.RussiaAlkaline rocks, Saku Massif
DS2002-0067
2002
Arzamastsev, A.A., Bea, F., Arzamasteva, L.V., Montero, P.Rare earth elements in rocks and minerals from alkaline plutons of the Kola Peninsula, NW Russia, as indicators of alkaline magma evolution.Russian Journal of Earth Science, Vol. 4, 3, JuneRussia, Kola PeninsulaREE
DS2002-0068
2002
Aschepkov, I.V., Andre, L.Pyroxenite xenoliths in picrite basalts ( Vitim Plateau) origin and differentiation of mantle melts.Russian Geology and Geophysics, Vol. 43, 3-4, pp. 328-47.RussiaPicrites
DS2002-0089
2002
Bagdasarov, Yu.A.Phosphate rare metal carbonatites of the Belaya Zima Massif ( eastern Sayan, Russia)Geology of Ore Deposits, Vol.44,2,pp.132-41.RussiaCarbonatite, Petrology
DS2002-0108
2002
Barron, L.M., Kepezhinskas, P., Barron, B.J., Prikhodko, V.Arc ultramafic rocks at Phanerozooic age in New South Wales and Siberia and theirNew South Wales Quarterly Notes, No. 112, pp. 9-16.Australia, New South Wales, Russia, SiberiaBlank
DS2002-0125
2002
Bea, F., Fershtater,Montero, Whitehouse, Levin, ScarrowRecycling of continental crust into the mantle as revealed by Kytlym dunite zircons, Ural Mountains.Terra Nova, Vol. 13, No. 6, pp. 407-12.RussiaSubduction
DS2002-0155
2002
Billien, M., Leveque, J.J., Artemieva, I.M., Mooney, W.D.Shear wave velocity, seismic attenuation and thermal structure of the continental lithosphere.Geological Society of America Annual Meeting Oct. 27-30, Abstract p. 263.South Africa, Russia, West AfricaGeophysics - seismics, Tectonics
DS2002-0176
2002
Bobrov, A.V., Litvin, Y.A., Divaev, F.K.Phase relations in carbonate silicate rocks from diatremes of the Chagatai ComplexDoklady, Vol.383A,3,March-April,pp. 267-70.RussiaPetrology, Deposit - Chagatai complex
DS2002-0211
2002
Brown, D., Juhlin, C., Puchkov, V.Mountain building in the Uralides ... Pangea to the presentAmerican Geophysical Union, Geophysical Monograph, No. 132, 300p.Russia, Europe, UralsBook - Tectonics, arc collision, crustal, orogenesis, Geochronology
DS2002-0221
2002
Bulanova, G.P., Pearson, D.G., Hauri, E.H., Griffin, B.J.Carbon and nitrogen isotope systematics within a sector growth diamond from the Mir kimberlite, Yakutia.Chemical Geology, Vol. 188, No. 1-2, pp. 105-123.Russia, YakutiaGeochronology, Deposit - Mir
DS2002-0223
2002
Bulin, N.K.Lateral velocity heterogeneity of deep zones in the Earth's crust of the West Siberian Territory.Doklady, Vol. 387A, Nov-Dec. No. 9, pp. 1018-23.Russia, SiberiaTectonics, Geophysics - seismics
DS2002-0228
2002
Burgess, R., Lazelle, E., Turner, G., Harris, J.W.Constraints on the age and halogen composition of mantle fluids in Siberian coated diamonds.Earth and Planetary Science Letters, Vol.197,3-4,pp. 193-203.RussiaGeochronology, Deposit - Aikhal
DS2002-0232
2002
Bushenkova, N., Tychkov, N., Koulakov, I.Tomography on PP-P waves and its application for investigation of the upper mantle in central Siberia.Tectonophysics, Vol. 358, 1-4, pp. 57-76.Russia, SiberiaGeophysics - seismics
DS2002-0264
2002
Chakhmouradian, A.B., Reguirm E.P., Mitchell, R.H.Strontium apatite: new occurrences, and the extent of Sr for Ca substitution in apatite group minerals.Canadian Mineralogist, Vol.40,1,Feb.pp. 121-36.Russia, Northwest TerritoriesAlkaline rocks, Deposit - Lovozero, Murun, Lac de Gras
DS2002-0268
2002
Chakhmouradian, A.R., Zaitsev, A.N.A mineralogical inquiry into the past of unique multistage carbonatites from the AfrikAnd a alkali ultramafic complex, northwestern Russia.18th. International Mineralogical Association Sept. 1-6, Edinburgh, abstract p.245.RussiaCarbonatite
DS2002-0269
2002
Chakhmouradian, A.R., Zaitsev, A.N.Calcite amphibole clinopyroxene rock from th Afrikande Complex, Kola Peninsula: mineralogy and a possible link to carbonatites. III silicate minerals.Canadian Mineralogist, Vol. 40,5,Oct. pp. 1347-74.Russia, Kola PeninsulaCarbonatite - mineralogy, Afrikande Complex
DS2002-0271
2002
Chakmouradian, A.R., Mitchell, R.H.New dat a on pyrochlore and perovskite group minerals from the Lovozero alkaline complex, Russia.European Journal of Mineralogy, Vol. 14,4,pp. 821-36.Russia, Kola PeninsulaMineralogy
DS2002-0279
2002
Chashchin, V.V., Bayanova, T.B.,Apanasevich, E.A.The Monchegorsk ore district as an example of Paleoproterozoic ore bearing chamber structure.Geology of Ore Deposits, Vol.44,2,pp.142-9.Russia, Kola PeninsulaMetallogeny - not specific to diamonds
DS2002-0281
2002
Chekulaev, V.P., Lobach-Zhuchenko, S.B., ArestovaArchean magmatism in the northwestern margin of the ancient Vodlozero domain near Lake Oster: geology...Petrology, Vol.10,2,pp.119-45.Russia, KareliaGeology, geochemistry, petrology, Magmatism
DS2002-0372
2002
Demeny, A., Zaitsev, A.N., Wall, F., Sindem, S., Sitnikova, M.A., KarchevskyCarbon and isotope compositions of carbonatite complexes from the Kola Peninsula, Russia.18th. International Mineralogical Association Sept. 1-6, Edinburgh, abstract p.252.Russia, Kola PeninsulaCarbonatite - mineralogy
DS2002-0378
2002
Diakov, S., West, R., Schissel, D.Recent advances in the Norilsk model and its application for exploration of Ni Cu PGE sulphidesSociety of Economic Geologists Special Publication, No.9,pp.203-26.RussiaNickel, copper, platinum metallogeny, Deposit - Norilsk
DS2002-0392
2002
Doroshkevich, A.G., Kobylkina, O.V., Ripp, G.S.Role of sulfates in the formation of carbonatites in the western Transbaikal regionDoklady Earth Sciences, Vol. 387A,9, pp. 131-4.RussiaCarbonatite
DS2002-0402
2002
Downes, H., Peltonen, P., Manttari, I., Sharkov, E.V.Proterozoic zircon ages from lower crust granulite xenoliths, Kola Peninsula, Russia: evidence for crustal growth and reworking.Journal of the Geological Society of London, Vol. 159, 2, pp. 485-488.Russia, Kola PeninsulaBlank
DS2002-0420
2002
Egorov, K.N.New dat a on mineralogy of sedimentary reservoirs of diamonds in the southwesternDoklady Earth Sciences, Vol.382,1,pp.109-111.RussiaAlluvials, placers, mineralogy, Deposit -
DS2002-0421
2002
Egorov, K.N., Menshagin, Sekerin, Koshkarev, UshchapovNew dat a on mineralogy of sedimentary reservoirs of diamonds in the southwestern Siberian platform.Doklady, Vol.382, 1, Jan-Feb.pp. 109-11.Russia, SiberiaAlluvials, placers
DS2002-0434
2002
Ermakov, V.A., Babanskii, A.D., Ermakov, A.V.The first find of ultramafic nodules on the Greater Kuril Island ArcDoklady Earth Sciences, Vol. 384, 4, May-June pp. 353-6.RussiaNodules
DS2002-0484
2002
Friberg, M., Juhlin, Beckolmen, Petrov, GreenPaleozoic tectonic evolution of the Middle Urals in the light of ESRU seismic experiment.Journal of the Geological Society of London, Vol.159,3,pp.295-306., Vol.159,3,pp.295-306.Russia, UralsTectonics
DS2002-0485
2002
Friberg, M., Juhlin, Beckolmen, Petrov, GreenPaleozoic tectonic evolution of the Middle Urals in the light of ESRU seismic experiment.Journal of the Geological Society of London, Vol.159,3,pp.295-306., Vol.159,3,pp.295-306.Russia, UralsTectonics
DS2002-0523
2002
GemocSulphides - more evidence for plumes from the lower mantle?Gemoc 2001 Annual Report, pp. 24-5.Mantle, Russia, SiberiaGeochemistry, mineralogy, sulphides, Research project - brief highlight
DS2002-0525
2002
GemocMapping the mantle with garnet variables - order from complexityGemoc 2001 Annual Report, pp. 20-21.Northwest Territories, Southern Africa, Russia, SiberiaGeochemistry, mineralogy, Research project - brief highlight
DS2002-0528
2002
GemocHow old are diamonds?Gemoc 2001 Annual Report, p.28.Russia, SiberiaGeochemistry, mineralogy, inclusions, Research project - brief highlight
DS2002-0529
2002
GemocGreen and gold sulphides in olivine date the Siberian lithosphereGemoc 2001 Annual Report, p.30.Russia, SiberiaGeochemistry, mineralogy, inclusions, Research project - brief highlight
DS2002-0530
2002
GemocGeochemical remote sensing of the deep Earth - 4D lithospheric mapping 2001Gemoc 2001 Annual Report, pp. 18-19.Siberia, Russia, mantleGeochemistry, lithosphere, Research project - brief highlight
DS2002-0542
2002
Gemoc Annual ReportMg isotopes in olivine track fluid flow in the mantleGemoc Arc National Key Centre For The Geochemical Evolution And, pp. 38-9.Russia, South Africa, Northwest Territories, AustraliaBlank
DS2002-0546
2002
Gemological AbstractsChanging diamond colour. Gemological Bulletin, (Russia) No. 3, pp. 19-30. 2001Gems and Gemology, Vol. 38, Fall, p. 288 ( 1p. abstract)RussiaDiamond - treatment
DS2002-0552
2002
Genshaft, Yu.S., Ilupin, I.P.On genetic classification of chromian spinels in deep seated rocks from continental structures.Russian Journal of Earth Science, Vol. 4, 2, April, pp.RussiaMineralogy - spinels
DS2002-0578
2002
Gladkochub, D.P., Donskaya, T.V., Mazukabzov, A.M., Sklyarov, E.V.The Urik Iya graben of the Sayan In lier of the Siberian Craton: new geochronologicalDoklady Earth Sciences, Vol. 386, 7, Sept-Oct.pp. 737-41.Russia, SiberiaGeochronology, Geodynamics, tectonics - not specific to diamonds
DS2002-0582
2002
Gloday, J., Bingen, B., Austrheim, Molina, RusinPrecise eclogitization ages deduced from Rb Sr mineral systematics: the Maksyutov complex, southern Urals.Geochimica et Cosmochimica Acta, Vol. 66,7,pp. 1221-35.Russia, southern UralsSubduction related high pressure metamorphism
DS2002-0591
2002
Golovin, A.V., Sharygin, V.V., Pokhilenko, N.P., Malkovets, V.G., KoelsovSecondary melt inclusions in olivine from unaltered kimberlites of the Udachnaya East pipe, Yakutia.Doklady Earth Sciences, Vol. 388,1,pp. 93-96.Russia, YakutiaPetrology, deposit - Udachnaya
DS2002-0627
2002
Hacker, B.R., Calvert, A., Zhang, R.Y., Ernst, W.G., Liou, J.G.Ar Ar geochronology of diamond bearing metasedimentary rocks from the Kokchetav Massif.Frontiers Science Series, University Academy Press, Vol. 38, pp. 397-412.RussiaGeochronology
DS2002-0666
2002
Hartz, E.H., Torsvik, T.H.Baltica and Siberia inverted: a new Rodinia reconstruction linking the break up of the Iapetus Ocean and the Aegir Sea to the peri-Gondwana events.Geological Society of America Annual Meeting Oct. 27-30, Abstract p. 559.Greenland, RussiaTectonics - rifting, terranes, Gondwana
DS2002-0678
2002
Hauri, E., Bulanova, G., Pearson, G., Griffin, B.Carbon and nitrogen isotope systematics in a sector zoned diamond from the Mir kimberlite, Yakutia.Eos, American Geophysical Union, Spring Abstract Volume, Vol.83,19, 1p.Russia, YakutiaGeochronology - diamond morphology, Deposit - Mir
DS2002-0681
2002
Hauri, E.H., Wang, J., Pearson, D.G., Bulanova, G.P.Microanalysis of 13C 15 N and N abundances in diamonds by secondary ion mass spectrometry.Chemical Geology, Vol.145, 1-2, Apr.15, pp. 149-63.Russia, SiberiaDiamond - inclusions, carbon, nitrogen isotopes
DS2002-0814
2002
Katayama, I., Ohta, M., Ogasawara, Y.Mineral inclusions in zircon from diamond bearing marble in the Kokchetav massif, northern Kazakhstan.European Journal of Mineralogy, Vol. 14, No. 6, pp. 1103-1108.Russia, KazakhstanDiamond - inclusions
DS2002-0837
2002
Khabarov, E.M., Ponomarchuk, V.A., Morozova, J.P.Strontium isotopic evidence for supercontinental breakup and formation in the Riphean Western Margin of the Siberian Craton.Russian Journal of Earth Science, Vol. 4, 4, AugustRussia, SiberiaGeochronology
DS2002-0839
2002
Khain, V.E., Ryabukhim, A.C.Russian geology and the plate tectonic revolutionGeological Society of London Special Paper, No. 192, pp. 185-198.RussiaTectonics
DS2002-0840
2002
Khain, V.E., Ryabukhin, A.G.Russian geology and the plate tectonics revolution. p. 192 mentions kimberlite brieflyGeological Society of London, Special Publication, 192, pp. 185-198.RussiaPlate tectonics - history
DS2002-0866
2002
Kogarko, L.N., Williams, C.T., Wooley, A.R.Chemical evolution and petrogenetic implications of loparite in layered agpaitic Lovozero Complex.Mineralogy and Petrology, Vol. 74, No. 1, pp. 1-24.Russia, Kola PeninsulaGeochemistry, Deposit - Lovozero
DS2002-0867
2002
Kogarko, L.N., Williams, C.T., Woolley, A.R.Chemical evolution and petrogenetic implications of ioparite in the layered agpaitic complex, Kola Peninsula.Mineralogy and Petrology, Vol.74, No.1, pp. 1-24.Russia, Kola PeninsulaLayered complex, Lovozero Complex
DS2002-0876
2002
Kononova, V.A., Levsky, L.K., Pervov, V.A., Ovchinnikova, G.V., BogatikovPb Sr Nd isotopic systematics of mantle sources of potassic ultramafic and mafic rocksPetrology, Vol. 10, 5, pp. 433-47.RussiaAlkaline rocks, Geochronology
DS2002-0877
2002
Kononova, V.A., Levsky, L.K., Pervov, V.A., Ovchinnikova, G.V., BogatikovPb Sr Nd isotopic systematics of mantle sources of potassic ultramafic and mafic rocks in the north and east European platform.Petrology, Vol. 10, 5, pp. 433-47.Russia, UralsGeochronology, Alkaline rocks
DS2002-0878
2002
Kononova, V.A., Levsky, L.K., Pervov, V.A., Ovchinnikova, G.V., Bogatikov, A.Pb Sr Nd isotopic systematics of mantle sources of potassic ultramafic and mafic rocksPetrology, Vol. 10, 5, pp. 433-47.Russia, Europe, Kola PeninsulaGeochronology
DS2002-0884
2002
Koreshkova, M.Lower crustal xenoliths from dykes and pipes in northwestern White Sea region18th. International Mineralogical Association Sept. 1-6, Edinburgh, abstract p.233.Russia, White SeaDykes - olivine melilitite
DS2002-0890
2002
Korobeinikov, A.F., Grabezhev, A.I., Moloshag, V.P.The behaviour of Pt, Pd and au during the formation of porphyry gold copper systems: evidence from ...Doklady, Vol.383A.March-April pp. 314-7.RussiaGold, copper, platinum, palladium, Deposit - Tominsk Michurinsk
DS2002-0891
2002
Korsakov, A.V., Shatsky, V.S., Sobolev, N.V., Zayachokovosky, A.A.Garnet biotite clinozoisite gneiss: a new type of Diamondiferous metamorphic rock from the Kokchetav Massif.European Journal of Mineralogy, Vol. 14, 5, pp. 915-28.RussiaDiamond genesis
DS2002-0892
2002
Kostenko, N.P., Bryantseva, G.V.Orogenic structural features in the southern part of the Polar UralsMoscow University Geology Bulletin, Vol. 57, 2. pp. 1-5.Russia, UralsTectonics
DS2002-0897
2002
Kravchenko, S.M.Lower ore horizon of the Tomtor Massif, Polar Siberia: carbonatized volcanic rocks (lamproites).Doklady Earth Sciences, Vol. 386, 7, Sept-Oct, pp. 757-62.Russia, SiberiaLamproites
DS2002-0898
2002
Kravchinsky, V.A., Konstantinov, K.M., Courtillot, V.Paleomagnetism of East Siberian traps and kimberlites: two new poles and paleogeographic reconstructions...Geophysical Journal International, Vol. 148, No. 1, pp. 1-33.Russia, SiberiaPaleomagnetics - geochronology 360-250 Ma, Geophysics - magnetics
DS2002-0955
2002
Litvin, Y.A., Butvina, V.G., Spivak, A.V.Formation of natural diamonds in carbonate silicate and sulphide melts: the evidence from high pressure experiments.18th. International Mineralogical Association Sept. 1-6, Edinburgh, abstract p.75.Russia, ChinaUHP - mineralogy, Kokchetav, Dabie Shan
DS2002-0956
2002
Litvin, Y.A., Jones, BeardCrystallization of diamond syngenetic minerals in melts of Diamondiferous carbonatites of Chagatai Massif 7.GPaDoklady, Vol. 381A, No. 9, pp. 1066-9.Russia, UzbekistanCarbonatite, Geochronology
DS2002-0975
2002
Lutkov, V.S., Mogarovskii, V.V., Lutkova, V.Y.Geochemical model for the lower crust in the Pamir and Tien Shan folded areas: evidence from xenoliths...Geochemistry International, Vol.40,4,pp.342-54.Russia, TajikistanAlkaline rocks
DS2002-0976
2002
Lutkov, V.S., Mogarovskii, V.V., Lutkova, V.Y.Geochemical model for the lower crust in the Pamir and Tien Shan folded areas: evidence from studies of xenoliths in alkaline mafic rocks.Geochemistry International, Vol.40,2,pp.342-54.Tajikistan, RussiaGeochemistry - xenoliths
DS2002-0989
2002
Makeev, A.B., Kisel, S.I., Sobolev, V.K., Filippov, V.N., Bryanchaninova, N.I.Native metals in kimberlite pipe aureoles of the Arkhangelsk Diamondiferous provinceDoklady Earth Sciences, Vol. 385A, 6, pp. 714-8.Russia, Kola Peninsula, ArkangelskGeochemistry, Deposit - Arkangel area
DS2002-1001
2002
Martynov, Y.A., Chaschin, Rasskazov, SaraninaLate Miocene Pliocene basaltic volcanism in the south of the Russian far East as an indicator of ...Petrology, Vol.10,2,pp.165-83.RussiaLithospheric mantle, heterogeneity continent-ocean
DS2002-1002
2002
Martynov, Yu.A., Chaschin, Rasskazov, SaraniniaLate Miocene- Pliocene basaltic volcanism in the south of Russia Far East, an indicator of lithospheric mantlePetrology, Vol. 10, 2, pp. 165-83.Russia, Far EastHeterogeneity in continent - ocean transition zone
DS2002-1004
2002
Maslov, A.V., Isherskaya, M.V.Riphean sedimentary sequences of the eastern and northeastern margins of the Eastern European Craton.Russian Journal of Earth Science, Vol. 4, 4, AugustEurope, Asia, RussiaCraton
DS2002-1013
2002
Matveev, Y.A., Litvin, Y.A., Perchuk, L.L.Melting equilibration temperatures of the CaMgSiO3 Mg3Al2Si3O12 K2 Ca (Co2) system modelling a source composition of carbonate - silicate diamond bearing rocks Kokchetav18th. International Mineralogical Association Sept. 1-6, Edinburgh, abstract p.242. (poster)RussiaMineralogy - melting
DS2002-1041
2002
Medvedev, V.Y., Ivanova, Egorov et al.Kelphytic rims around garnet in kimberlites: an experimental studyDoklady, Vol. 381A, No. 9, pp. 1096-8.RussiaPetrology
DS2002-1053
2002
Miller, E.L., Gelman, M., Parfenov, L., Hourigan, J.Tectonic setting of Mesozoic magmatism: a comparison between northeastern Russia and the North America Cordillera.Geological Society of America Special Paper, No. 360, pp. 313-32.Russia, AlaskaMagmatism, tectonics
DS2002-1057
2002
Mints, M.V., Berzin, R.G., Zamozhnyaya, R.G., Zlobin, V.L., Kaulina, T.V.Paleoproterozoic collision structures in the deep crustal section of the Karelian Craton:Doklady Earth Sciences, Vol. 385, 6, pp. 635-40.RussiaGeodynamics, tectonics, Craton - Karelia
DS2002-1073
2002
Molina, J.F., Austrheim, H., Glodny, J., Rusin, A.The eclogites of the Marun Keu complex: fluid control on reaction kinetics and metasomatism during high P metamorphismLithos, Vol.61, 1-2, March, pp. 55-78.Russia, Polar UralsMetamorphism - metasomatism, Eclogites
DS2002-1074
2002
Molina, J.F., Austrheim, H., Glodny, J., Rusin, A.The eclogites of the Marun-Keu complex, Polar Urals: fluid control on reaction kinetics and metasomatism UHPLithos, Vol. 61, No.1-2,pp. 55-78.Russia, UralsEclogites, Metamorphism - high P
DS2002-1138
2002
Nikiforov, A.V., Yarmolyuk, V.V., Kovalenko, IvanovLate Mesozoic carbonatites of western Transbaikalia: isotopic geochemicak characteristics and sources.Petrology, Vol.10,2,pp.146-64.RussiaCarbonatite
DS2002-1139
2002
Nikiforov, A.V., Yarmolyuk, V.V., Kovalenko, IvanovLate Mesozoic carbonatites of western Transbaikalia: isotopic geochemical characteristics and sources.Petrology, Vol. 10, 2, pp. 146-64.Russia, TransbaikalCarbonatite
DS2002-1141
2002
Nimis, P.The pressures and temperatures of formation of diamond based on thermobarometry of chromian diopside inclusions.Canadian Mineralogist, Vol. 40,3,June pp. 871-84.South Africa, Australia, Russia, Siberia, Europe, AfricaDiamond inclusions, mineralogy
DS2002-1147
2002
Nivin, V.A., Ikorsky, S.V., Balaganskaya, E.G., Liferovich, R.P., Subbotin, V.V.Helium and argon isotopes in minerals of ore deposits associated with the Kovdor and18th. International Mineralogical Association Sept. 1-6, Edinburgh, abstract p.250.Russia, Kola Peninsulacarbonatite - mineralogy
DS2002-1194
2002
Ota, T., Buslov, M.M., Watanabe, T.Metamorphic evolution of late Precambrian eclogites and associated metabasites, Gorny Altai, southern Russia.International Geology Review, Vol. 44, 9, pp. 837-58.RussiaEclogites
DS2002-1228
2002
Patyk-Kara, N.G.Evolution of placer formation in northeastern Eurasia ( Russia)11th. Quadrennial Iagod Symposium And Geocongress 2002 Held Windhoek, Abstract p. 38.RussiaAlluvials, Geomorphology
DS2002-1233
2002
Pavlenkova, G.A., Priestley, K., Cipar, J.2D model of the crust and uppermost mantle along rift profile, Siberian cratonTectonophysics, Vol. 355, 1-4, pp.171-86.Russia, SiberiaGeophysics - seismics, Tectonics
DS2002-1236
2002
Pearson, N.J., Alard, O., Griffin, Jackson, O'ReillyIn situ measurement of Re Os isotopes in mantle sulfides by laser ablation multicollector inductively..Geochimica et Cosmochimica Acta, Vol. 66, 6, pp. 1037-50.Russia, Siberia, Northwest TerritoriesCraton - mass spectrometry, rhenium, osmium, Peridotites
DS2002-1250
2002
Pervov, V.A., Kononova, V.A., Ilupin, I.P., Simakov, S.K.PT parameters of formation of rocks included as xenoliths in kimberlites of middle Timan.Doklady Earth Sciences, Vol. 386, 7, Sept-Oct.pp. 867-9.Russia, TimanGeochronology
DS2002-1298
2002
Ragozin, A.L., Shatsky, V.S., Tylov, G.M., Goryainov, S.V.Coesite inclusions in rounded diamonds from placers of the northeastern Siberian Platform.Doklady, Vol.384,4, May-June, pp. 385-9.Russia, SiberiaAlluvials, Diamond - inclusions, coesite
DS2002-1315
2002
Razvozzhaeva, E.A., Prokofev, Spiridonov, MartikhaevPrecious metals and carbonaceous substance in ores of the Sukhoi Log deposit, Eastern Siberia, Russia.Geology of Ore Deposits, Vol.44,2,pp. 103-110.RussiaGold, carbon, metallogeny, Deposit - Sukhoi Log
DS2002-1319
2002
Reddy, B.J., Yamauchi, J., Reddy, Ravikumar, ChandraseskharOptical and EPR spectra of Ti 3 in lamprophyllite from Kola Peninsula, RussiaNeues Jahrbuch fur Mineralogie - Monatshefte, No.3, March,ppp.138-40.Russia, Kola PeninsulaMineralogy - titanium
DS2002-1329
2002
Reverdatto, V.High/ultrahigh pressure peridotites and pyroxenites from the Kokchetav collision zone, Kazakhstan.18th. International Mineralogical Association Sept. 1-6, Edinburgh, abstract p.226.RussiaUHP mineralogy
DS2002-1330
2002
Reverdatto, V.V., Kolmogorov, Y.P., Parkhomenko, V.S., Selyatitsky, A.Y.Geochemistry of peridotites from the Kolchetav Massif, KazakhstanDoklady Earth Sciences, Vol. 386, 7, Sept-Oct.pp. 786-90.Russia, KazakhstanGeochemistry
DS2002-1342
2002
Ripp, G.S.Mantle shaped carbonatite bodies of the Kholyuta depositLithology and Mineral Resources, Vol. 37,4,pp. 386-9.RussiaCarbonatite
DS2002-1343
2002
Ripp, G.S.Mantle shaped carbonatite bodies of the Khalyuta depositLithology and Mineral Resources, Vol. 37, 4, pp. 386-9.Russia, TransbaikalCarbonatite - morphology
DS2002-1344
2002
Ripp, G.S., Badmatsyrenov, M.V., Skulyberdin, A.A.A new carbonatite occurrence in northern TransbaikaliaPetrology, Vol.Russia, TransbaikalCarbonatite, Geochemistry - REE
DS2002-1364
2002
Rosen, O.M.Siberian craton - a fragment of a paleoproterozoic supercontinentRussian Journal of Earth Science, Vol. 4, 2, April, pp.RussiaGondwana
DS2002-1377
2002
Ryabchikov, I.D., Solovova, I.P., Kogarko, L.N., Bray, G.P., Ntaflos, Th.Thermodynamic parameters of generation of meymechites and alkaline picrites in theGeochemistry International, Vol. 40, 11, pp. 1031-41.RussiaPicrites, meymechites
DS2002-1379
2002
Safonov, O.G., Malveev, Yu.A., Litvin, Y.A., Perchuk, L.L., Bindi, L., MenchettiUltrahigh pressure study of potassium bearing clinopyroxene equilibria18th. International Mineralogical Association Sept. 1-6, Edinburgh, abstract p.74.Russia, YakutiaUHP, mineralogy, Kokchteav Complex, kimberlites
DS2002-1385
2002
Sakhno, V.G., Moiseenko, V.G.High K mafic rocks of the northern Omolon CratonDoklady Earth Sciences, Vol. 387, 8, pp. 899=903.RussiaPotassic rocks, alkaline
DS2002-1386
2002
Sakhno, V.G., Moiseenko, V.G., Zhuravlev, D.Z., Matyunin, A.P.Sm Nd ages of Diamondiferous kimberlites of the Kurkhan diatreme in the Khanka Massif, Primor'e region.Doklady Earth Sciences, Vol. 387A, 9, pp. 1110-1112.RussiaGeochronology
DS2002-1387
2002
Sakhno, V.G., Moiseenko, V.G., Zhuravlev, D.Z., Matyunin, A.P.Sm Nd age of Diamondiferous kimberlites of the Kurkhan diatreme in the Khanka Massif Primore region.Geochemistry International, Vol. 40, 12, pp. 110-2.RussiaGeochronology
DS2002-1391
2002
Samoilov, V.S.Richterite magnesioar fvedsonite magnesioriebeckite isomorphoric series: evidence from carbonatites of Eastern Siberia.Neues Jahrbuch Mineralogie, Abhundlung, Vol. 177, pp. 199-211.Russia, SiberiaCarbonatite - mineralogy, analyses
DS2002-1410
2002
Scarrow, J.H., Ayala, C., Kimbell, G.S.Insights into orogenesis: getting to the root of the continent ocean ocean continent collision in the southern Urals, Russia.Journal of the Geological Society of London, Vol. 159, 6, pp. 659-72.Russia, UralsOrogeny - tectonics
DS2002-1411
2002
Scarrow, J.H., Ayala, C., Kimbell, G.S.Insights into orogenesis: getting to the root of a continent ocean continent collision, southern Urals, Russia.Journal of the Geological Society of London, Vol. 159, 2, pp. 659-671.Russia, UralsBlank
DS2002-1438
2002
Searsm J.W., Price, R.A.Break up and dispersal of the Early Neoproterozoic Siberia - Laurentia Australia troika.Geological Society of America Annual Meeting Oct. 27-30, Abstract p. 559.Australia, Russia, Canada, OntarioTectonics, Gondwana
DS2002-1443
2002
Seredkin, M.V., Zotov, I.A., Karchevsky, P.I.Mineralogical types of calcitic carbonatites of the Kovdor Massif and their genetic interpretation.Doklady, Vol.383A,3,March-April,pp. 301-3.Russia, Kola PeninsulaCarbonatite, Deposit - Kovdor massif
DS2002-1458
2002
Sherman, S.I., Demyanovich, V.M., Lysak, S.V.New dat a on recent destruction of lithosphere in the Baikal rift zoneDoklady Earth Sciences, Vol. 387A,9, pp. 1067-70.RussiaTectonics
DS2002-1499
2002
Sitnikova, M.A., Wall, F., Jeffries, T., Zaitsev, A.N.Ancylite group minerals in the Sallaniatvi carbonatites, Kola Peninsula, Russia18th. International Mineralogical Association Sept. 1-6, Edinburgh, abstract p.251-2.Russia, Kola PeninsulaCarbonatite - mineralogy
DS2002-1505
2002
Sklyarov, E.V., Gladkochub, D.P., Mazukabzov, A.M., Donskaya, T.V.Geological complexes in the margin of the Siberian Craton as indicators of the evolutionRussian Journal of Earth Science, Vol. 4, 3, JuneRussiaMagmatism, Gondwana
DS2002-1509
2002
Smirnov, V.N.Davydovskii dunite clinopyroxenite gabbro Massif: an example of the platinum bearing association in the eastern Urals.Petrology, Vol. 10, No. 3, pp.Russia, UralsUltramafics - not specific to diamond
DS2002-1520
2002
Sobolev, N.V., Taylor, L.A.Determining the provenance of a diamond: chromite inclusions as a Russian signatureEos, American Geophysical Union, Spring Abstract Volume, Vol.83,19, 1p.Russia, YakutiaDiamond - inclusions
DS2002-1525
2002
SolovevaMegacrystalline orthopyroxenite with graphite from the Udachnaya pipe, YakutiaDoklady Earth Sciences, Vol. 385, 5 June-July, pp.589-92.Russia, YakutiaMineralogy, Deposit - Udachnaya
DS2002-1526
2002
Soloveva, L.V., Kostrovitskii, S.I., Ukhanov, A.V., Suvorova, L.F., AlymovaMegacrystalline orthopyroxenite with graphite from the Udachanaya pipe, YakutiaDoklady, Vol.385,June-July, pp. 589-92.Russia, YakutiaMineralogy, Deposit - Udachnaya
DS2002-1531
2002
Spetius, Z.V., Belousova, Griffin, O'Reilly, PearsonArchean sulphide inclusions in Paleozoic zircon megacrysts from the Mir kimberlite: implications datingEarth and Planetary Science Letters, Vol.199,1-2,pp.111-26., Vol.199,1-2,pp.111-26.Russia, YakutiaGeochronology - dating of diamonds, Deposit - Mir
DS2002-1532
2002
Spetius, Z.V., Belousova, Griffin, O'Reilly, PearsonArchean sulphide inclusions in Paleozoic zircon megacrysts from the Mir kimberlite: implications datingEarth and Planetary Science Letters, Vol.199,1-2,pp.111-26., Vol.199,1-2,pp.111-26.Russia, YakutiaGeochronology - dating of diamonds, Deposit - Mir
DS2002-1584
2002
Terabayashi, M., Ota, T., Yamamoto, H., Kaneko, Y.Contact metamorphism of the Daulet Suite by solid state emplacement of the Kokchetav UHP HP metamorphic slab.International Geology Review, Vol. 44, 9, pp. 819-30.RussiaUHP
DS2002-1597
2002
Titkov, S.V., Saparin, G.V., Obyden, C.K.A study of the evolution of grwoth sectors in natural diamond crystals using cathodluminescence microscopy.18th. International Mineralogical Association Sept. 1-6, Edinburgh, abstract p.151.RussiaDiamond - crystallography
DS2002-1605
2002
Tolstikhin, I.N., Kamensky, Marty, Nivin, Vetrin et al.Rare gas isotopes and parent trace elements in ultrabasic alkaline carbonatite complexes, Kola Peninsula.Geochimica et Cosmochimica Acta, Vol. 66, No. 5, pp. 881-901.Russia, Kola PeninsulaMantle plume component, Geochemistry
DS2002-1606
2002
Tomilenko, A.A., Shatsky, V.S., Kovyazin, S.V., Ovchinnikov, Y.I.Melt and fluid inclusions in anorthosite xenolith from the Udachnaya kimberlite pipe, Yakutia.Doklady Earth Sciences, Vol. 387A,9, pp. 1060-62.Russia, YakutiaInclusions, Deposit - Udachnaya
DS2002-1607
2002
Tomilenko, A.A., Shatsky, V.S., Kovyazin, S.V., Ovchinnilkov, Yu.I.Melt and fluid inclusions in anorthosite xenolith from the Udachnaya kimberlite pipe, Yakutia.Doklady, Vol. 387A, Nov-Dec. No. 9, pp. 1060-62.Russia, YakutiaGeochemistry - inclusions
DS2002-1634
2002
Valislenko, V.B., Zinchuk, N.N., Krasavchikov, V.G., Kuznetsova, L.G.Diamond potential estimation based on kimberlite major element chemistryJournal of Geochemical Exploration, Vol. 76, 2, pp. 93-112.Russia, YakutiaChemistry, diamond grade, whole rock composition, Exploration - techniques
DS2002-1653
2002
Vassilieva, V.A.Garnet group typochemism in melilite bearing rocks of the Turiy massif, Kola Peninsula, Russia.18th. International Mineralogical Association Sept. 1-6, Edinburgh, abstract p.251.Russia, Kola PeninsulaMelilite
DS2002-1654
2002
Vassilieva, V.A., Rozhdestvenskaya, I.V., Evdokimov, M.D.The accessory minerals in melilite bearing rocks from the Turiy massif, ( Kola Peninsula) Russia.18th. International Mineralogical Association Sept. 1-6, Edinburgh, abstract p.251.Russia, Kola PeninsulaMelilite
DS2002-1660
2002
Velinsky, V.V., Pavlov, A.L.Rocks of the boninite series: products of interaction between calc alkaline magmas and serpentinites.Doklady, Vol. 387A, Nov-Dec. No. 9, pp. 1092-5.RussiaBoninites
DS2002-1768
2002
Zaitsev, A.N., Chakhmouradian, A.B.Calcite amphibole clinopyroxene rock from AfrikAnd a complex: mineralogy and link carbonatitesCanadian Mineralogist, Vol.40,1,Feb.pp. 103-20.Russia, Kola PeninsulaCarbonatite - II. oxysalt minerals
DS2002-1769
2002
Zaitsev, A.N., Demeny, A., Sindern, S., Wall, F.Burbankite group minerals and their alteration in rare earth carbonatites - source of elements and fluids....Lithos, Vol.62,1-2,pp.15-33., Vol.62,1-2,pp.15-33.Russia, Kola PeninsulaGeochronology, Deposit - Khibina, Vuoriyarvi complex
DS2002-1770
2002
Zaitsev, A.N., Demeny, A., Sindern, S., Wall, F.Burbankite group minerals and their alteration in rare earth carbonatites - source of elements and fluids....Lithos, Vol.62,1-2,pp.15-33., Vol.62,1-2,pp.15-33.Russia, Kola PeninsulaGeochronology, Deposit - Khibina, Vuoriyarvi complex
DS2002-1795
2002
Zhu, Y., Ogasawara, Y.Carbon recycled into deep earth: evidence from dolomite association in subduction zone arc.Geology, Vol. 30, 10, Oct. pp. 947-50.RussiaUHP, texture, subduction, diamond, Kochetav Massif
DS2002-1796
2002
Zhu, Y., Ogasawara, Y., Ayabe, T.The mineralogy of the Kokchetav 'lamproite': implications for the magma evolutionJournal of Volcanology and Geothermal Research, Vol.116, 1-2, pp. 35-61.RussiaPetrology - clinopyroxene, magnetite, Deposit - Kokchetav
DS2002-1798
2002
Zolotukhin, V.V., Vasilev, Y.R.Distinctive genetic features of K rich basitesPetrology, Vol.10, 1, pp. 78-97.Russia, SiberiaMantle metasomatism
DS2002-1802
2002
Zorin, Y.A., Mordvinova, V.V., Turutanov, E.K., Belichenko, B.G., ArtemyevA low seismic velocity layers in the Earth's crust beneath Siberia and central Mongolia:Tectonophysics, Vol. 359, No. 3-4, pp. 307-27.Russia, Siberia, MongoliaGeophysics - seismics
DS2003-0002
2003
Achchepkov, I.V.Empirical garnet thermobarometer for mantle peridotitesGeological Society of America, Annual Meeting Nov. 2-5, Abstracts p.326.Russia, Northwest TerritoriesGeothermometry
DS2003-0014
2003
Anand, M., Taylor, L.A., Carlson, R.C., Taylor, D-H., Sobolev, N.V.Diamond genesis revealed by x-ray tomography of Diamondiferous eclogites8ikc, Www.venuewest.com/8ikc/program.htm, Session 2, POSTER abstractRussia, Siberia, YakutiaEclogites and Diamonds
DS2003-0015
2003
Anand, M., Taylor, L.A., Misra, K.C., Carlson, W.D., Sobolev, N.V.Diamondiferous eclogite dissections: anomalous diamond genesis?8 Ikc Www.venuewest.com/8ikc/program.htm, Session 2, AbstractRussia, YakutiaEclogites, diamonds, Genesis
DS2003-0038
2003
Artemieva, I.M.Lithospheric structure composition and thermal regime of the East European Craton:Earth and Planetary Science Letters, Vol. 213, No. 3-4, pp. 431-46.RussiaGeothermometry
DS2003-0040
2003
Artyushkov, E.V.Abrupt continental lithosphere weakening as a precondition for fast and large scaleGeotectonics, Vol. 37, 2, pp. 107-123.RussiaTectonics
DS2003-0041
2003
Arzamastev, A.A., Travin, A.V., Belyatskii, B.V., Arzamasteva, L.V.Paleozoic dike series in the Kola alkaline province: age and characteristics of mantleDoklady Earth Sciences, Vol. 391, 6a, pp. 906-909.Russia, Kola PeninsulaCarbonatite, geochronology
DS2003-0043
2003
Ashchepkov, I.V., Vladykin, N.V., Pokhilenko, N.P., et al.Clinopyroxene geotherms for the mantle columns beneath kimberlite pipes from8 Ikc Www.venuewest.com/8ikc/program.htm, Session 6, POSTER abstractRussia, SiberiaGeothermometry
DS2003-0111
2003
Bindi, L., Safonov, O.G., Yapaskurt, V.O., Perchuk, L.L., Menchetti, S.Ultrapotassic clinopyroxene from the Kumdy Kol microdiamond mine, KokchetavAmerican Mineralogist, Vol. 88, 2-3, Feb.March pp. 464-8.Russia, KazakhstanMineral chemistry, Kokchetav Complex
DS2003-0125
2003
Bobrov, A.V., Verichev, E.M., Garanin, V.K., Garanin, K.V., Kudryavtseva, G.P.Xenoliths of mantle metamorphic rocks from the Diamondiferous V. Grib pipe (8 Ikc Www.venuewest.com/8ikc/program.htm, Session 6, POSTER abstractRussia, ArkangelskDeposit - Grib
DS2003-0137
2003
Bostick, B.C., Jones, R.E., Ernst, W.G., Chen, C., Leech, M.L., Beane, R.J.Low temperature microdiamond aggregates in the Maksyutov metamorphic complexAmerican Mineralogist, Vol. 88, pp. 1709-17.Russia, UralsGeochemistry
DS2003-0155
2003
Brazier, R.A., Nyblade, A.A.Upper mantle P velocity structure beneath the Baikal Rift from modeling regionalGeophysical Research Letters, Vol. 30, 4, Feb. 15, DOI 10.1029/2002GLO16115RussiaTectonics
DS2003-0171
2003
Brown, D., Carbonell, R., Kukkonen, I., Ayala, C., Golovanova, I.Composition of the Uralide crust from seismic velocity ( Vp Vs) heat flow , gravity andEarth and Planetary Science Letters, Vol. 210, 1-2, pp. 333-49.Russia, UralsGeophysics
DS2003-0183
2003
Bulanova, G.P., Pearson, D.G., Hauri, E.H., Milledge, H.J., Barashkov, Yu.P.Dynamics of diamond growth: evidence from isotope and FTIR trends8ikc, Www.venuewest.com/8ikc/program.htm, Session 3, POSTER abstractRussiaDiamonds - inclusions, Geochronology, morphology
DS2003-0230
2003
Chaikovsky, I.I.REE aluminophosphates in diamond placer deposits of the Urals Timan ProvinceProceedings of the Russian Mineralogical Society, *** IN RUSSIAN, Vol. 132, 1. pp. 101-108.Russia, UralsAlluvials - mineralogy
DS2003-0231
2003
Chakhmouradian, A.R., Mitchell, R.H., XZaitsev, A.N.Evolution of carbonatitic magmas: insights from accessory minerals (on the example ofGeological Association of Canada Annual Meeting, Abstract onlyRussiaCarbonatite, Magmatism
DS2003-0313
2003
Davies, G.R., Stolz, A.J., Mahotkin, I.L., Nowell, G.M., Pearson, D.G.Trace element and Sr Pb Nd Hf isotope evidence for ancient fluid related enrichment in8 Ikc Www.venuewest.com/8ikc/program.htm, Session 7, POSTER abstractRussia, Aldan ShieldGeochronology
DS2003-0330
2003
Dencker, I., Nimis, P., Zanetti, A., Sobolev, N.V.Major and trace elements composition of Cr diopsides from the Zagadochnaya8ikc, Www.venuewest.com/8ikc/program.htm, Session 4, POSTER abstractRussia, YakutiaMantle geochemistry, Deposit - Zagadochnaya
DS2003-0339
2003
Dobrzhinetskaya, L.F., Green, H.W., Bozhilov, K.N., Mitchell, T.E., Dickerson, R.M.Crystallization environment of Kazakhstan microdiamond: evidence from nanometricJournal of Metamorphic Geology, Vol. 21, 5, pp. 425-38.Russia, KazakhstanMineral inclusions
DS2003-0358
2003
Dunworth, E.A., Bell, K.The Turiy Massif, Kola Peninsula, Russia: mineral chemistry of an ultramafic alkalineMineralogical Magazine, Vol. 67, 3, pp. 423-52.Russia, Kola PeninsulaCarbonatite
DS2003-0373
2003
Egorkin, A.V.Structure of Earth's crust and upper mantle within kimberlite and oil and gas fieldsGeology of Ore Deposits, Vol. 45, 3, pp. 213-221.RussiaTectonics
DS2003-0375
2003
Egorov, K.N., Denisnko, E.P., Menshagin, Yu.V., Sekerin, A.P., Koshkarev, D.A.New occurrence of alkaline ultramafic rocks in the southern Siberian platformDoklady Earth Sciences, Vol. 390, 4, May-June pp. 478-82.RussiaAlkaline rocks
DS2003-0379
2003
El Goresy, A., Dubrovinsky, L.S., Gillet, P., Mostefaoul, S., Graup, G.A new natural super hard transparent polymorph of carbon from the Popigai impactComptes Rendus Geosciences, IN FRENCH, Vol. 335, 12, Oct. pp. 889-898.RussiaBlank
DS2003-0439
2003
Gao, S.S., Liu, K.H., Davis, P.M., Slack, P.D., Zorin, Y.A., Mordvinova, V.V.Evidence for small scale mantle convection in the upper mantle beneath the Baikal RiftJournal of Geophysical Research, Vol. 108, B4, April 11, 10.1029/2002JB002039RussiaGeophysics - seismics
DS2003-0472
2003
Glebovitsky, V.A., Nikitina, L.P., Khiltova, V.Y.Thermal regimes in the lower crust from garnet orthopyroxene thermobarometry ofIzvestia Physics of the Solid Earth, Vol. 29, 12, pp. 1029-1043. Ingenta 1035425304Russia, mantleBlank
DS2003-0475
2003
Glodny, J., Austrheim, H., Mlina, J.F., Rusin, A.J., Seward, D.Rb Sr record of fluid rock interaction in eclogites: the Marun-Keu complex, PolarGeochimica et Cosmochimica Acta, Vol. 67, 22, pp. 4353-4371.Russia, UralsGeochronology, eclogites
DS2003-0476
2003
Glukhovskii, M.Z., Moralev, V.M.Archean mafic dyke swarms as the indicators of the specific features of the early Earth'sGeotectonics, Vol. 37, 2, pp. 124-139.RussiaDike swarms
DS2003-0478
2003
Golovin, A.V., Sharygin, V.V., Pkhilenko, N.P., Malkovets, V.G., Kolesov, B.A.Secondary melt inclusions in olivine from unaltered kimberlites of the Udachnaya EastDoklady Earth Sciences, Russia, YakutiaBlank
DS2003-0479
2003
Golovin, A.V., Sharygin, V.V., Pokhilenko, N.P., Malkovets, V.G., KolesavSecondary melt inclusions in olivine from unaltered kimberlites of the Udachnaya EastDoklady Earth Sciences, Vol. 388,1, pp. 93-96.Russia, YakutiaInclusions, Deposit - Udachnaya
DS2003-0480
2003
Golovin, A.V., Sharygin, V.V., Pokhilenko, N.P., Malkovets, V.G., Sobolev, N.V.Secondary melt inclusions in olivine from unaltered kimberlites of the Udachnaya8 Ikc Www.venuewest.com/8ikc/program.htm, Session 7, POSTER abstractRussia, YakutiaDeposit - Udachnaya
DS2003-0481
2003
Golubeva, Y.Y., Ilupin, I.P., Zhuravlev, D.Z.Rare earth elements in kimberlites of Yakutia: evidence from ICP MS dataDoklady Earth Sciences, Vol. 391, 5, pp. 693-6.Russia, YakutiaSpectroscopy
DS2003-0495
2003
Grakhanov, S.A., Koptil, V.I.Triassic diamond placers on the northeastern Siberian PlatformRussian Geology and Geophysics, Vol. 44, No. 11, pp. 1150-1161Northwestern Siberian Platformplacer deposits
DS2003-0528
2003
Hacker, B.R., Calvert, A., Zhang, R.Y., Ernst, W.G., Liou, J.G.Ultrarapid exhumation of ultrahigh pressure diamond bearing metasedimentary rocks ofLithos, Vol. 70, 3-4, pp. 61-75.Russia, KazakhstanUHP
DS2003-0540
2003
Hamilton, M.A., Sobolev, N.V., Stern, R.A., Pearson, D.G.SHRIMP U Pb dating of a perovskite inclusion in diamond: evidence for a syneruption8ikc, Www.venuewest.com/8ikc/program.htm, Session 3, POSTER abstractRussia, Siberia, YakutiaDiamonds - inclusions, geochronology, Deposit - Sytykanskaya
DS2003-0607
2003
Huang, S.L., Shen, P., Yui, T.F., Chu, H.T.Metal sulfur COH silicate fluid mediated diamond nucleation in Kokchetav ultra highEuropen Journal of Mineralogy, Vol. 15, 3, pp. 503-512.Russia, Kola PeninsulaBlank
DS2003-0620
2003
Ionov, D., Spetsius, Z., Weiss, D., Bodinier, J.L.Hf Nd Sr isotope and trace element evidence for a diversity of origins of rutile bearingGeological Association of Canada Annual Meeting, Abstract onlyRussia, SiberiaGeochronology, Eclogite
DS2003-0624
2003
Ishida, H., Ogasawara, Y., Ohsumi, K., Saito, A.Two stage growth of microdiamond in UHP dolomite marble from Kokechtav MassifJournal of Metamorphic Geology, Vol. 21, 6, pp. 515-22.Russia, KazakhstanMicrodiamonds - morphology
DS2003-0640
2003
Jagoutz, E., Dreibus, G.On the search for 142 Nd in terrestrial rocks8 Ikc Www.venuewest.com/8ikc/program.htm, Session 4, AbstractSouth Africa, Russia, SiberiaMantle geochemistry, Lherzolitic nodules
DS2003-0681
2003
Kaban, M.K., Schwintzer, P., Artemieva, I.M., Mooney, W.D.Density of the continental roots: compositional and thermal contributionsEarth and Planetary Science Letters, Vol. 209, 1-2, April 15, pp.53-69.Norway, Russia, Europe, Australia, India, South AfricaCratonic roots, Archean, Baltic shield, East European P, Siberian Platform
DS2003-0695
2003
Katayama, I., Nakashima, S.Hydroxyl in clinopyroxene from the deep subducted crust: evidence for H2O transportAmerican Mineralogist, Vol.88, pp. 229-34.Mantle, Russia, KazakhstanSubduction - water, Kokchetav Massif
DS2003-0711
2003
Khachatryan, G.K., Kaminsky, F.V.A correlation between the distribution of nitrogen centers in diamonds and their internal8ikc, Www.venuewest.com/8ikc/program.htm, Session 3, POSTER abstractRussia, Yakutia, Arkangelsk, UralsDiamonds, Diamond morphology
DS2003-0712
2003
Khachhatryan, G.K., Kaminsky, F.V.Equilibrium and non-equilibrium diamond crystals from deposits in the East EuropeanCanadian Mineralogist, Vol. 41, 1, Feb.pp. 171-184.Russia, Kola Peninsula, Arkangelsk, Urals, TimanDiamond - morphology, nitrogen, hydrogen, Deposit - Grib, Lomonosov
DS2003-0713
2003
Khudoley, A.K., Guriev, G.A.Influence of syn-sedimentary faults on orogenesis structure: examples from theTectonophysics, Vol. 365, 1-4, pp.23-43.RussiaOrogenesis
DS2003-0725
2003
Klein Ben David, O., Logvinova, A.M., Izraeli, E.S., Sobolev, N.V., Navon, O.Sulfide melt inclusions in Yubileinaya ( Yakutia) diamonds8ikc, Www.venuewest.com/8ikc/program.htm, Session 3, POSTER abstractRussia, Siberia, YakutiaDiamonds - inclusions, Deposit - Yubileinaya
DS2003-0738
2003
Konopelko, D., Eklund, O.Timing and geochemistry of potassic magmatism in the eastern part of the SvecofennianPrecambrian Research, Vol. 120, 1-2, pp.37-53.Russia, KareliaGeochronology
DS2003-0739
2003
Konstantin, D., Litasov, V.G., Malkovets, V.G., Kostrovitsky, S.J., Taylor, L.A.Petrogenesis of ilmenite bearing symplectite xenoliths from Vitim alkaline basalts andInternational Geology Review, Vol. 45, No. 11, Nov. pp. 976-997.RussiaPetrology
DS2003-0740
2003
Konstantinovski, A.A.Epochs of diamond placer formation in the Precambrian and PhanerozoicLithology and Mineral Resources, Vol. 38, 6, pp. 530-46.RussiaAlluvials
DS2003-0744
2003
Kostrovitsky, S.I., Alymova, N.V., Ivanov, A.S., Serov, V.P.Structure of the Daldyn field ( Yakutian Province) based on the study of picroilmenite8 Ikc Www.venuewest.com/8ikc/program.htm, Session 7, POSTER abstractRussia, YakutiaBlank
DS2003-0745
2003
Kostrovitsky, S.I., Verichev, E.M., Garanin, V.K., Suvorova, L.V., AschepkovMegacrysts from the Grib kimberlite Arkangelsk Province8 Ikc Www.venuewest.com/8ikc/program.htm, Session 7, POSTER abstractRussia, Kola Peninsula, ArkangelskDeposit - Grib
DS2003-0749
2003
Kravchenko, S.M., Czamanske, G., Fedorenko, V.A.Geochemistry of carbonatites of the Tomtor MassifGeochemistry International, Vol. 41, 6, pp. 545-58.RussiaCarbonatite
DS2003-0750
2003
Kravchenko, S.M., Czamanske, G., Fedorenko, V.A.Geochemistry of carbonatites of the Tomtor MassifGeochemistry International, Vol. 41, 6, pp. 545-59.RussiaCarbonatite
DS2003-0751
2003
Krivovichev, S.V., Armbruster, T., Yakovenchuk, V.N., Pakhomovsky, Y.A.Crystal structure of Lamprophyllite - 2M and Lamprophyllite -2O from the LovozeroEuropean Journal of Mineralogy, Vol. 15, 4, pp. 711-18.Russia, Kola PeninsulaAlkaline rocks - mineralogy
DS2003-0757
2003
Kuligin, S.S., Malkovets, V.G., Pkhilenko, N.P., Vavilov, M.A., Griffin, W.L.Mineralogical and geochemical characteristics of a unique mantle xenoliths from the8ikc, Www.venuewest.com/8ikc/program.htm, Session 4, POSTER abstractRussia, YakutiaMantle geochemistry, Deposit - Udachnaya
DS2003-0825
2003
Litasov, K.D., Litasov, Y.D., Malkovets, V.G., Taniguchi, H.Lithosphere structure and thermal regime of the upper mantle beneath the Baikal region:8 Ikc Www.venuewest.com/8ikc/program.htm, Session 9, POSTER abstractRussiaBlank
DS2003-0837
2003
Loginova, A.M., Klein-Ben David, O., Israeli, E.S., Navon, O., Sobolev, N.V.Micro inclusions in fibrous diamonds from Yubileinaya kimberlite pipe, Yakutia8ikc, Www.venuewest.com/8ikc/program.htm, Session 3, POSTER abstractRussia, YakutiaDiamonds - inclusions, Deposit - Yubileinaya
DS2003-0849
2003
Lukhnev, A.V., Sankov, V.A., et al.New dat a on recent tectonic deformations in the South Mountainous framing of theDoklady Earth Sciences, Vol. 389, 2, p. 263-66.RussiaTectonics
DS2003-0853
2003
Lutkov, V.S.Petrochemical evolution and genesis of a potassic pyroxenite eclogite granuliteGeochemistry International, Vol. 41, 3, pp. 224-36.RussiaEclogite - not specific to diamonds
DS2003-0854
2003
Lutkov, V.S.Petrochemical evolution and genesis of a potassic pyroxenite eclogite granuliteGeochemistry International, Vol. 41, 3, pp. 224-35.RussiaXenoliths
DS2003-0863
2003
Mahotkin, I.L., Downes, H., Hegner, E., Beard, A.D.Devonian dike swarms of alkaline, carbonatitic and primitiv magma type rocks from the8ikc, Www.venuewest.com/8ikc/program.htm, Session 4, POSTER abstractRussia, Kola PeninsulaMantle geochemistry
DS2003-0864
2003
Mahotkin, I.L., Robey, J., Kurszlaukis, S., Valuev, E.P., Pylaev, N.F.Pipe emplacement model of the Lomonosov diamond deposit, Arkangelsk region, NW8 Ikc Www.venuewest.com/8ikc/program.htm, Session 1, AbstractRussiaGeology, economics, Deposit - Lomonosov
DS2003-0868
2003
Malkovets, V.G., Litasov, Y.D., Travin, A.V., Litasov, K.D., Taylor, L.A.Volcanic pipes as clues to upper mantle petrogenesis: Mesozoic Ar Ar dating of theInternational Geology Review, Vol. 45, 2, pp. 133-142.Russia, SiberiaPipe - models
DS2003-0869
2003
Malkovets, V.G., Taylor, L.A., Griffin, W., O'Reilly, S., Pearson, N., PokhilenkoCratonic considitons beneath Arkhangelsk, Russia: garnet peridotites form the Grib8ikc, Www.venuewest.com/8ikc/program.htm, Session 4, POSTER abstractRussia, Kola PeninsulaMantle geochemistry, Deposit - Grib
DS2003-0870
2003
Malkovets, V.G., Taylor, L.A., Griffin, W.L., O'Reilly, S., Pokhilenko, N.P.Eclogites from the Grib kimberlite pipe, Arkangelsk, Russia8ikc, Www.venuewest.com/8ikc/program.htm, Session 2, POSTER abstractRussia, ArkangelskEclogites and Diamonds, Deposit - Grib
DS2003-0871
2003
Malygina, E.V., Pokhilenko, N.P., Sobolev, N.V.Coarse peridotite xenoliths of Udachnaya kimberlite pipe, Yakutia: garnetization of8 Ikc Www.venuewest.com/8ikc/program.htm, Session 6, POSTER abstractRussia, Siberia, YakutiaDeposit - Udachnaya
DS2003-0881
2003
Maruyama, S.Significance of UHP mineralogy in collisional belt: insight from the Kokchetav MassifGeological Society of America, Annual Meeting Nov. 2-5, Abstracts p.227.Russia, KazakhstanUHP
DS2003-0883
2003
Maruyama, S., Parkinson, C.D., Liou, J.G.Overview of the tectonic evolution of the Kokchetav Massif and the role of fluid inFrontiers Science Series, University Academy Press, Vol. 38, pp. 427-42.RussiaTectonics
DS2003-0885
2003
Masago, H., Rumble, D., Ernst, W.G., Parkinson, C.D., Maruyama, S.Low delta 8 O eclogites from the Kokchetav Massif, northern KazakhstanJournal of Metamorphic Geology, Vol. 21, 6, pp. 579-88.Russia, KazakhstanEclogites
DS2003-0886
2003
Maslyaev, G.A.Pulsating endogenic activation of the Russian platform lithosphere at its plateDoklady Earth Sciences, Vol. 391A, 6, July-August, pp. 775-78.RussiaTectonics
DS2003-0889
2003
Massonne, H.J.A comparison of the evolution of Diamondiferous quartz rich rocks from the SaxonianEarth and Planetary Science Letters, Vol. 216, 3, pp. 347-64.RussiaGenesis - metamorphic
DS2003-0947
2003
Miller, Y.V., Lvov, A.B., Myskova, T.A., Bogomolov, E.S., Pushkarev, Y.D.Search for ancient continental crust at the junction of the Karelian craton - BelomorianDoklady Earth Sciences, Vol. 389A, 3, pp. 302-5.Russia, KareliaTectonics
DS2003-0948
2003
Miller, Yu.V., Lvov, A.B., Myskova, T.A., Bogomolov, E.S., Pushkarev, Yu.D.Search for ancient continental crust at the junction of the Karelian Craton-BelomorianDoklady Earth Sciences, Vol. 389A, 3, March-April, pp. 302-6.RussiaCraton
DS2003-0956
2003
Mirlin, E.G.Global tectonics: from plates to fractalsDoklady Earth Sciences, Vol. 389, 2, p. 167-70.RussiaTectonics
DS2003-0963
2003
Mogarovskii, V.V., Lutkov, V.S.Geochemistry of metasomatized upper mantle beneath the southern Tien Shan andGeochemistry International, Vol. 41, 7, pp. 637-46.Russia, TajikistanAlkaline rocks
DS2003-0973
2003
Mordvinova, V.V., Kozhevnikov, V.M., Yanovskaya, T.B., Treussov, A.V.Baikal rift zone: the effect of mantle plumes on older structureTectonophysics, Vol. 371, 1-4, pp. 153-173.Russia, BaikalTectonics, rifting
DS2003-0976
2003
Morikiyo, T., Kostrovitsky, S.I., Weerakoon, M.W.K., Miyaazaki, T., VladykinSr and Nd isotopic difference between kimberlites and carbonatites from the Siberian8 Ikc Www.venuewest.com/8ikc/program.htm, Session 7, AbstractRussia, YakutiaKimberlite petrogenesis, Geochronology - four zones
DS2003-1003
2003
Nazarova, K.Magnetic petrology database for interpretation lithospheric magnetic anomaliesGeological Society of America, Annual Meeting Nov. 2-5, Abstracts p. 446.Iceland, Russia, UralsGeophysics
DS2003-1014
2003
Nikiforava, A., Bobrov, A.V., Spetsius, V.Z.Garnet clinopyroxene assemblage of mantle rocks from the Obnazhennaya kimberlite8ikc, Www.venuewest.com/8ikc/program.htm, Session 2, POSTER abstractRussia, YakutiaEclogites and Diamonds, Deposit - Obnazhennaya
DS2003-1020
2003
Nowell, G.M., Pearson, D.G., Jacob, D.E., Spetsius, S., Nixon, P.H., HaggertyThe origin of alkremites and related rocks: a Lu Hf Rb Sr and Sm Nd isotope study8ikc, Www.venuewest.com/8ikc/program.htm, Session 4, POSTER abstractRussia, YakutiaMantle geochemistry, Deposit - Udachnaya
DS2003-1022
2003
Nozhkin, A.D., Turkina, O.M., Bobrov, V.A.Radioactive and rare earth elements in metapelites as indicators of composition andDoklady Earth Sciences, Vol. 391, 5, pp. 718-22.Russia, SiberiaGeochemistry - not specific to diamonds
DS2003-1028
2003
Ohta, M., Mock, T., Ogasawara, Y., Rumble, D.Oxygen, carbon, and strontium isotope geochemistry of diamond bearing carbonateLithos, Vol. 70, 3-4, pp. 77-90.Russia, KazakhstanGeochemistry
DS2003-1038
2003
Ovcharenko, O.V., Ainbinder, H., Shilin, K.Y., Kramskov, N.P.Geomechanical substantiation of the parameters for underground mining of MirJournal of Mining Science, ( Kluwer Academic), Vol. 38, 6, pp. 528-33.Russia, Siberia, YakutiaMining, Deposit - Mir
DS2003-1051
2003
Pearson, N.J., Griffin, W.L., O'Reilly, S.Y., Delpech, G.Magnesium isotopic compositions of olivine from the lithospheric mantle8 Ikc Www.venuewest.com/8ikc/program.htm, Session 4, AbstractRussia, Siberia, South Africa, Northwest TerritoriesMantle geochemistry
DS2003-1080
2003
Pisarevsky, S.A., Natapov, L.M.Siberia and RodiniaTectonophysics, Vol. 375, 1-4, pp. 221-245.RussiaTectonics
DS2003-1089
2003
Pokhilenko, L.N., Tomilenko, A.A., Kuligin, S.S., Khlestov, V.V.The upper mantle heterogeneity: thermodynamic calculations and methods of8 Ikc Www.venuewest.com/8ikc/program.htm, Session 6, POSTER abstractRussia, YakutiaBlank
DS2003-1101
2003
Pratesi, G., Lo Giudice, A., Vishnevky, S., Manfredotti, C., Cipriani, C.Cathodluminescence investigations on the Popigai Ries and Lappajarvi impactAmerican Mineralogist, Vol. 88, pp. 1778-87.Russia, Siberia, FinlandMeteorite
DS2003-1110
2003
Prevec, S.A.Tectono geochemical controls on PGE sulphide and chromite mineralization inEconomic Research Unit, University of Witwatersrand, No. 371, October, 18p.Finland, Russia, FennoscandiaMagmatism - not specific to diamonds
DS2003-1112
2003
Priestly, K., De Bayle, E.Seismic evidence for a moderately thick lithosphere beneath the Siberian PlatformGeophysical Research Letters, Vol. 30, 3, Feb. 1, p. 18.RussiaGeophysics - seismics
DS2003-1113
2003
Prime-TassPutin signs bill declassifying PGM, gem output, reserve dataPrime-Tass, Nov. 20, 1/8p.RussiaNews item - legal, diamonds
DS2003-1131
2003
Rasskazov, S.V., Logachev, N.A., Kozhevnikov, V.M., Yanovskaya, T.B.Multistage dynamics of the upper mantle in eastern Asia: relationships betweenDoklady Earth Sciences, Vol. 390, 4, pp. 492-6.Asia, RussiaGeodynamics, Tectonics
DS2003-1151
2003
Rege, S., Davies, R.M., Griffin, W.L., Jackson, S., O'Reilly, S.Y.Trace element analysis of diamonds by LAM ICPMS: preliminary results8 Ikc Www.venuewest.com/8ikc/program.htm, Session 3, AbstractRussia, Siberia, Australia, Brazil, Northwest TerritoriesDiamonds - database 115, Geochemistry
DS2003-1158
2003
Reverdatto, V.V., Korolyuk, V.N., Selyatitsky, A.Yu.Evidence of the existence of peraluminous clinopyroxene ( tschermakite) in garnetDoklady Earth Sciences, Vol. 391A, 6, July-August, pp. 896-99.Russia, KazakhstanPetrology
DS2003-1175
2003
Roden, M., Patino-Douce, A., Lazko, E., Jagoutz, E.Exsolution textures in high pressure garnets, Mir kimberlite, Sibveria8 Ikc Www.venuewest.com/8ikc/program.htm, Session 6, POSTER abstractRussia, SiberiaDeposit - Mir
DS2003-1188
2003
Rosen, O.M.The Siberian Craton: tectonic zonation and stages of evolutionGeotectonics, Vol. 37, 3, pp. 175-92.Russia, SiberiaBlank
DS2003-1201
2003
Sablukov, S.M., Sablukova, L.I.3 - D mapping of mantle substrate in the Zimny Bereg area, Russia8 Ikc Www.venuewest.com/8ikc/program.htm, Session 6, POSTER abstractRussia, ArkangelskBlank
DS2003-1202
2003
Sablukova, L.I., Sablukov, S.M., Verichev, E.M., Golovin, N.N.Mantle xenoliths of the Grib pipe Zimny Bereg, Russia8 Ikc Www.venuewest.com/8ikc/program.htm, Session 6, POSTER abstractRussia, ArkangelskDeposit - Grib
DS2003-1245
2003
Sears, J.W., Price, R.A.Tightening the Siberian connection to western LaurentiaGeological Society of America Bulletin, Vol. 115, 8, August pp. 943-53.Russia, Australia, CanadaCordillera, Rodinia, plate reconstruction, Proterozoic
DS2003-1255
2003
Shamshina, E.A., Altukhova, Z.A., Babushkina, S.A.Facial characteristics of kimberlite rocks from the northern and southern parts of the8 Ikc Www.venuewest.com/8ikc/program.htm, Session 7, POSTER abstractRussia, YakutiaBlank
DS2003-1256
2003
Sharkov, E.V., Trubkin, N.V., Krasivskaya, I.S., Bogatikov, O.A., Mokhov, A.V.The oldest volcanic glass in the Early Paleoproterozoic boninite type lavas, KarelianDoklady Earth Sciences, Vol. 390, 4, May-June pp. 580-4.Russia, KareliaBoninite
DS2003-1257
2003
Sharygin, V.V., et al.Ni-rich sulfide inclusions in early lamproite mineralsRussian Geology and Geophysics, Vol. 44, No. 9, pp. 855-866Russianickel sulphides, lamproites
DS2003-1258
2003
Sharygin, V.V., Golovin, A.V., Pokhilenko, N.P.Djerfisherite from unaltered kimberlites of the Udachnaya eastern pipe, Yakutia8 Ikc Www.venuewest.com/8ikc/program.htm, Session 7, POSTER abstractRussia, YakutiaDeposit - Udachnaya
DS2003-1259
2003
Sharygin, V.V., Golovin, A.V., Pokhilenko, N.P., Sobolev, N.V.Djerfisherite in unaltered kimberlites of the Udachnaya East pipe, YakutiaDoklay Earth Sciences, Vol. 390, 4, May-June pp. 554-8.RussiaMineralogy, Deposit - Udachnaya
DS2003-1261
2003
Shchukin, V.S., Sablukov, S.M., Sablukova, L.I., Belousova, E.A., Griffin, V.L.Late Vendian aerial alkaline volcanism in the Winter Coast kimberlite area, Arkangelsk8ikc, Www.venuewest.com/8ikc/program.htm, Session 1 POSTER abstractRussia, ArkangelskKimberlite geology and economics, Deposit - Winter Coast
DS2003-1262
2003
Shelkov, P.N.New occurrences of diamonds indicator minerals and alkaline ultramafic rocks from the8 Ikc Www.venuewest.com/8ikc/program.htm, Session 8, POSTER abstractRussiaBlank
DS2003-1270
2003
Shmarov, G.P., Rotman, A.Y.Large diamonds from the Udachnaya pipeRough Diamond Review, September, 1 p.Russia, SiberiaUdachnaya pipe - 301 carat fancy green yellow diamond
DS2003-1271
2003
Shmarov, G.P., Rotman, Ya.Large diamonds from the Udachnaya pipeRough Diamond Review, No. 2, September, p. 42 ( 1p.)Russia, YakutiaDiamond - notable
DS2003-1275
2003
Simakov, S.K.Garnet clinopyroxene and clinopyroxene geobarometry of deep mantle eclogites and8 Ikc Www.venuewest.com/8ikc/program.htm, Session 6, AbstractAfrica, Russia, Yakutia, Australia, CanadaMantle petrology
DS2003-1282
2003
Simonenko, V.A., Shishkin, N.I.Cumulation of seismic waves during formation of kimberlite pipesJournal of Applied Mechanics and Technical Physics - Kluwer Publ. Ingenta, Vol. 44, 6, pp. 760-69.RussiaGeophysics - seismics, genesis
DS2003-1290
2003
Sklyarov, E.V., Gladkochub, D.P., Mazukabzov, A.M., Menshagin, Y.V.Neoproterozoic mafic dike swarms of the Sharyzhalgai metamorphic massif, southernPrecambrian Research, Vol. 122, 1-4, pp.359-76.Russia, SiberiaDyke swarms, Magmatism
DS2003-1306
2003
Sobolev, N.V., Loginova, A.M., Zedgenizov, D.A., Yefimova, E.S., Taylor,L.A.Mineral inclusions in diamonds from the Komsomolskaya and Krasnopresnenskaya8ikc, Www.venuewest.com/8ikc/program.htm, Session 3, POSTER abstractRussia, SiberiaDiamonds - inclusions, Deposit - Komosomolskaya, Krasnopresnenskaya
DS2003-1307
2003
Sobolev, N.V., Logvinova, A.M., Zedgenizov, D.A., Yefimova, E.S.Mineral inclusions in microdiamonds and macrodiamonds from kimberlites of Yakutia: a8 Ikc Www.venuewest.com/8ikc/program.htm, Session 3, AbstractRussia, Yakutia, SiberiaDiamonds - inclusions
DS2003-1308
2003
Sobolev, N.V., Shatsky, V.S., Liou, J.G., Zhang, R.Y., Hwang, Shen, Chu, YuiAn origin of microdiamonds in metamorphic rocks of the Kokchetav Massif, northernEpisodes, Russia, KazakhstanBlank
DS2003-1318
2003
Spetsius, Z.V.Highly aluminous xenoliths from kimberlites of Yakutia: mantle petrology implication8 Ikc Www.venuewest.com/8ikc/program.htm, Session 6, POSTER abstractRussia, Siberia, YakutiaDeposit - Udachnaya
DS2003-1319
2003
Spetsius, Z.V., Mityukhin, S.I., Ivanov, A.S.First discovery of Diamondiferous xenolith in kimberlite from the Botuoba pipe, NakynDoklady Earth Sciences, Vol. 391, 5, pp. 703-6.Russia, YakutiaDiamond genesis, deposit
DS2003-1320
2003
Spetsius, Z.V., Taylor, L.A.Diamonds of Yakutia: photographic evidence for their originBellwether Publishing Ltd., [email protected], http:web.utk.edu/~pgi/research/diamond.html due Sept.Russia, YakutiaBook - announcement to be published Sept. 2003
DS2003-1321
2003
Spetsius, Z.V., Taylor, L.A.Metasomatic diamonds in eclogite xenoliths: petrologic and photographic evidence8ikc, Www.venuewest.com/8ikc/program.htm, Session 3, POSTER abstractRussia, YakutiaDiamonds - inclusions, Deposit - Udachnaya, Sytykanskaya
DS2003-1329
2003
Steblov, G.M., Kogan, M.G., King, R.W., Scholz, C.H., Burgmann, R., FrolovImprint of the North American plate in Siberia revealed by GPSGeophysical Research Letters, Vol. 30, 18, 1924 DOI.1029/2003GLO17805Russia, Siberia, Northwest Territories, EurasiaGeophysics - seismics
DS2003-1352
2003
Svetov, S.A., Smolkin, V.F.Model P T conditions of high magnesia magma generation in the Precambrian of theGeochemistry International, Vol. 41, 8, pp. 799-811.Finland, Karelia, Kola PeninsulaPicrites, komatiites, magmatism
DS2003-1364
2003
Taylor, L.A., Anand, M., Promprated, P., Floss, C., Sobolev, N.V.The significance of mineral inclusions in large diamonds from Yakutia, RussiaAmerican Mineralogist, Vol. 88, 5/6, pp. 912-928.Russia, YakutiaDiamond - inclusions, protogenetic, Deposit - Udachnaya, Mir, Aikhal
DS2003-1365
2003
Taylor, L.A., Snyder, G.A., Keller, R., Remley, D.A., Anand. M., Wiesli, R.Petrogenesis of Group A eclogites and websterites: evidence from the ObnazhennayaContributions Mineralogy and Petrology, Vol.Russia, YakutiaPetrology, genesis, Deposit - Obnazhennaya
DS2003-1366
2003
Taylor, L.A., Spetsius, Z.A., Wiesli, R., Anand, M., Promprated, P., Valley, J.The origin of mantle peridotites: crustal signatures from Yakutian kimberlites8ikc, Www.venuewest.com/8ikc/program.htm, Session 4, POSTER abstractRussia, YakutiaMantle geochemistry
DS2003-1381
2003
Tikov, S.V., Zudin, N.G., Gorshkov, A.I., Sivtsov, A.V., Magazina, L.O.An investigation into the cause of colour in natural black diamonds from SiberiaGems & Gemology, Vol. 39,3, Fall, pp. 200-209.Russia, SiberiaMineral inclusions - Mir
DS2003-1423
2003
Verichev, E.M., Garanin, V.K., Kudryavtseva, G.P.Geology, composition, conditions of formation and technique of exploration of theGeology of Ore Deposits, Vol. 45, 4, pp. 337-361.Russia, Arkangelsk, Kola PeninsulaGenesis - Grib, comparison with Lomonosov
DS2003-1427
2003
Vetrin, V.R., et al.Age of mantle metasomatism and formation of the Kola Paleozoic alkaline provinceDoklady Earth Sciences, Vol. 388, No. 1, pp. 219-222.Russia, ArkangelskMetasomatism
DS2003-1430
2003
Vladykin, N.V., Lelyukh, M.I., Tolstov, A.V., Serov, V.P.Petrology of kimberlite lamproite carbonatite rock association, east Prianabar'e (8 Ikc Www.venuewest.com/8ikc/program.htm, Session 7, POSTER abstractRussiaBlank
DS2003-1434
2003
Vrublevskii, V.A., Gertner, I.F., Zhuravlev, D.Z., Makarenko, N.A.The Sm Nd isotopic age and source of comagmatic alkaline mafic rocks andDoklady Earth Sciences, Vol. 391A, 6, July-August, pp. 832-5.RussiaGeochronology
DS2003-1435
2003
Vrublevskii, V.V., Pokrovskii, B.G., Zhuravlev, D.Z., Anoshin, G.N.Composition and age of the Penchenga linear carbonatite complex, Yenesei RangePetrology, Vol. 11, 2, pp. 130-146.RussiaCarbonatite, Geochronology
DS2003-1438
2003
Waldman, M.Exploration updateRough Diamond Review, No. 2, September, pp. 5-10.Canada, Africa, Australia, India, Russia, South AmericaNews item - brief exploration overview
DS2003-1475
2003
Widom, E., Kepezhinskas, P., Defant, M.The nature of metasomatism in the sub-arc mantle wedge: evidence from Re OsChemical Geology, Vol. 196, 1-4, pp. 283-306.RussiaXenoliths
DS2003-1526
2003
Yarmolyuk, V.V., Ivanov, V.G., Kovalenko, V.I., Pokrovskii, B.G.Magmatism and geodynamics of the southern Baikal volcanic region ( mantle hot spot):Petrology, Vol. 11, No. 1, pp. 1-30.RussiaGeochronology, Geochemistry
DS2003-1538
2003
Yutkina, E.V., Kononova, V.A., Kozar, N.A., Lnyazkov, A.P.Sr Nd and geochemical compositions of kimberlite from the eastern Azov region, theirDoklady Earth Sciences, Vol. 391, 5, pp. 751-54.RussiaGeochemistry, geochronology
DS2003-1541
2003
Zedgenizov, D.A., et al.Impurities and carbon isotope compositions of microdiamonds with extra faces from theRussian Geology and Geophysics, Vol. 44, No. 9, pp. 872-878RussiaUdachnaya pipe, carbon isotopes, microdiamonds
DS2003-1567
2003
Zorin, Yu.A., Turutanov, E.Kh., Kozhevnikov, V.M.Mantle plumes beneath the Baikal Rift Zone and adjacent areas: geophysical evidenceDoklady Earth Sciences, RussiaBlank
DS200412-0002
2003
Achchepkov, I.V.Empirical garnet thermobarometer for mantle peridotites.Geological Society of America, Annual Meeting Nov. 2-5, Abstracts p.326.Russia, Canada, Northwest TerritoriesGeothermometry
DS200412-0004
2004
Afanasiev, V., et al.Interpreting diamond morphology. The shape and surface features of diamonds are characteristic of primary deposits. Assist explRough Diamond Review, No. 5, June, pp.RussiaDiamond morphology, placers
DS200412-0016
2004
Alekseev, N.L., Balagansky, V.V., Zinger, T.F., Levchenkov, O.A.Late Archean evolution of the junction between the Belomorian mobile belt and Karelian craton, Baltic Shield: evidence from newDoklady Earth Sciences, Vol. 397, 6, July-August pp. 743-746.Russia, Baltic ShieldGeochronology, tectonics
DS200412-0024
2004
Alymova, N.V., Kostrovitskii, S.I., Ivanov, A.S., Serov, V.P.Picroilmenite from kimberlites of the Daldyn Field, Yakutia.Doklady Earth Sciences, Vol. 395, 4, March-April, pp. 444-447.Russia, YakutiaMineralogy
DS200412-0028
2003
Anand, M., Taylor, L.A., Misra, K.C., Carlson, W.D., Sobolev, N.V.Diamondiferous eclogite dissections: anomalous diamond genesis?8 IKC Program, Session 2, AbstractRussia, YakutiaEclogite, diamonds Genesis
DS200412-0029
2004
Anand, M., Taylor, L.A., Misra, K.C., Carlson, W.D., Sobolev, N.V.Nature of diamonds in Yakutian eclogites: views from eclogite tomography and mineral inclusions in diamonds.Lithos, Vol. 77, 1-4, Sept. pp. 333-348.Russia, YakutiaUdachnaya, diamond inclusions, eclogte, xenoliths
DS200412-0039
2004
Andreeva, I.A., Kovalenko, V.I., Kononkova, N.N.Chemical composition of magma ( melt inclusions) of melilite bearing nephelinite from the Belaya Zima carbonatite complex, easteDoklady Earth Sciences, Vol. 394, 1, Jan-Feb. pp. 116-119.RussiaMelilitite
DS200412-0056
2003
Artemieva, I.M.Lithospheric structure composition and thermal regime of the East European Craton: implications for the subsidence of the RussiaEarth and Planetary Science Letters, Vol. 213, no. 3-4, pp. 431-46.RussiaGeothermometry
DS200412-0060
2003
Artyushkov, E.V.Abrupt continental lithosphere weakening as a precondition for fast and large scale tectonic movements.Geotectonics, Vol. 37, 2, pp. 107-123.RussiaTectonics
DS200412-0061
2003
Arzamastev, A.A., Travin, A.V., Belyatskii, B.V., Arzamasteva, L.V.Paleozoic dike series in the Kola alkaline province: age and characteristics of mantle sources.Doklady Earth Sciences, Vol. 391, 6a, pp. 906-909.Russia, Kola PeninsulaCarbonatite, geochronology
DS200412-0063
2004
Ashchepkov, I.V., Vladykin, N.V., Nikolaeva, I.V., Palessky, Logvinova, Saprykin, Khmelnikova, AnoshinMineralogy and geochemistry of mantle inclusions and mantle column structure of the Yubileinaya kimberlite pipe, Alakit field, YDoklady Earth Sciences, Vol. 395, 4, March-April, pp. 378-384.Russia, YakutiaDiamond - mineralogy, Jubilenya
DS200412-0064
2003
Ashchepkov, I.V., Vladykin, N.V., Pokhilenko, N.P., et al.Clinopyroxene geotherms for the mantle columns beneath kimberlite pipes from Siberian Craton.8 IKC Program, Session 6, POSTER abstractRussia, SiberiaMantle petrology Geothermometry
DS200412-0078
2004
Avchenko, O.V., Lavrik, S.N., Aleksandrov, I.A., Velivetskaya, T.A.Isotopic heterogeneity of carbon in metamorphic fluid.Doklady Earth Sciences, Vol. 394, 1, pp. 81-84.Russia, Aldan ShieldMetamorphism, petrology
DS200412-0101
2000
Barron, L.M.Subduction diamonds: New South Wales and Siberia.Minfo, 67, pp. 34-5.Australia, New South Wales, Russia, SiberiaDiamond - morphology
DS200412-0102
2002
Barron, L.M., Kepezhinskas, P., Barron, B.J., Prikhodko, V.Arc ultramafic rocks at Phanerozooic age in New South Wales and Siberia and their relation to occurrence of diamond: possible neNew South Wales Quarterly Notes, No. 112, pp. 9-16.Australia, New South Wales, Russia, SiberiaLachlan Fold Belt, shoshonite, indicators
DS200412-0139
2003
Berman, P., Goldman, L.The billionaire who cracked De Beers. Lev Leviev is taking on the most successful cartel in the world.Forbes.com, Vol. 172, 5, Sept. 15, pp. 108-116.RussiaNews item - Leviev, profile
DS200412-0172
2004
Bobrov, A.V., Litvin, Y.A., Divaev, F.K.Phase relations and diamond synthesis in the carbonate silicate rocks of the Chagatai Complex, western Uzbekistan: results of exGeochemistry International, Vol. 42, 1, pp. 39-48.Russia, UzbekistanDiamond genesis
DS200412-0173
2003
Bobrov, A.V., Verichev, E.M., Garanin, V.K., Garanin, K.V., Kudryavtseva, G.P.Xenoliths of mantle metamorphic rocks from the Diamondiferous V. Grib pipe ( Arkangelsk province): petrology and genetic aspects8 IKC Program, Session 6, POSTER abstractRussia, Kola Peninsula, ArchangelMantle petrology Deposit - Grib
DS200412-0185
2003
Bostick, B.C., Jones, R.E., Ernst, W.G., Chen, C., Leech, M.L., Beane, R.J.Low temperature microdiamond aggregates in the Maksyutov metamorphic complex, South Ural Mountains, Russia.American Mineralogist, Vol. 88, pp. 1709-17.Russia, UralsGeochemistry
DS200412-0203
2003
Brazier, R.A., Nyblade, A.A.Upper mantle P velocity structure beneath the Baikal Rift from modeling regional seismic data.Geophysical Research Letters, Vol. 30, 4, Feb. 15, DOI 10.1029/2002 GLO16115RussiaGeophysics - seismics Tectonics
DS200412-0222
2003
Brown, D., Carbonell, R., Kukkonen, I., Ayala, C., Golovanova, I.Composition of the Uralide crust from seismic velocity ( Vp Vs) heat flow , gravity and magnetic data.Earth and Planetary Science Letters, Vol. 210, 1-2, pp. 333-49.Russia, UralsGeophysics
DS200412-0223
2002
Brown, D., Juhlin, C., Puchkov, V.Mountain building in the Uralides ... Pangea to the present.American Geophysical Union, Geophysical Monograph, No. 132, 300p.Russia, Europe, UralsBook - Tectonics, arc collision, crustal, orogenesis Geochronology
DS200412-0231
2004
Bruneton, M., Pedersen, H.A., Vacher, P., Kukkonenen, I.T., Arndt, N.T., Funke, S., Friederich, W., Farra, V.Layered lithospheric mantle in the central Baltic Shield from surface waves and xenolith analysis.Earth and Planetary Science Letters, Vol. 226, 1-2, pp. 41-52.Baltic Shield, Norway, Finland, RussiaGeophysics - seismics, xenoliths
DS200412-0236
2004
Buhre, S., Brey, G.Al, Li and REE solubility and partitioning between CAS phases.Lithos, ABSTRACTS only, Vol. 73, p. S15. abstractSouth America, Brazil, Africa, Guinea, Tanzania, South Africa, RussiaTool to determine ascent path and origin of diamonds
DS200412-0240
2004
Bulnaev, K.B.Behavior Sr, Ba, and REE in carbonatites of western Transbaikalia.Geochemistry International, Vol. 42, 3, pp. 285-292.Russia, BaikalGeochemistry
DS200412-0270
2004
Carbonell, R.On the nature of mantle heterogeneities and discontinuities: evidence from a very dense wide angle shot record.Tectonophysics, Vol. 388, 1-4, Sept. 13, pp. 103-117.Russia, UralsGeophysics - seismics, boundary, ultramafics, peridotit
DS200412-0300
2003
Chaikovsky, I.I.REE aluminophosphates in diamond placer deposits of the Urals Timan Province. ***** IN RUSSIANProceedings of the Russian Mineralogical Society, *** IN RUSSIAN, Vol. 132, 1. pp. 101-108.Russia, UralsAlluvials, mineralogy
DS200412-0302
2003
Chakhmouradian, A.R., Mitchell, R.H., XZaitsev, A.N.Evolution of carbonatitic magmas: insights from accessory minerals (on the example of Turiy Mys complex, Russia).Geological Association of Canada Annual Meeting, Abstract onlyRussiaCarbonatite, magmatism
DS200412-0411
2004
Davaille, A., Lees, J.M.Thermal modeling of subducted plates: tear and hotspot at the Kamchatka corner.Earth and Planetary Science Letters, Vol. 226, 3-4, Oct. 15, pp. 293-304.RussiaGeophysics - seismics, dynamics, hotpots, lithosphere
DS200412-0413
2003
Davies, G.R., Stolz, A.J., Mahotkin, I.L., Nowell, G.M., Pearson, D.G.Trace element and Sr Pb Nd Hf isotope evidence for ancient fluid related enrichment in the source region of Aldan Shield lamproi8 IKC Program, Session 7, POSTER abstractRussia, Aldan ShieldKimberlite petrogenesis, geochronology
DS200412-0461
2004
Dobretsov, N.L., Shatsky, V.S.Exhumation of high pressure rocks of Kokchetav massif: facts and models.Lithos, Vol. 78, 3, Nov. pp. 307-318.RussiaKumdy-dol diamondiferous domain, UHP melting
DS200412-0463
2003
Dobrzhinetskaya, L.F., Green, H.W., Bozhilov, K.N., Mitchell, T.E., Dickerson, R.M.Crystallization environment of Kazakhstan microdiamond: evidence from nanometric inclusions and mineral associations.Journal of Metamorphic Geology, Vol. 21, 5, pp. 425-38.Russia, KazakhstanMicrodiamonds, mineral inclusions
DS200412-0478
2002
Downes, H., Peltonen, P., Manttari, I., Sharkov, E.V.Proterozoic zircon ages from lower crust granulite xenoliths, Kola Peninsula, Russia: evidence for crustal growth and reworking.Journal of the Geological Society, Vol. 159, 2, pp. 485-488.Russia, Kola PeninsulaGeochronology
DS200412-0492
2003
Dunworth, E.A., Bell, K.The Turiy Massif, Kola Peninsula, Russia: mineral chemistry of an ultramafic alkaline carbonatite intrusion.Mineralogical Magazine, Vol. 67, 3, pp. 423-52.Russia, Kola PeninsulaCarbonatite
DS200412-0508
2003
Egorov, K.N., Denisnko, E.P., Menshagin, Yu.V., Sekerin, A.P., Koshkarev, D.A.New occurrence of alkaline ultramafic rocks in the southern Siberian platform.Doklady Earth Sciences, Vol. 390, 4, May-June pp. 478-82.RussiaAlkalic
DS200412-0509
2004
Egorov, K.N., Mishenin, S.G., Menshagin, Yu.V., Serov, V.P., Sekerin, A.P., Koshkarev, D.A.Kimberlite minerals from the lower Carboniferous deposits of the Mura-Kovinsky diamond bearing area.*** IN RUSSIAN LANGUAGEProceedings of the Russian Mineralogical Society ***in RUSSIAN, Vol. 133, 1,pp. 32-40 ***RUSSIANRussiaMineralogy
DS200412-0510
2004
Egorov, K.N., Soloveva, L.V., Simakin, S.G.Megacrystalline cataclastic lherzolite from the Udachnaya pipe: mineralogy, geochemistry and genesis.Doklady Earth Sciences, Vol. 397, 5, June, pp. 698-702.Russia, YakutiaMineralogy - Udachnaya
DS200412-0515
2003
El Goresy, A., Dubrovinsky, L.S., Gillet, P., Mostefaoul, S., Graup, G., Drakopoulos, M., Simionovici, A.S.A new natural super hard transparent polymorph of carbon from the Popigai impact crater, Russia.Comptes Rendus Geoscience, Vol. 335, 12, Oct. pp. 889-898.RussiaLonsdaleite, graphite, mineralogy
DS200412-0541
2004
Fedorov, Y.N., Krinochkin, V.G., Ivanov, K.S., Krasnobaev, A.A., Kaleganov, B.A.Stages of tectonic reactivation of the west Siberian platform ( based on K Ar dating).Doklady Earth Sciences, Vol. 397, 5, pp. 628-631.Russia, SiberiaTectonics
DS200412-0552
2004
Filatova, V.T.Quantitative estimates of the parameters of interaction between the Early Proterozoic plume and lithosphere in the northeasternDoklady Earth Sciences, Vol. 395, 4, March-April, pp. 433-437.Russia, Kola PeninsulaTectonics
DS200412-0553
2004
Filimonova, L.G., Trubkin, N.V., Bortnikov, N.S.Moissanite nanoparticles in disseminated mineralization of the Dukat ore district, northeastern Russia.Doklady Earth Sciences, Vol. 394, 1, Jan-Feb. pp. 137-140.RussiaMoissanite
DS200412-0582
2003
Friborg, T., Spegaard, H., Christensen, TR., Lloyd, C.R., Panikov, N.S.Siberian wetlands: where a sink is a source.Geophysical Research Letters, Vol. 30, 21, Nov. 1, 10.1029/2003 GLO17797RussiaGeophysics
DS200412-0606
2003
Gao, S.S., Liu, K.H., Davis, P.M., Slack, P.D., Zorin, Y.A., Mordvinova, V.V., Kozhevnikov, V.M.Evidence for small scale mantle convection in the upper mantle beneath the Baikal Rift zone.Journal of Geophysical Research, Vol. 108, B4, April 11, 10.1029/2002 JB002039RussiaGeophysics - seismics
DS200412-0633
2002
Gemoc Annual ReportMg isotopes in olivine track fluid flow in the mantle.GEMOC ARC National Key Centre for the Geochemical Evolution and Metallogeny of Continents, pp. 38-9.Russia, Africa, South Africa, Canada, Northwest Territories, AustraliaSpectrometry
DS200412-0673
2003
Glebovitsky, V.A., Nikitina, L.P., Khiltova, V.Y.Thermal regimes in the lower crust from garnet orthopyroxene thermobarometry of lower crust xenoliths in kimberlite and alkali bIzvestia Physics of the Solid Earth, Vol. 29, 12, pp. 1029-1043. Ingenta 1035425304Russia, MantleGeothermometry
DS200412-0674
2004
Glebovitsky, V.A., Nikitina, L.P., Khitova, V.Y., Ovchinnikov, N.O.The thermal regimes of the upper mantle beneath Precambrian and Phanerozoic structures up to the thermobarometry dat a of mantleLithos, Vol. 74, 1-2, pp. 1-20.Russia, Siberia, Europe, China, Australia, South AmericaGeothermometry
DS200412-0677
2003
Glodny, J., Austrheim, H., Mlina, J.F., Rusin, A.J., Seward, D.Rb Sr record of fluid rock interaction in eclogites: the Marun-Keu complex, Polar Urals, Russia.Geochimica et Cosmochimica Acta, Vol. 67, 22, pp. 4353-4371.Russia, UralsGeochronology, eclogites
DS200412-0678
2004
Glukhovskii, M.Z., Bayanova, T.B., Moralev, V.M., Levkovich, N.V.The problem of tectonic evolution of the ancient continental crust: evidence from new U Pb zircon datings of rocks from the SunnDoklady Earth Sciences, Vol. 395, 2, pp. 157-160.Russia, Aldan ShieldTectonics
DS200412-0679
2003
Glukhovskii, M.Z., Moralev, V.M.Archean mafic dyke swarms as the indicators of the specific features of the early Earth's plume tectonic regime ( with referenceGeotectonics, Vol. 37, 2, pp. 124-139.RussiaDike swarms
DS200412-0685
2003
Golovin, A.V., Sharygin, V.V., Pkhilenko, N.P., Malkovets, V.G., Kolesov, B.A., Sobolev, N.V.Secondary melt inclusions in olivine from unaltered kimberlites of the Udachnaya East pipe, Yakutia.Doklady Earth Sciences, Vol. 388, 1, pp. 93-96.Russia, YakutiaGeochemistry - mineral chemistry
DS200412-0686
2003
Golovin, A.V., Sharygin, V.V., Pokhilenko, N.P., Malkovets, V.G., Sobolev, N.V.Secondary melt inclusions in olivine from unaltered kimberlites of the Udachnaya eastern pipe, Yakutia.8 IKC Program, Session 7, POSTER abstractRussia, YakutiaKimberlite petrogenesis Deposit - Udachnaya
DS200412-0687
2003
Golubeva, Y.Y., Ilupin, I.P., Zhuravlev, D.Z.Rare earth elements in kimberlites of Yakutia: evidence from ICP MS data.Doklady Earth Sciences, Vol. 391, 5, pp. 693-6.Russia, YakutiaSpectroscopy
DS200412-0688
2004
Golubeva, Y.Y., Tsepin, A.I.Petrochemical and mineralogical constraints for diagnostics of Yakutian kimberlites.Doklady Earth Sciences, Vol. 397, 6, July-August pp. 798-802.Russia, YakutiaGeochemistry
DS200412-0689
2004
Golubeva, Yu.Yu., Ovchinnikova, G.V., Levskii, L.K.Pb Sr Nd isotopic characteristics of mantle sources of kimberlites from the Nakyn field, Yakutia.Doklady Earth Sciences, Vol. 394, 2, Feb-Mar. pp. 230-234.Russia, YakutiaGeochronology
DS200412-0705
2003
Grachev, A.F.The Arctic rift system and the boundary between the Eurasian and North American lithospheric plates: new insight to plate tectonRussian Journal of Earth Sciences, Vol. 5, 5, Oct. pp. 307-345.Russia, Europe, CanadaTectonics
DS200412-0723
2003
Griffin, W.L., O'Reilly, S.Y., Abe, N., Aulbach, S., Davies, R.M., Pearson, N.J., Doyle, B.J.,Kivi, K.The origin and evolution of Archean lithospheric mantle.Precambrian Research, Vol. 127, 1-2, Nov. pp. 19-41.China, Africa, Russia, Canada, Northwest TerritoriesGeochemistry, SCLM, continental, Archon, metasomatism
DS200412-0759
2002
Hacker, B.R., Calvert, A., Zhang, R.Y., Ernst, W.G., Liou, J.G.Ar Ar geochronology of diamond bearing metasedimentary rocks from the Kokchetav Massif.Frontiers Science Series, University Academy Press, Vol. 38, pp. 397-412.RussiaGeochronology
DS200412-0760
2003
Hacker, B.R., Calvert, A., Zhang, R.Y., Ernst, W.G., Liou, J.G.Ultrarapid exhumation of ultrahigh pressure diamond bearing metasedimentary rocks of the Kokchetav Massif, Kazakhstan?Lithos, Vol. 70, 3-4, pp. 61-75.Russia, KazakhstanUHP
DS200412-0856
2003
Huang, S.L., Shen, P., Yui, T.F., Chu, H.T.Metal sulfur COH silicate fluid mediated diamond nucleation in Kokchetav ultra high pressure gneiss.European Journal of Mineralogy., Vol. 15, 3, pp. 503-512.Russia, Kola PeninsulaUHP
DS200412-0871
2004
Ionov, D.Chemical variations in peridotite xenoliths from Vitim, Siberia: inferences for REE Hf behaviour in the garnet facies upper mantJournal of Petrology, Vol. 45, 2, pp. 343-67.Russia, Siberia, MantleGeochemistry
DS200412-0872
2003
Ionov, D., Spetsius, Z., Weiss, D., Bodinier, J.L.Hf Nd Sr isotope and trace element evidence for a diversity of origins of rutile bearing eclogite xenoliths from the Siberian CrGeological Association of Canada Annual Meeting, Abstract onlyRussia, SiberiaGeochronology Eclogite
DS200412-0876
2003
Ishida, H., Ogasawara, Y., Ohsumi, K., Saito, A.Two stage growth of microdiamond in UHP dolomite marble from Kokechtav Massif, Kazakhstan.Journal of Metamorphic Geology, Vol. 21, 6, pp. 515-22.Russia, KazakhstanMicrodiamonds - morphology
DS200412-0897
2003
Jagoutz, E., Dreibus, G.On the search for 142 Nd in terrestrial rocks.8 IKC Program, Session 4, AbstractAfrica, South Africa, Russia, SiberiaMantle geochemistry Lherzolitic nodules
DS200412-0941
2003
Kaban, M.K., Schwintzer, P., Artemieva, I.M., Mooney, W.D.Density of the continental roots: compositional and thermal contributions.Earth and Planetary Science Letters, Vol. 209, 1-2, April 15, pp.53-69.Europe, Norway, Russia, Australia, India, AfricaCratonic roots, Archean, Baltic shield, East European P Siberian Platform
DS200412-0995
2003
Khachhatryan, G.K., Kaminsky, F.V.Equilibrium and non-equilibrium diamond crystals from deposits in the East European platform, as revealed from infrared absorptiCanadian Mineralogist, Vol. 41,1,Feb.pp. 171-184.Russia, Kola Peninsula, Archangel, Urals, TimanDiamond - morphology, nitrogen, hydrogen Deposit - Grib, Lomonosov
DS200412-0996
2002
Khain, V.E., Ryabukhin, A.G.Russian geology and the plate tectonics revolution. p. 192 mentions kimberlite briefly.Geological Society of London, Special Publication, 192, pp. 185-198.RussiaPlate tectonics - history
DS200412-0997
2004
Khokholov, Y.A., Kurilko, A.S.Heat exchange of rock and filling masses in kimberlite mining.Journal of Mining Science, Vol. 40, 1, pp. 31-36. klu/jomi/2004/ 00000040 /00000001/RussiaMining
DS200412-0998
2004
Khokhryakov, A.F., Palyanov, Y.N.Evolution of diamond morphology in the processes of mantle dissolution.Lithos, ABSTRACTS only, Vol. 73, p. S57. abstractRussia, UralsDiamond morphology
DS200412-0999
2003
Khudoley, A.K., Guriev, G.A.Influence of syn-sedimentary faults on orogenesis structure: examples from the Neoproterozoic Mesozoic east Siberian passive marTectonophysics, Vol. 365, 1-4, pp.23-43.RussiaOrogenesis
DS200412-1002
2004
Kimble, J.Cryosols: permafrost affected soils.Springer, due out August publishing dateCanada, Russia, Northwest Territories, NunavutBook - environment, soil science
DS200412-1023
2004
Koch Muller, M., Matsyuk, S.S., Wirth, R.Hydroxyl in omphacites and omphacitic clinopyroxenes of upper mantle to lower crustal origin beneath the Siberian platform.American Mineralogist, Vol.89, 7, pp. 921-931.Russia, SiberiaMineralogy, Mir, Zagadochnaya, Udachnaya
DS200412-1025
2004
Koch-Muller, M., Matsyuk, S.S., Wirth, R.Hydroxyl in omphacites and omphacitic clinopyroxenes of upper mantle to lower crustal origin beneath the Siberian Platform.American Mineralogist, Vol. 89, June pp. 921-931.Russia, YakutiaSpectroscopy, Mir, Zagadochnaya, Udachnaya pipes
DS200412-1027
2004
Kogarko, L.N.New geochemical criterion of rare metal mineralization in the giant Lovozero pluton ( Kola Peninsula).Doklady Earth Sciences, Vol. 394, 1, Jan-Feb. pp. 89-91.Russia, Kola PeninsulaCarbonatite
DS200412-1031
2003
Konopelko, D., Eklund, O.Timing and geochemistry of potassic magmatism in the eastern part of the Svecofennian domain , NW Ladoga Lake region, Russiam KaPrecambrian Research, Vol. 120, 1-2, pp.37-53.Russia, KareliaGeochronology
DS200412-1032
2003
Konstantin, D., Litasov, V.G., Malkovets, V.G., Kostrovitsky, S.J., Taylor, L.A.Petrogenesis of ilmenite bearing symplectite xenoliths from Vitim alkaline basalts and Yakutian kimberlites, Russia.International Geology Review, Vol. 45, no. 11, Nov. pp. 976-997.RussiaPetrology
DS200412-1033
2003
Konstantinovski, A.A.Epochs of diamond placer formation in the Precambrian and Phanerozoic.Lithology and Mineral Resources, Vol. 38, 6, pp. 530-46.RussiaAlluvials
DS200412-1045
2004
Korsakov, A.V., Theunissen, K., Smirnova, L.V.Intergranular diamonds derived from partial melting of crustal rocks at ultrahigh pressure metamorphic conditions.Terra Nova, Vol. 16, 3, pp. 146-151.RussiaUHP, Kokchetav, Kumby-Kol
DS200412-1046
2002
Kostenko, N.P., Bryantseva, G.V.Orogenic structural features in the southern part of the Polar Urals.Moscow University Geology Bulletin, Vol. 57, 2. pp. 1-5.Russia, UralsTectonics
DS200412-1047
2003
Kostrovitsky, S.I., Alymova, N.V., Ivanov, A.S., Serov, V.P.Structure of the Daldyn field ( Yakutian Province) based on the study of picroilmenite composition.8 IKC Program, Session 7, POSTER abstractRussia, YakutiaKimberlite petrogenesis
DS200412-1048
2004
Kostrovitsky, S.I., Malkovets, V.G., Verichev, E.M., Garanin, V.K., Suvorova, L.V.Megacrysts from the Grib kimberlite pipe ( Arkandgelsk Province, Russia).Lithos, Vol. 77, 1-4, Sept. pp. 511-523.Russia, Archangel, Kola PeninsulaHigh chromium association, genesis
DS200412-1049
2003
Kostrovitsky, S.I., Verichev, E.M., Garanin, V.K., Suvorova, L.V., Aschepkov, I.V., Mlovets, V., Griffin, W.L.Megacrysts from the Grib kimberlite Arkangelsk Province.8 IKC Program, Session 7, POSTER abstractRussia, Kola Peninsula, ArchangelKimberlite petrogenesis Deposit - Grib
DS200412-1050
2004
Kostrovskii, S.J., Spetsius, N.V.A., Suvorova, L.F.Clinopyroxene olivine ilmenite megacryst assemblage in kimberlite from the Udachnaya pipe.Doklady Earth Sciences, Vol. 396, 4, May-June, pp. 504-507.Russia, YakutiaPetrology
DS200412-1053
2003
Kravchenko, S.M., Czamanske, G., Fedorenko, V.A.Geochemistry of carbonatites of the Tomtor Massif.Geochemistry International, Vol. 41, 6, pp. 545-58.RussiaCarbonatite
DS200412-1056
2003
Krivovichev, S.V., Armbruster, T., Yakovenchuk, V.N., Pakhomovsky, Y.A.Crystal structure of Lamprophyllite - 2M and Lamprophyllite -2O from the Lovozero alkaline massif, Kola Peninsula, Russia.European Journal of Mineralogy, Vol. 15, 4, pp. 711-18.Russia, Kola PeninsulaAlkaline rocks, mineralogy
DS200412-1063
2004
Kulakovsky, A.I.The Khibiny Lovozero binucleus vortex structure.Doklady Earth Sciences, Vol. 394, 2, Feb-Mar. pp. 149-152.RussiaDeposit - Lovozero
DS200412-1086
2004
Lashkevich, V.V., Medvedev, V.Y., Egorov, K.N., Ivanova, L.A.Experimental and numerical modeling of the metasomatic replacement of picroilmenites from kimberlites.Geochemistry International, Vol. 42, 1, pp. 49-56.RussiaMetasomatism, Deposit - Jubileinaya
DS200412-1106
2004
Leech, M.L., Willingshofer, E.Thermal modeling of the UHP Maksyutov Complex in the South Urals.Earth and Planetary Science Letters, Vol. 226, 1-2, Sept. 30, pp. 85-99.Russia, UralsGeothermometry
DS200412-1145
2003
Litasov, K.D., Litasov, Y.D., Malkovets, V.G., Taniguchi, H.Lithosphere structure and thermal regime of the upper mantle beneath the Baikal region: evidence from deep seated xenoliths.8 IKC Program, Session 9, POSTER abstractRussiaCraton studies
DS200412-1146
2003
Litasov, K.D., Malkovets, V.G., Kostrovitsky, S.I., Taylor, L.A.Petrogenesis of ilmenite bearing symplectic xenoliths from Vitim alkaline basalts and Yakutian kimberlites, Russia.International Geology Review, Vol. 45, 11, pp. 976-997.Russia, YakutiaXenoliths - petrology
DS200412-1183
2003
Lukhnev, A.V., Sankov, V.A., et al.New dat a on recent tectonic deformations in the South Mountainous framing of the Siberian platform.Doklady Earth Sciences, Vol. 389,2,p. 263-66.RussiaTectonics
DS200412-1185
2003
Lutkov, V.S.Petrochemical evolution and genesis of a potassic pyroxenite eclogite granulite association: mantle and crustal xenoliths in NeoGeochemistry International, Vol. 41, 3, pp. 224-36.RussiaEclogite - not specific to diamonds
DS200412-1203
2003
Mahotkin, I.L., Robey, J., Kurszlaukis, S., Valuev, E.P., Pylaev, N.F.Pipe emplacement model of the Lomonosov diamond deposit, Arkangelsk region, NW Russia.8 IKC Program, Session 1, AbstractRussiaGeology, economics Deposit - Lomonosov
DS200412-1208
2003
Makeyev, A.B., Iwanuch, W., Obyden, S.K., Bryachaninova, N.I., Saparin, G.V.Inter relation of diamond and carbonado ( based on study of collections from Brazil and Middle Timan).Doklady Earth Sciences, Vol. 393a, no. 9, pp.1251-5.Russia, South America, BrazilDiamond morphology
DS200412-1209
2004
Malitch, K.N.Osmium isotope constraints on contrasting sources and prolonged melting in the Proterozoic upper mantle: evidence from ophiolitiChemical Geology, Vol. 208, 1-4, pp. 157-173.Russia, Taimyr, Kunar, Austria, Alps, KraubathGeochronology, platinum, PGE, alloys, depletion
DS200412-1210
2003
Malkovets, V.G., Litasov, Y.D., Travin, A.V., Litasov, K.D., Taylor, L.A.Volcanic pipes as clues to upper mantle petrogenesis: Mesozoic Ar Ar dating of the Miusinsk basalts, South Siberia.International Geology Review, Vol. 45, 2, pp. 133-142.Russia, SiberiaPipe - models
DS200412-1211
2004
Malov, A.I.The role of exogenic groundwaters in kimberlite formations.Doklady Earth Sciences, Vol. 395, 4, March-April, pp. 453-455.RussiaGenesis
DS200412-1213
2003
Malygina, E.V., Pokhilenko, N.P., Sobolev, N.V.Coarse peridotite xenoliths of Udachnaya kimberlite pipe, Yakutia: garnetization of peridotites of the central Siberian platform8 IKC Program, Session 6, POSTER abstractRussia, Siberia, YakutiaMantle petrology Deposit - Udachnaya
DS200412-1236
2003
Maruyama, S.Significance of UHP mineralogy in collisional belt: insight from the Kokchetav Massif.Geological Society of America, Annual Meeting Nov. 2-5, Abstracts p.227.Russia, KazakhstanUHP
DS200412-1238
2003
Maruyama, S., Parkinson, C.D., Liou, J.G.Overview of the tectonic evolution of the Kokchetav Massif and the role of fluid in subduction and exhumation.Frontiers Science Series, University Academy Press, Vol. 38, pp. 427-42.RussiaTectonics
DS200412-1240
2003
Masago, H., Rumble, D., Ernst, W.G., Parkinson, C.D., Maruyama, S.Low delta 8 O eclogites from the Kokchetav Massif, northern Kazakhstan.Journal of Metamorphic Geology, Vol. 21, 6, pp. 579-88.Russia, KazakhstanEclogite
DS200412-1241
2003
Maslyaev, G.A.Pulsating endogenic activation of the Russian platform lithosphere at its plate development stage.Doklady Earth Sciences, Vol. 391A, 6, July-August, pp. 775-78.RussiaTectonics
DS200412-1243
2003
Massonne, H.J.A comparison of the evolution of Diamondiferous quartz rich rocks from the Saxonian Erzgebirge and the Kokchetav Massif: are soEarth and Planetary Science Letters, Vol. 216, 3, pp. 347-64.RussiaGenesis - metamorphic
DS200412-1246
2004
Matrosov, V.A., Bornyakov, S.A., Gladkov, A.S.A new approach to optimization of prognostic prospecting for Diamondiferous kimberlites.Doklady Earth Sciences, Vol. 395, 2, pp. 192-195.RussiaDiamond prospecting technique
DS200412-1247
2004
Matsyuk, S.S., Langer, K.Hydroxl in olivines from mantle xenoliths in kimberlites of the Siberian platform.Contributions to Mineralogy and Petrology, Vol. 147, 4, pp. 413-437.Russia, SiberiaMineral chemistry
DS200412-1251
2004
Maximov, S.O., Sakhno, V.G.High K picrites and basaltoids of the Okhotsk Massif, Russian Far East.Doklady Earth Sciences, Vol. 394, 1, Jan-Feb. pp. 32-38.RussiaPicrite
DS200412-1311
2003
Miller, Y.V., Lvov, A.B., Myskova, T.A., Bogomolov, E.S., Pushkarev, Y.D.Search for ancient continental crust at the junction of the Karelian craton - Belomorian mobile belt: evidence from isotope geocDoklady Earth Sciences, Vol. 389A, 3, pp. 302-5.Russia, KareliaTectonics
DS200412-1317
2004
Mineeva, R.M., Speranskii, A.V., Titkov, S.V., Zhilicheva, O.M., Bershov, L.V., Bogatikov, O.A., KudryavtsevaSpectroscopic and morphological characteristics of diamonds from the Grib kimberlite pipe.Doklady Earth Sciences, Vol. 394, 1, Jan-Feb. pp. 96-99.Russia, Kola Peninsula, ArchangelDiamond morphology, deposit - Grib
DS200412-1329
2003
Mirlin, E.G.Global tectonics: from plates to fractals.Doklady Earth Sciences, Vol. 389,2,p. 167-70.RussiaTectonics
DS200412-1335
2004
Misra, K.C., Anand, M., Taylor, L.A., Sobolev, N.V.Multi stage metasomatism of Diamondiferous eclogite xenoliths from the Udachnaya kimberlite pipe, Yakutia, Siberia.Contributions to Mineralogy and Petrology, Vol. 146, 6, pp. 696-714.Russia, Siberia, YakutiaDeposit - Udachnaya
DS200412-1343
2003
Mogarovskii, V.V., Lutkov, V.S.Geochemistry of metasomatized upper mantle beneath the southern Tien Shan and Pamirs, Tajikstan, Li and Sn in mantle xenoliths fGeochemistry International, Vol. 41, 7, pp. 637-46.Russia, TajikistanAlkalic
DS200412-1350
2004
Molina, J.F., Poli, S., Austrheim, J., Glodny, J., Rusin, A.Eclogite facies vein systems in the Marun-Keu complex ( Polar Urals, Russia): textural, chemical, thermal constraints for patterContributions to Mineralogy and Petrology, Vol. 147, 4, pp. 484-504.Russia, UralsEclogite
DS200412-1363
2004
Moralev, V.M., Samsonov, M.D.A tectonic interpretation of petrochemical signatures of Proterozoic and Paleozoic alkaline rocks from the Porjaguba dyke swarm,Geotectonics, Vol. 38, 2, pp. 102-111.RussiaAlkalic
DS200412-1364
2003
Mordvinova, V.V., Kozhevnikov, V.M., Yanovskaya, T.B., Treussov, A.V.Baikal rift zone: the effect of mantle plumes on older structure.Tectonophysics, Vol. 371, 1-4, pp. 153-173.Russia, BaikalTectonics, rifting
DS200412-1369
2003
Morikiyo, T., Kostrovitsky, S.I., Weerakoon, M.W.K., Miyaazaki, T., Vladykin, N.V., Kagami, H., Shuto, K.Sr and Nd isotopic difference between kimberlites and carbonatites from the Siberian Platform.8 IKC Program, Session 7, AbstractRussia, YakutiaKimberlite petrogenesis Geochronology - four zones
DS200412-1415
2003
Nazarova, K.Magnetic petrology database for interpretation lithospheric magnetic anomalies.Geological Society of America, Annual Meeting Nov. 2-5, Abstracts p. 446.Europe, Iceland, RussiaGeophysics
DS200412-1420
2003
Neretin, A.V., Chemezov, V.V.Estimation of reliability of geological dat a on mineral reserves by placering results.Journal of Mining Science, Vol. 39, 5, pp. 492-498.RussiaAlluvials
DS200412-1438
2004
Nitsenko, P., Ussoltsev, II.The Kumdy Kol diamond deposit North Kazakhstan: the geology and the origin of metamorphic diamond.Earth Science Frontiers, Vol. 11, 2, pp. 333-338.Russia, KazakhstanMetamorphic
DS200412-1451
2003
Nozhkin, A.D., Turkina, O.M., Bobrov, V.A.Radioactive and rare earth elements in metapelites as indicators of composition and evolution of the Precambrian continental cruDoklady Earth Sciences, Vol. 391, 5, pp. 718-22.Russia, SiberiaGeochemistry - not specific to diamonds
DS200412-1460
2003
Ohta, M., Mock, T., Ogasawara, Y., Rumble, D.Oxygen, carbon, and strontium isotope geochemistry of diamond bearing carbonate rocks from Kumdy Kol, Kochetav Massif, KazakhstaLithos, Vol. 70, 3-4, pp. 77-90.Russia, KazakhstanGeochemistry
DS200412-1484
2004
Ota, T., Gladkochub, D.P., Skylarov, E.V., Mazukabzov, A.M., Watanabe, T.P T history of garnet websterites in the Sharyzhalgai complex, southwestern margin Siberian Craton: evidence from PaleproterozoiPrecambrian Research, Vol. 132, 4, pp. 327-348.Russia, SiberiaMetamorphism
DS200412-1485
2003
Ovcharenko, O.V., Ainbinder, H., Shilin, K.Y., Kramskov, N.P.Geomechanical substantiation of the parameters for underground mining of Mir kimberlite pipe.Journal of Mining Science, Vol. 38, 6, pp. 528-33.Russia, Siberia, YakutiaMining Deposit - Mir
DS200412-1511
2003
Pearson, N.J., Griffin, W.L., O'Reilly, S.Y., Delpech, G.Magnesium isotopic compositions of olivine from the lithospheric mantle.8 IKC Program, Session 4, AbstractRussia, Siberia, Canada, Northwest territories, Africa, South AfricaMantle geochemistry
DS200412-1552
2003
Pisarevsky, S.A., Natapov, L.M.Siberia and Rodinia.Tectonophysics, Vol. 375, 1-4, pp. 221-245.RussiaTectonics
DS200412-1560
2003
Pokhilenko, L.N., Tomilenko, A.A., Kuligin, S.S., Khlestov, V.V.The upper mantle heterogeneity: thermodynamic calculations and methods of mathematical statistics.8 IKC Program, Session 6, POSTER abstractRussia, YakutiaMantle petrology
DS200412-1577
2003
Pratesi, G., Lo Giudice, A., Vishnevky, S., Manfredotti, C., Cipriani, C.Cathodluminescence investigations on the Popigai Ries and Lappajarvi impact diamonds.American Mineralogist, Vol. 88, pp. 1778-87.Russia, Siberia, Baltic ShieldMeteorite
DS200412-1588
2003
Prevec, S.A.Tectono geochemical controls on PGE sulphide and chromite mineralization in Fennoscandian mafic rocks.Economic Geology Research Institute Information Circular, No. 371, October, 18p.Europe, Finland, Russia, Kola PeninsulaMagmatism - not specific to diamonds
DS200412-1590
2003
Priestly, K., De Bayle, E.Seismic evidence for a moderately thick lithosphere beneath the Siberian Platform.Geophysical Research Letters, Vol. 30, 3, Feb. 1, p. 18.RussiaGeophysics - seismics
DS200412-1591
2003
Prime-TassPutin signs bill declassifying PGM, gem output, reserve data.Prime-Tass, Nov. 20, 1/8p.RussiaNews item - legal, diamonds
DS200412-1630
2003
Rasskazov, S.V., Logachev, N.A., Kozhevnikov, V.M., Yanovskaya, T.B.Multistage dynamics of the upper mantle in eastern Asia: relationships between wandering volcanism and low velocity anomalies.Doklady Earth Sciences, Vol. 390, 4, pp. 492-6.Asia, RussiaGeodynamics Tectonics
DS200412-1648
2003
Rege, S., Davies, R.M., Griffin, W.L., Jackson, S., O'Reilly, S.Y.Trace element analysis of diamonds by LAM ICPMS: preliminary results.8 IKC Program, Session 3, AbstractRussia, Siberia, AustraliaDiamonds - database 115 Geochemistry
DS200412-1649
2004
Reguir, E.P., Chakmouradian, A.R., Mitchell, R.H.Pb bearing hollandite type titanates: a first natural occurrence and reconnaissance synthesis study.Mineralogical Magazine, Vol. 67, 5, pp. 957-965.RussiaMineralogy - Murun alkaline complex
DS200412-1657
2003
Reverdatto, V.V., Korolyuk, V.N., Selyatitsky, A.Yu.Evidence of the existence of peraluminous clinopyroxene ( tschermakite) in garnet pyroxenites from the Kokchetav Massif, KazakhsDoklady Earth Sciences, Vol. 391A, 6, July-August, pp. 896-99.Russia, KazakhstanPetrology
DS200412-1658
2004
Reverdatto, V.V., Selyatitski, A.Yu.Chloritic rocks and chloritized basalts as plausible precursors of metamorphic peridotites and pyroxenites in the Kokchetav MassDoklady Earth Sciences, Vol. 394, 1, Jan-Feb. pp. 130-133.Russia, KazakhstanMetamorphism
DS200412-1680
2003
Roden, M., Patino-Douce, A., Lazko, E., Jagoutz, E.Exsolution textures in high pressure garnets, Mir kimberlite, Sibveria.8 IKC Program, Session 6, POSTER abstractRussia, SiberiaMantle petrology Deposit - Mir
DS200412-1692
2003
Rosen, O.M.The Siberian Craton: tectonic zonation and stages of evolution.Geotectonics, Vol. 37, 3, pp. 175-92.Russia, SiberiaTectonics
DS200412-1711
2004
Ryabchikov, I.D.equilibration temperatures clinopyroxene melt and derivation of carbonatites from parent meimechites.Lithos, ABSTRACTS only, Vol. 73, p. S94. abstractRussia, SiberiaCarbonatite
DS200412-1714
2003
Sablukov, S.M., Sablukova, L.I.3 - D mapping of mantle substrate in the Zimny Bereg area, Russia.8 IKC Program, Session 6, POSTER abstractRussia, Kola Peninsula, ArchangelMantle petrology
DS200412-1715
2003
Sablukova, L.I., Sablukov, S.M., Verichev, E.M., Golovin, N.N.Mantle xenoliths of the Grib pipe Zimny Bereg, Russia8 IKC Program, Session 6, POSTER abstractRussia, Kola Peninsula, ArchangelMantle petrology Deposit - Grib
DS200412-1737
2004
Savatenkov, V.M., Sergeev, A.V.Nonline at Sr Nd trend of Kola alkaline province carbonatites (KAPC) as implication of the plume related mantle metasomatism.Geochimica et Cosmochimica Acta, 13th Goldschmidt Conference held Copenhagen Denmark, Vol. 68, 11 Supp. July, ABSTRACT p.A570.RussiaCarbonatite
DS200412-1780
2003
Sears, J.W., Price, R.A.Tightening the Siberian connection to western Laurentia.Geological Society of America Bulletin, Vol. 115, 8, August pp. 943-53.Russia, Australia, CanadaCordillera, Rodinia, plate reconstruction, Proterozoic
DS200412-1792
2003
Shamshina, E.A., Altukhova, Z.A., Babushkina, S.A.Facial characteristics of kimberlite rocks from the northern and southern parts of the Yakutian kimberlite province ( in the lig8 IKC Program, Session 7, POSTER abstractRussia, YakutiaKimberlite petrogenesis
DS200412-1794
2003
Sharkov, E.V., Trubkin, N.V., Krasivskaya, I.S., Bogatikov, O.A., Mokhov, A.V.The oldest volcanic glass in the Early Paleoproterozoic boninite type lavas, Karelian craton: results of instrumental investigatDoklady Earth Sciences, Vol. 390, 4, May-June pp. 580-4.Russia, KareliaBoninites
DS200412-1795
2004
Sharkov, E.V., Trubkin, N.V., Krassivskaya, I.S., Bogatikov, O.A., Mokhov, A.V., Chistyakov, EvseevaStructural and compositional characteristics of the oldest volcanic glass in the early paleoproterozoic boninite like lavas of sPetrology, Vol.12, 3, pp. 227-244.Russia, KareliaBoninites
DS200412-1797
2003
Sharygin, V.V., Golovin, A.V., Pokhilenko, N.P.Djerfisherite from unaltered kimberlites of the Udachnaya eastern pipe, Yakutia.8 IKC Program, Session 7, POSTER abstractRussia, YakutiaKimberlite petrogenesis Deposit - Udachnaya
DS200412-1798
2003
Sharygin, V.V., Golovin, A.V., Pokhilenko, N.P., Sobolev, N.V.Djerfisherite in unaltered kimberlites of the Udachnaya East pipe, Yakutia.Doklady Earth Sciences, Vol. 390, 4, May-June pp. 554-8.RussiaMineralogy Deposit - Udachnaya
DS200412-1800
2003
Shelkov, P.N.New occurrences of diamonds indicator minerals and alkaline ultramafic rocks from the eastern border of the Hanka Massif, Primor8 IKC Program, Session 8, POSTER abstractRussiaDiamond exploration
DS200412-1812
2003
Shmarov, G.P., Rotman, Ya.Large diamonds from the Udachnaya pipe.Rough Diamond Review, No. 2, September, p. 42 ( 1p.)Russia, YakutiaDiamond - notable
DS200412-1818
2004
Silaev, V.I., Chaikovskii, I.I., Rakin, V.I., Filippov, Y.N.A new type of synthetic xenomineral inclusions in diamond.Doklady Earth Sciences, Vol. 394, 1, Jan-Feb. pp. 53-57.RussiaDiamond inclusions
DS200412-1827
2003
Simakov, S.K.Garnet clinopyroxene and clinopyroxene geobarometry of deep mantle eclogites and peridotites.8 IKC Program, Session 6, AbstractAfrica, Russia, Yakutia, Australia, CanadaMantle petrology
DS200412-1834
2003
Simonenko, V.A., Shishkin, N.I.Cumulation of seismic waves during formation of kimberlite pipes.Journal of Applied Mechanics and Technical Physics - Kluwer Publ. Ingenta 1034481090, Vol. 44, 6, pp. 760-69.RussiaGeophysics - seismics, genesis
DS200412-1840
2004
Sindern, S., Zaitsev, A.N., Demeny, A., et al.Mineralogy and geochemistry of silicate dyke rocks associated with carbonatites from the Khibin a complex, Kola Russia - isotopeMineralogy and Petrology, Vol. 80, 3-4, March pp. 215-239.Russia, Kola PeninsulaCarbonatite
DS200412-1847
2003
Sklyarov, E.V., Gladkochub, D.P., Mazukabzov, A.M., Menshagin, Y.V., Watanabe, T., Pisarevsky, S.A.Neoproterozoic mafic dike swarms of the Sharyzhalgai metamorphic massif, southern Siberian craton.Precambrian Research, Vol. 122, 1-4, pp.359-76.Russia, SiberiaDyke swarms Magmatism
DS200412-1869
2004
Sobolev, N.V., Logvinova, A.M., Zedgenizov, D.A., Seryotkin, Y.V., Tefimova, E.S., Floss, C., Taylor, L.A.Mineral inclusions in microdiamonds and macrodiamonds from kimberlites of Yakutia: a comparative study.Lithos, Vol. 77, 1-4, Sept. pp. 225-242.Russia, Yakutia, SiberiaDiamond inclusions, craton, eclogite, peridotite
DS200412-1870
2003
Sobolev, N.V., Logvinova, A.M., Zedgenizov, D.A., Yefimova, E.S.Mineral inclusions in microdiamonds and macrodiamonds from kimberlites of Yakutia: a comparative study.8 IKC Program, Session 3, AbstractRussia, Yakutia, SiberiaDiamonds - inclusions
DS200412-1871
2003
Sobolev, N.V., Shatsky, V.S., Liou, J.G., Zhang, R.Y., Hwang, Shen, Chu, Yui, Zayachkovsky, KasymovAn origin of microdiamonds in metamorphic rocks of the Kokchetav Massif, northern Kazakhstan. US Russian civilian research andEpisodes, December, pp. 290-294.Russia, KazakhstanGenesis - microdiamonds
DS200412-1875
2004
Soloveva, L.V., Gornova, M.A., Egorov, K.N., Smironov, E.V.REE and HFSE distribution in rocks and minerals from granular peridotite xenoliths in the Udachnaya kimberlite pipe.Doklady Earth Sciences, Vol. 395, 4, March-April, pp. 456-460.Russia, YakutiaGeochemistry
DS200412-1876
2004
Soloveva, L.V., Gornova, M.A., Lozhkin, V.I.Geochemical identification of granulites in xenoliths from Yakutian kimberlites.Geochemistry International, Vol. 42, 3, pp. 220-235.Russia, YakutiaGeochemistry
DS200412-1874
2004
Soloveva, L.V., Gornova, M.A., Markova, M.E., Lozhkin, V.I.Geochemical identification of granulites in xenoliths from Yakutian kimberlites.Geochemistry International, Vol. 42, 3, pp. 220-235.Russia, YakutiaGeochemistry
DS200412-1885
2003
Spetsius, Z.V.Highly aluminous xenoliths from kimberlites of Yakutia: mantle petrology implication.8 IKC Program, Session 6, POSTER abstractRussia, Siberia, YakutiaMantle petrology Deposit - Udachnaya
DS200412-1886
2004
Spetsius, Z.V.Petrology of highly aluminous xenoliths from kimberlites of Yakutia.Lithos, Vol. 77, 1-4, Sept. pp. 525-538.Russia, YakutiaEclogite, kyanite, coesite, lithosphere, Udachnaya, Zag
DS200412-1887
2003
Spetsius, Z.V., Mityukhin, S.I., Ivanov, A.S.First discovery of Diamondiferous xenolith in kimberlite from the Botuoba pipe, Nakyn Field, Yakutia.Doklady Earth Sciences, Vol. 391, 5, pp. 703-6.Russia, YakutiaDiamond genesis , deposit
DS200412-1888
2003
Spetsius, Z.V., Taylor, L.A.Diamonds of Yakutia: photographic evidence for their origin.Bellwether Publishing Ltd., due Sept.Russia, YakutiaBook - announcement to be published Sept. 2003
DS200412-1918
2003
Steblov, G.M., Kogan, M.G., King, R.W., Scholz, C.H., Burgmann, R., Frolov, D.I.Imprint of the North American plate in Siberia revealed by GPS.Geophysical Research Letters, Vol. 30, 18, 1924 DOI.1029/2003 GLO17805Russia, Siberia, Canada, Northwest TerritoriesGeophysics - seismics
DS200412-1954
2003
Svetov, S.A., Fofanov, A.D., Smolkin, V.F., Moshkina, E.V., Repnikova, E.A., Kevlich, V.I.Real structure and physical properties of chromites as an indicator of their genesis.Doklady Earth Sciences, Vol. 393A, 9, pp. 1272-1275.Russia, Kola PeninsulaSpinel mineralogy
DS200412-1971
2004
Taylor, L.A., Anand, M.Diamonds: time capsules from the Siberian mantle.Chemie der Erde, Vol. 64, 1, pp. 1-74.RussiaDiamond - geochronology
DS200412-1973
2003
Taylor, L.A., Anand, M., Promprated, P., Floss, C., Sobolev, N.V.The significance of mineral inclusions in large diamonds from Yakutia, Russia.American Mineralogist, Vol. 88, 5/6, pp. 912-928.Russia, YakutiaDiamond - inclusions, protogenetic Deposit - Udachnaya, Mir, Aikhal
DS200412-1974
2003
Taylor, L.A., Snyder, G.A., Keller, R., Remley, D.A., Anand,M., Wiesli, R., Valley, J., Sobolev, N.V.Petrogenesis of Group A eclogites and websterites: evidence from the Obnazhennaya kimberlite, Yakutia.Contributions to Mineralogy and Petrology, Vol. 145, pp. 424-443.Russia, YakutiaPetrology, genesis Deposit - Obnazhennaya
DS200412-1995
2003
Tikov, S.V., Zudin, N.G., Gorshkov, A.I., Sivtsov, A.V., Magazina, L.O.An investigation into the cause of colour in natural black diamonds from Siberia.Gems & Gemology, Vol. 39,3, Fall, pp. 200-209.Russia, SiberiaMineral inclusions - Mir
DS200412-2000
2004
Titkov, S.V., Gorshkov, A.I., Magazina, L.O., Sivtsov, A.V., Zakharchenko, O.D.Shapeless dark diamonds ( Yakutites) from placers of the Siberian platform and criteria of their impact origin.Geology of Ore Deposits, Vol. 46, 3, pp. 191-201.Russia, SiberiaDiamond morphology
DS200412-2019
2004
Turkina, O.M., Nozhkin, A.D., Bibikova, E.V., Zhuravlev, D.Z., Travin, A.V.The Arzybei terrane: a fragment of the Mesoproterozoic Island Arc crust in the southwestern framing of the Siberian Craton.Doklady Earth Sciences, Vol. 395, 2, pp. 246-250.Russia, SiberiaTectonics
DS200412-2054
2003
Verichev, E.M., Garanin, V.K., Kudryavtseva, G.P.Geology, composition, conditions of formation and technique of exploration of the Vladimir Grib kimberlite pipe, a new diamond dGeology of Ore Deposits, Vol. 45, 4, pp. 337-361.Russia, Kola Peninsula, ArchangelGenesis - Grib, comparison with Lomonosov
DS200412-2062
2003
Vladykin, N.V., Lelyukh, M.I., Tolstov, A.V., Serov, V.P.Petrology of kimberlite lamproite carbonatite rock association, east Prianabar'e ( Russia).8 IKC Program, Session 7, POSTER abstractRussiaKimberlite petrogenesis
DS200412-2065
2003
Vrublevskii, V.A., Gertner, I.F., Zhuravlev, D.Z., Makarenko, N.A.The Sm Nd isotopic age and source of comagmatic alkaline mafic rocks and carbonatites of Kuznetsk Alatau.Doklady Earth Sciences, Vol. 391A, 6, July-August, pp. 832-5.RussiaGeochronology
DS200412-2066
2004
Vrublevskii, V.V., Zhuravlev, D.Z., Gertner, I.F., Krupchatnikov, V.I., Vladimirov, A.G., Rikhvanov, L.P.Sm Nd isotopic systematics of alkaline rocks and carbonatites from the Edelveis Complex, Northern Chuya Range, Gornyi Altai.Doklady Earth Sciences, Vol. 397, 6, July-August pp. 870-874.RussiaGeochronology
DS200412-2069
2003
Waldman, M.Exploration update.Rough Diamond Review, No. 2, September, pp. 5-10.Canada, Africa, Australia, India, Russia, South AmericaNews item - brief exploration overview
DS200412-2112
2003
Widom, E., Kepezhinskas, P., Defant, M.The nature of metasomatism in the sub-arc mantle wedge: evidence from Re Os isotopes in Kamchatka peridotite xenoliths.Chemical Geology, Vol. 196, 1-4, pp. 283-306.RussiaXenoliths
DS200412-2165
2004
Yamamoto, J., Kaneoka, I., Nakai, S., Kagi, H., Prikhodko, V.S., Arai, S.Evidence for subduction related components in the subcontinental mantle from low 3He/4He and 40Ar/36Ar ratio in mantle xenolithsChemical Geology, Vol. 207, 3-4, July 16, pp. 237-259.RussiaGeochemistry - noble gases, subduction, lherzolite
DS200412-2193
2003
Yutkina, E.V., Kononova, V.A., Kozar, N.A., Lnyazkov, A.P.Sr Nd and geochemical compositions of kimberlite from the eastern Azov region, their age and nature of the lithospheric source.Doklady Earth Sciences, Vol. 391, 5, pp. 751-54.RussiaGeochemistry, geochronology
DS200412-2199
2004
Zedgenizov, D.A., Kagi, H., Shatsky, V.S., Sobolev, N.V.Carbonatitic melts in cuboid diamonds from the Udachnaya kimberlite pipe ( Yukatia): evidence from vibrational spectroscopy.Mineralogical Magazine, Vol. 6, 1, pp. 61-73.Russia, YakutiaDiamond morphology
DS200412-2230
2004
Zhu, Y., Ogasawara, Y.Clinopyroxene phenocrysts ( with green salite cores) in trachybasalts: implications for two magma chambers under the Kokchetav UJournal of Asian Earth Sciences, Vol. 22, 5, January pp. 517-527.Russia, KazakhstanUHP, magma mixing, subduction
DS200412-2235
2004
Zinchuk, N.N., Koptil, V.I.Mineralogy of diamonds from the Yubileinaya pipe ( Yakutia).Geology of Ore Deposits, Vol. 46, 2, pp. 135-149.Russia, YakutiaDiamond - mineralogy, Jubilenya
DS200412-2237
2003
Zonin, Yu., Turutanov, E.Kh., Kozhevnikov, V.M.Mantle plumes beneath the Baikal Rift Zone and adjacent areas geophysical evidence.Doklady Earth Sciences, Vol. 393a, no. 9, pp.1302-4.RussiaGeophysics - seismics, tectonics, hotspots
DS200512-0004
2004
Afanasiev, V.P., Griffin, W.L., Natapov, L.M., Zinchuk, N.N., Matukhin, R.G., Mikrtychiyan, G.A.Diamond prospects in the southwestern flank of the Tungusk synclise.Geology of Ore Deposits, Vol. 47, 1, pp. 45-62.Russia, YakutiaDaldyn, Tychany, geochemistry
DS200512-0007
2004
Agashev, A.M., Pokhilenko, N.P., Tolstov, A.V., Polyanichko, Malkovets, SobolevNew age dat a on kimberlites from the Yakutian Diamondiferous Province.Doklady Earth Sciences, Vol. 399, 8, pp.1142-1145.Russia, YakutiaGeochronology
DS200512-0026
2005
Appollonov, V.N., Verzhak, V.V., Garanin, K.V., Garanin, V.K., Kudryavtseva, G.P., Shlykov, V.G.Saponite from the Lomonosov diamond deposit.Moscow University Geology Bulletin, Vol. 59, 2, pp. 69-84.Russia, Kola Peninsula, ArchangelGeology
DS200512-0029
2002
Arzamastsev, A.A., Bea, F., Arzamastseva, L.V., Montero, P.Devonian plume magmatism in the NE Baltic Shield: rare earth elements in rocks and minerals of ultrabasic alkaline series as indicators of magma evolution.Deep Seated Magmatism, magmatism sources and the problem of plumes., pp. 42-68.Baltic Shield, Kola Peninsula, RussiaMagmatism
DS200512-0030
2004
Arzhannikova, A.V., Arzhannikov, S.G.Neotectonic formation in the southwestern Siberian craton.Russian Geology and Geophysics, Vol. 45, 3, pp. 272-277.Russia, SiberiaTectonics
DS200512-0031
2002
Ashchepkov, I.V., Saprykin, A.I., Gerasim, Khmeintkova, Cheremenykk, Safonova, Rasskazov, Kinolin, VladykinPetrochemistry of mantle xenoliths from Sovgavan Plateau, Far East Russia.Deep Seated Magmatism, magmatism sources and the problem of plumes., pp. 213-222.RussiaXenoliths
DS200512-0032
2003
Ashchepkov, I.V., Vladykin, N.V., Loginova, A.M., Nikolaeva, Palessky, Khmelnikova, Saprykin, RotmanYubileynaya pipe: from mineralogy to mantle structure and evolution.Plumes and problems of deep sources of alkaline magmatism, pp. 20-38.RussiaGenesis - Jubileynaya
DS200512-0034
2004
Ashchepkov, I.V., Vladykin, N.V., Rotman, A.Y., Loginova, A.M., Nikolaeva, L.A., Palessky, V.S., Saprykin, A.I., Anoshin, G.N., Kuchkin, A., Khmelnikova, O.S.Reconstructions of the mantle layering beneath the Alakite kimberlite field: comparative characteristics of the mineral geochemistry and TP sequences.Deep seated magmatism, its sources and their relation to plume processes., pp. 160-177.RussiaGeochemistry - Alakite
DS200512-0035
2003
Ashchepkov, I.V., Vladykin, N.V., Rotman, A.Y., Nikolaeva, Palessky, Anoshin, Khmelnikova, SaprykinMinerals from Zarnitsa pipe kimberlite: the key to enigma of the mantle composition and construction.Plumes and problems of deep sources of alkaline magmatism, pp. 51-64.RussiaMineralogy - Zarnitsa
DS200512-0036
2004
Ashchepkov, I.V., Vladykin, Rotman, Loginova, Afanasiev, Palessky, Saprykin, Anoshin, Kuchkin, KhmelnikovaMir and Internationalnaya kimberlite pipes - trace element geochemistry and thermobarometry of mantle minerals.Deep seated magmatism, its sources and their relation to plume processes., pp. 194-208.RussiaGeobarometry - Mir, International
DS200512-0037
2001
Ashchepkov,I.V., Vladykin, N.V., Gerasimov, P.A., Saprykin, A.I., Khmelnikova, O.S., Anoshin, G.N.Petrology and mineralogy of disintegrated mantle inclusions of kimberlite like diatremes from the Aldan Shield ( Chompolo field): mantle reconstructions.Alkaline Magmatism and the problems of mantle sources, pp. 161-176.RussiaDiatreme
DS200512-0068
2001
Baryshnikov, V.D., Gakhova, L.N., Kramskov, N.P.Stress state of the rock mass in the vicinity of underground mining workings, pit edges, and below its bottom.Journal of Mining Science, Vol. 37, 5, pp. 462-465.RussiaMining - Aikhal
DS200512-0069
2002
Baryshnikov, V.D., Gakhova, L.N., Kramskov, N.P.Stress state of ore mass in the ascending slice system.Journal of Mining Science, Vol. 38, 6, pp. 608-611.RussiaMining - International
DS200512-0096
2005
Bobrov, A.V., Verichev, E.M., Garanin, V.K., Kudryavtseva, G.P.The first find of kyanite eclogite in the V. Grib kimberlite pipe ( Arkangelsk Province).Doklady Earth Sciences, Vol. 402, 4, pp. 628-631.Russia, Kola Peninsula, ArchangelEclogite
DS200512-0100
2004
Bogatikov, O.A., Kononova, V.A., Golubeva, Zinchuk, Ilupin, Rotman, Levsky, Ovchinnikova, KondrashovVariations in chemical and isotopic compositions of the Yakutian kimberlites and their causes.Geochemistry International, Vol. 42, 9, pp. 799-821.Russia, Siberia, YakutiaGeochemistry
DS200512-0104
2004
Bolonin, A.V., Nikiforov, A.V.Chemical composition of carbonatite minerals in Karasug deposit, Tuva.Geology of Ore Deposits, Vol. 46, 5, pp. 372-387.RussiaCarbonatite
DS200512-0110
2005
Brassinnes, S., Balaganskaya, E., Demaiffe, D.Magmatic evolution of the differentiated ultramafic, alkaline and carbonatite intrusion of Vuoriyarvi, Kola Peninsula, Russia, A LA ICP MS study of apatite.Lithos, Advanced in pressRussia, Kola PeninsulaCarbonatite
DS200512-0111
2003
Brassinnes, S., DeMaiffe, D., Balaganskaya, E., Downes, H.New mineralogical and geochemical dat a on the Vuorijarvi ultramafic, alkaline and carbonatitic complex ( Kola Region, NW Russia).Periodico di Mineralogia, (in english), Vol. LXX11, 1. April, pp. 79-86.Russia, Kola PeninsulaMelilite
DS200512-0129
2004
Buzlukova, L.V., Shatsky, V.S., Sobolev, N.V.Specific structure of the lowermost Earth's crust at the Zagadochnaya kimberlite pipe.Russian Geology and Geophysics, Vol. 45, 8, pp. 942-959.Russia, YakutiaStructure - Zagadochnaya
DS200512-0149
2005
Chakhmouradian, A.R.Geochemistry and mineralogy of HFSE in intracratonic carbonatites: implications for their economic potential (on the example of Kola alkaline province).GAC Annual Meeting Halifax May 15-19, Abstract 1p.Russia, Kola PeninsulaCarbonatite, magmatism
DS200512-0150
2003
Chakhmouradian, A.R.Titanite in carbonatitic rocks: genetic dualism and geochemical significance.Periodico di Mineralogia, (in english), Vol. LXX11, 1. April, pp. 107-113.Russia, Canada, Ontario, United States, MontanaKovdor, Turiy Mys, Murun, Praire Lake, Rocky Bay
DS200512-0175
2005
Cocks, L.R.M., Torsvik, T.H.Baltica from the late Precambrian to mid-Paleozoic times: the gain and loss of a terrane's identity.Earth Science Reviews, Vol. 72, 1-2, Sept. pp. 39-66.Europe, Baltic Shield, Russia, UralsEast European Craton, Rodinia
DS200512-0237
2005
Dobretsov, N.L., Buslov, M.M., Zhimulev, F.I., Travin, A.V.The Kochetav Massif as a deformed Cambrian-Early Caradocian collision subduction zone.Doklady Earth Sciences, Vol. 402, 4, pp. 501-505.RussiaSubduction
DS200512-0244
2004
Doroshkevich, A.G., Ripp, G.S.Estimation of the conditions of formations of REE carbonatites in western Transbaikalia.Russian Geology and Geophysics, Vol. 45, 4, pp. 456-463.RussiaCarbonatite, rare earths
DS200512-0246
2005
Dovgal, V.N.Nepheline syenites of different alkalinity types of the Altai Sayan area and geologic conditions of their formation.Russian Geology and Geophysics, Vol. 46, 7, pp. 716-724.RussiaAlkalic
DS200512-0247
2005
Downes, H., Balaganskaya, E., Beard, A., Liferovich, R., Demaiffe, D.Petrogenetic processes in the ultramafic, alkaline and carbonatitic magmatism in the Kola alkaline province: a review.Lithos, Advanced in press,Russia, Kola PeninsulaCarbonatite, kimberlites
DS200512-0315
2004
Garanin, K.V.Alkaline ultrabasic rocks in the Arkangelsk diamond province: present state of knowledge and prospects for studies.Moscow University Geology Bulletin, Vol. 59, 1, pp. 35-45.Russia, Kola Peninsula, ArchangelAlkalic
DS200512-0321
2005
Gee, D.G., Pease, V.The Neoproterozoic Timanide Orogen of eastern Baltica.Geological Society of London, Memoir M0030 160p.Baltic Shield, Norway, Finland, RussiaBook - East European Craton, subduction
DS200512-0344
2005
Gladkov, A.S., Zinchuk, N.N, Bornyakov, S.A., Sherman, S.I., Manakov, A.V., Matrosov, V.A., Garat, DzyubaNew dat a on the internal structure and formation mechanism of kimberlite hosting fault zones in the Malaya Botuoba region, Yakutian Diamondiferous provinceDoklady Earth Sciences, Vol. 402, 4, pp. 520-23.Russia, YakutiaTectonics, structure, Malaya Botuoba
DS200512-0351
2004
Golubeva, Y.Y., Tsepin, A.Petrochemical and mineralogical constraints for diagnostics of Yakutian kimberlites.Doklady Earth Sciences, Vol. 397, 6, pp. 798-803.Russia, YakutiaGeochemistry
DS200512-0353
2002
Gornova, M.A., Solovjeva, L.V.Application of rare element composition of garnet and clinopyroxene from peridotite xenoliths ( Udachnaya kimberlite) for modeling of primitive mantle meltingDeep Seated Magmatism, magmatism sources and the problem of plumes., pp. 148-162.RussiaREE - melting
DS200512-0354
2001
Gornova, M.A., Solovjeva, L.V., Glazunov, O.M., Belozerova, O.Yu.Formation of Precambrian lithosphere mantle - geochemical analysis of coarse grained peridotites from kimberlites, Siberian Craton.Alkaline Magmatism and the problems of mantle sources, pp. 223-241.Russia, SiberiaGeochemistry
DS200512-0356
2004
Gottikh, R.P., Pisotskii, B.I., Zhuravlev, D.Z.Trace element distribution in the kimberlite bitumen and basalt bitumen systems in diatremes of the Siberian Craton.Doklady Earth Sciences, Vol. 399A, Nov-Dec. pp. 1222-1226.RussiaMineralogy - bitumen
DS200512-0361
2003
Grakhanov, S.A., Koptil, V.I.Triassic diamond placers on the northeastern Siberian platform.Russian Geology and Geophysics, Vol. 44, 11, pp. 1150-1161.Russia, SiberiaAlluvials
DS200512-0369
2005
Griffin, W.L., Natapov, L.M., O Reilly, S.Y., Van Acterbergh, E., Cherenkova, A.F., Cherenkov, V.G.The Kharamai kimberlite field, Siberia: modification of the lithospheric mantle by the Siberian Trap event.Lithos, Vol. 81, 1-4, pp. 167-187.Russia, SiberiaMetasomatism
DS200512-0370
2005
Griffin, W.L., O'Reilly, S.Y.Upper mantle composition: tools for smarter diamond exploration.Mineral deposit Research: Meeting the Global Challenge. 8th Biennial SGA Beijing, Aug. 18-22, 2005. Springer, Chapter 1-2, pp. 7-10.Mantle, Africa, Russia, CanadaSCLM, magmas
DS200512-0455
2004
Hwang, S.L., Shen, P., Chu, H-T., Yui, T-F, Liou, J.G., Sobolev, N.V., Zhang, R-Y., Shatsky, V.S., ZayachkovskyKokchetavite: a new potassium feldspar polymorph from the Kokchetav ultrahigh pressure terrane.Contributions to Mineralogy and Petrology, Vol. 148, 3, pp. 380-RussiaUHP
DS200512-0454
2005
Hwang, S.L., Shen, P., Chu, H-T., Yui, T-F., Liou, J.G., Sobolev, N.V., Shatsky, V.S.Crust derived potassic fluid in metamorphic microdiamond.Earth and Planetary Science Letters, Vol. 231, 3-4, March 15, pp. 295-306.Russia, SiberiaKokchetav massif
DS200512-0461
2005
Ionov, D., Prikhodko, V.S., Bodinier, J.L., Sobolev, A.V., Weis, D.Lithospheric mantle beneath the south eastern Siberian Craton: petrology of peridotite xenoliths in basalts from the Tokinsky Stanovik.Contributions to Mineralogy and Petrology, Vol. 149, no. 6, pp. 647-665.Russia, SiberiaXenoliths
DS200512-0462
2005
Ionov, D.A., Ashchepkov, I., Jagoutz, E.The provenance of fertile off craton lithospheric mantle: Sr Nd isotope chemical composition of garnet and spinel peridotite xenoliths from Vitim, Siberia.Chemical Geology, Vol. 217, 1-2, April 15, pp. 41-75.Russia, SiberiaGeochronology
DS200512-0463
2005
Ionov, D.A., Prikhodko, V.S., Bodinier, J-L.et.al.Lithospheric mantle beneath the south eastern Siberian Craton: petrology of peridotite xenoliths in basalts from the Tokinsky Stanovik.'Contributions to Mineralogy and Petrology, Online AccessRussiaXenoliths, Aldan Shield, Siberian Craton, metasomatism
DS200512-0480
2005
Johnson, J.S., Gibson, S.A., Thompson, R.N., Nowell, G.M.Volcanism in the Vitim volcanic field, Siberia: geochemical evidence for a mantle plume beneath the Baikal Rift zone.Journal of Petrology, Vol. 46, 7, July pp. 1309-1344.Russia, SiberiaGeochemistry - Vitim
DS200512-0481
2005
Johnson, J.S., Gibson, S.A., Thompson, R.N., NOwell, G.M.Volcanism in the Vitim volcanic field, Siberia: geochemical evidence for a mantle plume beneath the Baikal Rift Zone.Journal of Petrology, Vol. 46, pp. 1309-1344.Russia, SiberiaPlume
DS200512-0495
2004
Kamenetsky, M.B., Sobolev, A.V., Kamenetsky, V.S., Maas, R., Danyushevsky, L.V., Thomas, R., Pokhilenko, N.P., Sobolev, N.V.Kimberlite melts rich in alkali chlorides and carbonates: a potent metasomatic agent in the mantle.Geology, Vol. 32, 10, Oct. pp. 845-848.Russia, Siberia, YakutiaUdachnaya, Group I, volatiles, metasomatism, inclusions
DS200512-0498
2005
Katayama, I., Nakashima, S., Yurimoto, H.Water content in natural eclogite and implication for water transport into deep upper mantle.Lithos, In press,RussiaKokchetav Massif, UHP, subduction
DS200512-0499
2004
Katayama, I., Ohta, M., Ogasawara, Y.Mineral inclusions in zircon from diamond bearing marble in the Kokchetav Massif, northern Kazakhstan.European Journal of Mineralogy, Vol. 14, 6, pp. 1103-1108.Russia, KazakhstanMineral inclusions
DS200512-0525
2005
Khazan, Y., Fialko, Y.Why do kimberlites from different provinces have similar trace element patterns?Geochemistry, Geophysics, Geosystems: G3, Vol. 6, 20p.Africa, South Africa, India, Russia, YakutiaMineral chemistry, REE
DS200512-0526
2005
Khmelkov, A.M.Genesis of the rims on picroilmenites of the Taigikun-Nemba kimberlite field. Evenkia.Russian Geology and Geophysics, Vol. 46, 2, pp. 199-206.RussiaMineralogy
DS200512-0527
2004
Khokholov, Yu.A., Kurilko, A.S.Heat exchange of rock and filling masses in kimberlite mining.Journal of Mining Science, Vol. 40, 1, pp. 31-36.RussiaMining - kriolite zone, thawing
DS200512-0528
2004
Khrustalev, V.K.Fluid regime and ore bearing of late Paleozoic granitoids in west Transbaikalian zones of deep faults.Deep seated magmatism, its sources and their relation to plume processes., pp. 309-315.RussiaTectonics
DS200512-0546
2001
Klishin, V.I., Sher, E.N., Kramskov, N.P., et al.Underground mining of kimberlite pipes under alluvia.Journal of Mining Science, Vol. 37, 4, pp. 421-426.RussiaOverburden - depth 80-100m
DS200512-0549
2004
Kobussen, A.F., Chistensen, N., Thybo, H.The search for the source of the anomalously high upper mantle seismic velocities of the Siberian Craton: evidence from xenoliths.Geological Society of America Annual Meeting ABSTRACTS, Nov. 7-10, Paper 57-1, Vol. 36, 5, p. 146.RussiaGeophysics - seismics, anisotropy
DS200512-0560
2005
Kononova, V.A., Golubeva, Y.Y., Bogatikov, O.A., Nosova, Levsky, OvchinnikovaGeochemical diversity of Yakutian kimberlites: origin and diamond potential (ICP-MS dat a and Sr, Nd and Pb isotropy).Petrology, Vol. 13, 3, pp. 205-228.RussiaMineral chemistry
DS200512-0568
2004
Korsakov, A.V., Shatsky, V.S.Origin of graphite coated diamonds from ultrahigh pressure metamorphic rocks.Doklady Earth Sciences, Vol. 399, 8, pp.1156-1159.(1160-1163?)RussiaUHP
DS200512-0569
2005
Korsakov, A.V., Vandenabeele, P., Theunissen, K.Discrimination of metamorphic diamond populations by Raman spectroscopy ( Kokchetav Kazakhstan).Spectrochimica Acta Part A, Vol. 61, 10, pp. 2378-2385.RussiaMetamorphic diamonds
DS200512-0570
2004
Kostrovitsky, S.I., De Bruin, D.Chromium assemblage of minerals in micaceous kimberlites of Yakutian province.Russian Geology and Geophysics, Vol. 45, 5, pp. 521-535.Russia, YakutiaMineral chemistry - chromite
DS200512-0571
2004
Kostrovitsky, S.I., De Bruin, D.Chromium assemblage of minerals in micaceous kimberlites of Yakutian province.Russian Geology and Geophysics, Vol. 45, 5, pp. 521-35.Russia, YakutiaMineralogy
DS200512-0572
2004
Kostrovskii, S.I., Morikiyo, T., Serov, I.V., Rotman, A.Ya.Origin of kimberlites: evidence from isotopic geochemical data.Doklady Earth Sciences, Vol. 399, Oct-Nov. pp. 1164-68.RussiaGeochronology
DS200512-0575
2002
Kovalenko, V.I., Yarmolyuk, V.V., Vladykin, N.V., Kozlovsky, A.M.Processes leading to eclogitization (densification) of subducted and tectonically buried crust.Deep Seated Magmatism, magmatism sources and the problem of plumes., pp. 23-41.Asia, RussiaMagmatism
DS200512-0578
2003
Krasnova, N.I.Kovdor apatite francolite deposit as an example of explosive and phreatomagmatic endogeneous activity in the ultramafic alkaline and carbonatite complex Kola.Plumes and problems of deep sources of alkaline magmatism, pp. 155-170.Russia, Kola PeninsulaCarbonatite, Kovdor
DS200512-0580
2003
Kravchenko, S.M.Porphyritic potassium rich alkaline ultrabasic rocks of the Central Tomtor massif ( Arctic Siberia) carbonatized lamproites.Russian Geology and Geophysics, Vol. 44, 9, pp. 870-883.Russia, SiberiaLamproite
DS200512-0592
2005
Kurilko, A.S., Novopashin, M.D.Features of low temperature effect upon strength of enclosing rock and kimberlite in the Udachnaya pipe.Journal of Mining Science, Vol. 41, 2, pp. 119-22.RussiaMining - water interaction
DS200512-0594
2001
Kuzmin, M.I., Yarmolyuk, V.V., Kovalenko, V.I., Ivanov, V.G.Evolution of central Asian 'hot' field in the Phanerozoic and some problems of plume tectonics.Alkaline Magmatism and the problems of mantle sources, pp. 242-256.Asia, RussiaTectonics
DS200512-0622
2004
Letnikov, F.A., Kostitsyn, Yu.A., Vladykin, N.V., Zayachkovski, A.A., Mishina, E.I.Isotopic characteristics of the Krasnyi Mai ultramafic alkaline rock complex.Doklady Earth Sciences, Vol. 399A, 9, Nov-Dec. pp. 1315-1319.RussiaAlkalic
DS200512-0625
2005
Levchenkov, O.A., Gaidamako, I.M., Levskii, L.K., Komarov, Yakovleva, Rizvanova, MakeevU Pb age of zircon from the Mir and 325 Let Yakutii pipes.Doklady Earth Sciences, Vol. 400, 1, pp. 99-101.Russia, YakutiaGeochronology
DS200512-0626
2004
Levitskii, V.I., Salnikova, E.B., Kotov, A.B., Reznitskii, L.Z., Barash, I.G., et al.Age of formation of apocarbonate metasomites of the Sharyzhalgai Uplift of the Siberian Craton basement, southwestern Baikal region U - Pb baddeleyite, zirconDoklady Earth Sciences, Vol. 399A, 9, Nov-Dec. pp. 1204-1208.Russia, SiberiaGeochronology
DS200512-0653
2004
Lobach-Zhuchenko, S.B., Rollinson, H.R., Chekulaev, V.P., Arestova, N.A., Kovalenko, A.V., IvanikovThe Archean sanukitoid series of the Baltic Shield: geological setting, geochemical characteristics and implications for their origin.Lithos, Vol. 79, pp. 107-128.Baltic Shield, Kola Peninsula, RussiaGeneral regional geology, lamprophyres
DS200512-0657
2004
Lorenz, H.Integration of Corona and Land sat thematic mapper dat a for bedrock geological studies in the high Arctic.International Journal of Remote Sensing, Vol. 25, 22, pp. 5143-5162.RussiaRemote sensing - not specific to diamonds
DS200512-0666
2005
Maas, R., Kamenetsky, M.B., Sobolev, A.V., Kamenetsky, V.S., Sobolev, N.V.Sr Nd Pb isotope evidence for a mantle origin of alkali chlorides and carbonates in the Udachnaya kimberlite, Siberia.Geology, Vol. 33, 7, July, pp. 549-552.Russia, SiberiaGeochronology - Udachnaya
DS200512-0677
2001
Mahotkin, I.L., Podkuiko, Yu.A., Zhuravlev, D.Z.Early Paleozoic kimberlite melnoite magmatism of the Pre-Polar Urals and the geodynamic formation model.Alkaline Magmatism and the problems of mantle sources, pp. 151-160.Russia, UralsMelnoites
DS200512-0714
2005
Medvedev, V.Y., Ivanova, L.A., Egorov, K.N., Laskevich, V.V.Formation of kelphytic rims around garnet in kimberlites: experimental and physicochemical modeling.Geochemistry International, Vol. 43, 8, pp. 769-775.RussiaMineral chemistry
DS200512-0721
2004
Metelkin, D.V., Vernikovsky, V.A., Kazansky, A.Y., Bogolepova, O.K., Gubanov, A.P.Paleozoic history of the Kara microcontinent and its relation to Siberia and Baltica: paleomagnetism, paleogeography and tectonics.Tectonophysics, Vol. 398, 3-4, April 13, pp. 225-243.Russia, Siberia, Baltic ShieldTectonics
DS200512-0728
2004
Mints, M.V., Berzin, R.G., Andryushchenko, Y.N., Zamozhnyaya, N.G., Zlobin, Konilov, Stupak, SuleimanovThe deep structure of the Karelian Craton along Geotraverse 1-EB.Geotectonics, Vol. 38, 5, pp. 329-342.RussiaGeophysics - seismics
DS200512-0746
2001
Morikiyo, T., Miyazaki, T., Kagami, H., Vladykin, N.V., Chernysheva, E.A., Panina, L.I., Podgornych, N.M.Sr Nd C and O isotope characteristics of Siberian carbonatites.Alkaline Magmatism and the problems of mantle sources, pp. 69-84.Russia, SiberiaGeochronology
DS200512-0747
2004
Morikiyo, T., Weerakoon, M.W.K., Miyazaki, T., Vladykin, N.V., Kostrovitsky, S.L., Kagami, H., Shuto, K.Difference in Sr and Nd isotopic character of carbonatites and kimberlites from Siberia.Deep seated magmatism, its sources and their relation to plume processes., pp. 112-127.Russia, SiberiaGeochronology
DS200512-0781
2005
Nikiforov, A.V., Bolonin, A.V., Sugorakova, A.M., Popov, V.A., Lykhin, D.A.Carbonatites of central Tuva: geological structure and mineral and chemical composition.Geology of Ore Deposits, Vol. 47, 4, pp. 326-345.RussiaCarbonatite, geochemistry
DS200512-0783
2002
Nitvin, V.A., Ikorsky, S.V.Some genetic features of the Lovozero rare metal deposits (NW Russia) as it follows from noble gas (He Ar) isotope abundances.Deep Seated Magmatism, magmatism sources and the problem of plumes., pp. 230-252.RussiaGeochronology - Lovozero
DS200512-0786
2001
Nivin, V.A., Ikorsky, S.V., Kamensky, I.L.Noble gas ( He Ar) isotope evidence for sources of Devonian alkaline magmatism and ore formation related within the Kola province, NW Russia).Alkaline Magmatism and the problems of mantle sources, pp. 177-188.Russia, Kola PeninsulaGeochronology
DS200512-0787
2003
Nivin, V.A., Liferovich, R.P., Ikorsky, S.V., Balaganskaya, E.G., Subbotin, V.V.Noble gas isotopes in minerals from phoscorites and carbonatites in Kovdor and Seblyavr ultramafic alkaline complexes ( Kola alkaline province NW Russia).Periodico di Mineralogia, (in english), Vol. LXX11, 1. April, pp. 135-146.Russia, Kola PeninsulaGeochronology
DS200512-0788
2005
Nivin, V.A., Treloar, P.J., Konopleva, N.G., Ikorsky, S.V.A review of the occurrence, form and origin of C bearing species in the Khibiny alkaline igneous complex, Kola Peninsula, NW Russia.Lithos, Advanced in press,Russia, Kola PeninsulaAbiogenic, hydrocarbons
DS200512-0789
2005
Nobuhiro, Y., Ogasawara, Y.Cathodluminescence of microdiamond in dolomite marble from the Kokehetav Massif - additional evidence for two stage growth of diamond.International Geology Review, Vol. 47, 7, July pp. 703-715.RussiaMicrodiamond morphology
DS200512-0790
2004
Nokleberg, W.J., Bararch, G.Berzin, Diggles, Hwang, Khanchuk, Miller, Naumova, Oblenskiy, Ogasawara, ParfemicDigital files for northeast Asia, geodynamics, mineral deposit location and metallogenic belt maps. stratigraphic columns, map units.U.S. Geological Survey, Open file 2004-1252Russia, ChinaMaps - geodynamics - not specific to diamonds
DS200512-0799
2005
Ogasawara, Y.Microdiamonds in ultrahigh pressure metamorphic rocks.Elements, Vol. 1, 2, March pp. 91-96.Russia, MantleUHP, continental collision, Kokchetav
DS200512-0806
2002
Okamura, S., Mariynov, Yu.A.Cenozoic volcanism of Far East Russia: the relative importance of subcontinental lithosphere and asthenospheric mantle.Deep Seated Magmatism, magmatism sources and the problem of plumes., pp. 95-101.RussiaMagmatism
DS200512-0840
2004
Perchuk, L.L.Gravitational redistribution of rocks within the Precambrian continental crust: problem solution.Moscow University Geology Bulletin, Vol. 59, 5, pp. 19-31.RussiaGeodynamics, tectonics
DS200512-0843
2003
Perepelov, A.B., Antipin, V.S., Kablukov, A.V., Filosofova, T.M.Ultrapotassic rhyolites of southern Kamchatka: geochemical and petrological evidence.Plumes and problems of deep sources of alkaline magmatism, pp. 171-183.RussiaAlkalic
DS200512-0844
2001
Perepelov, A.B., Volynets, O.N., Anoshin, G.N., Puzankov, Yu.M., Antipin, V.S., Kalukov, A.V.Western Kamchatka alkali potassic basaltoid volcanism: geological and geochemical review.Alkaline Magmatism and the problems of mantle sources, pp. 52-68.Russia, KamchatkaAlkalic
DS200512-0845
2005
Perov, V.A., Bogomolov, E.S., Larchenko, V.A., Levskii, L.K., Minchenko, G.V., Sablukov, S.M., SZergeev, S.A., Stepanov, V.P.Rb Sr age of kimberlites of the Pionerskaya pipe, Arkangelsk Diamondiferous province.Doklady Earth Sciences, Vol. 400, 1, pp. 67-71.Russia, Kola Peninsula, ArchangelGeochronology -
DS200512-0847
2005
Pervov, V.A., Bogomolov, E.S., Larchenko, V.A., Levskii, L.K., Minchenko, Sabukov, Sergeev, StepanovRb Sr age of kimberlites of the Pionerskaya pipe, Arkangelsk Diamondiferous province.Doklady Earth Sciences, Vol. 400, 1, pp. 67-71.Russia, Archangel, Kola PeninsulaGeochronology
DS200512-0864
2005
Poller, U., Gladkochub, D., Donskaya, T., Mazukabzov, A., Sklyarov, E., Todt, W.Multistage magmatic and metamorphic evolution in the southern Siberian craton: Archean and paleoproterozoic zircon ages revealed by SHRIMP and TIMS.Precambrian Research, Vol. 136, 3-4, pp. 353-368.Russia, SiberiaGeochronology
DS200512-0865
2005
Poller, U., Gladkochub, D.P., Donskaya, T.V., Mazukabzov, A.M., Sklyarov, E.V., Todt, W.Timing of Early Proterozoic magmatism along the southern margin of the Siberian Craton ( Kitoy area).Geological Society of America Special Paper, No. 389, pp. 215-226.RussiaMagmatism ( not specific to diamonds)
DS200512-0868
2004
Potter, J., Rankin, A.H., Treloar, P.J.Abiogenic Fischer-Topsch synthesis of hydrocarbons in alkaline igneous rocks: fluid inclusions, textural and isotopic evidence from the Lovozero complex, NW Russia.Lithos, Vol. 75, 3-4, pp. 311-358.RussiaAlkalic
DS200512-0878
2005
Prokofev, V.Y., Seredkin, M.V., Zotov, I.A., Anoshechkina, V.A.Genesis of magnetite apatite and phlogopite deposits in the Kovdor Massif, Kola Peninsula: evidence from melt and fluid inclusions.Doklady Earth Sciences, Vol. 403, 5, pp. 727-731.Russia, Kola PeninsulaAlkalic
DS200512-0891
2003
Rass, I.Carbonatite derivation from primary magmas with different Ca contents: geochemical evidence. Examples from Siberia and Kaiserstuhl.Periodico di Mineralogia, (in english), Vol. LXX11, 1. April, pp. 147-52.Russia, Yakutia, Europe, GermanyMelilitite
DS200512-0904
2004
Ripp, G.S., Badmatsyrenov, M.V., Doroshkevich, A.G., Isbrodin, L.A.Mineral composition and geochemical characteristic of the Veseloe carbonatites ( Northern Transbaikalia, Russia).Deep seated magmatism, its sources and their relation to plume processes., pp. 257-272.RussiaCarbonatite, mineralogy
DS200512-0908
2004
Roden, M., Patino-Douce, A., Lazko, E.E.Evidence for high pressure garnet pyroxenites in the continental lithosphere.Geological Society of America Annual Meeting ABSTRACTS, Nov. 7-10, Paper 17-4, Vol. 36, 5, p. 46.RussiaMir, mineral chemistry
DS200512-0911
2002
Rosen, O.M., Serenko, V.P., Spetsius, Z.V., Manakov, A.V., Zinchuk, N.N.Yakutian kimberlite province: position in the structure of the Siberian Craton and composition of the upper and lower crust.Russian Geology and Geophysics, Vol. 45, 1, pp. 1-24.Russia, SiberiaTectonics
DS200512-0919
2004
Ruzhentsev, S.V., Samygin, S.G.The structure and tectonic evolution of the East European Platform and the southern Urals junction zone.Geotectonics, Vol. 38, 4, pp. 255-276.Russia, UralsTectonics
DS200512-0922
2002
Sablukov, V.S., Sablukova, L.I., Verichev, E.M.Essential types of mantle substrate in the Zimny Bereg region in connection with the formation of kimberlite hosting rounded and flat faces diamonds.Deep Seated Magmatism, magmatism sources and the problem of plumes., pp. 185-202.Russia, Kola Peninsula, ArchangelDiamond genesis, morphology
DS200512-0923
2003
Sabulukova, L.I., Sabulkov, S.M., Verichev, E.M., Golovin, N.N.Petrography and mineral chemistry of mantle xenoliths and xenocrysts from the Grib pipe, Zimny Bereg area, Russia.Plumes and problems of deep sources of alkaline magmatism, pp. 65-95.Russia, Kola Peninsula, ArchangelXenoliths - Grib
DS200512-0926
2004
Safronov, I.Yu., Buslov, M.M.Geochemistry of oceanic basalts of the Katun accretionary wedge in northern Gorny Altai: evidence for mantle plume magmatism.Deep seated magmatism, its sources and their relation to plume processes., pp. 273-298.Russia, MantleMagmatism
DS200512-0927
2005
Saha, A., Basu, A.R., Jacobsen, S.B., Poreda, R.J., Yin, Q.Z., Yogodzinski, G.M.Slab devolatization and Os and Pb mobility in the mantle wedge of the Kamchatka arc.Earth and Planetary Science Letters, Advanced in press,Russia, KamchatkaGeochronology, slab
DS200512-0929
2004
Sakhno, V.G., Maksimov, S.O., Popov, V.K., Sandimirova, G.P.Leucite basanites and potassium shonkinites of the Uglovoe Basin, southern Primorye.Doklady Earth Sciences, Vol. 399A, Nov-Dec. pp. 1322-1326.RussiaBasanites, Foidites
DS200512-0930
2006
Samykina, E.V., Surkov, A.V., Epplebaum, L.V., Semenov, S.V.Do old spoils contain large amounts of economically valuable minerals?Minerals Engineering, Vol. 18, 6, May, pp. 643-645. Note only 2 pagesRussia, Africa, South Africa, South AmericaGravity concentration, gold, diamonds
DS200512-0935
2002
Saraev, A.K., Pertel, M.I., Nikiforov, A.B., Garat, M.N., Manakov, A.B., Ingerov, O.I.Magnetotelluric exploration for kimberlite pipes in Yakutian Province, Sakha Republic, Russia.Phoenix Geophysics Preprint, English, Jan. 7p. text 17 figuresRussia, Siberia, YakutiaGeophysics - magnetotellurics, Almakinskaya, Mirensky
DS200512-0938
2004
Savelieva, G.N.Structure of the mantle crust transitional zone in modern and ancient spreading centers, the central Atlantic and Polar Urals.Geotectonics, Vol. 38, 4, pp. 241-254.Russia, UralsTectonics
DS200512-0961
2005
Serov, V.P., Kharkiv, A.D., Ustinov, V.I., Ukhanov, A.V.The Sobolev kimberlite pipe: structure and composition. YakutiaRussian Geology and Geophysics, Vol. 46, 2, pp. 188-198.Russia, YakutiaMineralogy - Sobolev
DS200512-0966
2004
Sharygin, V.V., Golovin, A.V., Pokhilenko, N.P.Genesis of djerfisherite from kimberlites and xenoliths of the Udachnaya diatreme, Yakutia Russia.Deep seated magmatism, its sources and their relation to plume processes., pp. 236-256.RussiaMineralogy
DS200512-0967
2003
Sharygin, V.V., Pospelova, L.N., Smirnov, S.Z., Vladykin, N.V.Ni rich sulfide inclusions in early lamproite minerals.Russian Geology and Geophysics, Vol. 44, 9, pp. 817-828.RussiaLamproite - inclusions
DS200512-0968
2005
Shatsky, V.S., Zedgenizov, D.A., Ragozin, A.L., Mityukhin, S.I., Sobolev, N.V.Evidence for metasomatic formation of diamond in eclogite xenolith from the Udachnaya kimberlite pipe.Doklady Earth Sciences, Vol. 402, 4, pp. 587-90.Russia, YakutiaMetasomatism
DS200512-0970
2003
Shcheka, S.A., Vrzhosel, A.A., Vysotskiy, S.V.Jurassic meymechite picrite complexes of Primorye, Russia: comparative study with komatiite and Japanese picrite suites.Plumes and problems of deep sources of alkaline magmatism, pp. 184-200.RussiaPicrite
DS200512-0972
2002
Shchukin, V.S., Sablukova, S.M., Sablukova, L.I., Belousova,E.A., Griffin, W.L.Late Vendian aerial alkaline volcanism of rift type in the Zimny Bereg kimberlite area, Arkangelsk Diamondiferous province.Deep Seated Magmatism, magmatism sources and the problem of plumes., pp. 203-212.Russia, Kola Peninsula, ArchangelAlkalic
DS200512-1018
2004
Sobolev, N.V., Loginova, A.M.Pyrope inclusions in chrome spinels from kimberlites and lamproites and their significance for estimation of the paragenetic assemblage and formation depth.Doklady Earth Sciences, Vol. 399, Oct-Nov. pp. 1074-8.RussiaMineralogy - pyrope
DS200512-1019
2004
Sobolev, N.V., Logvinova, A.M.Significance of accessory chrome spinel in identifying serpentinite paragenesis.International Geology Review, Vol. 47, 1, pp. 58-64.Russia, YakutiaMineralogy - Udabchnaya
DS200512-1025
2005
Solovjeva, L.V., Egorov, K.N., Kostrovitsky, S.I., Gornova, M.A.The effect of different metasomatic processes on geochemical heterogeneity of upper mantle of the Siberian craton.GAC Annual Meeting Halifax May 15-19, Abstract 1p.Russia, Yakutia, SakhaUdachnaya, geochemistry
DS200512-1030
2004
Spetsius, Z.V.Metasomatism and partial melting in xenoliths from the kimberlites of Yakutia: implication to the origin of diamonds.Deep seated magmatism, its sources and their relation to plume processes., pp. 128-159.RussiaGenesis
DS200512-1031
2002
Spetsius, Z.V.Evidence for the resemblance of the subcontinental lithospheric mantle in the areas of kimberlite lamproite magmatism: constraints on the evolution of the Siberian Craton.Deep Seated Magmatism, magmatism sources and the problem of plumes., pp. 132-147.Russia, SiberiaMagmatism - Siberian Craton
DS200512-1032
2005
Spetsius, Z.V., Mityukhin, S.I., Ivanov, A.S., Banzeruk, S.V.Paragenesis of inclusions in diamonds from the Botuobinskaya kimberlite pipe.Doklady Earth Sciences, Vol. 403, 5, pp. 808-811.RussiaDiamond genesis
DS200512-1033
2003
Spetsius, Z.V., Taylor, L.A.Kimberlite xenoliths as evidence for subducted oceanic crust in the formation of the Siberian Carton.Plumes and problems of deep sources of alkaline magmatism, pp. 5-19.RussiaSubduction
DS200512-1076
2005
Tayler, J.Navigating Siberia. A 2,300 mile boat trip down the Lena River.smithsonian, RussiaNews item - history
DS200512-1111
2005
Ustinov, V.Diamond exploration of Alrosa in European Russia.PDAC 2005, Abstract 1p.Russia, Karelian-Kola, Volga-Ural, Voronezh-UkraineBrief overview abstract
DS200512-1146
2001
Vladykin, N.V.The Aldan Province of K alkaline rocks and carbonatites: problems of magmatism, genesis and deep sources.Alkaline Magmatism and the problems of mantle sources, pp. 16-40.RussiaCarbonatite
DS200512-1147
2002
Vladykin, N.V., Letyukh, M.I.Lamproite rocks of the eastern Anabar region.Deep Seated Magmatism, magmatism sources and the problem of plumes., pp. 80-94.RussiaLamproite
DS200512-1148
2004
Vladykin, N.V., Morikiyo, T., Miyazaki, T.Geochemistry of carbon and oxygen isotopes in carbonatites of Siberia and Mongolia and some geodynamic consequences.Deep seated magmatism, its sources and their relation to plume processes., pp. 96-111.Russia, MongoliaGeochronology, tectonics
DS200512-1151
2004
Volodichev, O.I.,Slabunov, A.I., Bibikova, E.V., Konilov, A.N., Kuzenko, T.I.Archean eclogites in the Belomorian mobile belt, Baltic Shield.Petrology, Vol. 12, 6, pp. 540-560.Russia, Baltic ShieldEclogite
DS200512-1152
2002
Voltnova, I.P., Prithodko, V.S.Meymechites in central Sikhote Alin.Deep Seated Magmatism, magmatism sources and the problem of plumes., pp. 223-229.RussiaMeymechites
DS200512-1154
2005
Vovna, G.M., Mishkin, M.A., Sakhno, V.G., Zhimulev, F.I.Origin of the diamond and coesite bearing metamorphic complexes.Doklady Earth Sciences, Vol. 403, 5, pp. 662-665.RussiaDiamond genesis
DS200512-1155
2004
Vrublevskii, V.V., Gertner, I.F., Polyakov, Izokh, Krupchatnikov, Travin, VoitenkoAr Ar isotopic age of lamproite dikes of the Chua Complex, Gornyi Altai.Doklady Earth Sciences, Vol. 399A, 9, Nov-Dec. pp. 1252-55.RussiaLamproite
DS200512-1189
2005
Wirth, R., Matsyuk, S.Nanocrystalline (Mg Fe Cr) TiO3 perovskite inclusions in olivine from a mantle xenolith, Udachnaya East kimberlite pipe, Siberia.Physics and Planetary Science Letters, Vol. 233, 3-4, pp. 325-336.Russia, SiberiaMineral chemistry - inclusions
DS200512-1190
2005
Wirth, R., Matsyuk, S.Nanocrystalline (Mg Fe Cr TiO2 perovskite inclusions in olivine from a mantle xenolith, Udachnaya east kimberlite pipe, Siberia.Earth and Planetary Science Letters, Vol. 233, 3-4, May 15, pp. 325-336.Russia, Yakutia, SiberiaWostotschnaya, TEM, HREM, ilmenite
DS200512-1221
2005
Yoshioka, N., Ogasawara, Y.Cathodluminesence of microdiamond in dolomite marble from the Kokchetav massif - additional evidence for two stage growth in diamond.International Geology Review, Vol. 47, 7, pp. 703-715.RussiaMicrodiamonds
DS200512-1227
2005
Yutkina, E.V., Kononova, V.A., Tsymbal, S.N., Levskii, L.K., Kiryanov, N.N.Isotopic geochemical specialization of mantle source of kimberlites from the Kirovograd complex, Ukrainian shield.Doklady Earth Sciences, Vol. 402, 4, pp. 551-555.Russia, UkraineGeochronology
DS200512-1233
2003
Zedgenizov, D.A., Reutsky, V.N., Shatsky, V.S., Fedorova, E.N.Impurities and carbon isotope compositions of microdiamonds with extra faces from the Udachnaya kimberlite pipe.Russian Geology and Geophysics, Vol. 44, 9, pp. 834-41.Russia, YakutiaDiamond inclusions - Udachnaya
DS200512-1238
2004
Zhamaletdinov, A.A., Shetsov, A.N., Tokarev, A.D.Normal model of electric conductivity of the Baltic Shield lithosphere and its geodynamic interpretation.Doklady Earth Sciences, Vol. 399, 8,pp. 1098-1102.Russia, Baltic ShieldGeophysics - seismics, tectonics
DS200512-1264
2004
Zinchuk, N.N., Koptil, V.I., Gurkina, G.A., Kharrasov, M.K.Study of optically active centres in diamonds from Uralian placers: an attempt to locate their primary deposits.Russian Geology and Geophysics, Vol. 45, 2, pp. 226-234.Russia, UralsDiamond morphology, alluvials
DS200512-1266
2004
Zorin, Yu.A., Turutanov, E.Kh.Regional isostatic gravity anomalies and mantle plumes in southern East Siberia.Russian Geology and Geophysics, Vol. 45, 10, pp. 1200-1209.Russia, SiberiaGeophysics - gravity
DS200612-0004
2006
Agashev, A.M., Pokhilenko, N.P., Malkovets, V.G., Sobolev, N.V.Sm Nd isotopic system in garnet megacrysts from the Udachnaya kimberlite pipe (Yakutia) and petrogenesis of kimberlites.Doklady Earth Sciences, Vol. 407A, 3, pp. 491-494.Russia, YakutiaGeochronology - Udachnaya
DS200612-0006
2005
Akinin, V.V., Sobolev, A.V., Ntaflos, T., Richter, W.Clinopyroxene megacrysts from Enmelen melanephelinitic volcanoes (Chukchi Peninsula, Russia): application to composition and evolution of mantle melts.Contributions to Mineralogy and Petrology, Vol. 150, 1, pp. 85-101.RussiaNephelinite
DS200612-0025
2006
Andreeva, I.A., Kovalenko, V.I., Konokova, N.N.Natrocarbonatitic melts of the Bolshaya Tagna massif, the eastern Sayan region.Doklady Earth Sciences, Vol. 408, 4, pp. 542-546.RussiaCarbonatite
DS200612-0030
2006
Antonov, A.V., Ulianov, A.G.Mantle xenoliths from Kostomuksha lamproites/orangeites, NW Russia.Geochimica et Cosmochimica Acta, Vol. 70, 18, p. 18, abstract only.RussiaOangeites
DS200612-0041
2006
Arzamastev, A.A., Bea, F., Arzamastseva, L.V., Montero, P.Proterozoic Gremyakha-Vyrmes polyphase massif, Kola Peninsula: an example of mixing basic and alkaline mantle melts.Petrology, Vol. 14, 4, pp. 361-389.Russia, Kola PeninsulaAlkalic
DS200612-0042
2006
Arzamastsev, A.A., Bea, F., Arzamasteva, L.V., Montero, P.Proterozoic Gremyakha Vyrmes polyphase massif, Kola Peninsula: an example of mixing basic and alkaline melts.Petrology, Vol. 14, 4, pp. 361-389.Russia, Kola PeninsulaAlkalic
DS200612-0046
2005
Ashchepkov, I.V., Vladykin, Rotman, Afansiev, Loginova, Kuchkin, Palessky, Nikolaeva, Saprykin, AnoshinVariations of the mantle mineralogy and structure beneath Upper - Muna kimberlite field.Problems of Sources of Deep Magmatism and Plumes., pp. 170-187.RussiaMineralogy
DS200612-0047
2006
Ashchepkov, I.V., Vladykin, Sobolev, Pokhilenko, Rotman, Logvinova, Afanasiev, Pokhilenko, KarpenkoReconstruction of the mantle sequences and the structure of the feeding and vein magmatic systems beneath the kimberlite fields of Siberian platform.Vladykin: VI International Workshop, held Mirny, Deep seated magmatism, its sources and plumes, pp. 79-103.Russia, SiberiaDyke systems
DS200612-0048
2006
Ashchepkov, I.V., Vladykin, Sobolev, Pokhilenko, Rotman, Logvinova, Afanasiev, Pokhilenko, KarpenkoVariations of the oxygen conditions in mantle column beneath Siberian kimberlite pipes and it's application to lithospheric structure of feeding systems.Vladykin: VI International Workshop, held Mirny, Deep seated magmatism, its sources and plumes, pp. 125-144.Russia, SiberiaRedox
DS200612-0063
2005
Avdeiko, G.P., Savelyev, D.P.Two types of 'intra-plate' lavas on Kamchatka.Problems of Sources of deep magmatism and plumes., pp. 229-246.RussiaVolcanology
DS200612-0078
2005
Balashov, Yu.A., Glaznev, V.N.Cycles of alkaline magmatism.Geochemistry International, Vol. 44, 3, pp. 274-285.RussiaMagmatism
DS200612-0081
2006
Baluev, A.S., Terekhov, E.N.Different depth xenoliths from Devonian intrusions of the Kola Peninsula: key to deciphering paleogeodynamic settings of alkaline magmatism.Doklady Earth Sciences, Vol. 407, 2, Feb-Mar. pp. 167-171.Russia, Kola PeninsulaTectonics
DS200612-0084
2006
Barkov, A.Y., Fleet, M.E., Martin, R.F., Menshikov, Y.P.Sr Na REE titanates of the crichtonite group from a fenitized megaxenolith, Khibin a alkaline complex, Kola Peninsula, Russia: first occurrence and implications.European Journal of Mineralogy, Vol. 18, 4, August pp. 493-502.Russia, Kola PeninsulaCarbonatite
DS200612-0103
2006
Beard, A.D., Downes, H., Mason, P.R.D., Vetrin, V.R.Depletion and enrichment processes in the lithospheric mantle beneath the Kola Peninsula (Russia): evidence from spinel lherzolite wehrlite xenoliths.Lithos, in pressRussia, Kola PeninsulaMetasomatism, Kandalaksha
DS200612-0114
2006
Beeskow, B., Treloar, P.J., Rankin, A.H., Vennemann, T.W., Spangenberg, J.A reassessment of models for hydrocarbon generation in the Khibiny nepheline syenite complex, Kola Peninsula, Russia.Lithos, in press availableRussiaAlkalic
DS200612-0139
2005
Bivin, V.A., Treloar, P.J., Konoleva, N.G., Ikorsky, S.V.A review of the occurrence, form and origin of C bearing species in the Khibiny alkaline igneous complex, Kola Peninsula, NW Russia.Lithos, Vol. 85, 1-4, Nov-Dec. pp. 93-112.Russia, Kola PeninsulaCarbonatite
DS200612-0146
2005
Bokalo, S.P., Kurbatov, K.K., Bescrovanov, V.V.Typomorphic pecularities of giant Yakutian diamonds. **** in RussianMineralogical Museums Symposium, St. Petersburg, Russia, *** RUSSIAN, pp. 333-334. abstract desc @alrosa.mir.ruRussiaDeposit - Mir
DS200612-0166
2005
Brassines, S., Balaganskaya, E., Demaiffe, D.Magmatic evolution of the differentiated ultramafic, alkaline and carbonatite intrusion of Vuoriyarvi ( Kola Peninsula) Russia, A LA-ICP-MS study of apatite.Lithos, Vol. 85, 1-4, Nov-Dec. pp. 76-92Russia, Kola PeninsulaMagmatism
DS200612-0176
2006
Brown, D., Juhlin, C.A possible lower crustal flow channel in the Middle Urals based on reflection seismic data.Terra Nova, Vol. 18, 1, Feb. pp. 1-8.Russia, UralsGeophysics - seismics
DS200612-0177
2006
Brown, D., Juhlin, C., Tryggvason, A., Friberg, M., Rybalka, A., Puchkov, V.Structural architecture of the southern and middle Urals foreland from reflection seismicsTectonics, Vol. 25, 1, Jan. TC1002RussiaTectonics
DS200612-0189
2006
Buchko, I.V., Salnikova, E.B., Kotov, A.B., Larin, A.M., Velikoslavinskii, Sorokin, Sorokin, YakovlevaPaleoproterozoic gabbro anorthosites of the Selenga Superterrane, southern framing of the Siberian Craton.Doklady Earth Sciences, Vol. 407, 3, pp. 372-375.Russia, SiberiaTectonics
DS200612-0195
2005
Bulanova, G.P., Varshavsky, A.V., Kotegov, V.A.A venture into the interior of natural diamond genetic information and implications for the gem industry. Part 1, the main types of internal growth structures.Journal of Gemmology, Vol. 29, 7/8, pp. 377-386.RussiaTechnology
DS200612-0197
2006
Burke, K., Khan, S.Geoinformatic approach to global nepheline syenite and carbonatite distribution: testing a Wilson cycle model.Geosphere, Vol. 2, 1, pp. 53-60.Russia, Kola PeninsulaAlkaline rocks, carbonatite, deformation
DS200612-0233
2006
Chakhmouradian, A.R.High field strength elements in carbonatitic rocks: geochemistry, crystal chemistry and significance for constraining the sources of carbonatites.Chemical Geology, Vol. 235, 1-2, Nov. 30, pp. 138-160.Russia, Europe, Finland, Kola PeninsulaHFSE, metasomatism
DS200612-0253
2006
Chupin, V.P., Kuzmin, D.V., Madyukov, I.A.Melt inclusions in minerals of scapolite bearing granulite (lower crustal xenoliths from diatremes of the Pamirs).Doklady Earth Sciences, Vol. 407, 3, pp. 507-511.RussiaXenoliths
DS200612-0315
2006
Davies, G.R., Stolz, A.J., Mahotkin, I.L., Nowell, G.M., Pearson, D.G.Trace element and Sr Pb Nd Hf isotope evidence for ancient fluid dominated enrichment of the source of the Aldan Shield, lamproites.Journal of Petrology, Vol. 47, 6, pp. 1119-1146.RussiaGeochronology, geochemistry lamproites
DS200612-0336
2006
Dobretsov, N.I., Buslov, M.M., Zhimulev, F.I., Travin, A.V., Zayachkovsky, A.A.Vendian Early Ordovician geodynamic evolution and model for exhumation of ultrahigh and high pressure rocks from the Kokchetav subduction collision zone.Russian Geology and Geophysics, Vol. 47, 4, pp. 424-440.Russia, KazakhstanUHP
DS200612-0340
2006
Dobrzhinetskaya, L.F., Wirth, R., Green, H.W.II.Nanometric inclusions of carbonates in Kokchetav diamonds from Kazakhstan: a new constraint for the depth of metamorphic diamond crystallization.Earth and Planetary Science Letters, Vol. 243, 1-2, Mar. 15, pp. 85-93.Russia, KazakhstanDiamond morphology, metamorphism
DS200612-0348
2005
Downes, H., Balaganskaya, E., Beard, A., Liferovich, R., Demaiffe, D.Petrogenetic processes in the ultramafic, alkaline and carbonatitic magmatism in the Kola alkaline province: a review.Lithos, Vol. 85, 1-4, Nov-Dec. pp. 48-75.Russia, Kola PeninsulaCarbonatite
DS200612-0366
2006
Egorov, K.N., Soloveva, Kovach, Menshagin, Maslovskaya, Sekerin, BankovskayaPetrological features of olivine phlogopite lamproites of the Sayan region: evidence from the Sr Nd isotope and ICP MS trace element data.Geochemistry International, Vol. 44, 7. pp. 729-735.RussiaLamproite
DS200612-0367
2005
Egorov, K.N., Soloveva, L.V., Kovach, V.P., Menshagin, Y.V., Maslovskaya, Sekerin, A.P., Bankovskaya, E.V.Mineralogical and isotope geochemical characteristics of Diamondiferous lamproites of the Sayan region.Doklady Earth Sciences, Vol. 403A, 6, pp. 861-865.RussiaGeochronology
DS200612-0449
2006
Gertner, I.F., Glazunov, O.M., Vrublevskii, V.V., Krasnova, T.S., Tishin, P.A.Geochemical and isotopic constraints for the formation model of the Kingash ultramafic and mafic complex, eastern Sayan ridge, central Siberia.Vladykin: VI International Workshop, held Mirny, Deep seated magmatism, its sources and plumes, pp. 188-206.Russia, SiberiaGeochronology
DS200612-0465
2005
Girnis, A.V., Ryabchikov, I.D.Conditions and mechanisms of generation of kimberlite magmas.Geology of Ore Deposits, Vol. 47, 6, pp. 476-487.RussiaMagmatism
DS200612-0467
2006
Gladkochub, D., Pisarevsky, S., Donskaya, L., Mazukabzov, A., Stanevich, A., Sklyarov, E.Siberian Craton and its evolution in terms of Rodinia hypothesis.Episodes, Vol. 29, 3, pp. 169-174.Russia, SiberiaCraton, genesis
DS200612-0468
2006
Gladkochub, D.P., Wingate, M.T.D., Pisarevsky, S.A., Donskaya, T.V., Mazukababzov, Ponomarchuk, StanevichMafic intrusions in southwestern Siberia and implications for a Neoproterozoic connection with Laurentia.Precambrian Research, Vol. 147, 3-4, July 5, pp. 260-278.Russia, CanadaMagmatism
DS200612-0469
2006
Gladkochub, D.P., Wingate, M.T.D., Pisarevsky, S.A., Donskaya, T.V., Mazukabzov, Ponomarchuk, StanevichMafic intrusions in southwestern Siberia and implications for a Neoproterozoic connection with Laurentia.Precambrian Research, In press, availableRussia, SiberiaGeochronology, Biryusa, magmatism
DS200612-0472
2006
Glukhovsky, M.Z.Giant swarms of Precambrian mafic dikes and potential diamond resources of ancient platforms.Geotectonics, Vol. 40, 1, Jan. pp. 11-24.Russia, CanadaDike swarms - mantle plumes, UHP, plate tectonics
DS200612-0482
2006
Gottikh, R.P., Pisotskii, B.I., Kulakova, I.I.Geochemistry of reduced fluids from alkaline igneous rocks of the Khibiny Pluton.Doklady Earth Sciences, Vol. 407, 2, Feb-Mar. pp. 298-303.RussiaMagmatism
DS200612-0487
2005
Grakhanov, S.A.New dat a on the distribution of diamonds with lonsdaleite admixture in the northeastern Siberian Craton.Doklady Earth Sciences, Vol. 405A, 9, Nov-Dec. pp. 1309-1312.RussiaDiamond mineralogy
DS200612-0517
2006
Hacker, B.R., McClelland, W.C., Liou, J.G.Ultrahigh pressure metamorphism: deep continental subduction.Geological Society of America, Special Paper, No. 403, 200p.China, RussiaUHP, geochronology, subduction
DS200612-0571
2006
Hermann, J., Rubatto, D., Korsakov, A.V., Shatsky, V.S.The age of metamorphism of Diamondiferous rocks determined with SHRIMP dating of zircons. KokchetavRussian Geology and Geophysics, Vol. 47, 4, pp. 511-518.Russia, KazakhstanUHP - geochronology
DS200612-0574
2005
Herrington, R.J., Puchkov, V.N., Yakubchuk, A.S.A reassessment of the tectonic zonation of the Uralides: implications for metallogeny.Geological Society of London Special Paper, No. 248, pp. 153-166.RussiaTectonics
DS200612-0613
2006
Hwang, S.L., Chu, H-T., Yui, T-F., Shen, P., Schertl, H-P., Liou, J.G., Sobolev, N.V.Nanometer size P/K rich silica glass (former melt) inclusions in microdiamond from the gneisses of Kokchetav and Erzgebirge massifs: diversified...Earth and Planetary Science Letters, in pressRussia, Europe, GermanyUHP metamorphic microdiamonds, host rock buffering
DS200612-0614
2006
Hwang, S-L., Shen, P., Chu, H-T., Yu, T-F.A new occurrence and new dat a on akdalaite a retrograde mineral from UHP Whiteschist, Kokchetav Massif, northern Kazakhstan.International Geology Review, Vol. 48, 8, pp. 754-RussiaUHP
DS200612-0621
2005
Ionov, D.A., Chanefo, I., Bodinier, J.L.Origin of Fe rich lherzolites and wehrlites from Tok, SE Siberia by reactive melt percolation in refractory mantle peridotites.Contributions to Mineralogy and Petrology, Vol. 150, 3, pp. 335-353.RussiaLherzolite
DS200612-0622
2006
Ionov, D.A., Chazot, G., Chauvel, C., Merlet, C., Bodinier, J.L.Trace element distribution in peridotite xenoliths from Tok, SE Siberian craton: a record of pervasive, multi stage metasomatism in shallow refractory mantle.Geochimica et Cosmochimica Acta, Vol. 70, 5, pp. 1231-1260.RussiaMetasomatism - Tok
DS200612-0624
2005
Ionov, D.A., Shirey, S.B., Weis, D., Brugmann, G.Os Hf Nd isotope and PGE systematics of spinel peridotite xenoliths from Tok, SE Siberian craton: effects of pervasive metasomatism in shallow refractorEarth and Planetary Science Letters, Vol. 241, 1-2, pp. 47-64.Russia, SiberiaMetasomatism, xenoliths, Tokinsky
DS200612-0628
2005
Ivanov, V.V., Kolesova, L.G., Khanchuk, A.I., Akatkin, V.N., Molchanova, G.B., Nechaev, V.P.Find of diamond crystals in Jurassic rocks of the Meymechite picrite complex in the Sikhote Alin Orogenic belt.Doklady Earth Sciences, Vol. 404, 7, pp. 975-978.RussiaPicrite
DS200612-0660
2006
Kamenetsky, V.S., Kamenetsky, M.B., Sharygin, V.V., Maas, R., Faure, K., Sobolev, A.V.Why are Udachnaya East pipe kimberlites enriched in Cl and alkalis but poor in H2O?Geochimica et Cosmochimica Acta, Vol. 70, 18, p. 3. abstract only.Russia, YakutiaDeposit - Udachnaya mineral chemistry
DS200612-0669
2006
Katayama, I., Nakashima, S., Yurimoto, H.Water content in natural eclogite and implications for water transport into the deep upper mantle.Lithos, Vol. 86, 3-4, Feb. pp. 245-259.Mantle, RussiaSprectroscopy, Kokchetav Massif, subduction, diamond
DS200612-0698
2006
Kikuchi, M., Ogasawara, Y.Occurrence and characterization of UHPM microdiamonds from the Kokchetav Massif.International Mineralogical Association 19th. General Meeting, held Kobe, Japan July 23-28 2006, Abstract p. 139.RussiaKochetav - microdiamond
DS200612-0699
2006
Kikuchi, M., Ogasawara, Y.Hydroxyl in diopside of diamond free ultrahigh pressure dolomitic marble from Kokchetav Massif, Kazakhstan.Geological Society of America, In: Hacker, B.R., McClelland, Liou: Ultra High Pressure Metamorphism, Special Paper 403, pp. 139-145.RussiaUHP
DS200612-0714
2006
Klein-Ben David, O., Wirth, R., Navon, O.TEM imaging and analysis of Micro inclusions in diamonds: a close look at diamond growing fluids.American Mineralogist, Vol. 91, Feb-March, pp. 353-365.Canada, Northwest Territories, Russia, SiberiaDiamond morphology, microinclusions
DS200612-0716
2006
Kobussen, A.F., Christensen, Nl., Thybo, H.Constraints on seismic velocity anomalies beneath the Siberian Craton from xenoliths and petrophysics.Tectonophysics, Vol. 425, 1-4, pp. 123-135.RussiaGeophysics - seismics
DS200612-0717
2006
Koch-Mueller, M., Matsyuk, S.S., Rhede, D., Wirth, R., Khistina, N.Hydroxyl in mantle olivine xenocrysts from the Udachnaya kimberlite pipe.Physics and Chemistry of Minerals, Vol. 33, 4, pp. 276-287.RussiaMineral chemistry - Udachnaya
DS200612-0721
2006
Kogarko, L.N.Enriched mantle reservoirs are the source of alkaline magmatism.Vladykin: VI International Workshop, held Mirny, Deep seated magmatism, its sources and plumes, pp. 46-58.RussiaMagmatism
DS200612-0722
2005
Kogarko, L.N., Williams, C.T., Woolley, A.R.Petrogenetic implications and chemical evolution of loparite in the layered, peralkaline Lovozero complex, Kola Peninsula, Russia.Problems of Sources of deep magmatism and plumes., pp. 92-113.Russia, Kola PeninsulaAlkalic
DS200612-0727
2006
Kononova, V.A., Nosova, A.A., Pervov, V.A., Kondrashov, I.A.Compositional variations in kimberlites of the East European platform as a manifestation of sublithospheric geodynamic processes.Doklady Earth Sciences, Vol. 409A, no. 6, July-August, pp. 952-957.Russia, Baltic ShieldGeodynamics
DS200612-0728
2005
Konstantinova, S., Chernopazov, S.Mathematical modeling of the stress strain state in rock and artificial masses during slice chamber mining of underpit reserves in Internationnapa kimberlite.Journal of Mining Science, Vol. 41, 3, pp. 215-224.Russia, YakutiaMining - International
DS200612-0735
2005
Korsakov, A.V., Hermann, J.Silicate and carbonate melt inclusions associated with diamonds in deeply subducted carbonate rocks.Earth and Planetary Science Letters, Vol. 241, 1-2, pp. 104-118.Russia, KazakhstanUHP, Kokchetav massif
DS200612-0743
2006
Kozhevnikov, N.O., Antonov, E.Y.Fast decaying IP in frozen unconsolidated rocks and potentialities for its use in permafrost related TEM studies.Geophysical Prospecting, Vol. 54, 3, July pp. 383-RussiaGeophysics - TEM - not specific to diamonds
DS200612-0744
2006
Kravchinsky, V.A., Konstantinov, Courtillot, Savrasov, Valet, Cherniy, Mishenin, ParasotkaPaleomagnetism of East Siberian traps and kimberlites: two new poles and paleogeographic reconstructions at about 360 and 250 Ma.Geophysical Journal International, Vol. 148, 1, pp. 1-33.Russia, SiberiaMaleomagnetics
DS200612-0747
2006
Kudrayvtseva, G.P., Posukhova, T.V., Polazchenko, O.Diamonds from the V Grib pipe: internal structure and origin.International Mineralogical Association 19th. General Meeting, held Kobe, Japan July 23-28 2006, Abstract p. 140.RussiaGrip - diamond morphology
DS200612-0752
2006
Kurszlaukis, S., Mahotkin,I., Rotman, A.Y.,Kolesnikov, G.V., Makovchuk, I.V.Syn and post eruptive volcanic processes in the Yubileinaya kimberlite pipe, Yakutia,Emplacement Workshop held September, 5p. extended abstractRussia, YakutiaDeposit - Yubileinya , petrology
DS200612-0764
2005
Lapin, A.V., Divaev, F.K., Kostiysyn, Yu.A.Petrochemical interpretation of carbonatite-like rocks from the Chagatai Complex of the Tien Shan with appllication to the problem of diamond potential.Petrology, Vol. 13, 5, pp. 499-510.Russia, AsiaCarbonatite-kimberlite rocks
DS200612-0765
2006
Lapin, A.V., Verichev, E.M.Kimberlites and related rocks of the Arkhangel'sk Diamondiferous province and adjacent areas: a comparative petrogeochemical analysis.Geochemistry International, Vol. 44, 8, pp. 771-790.Russia, Archangel, Kola PeninsulaPetrology - review
DS200612-0771
2006
Lastochkin, E.I., Ripp, G.S., Doroshkevich, A.G., Badmatsirenov, M.V.Metamorphism of the Vesloe carbonatites, north Transbaikalia, Russia.Vladykin: VI International Workshop, held Mirny, Deep seated magmatism, its sources and plumes, pp. 207-RussiaCarbonatite
DS200612-0786
2006
Lee, M.J., Lee, J.I., Hur, S.D., Kim, Y., Moutte, J., Balaganskaya, E.Sr Nd Pb isotopic compositions of the Kovdor phoscorite carbonatite complex, Kola Peninsula, NW Russia.Lithos, in press availableRussia, Kola PeninsulaCarbonatite, geochronology, FOZO, plume lithosphere
DS200612-0808
2000
Levin, V., Mormil, S.The Ilmeny Vishnevorgorsky complex of alkaline rocks and carbonatites.IUGS/UNESCO IGG RAS The eroded Uralian Paleozoic ocean to continent transition zone: Ed. Seltmann, R., et al., Excursion Guidebook Project 373, pp. 48-57.RussiaCarbonatite
DS200612-0817
2006
Liferovich, R.P., Mitchell, R.H., Zozulya, D.R., Shpachenko, A.K.Paragenesis and composition of banalsite, stronalsite and their solid solution nepheline syenite and ultramafic alkaline rocks,Canadian Mineralogist, Vol. 44, 4, August pp. 929-942.Russia, Kola Peninsula, Archangel, Canada, OntarioPrairie Lake, Turiy, Khabina
DS200612-0832
2005
Logvinova, A.M., Taylor, L.A., Floss, C., Sobolev, N.V.Geochemistry of multiple diamond inclusions of harzburgite garnets as examined in situ.International Geology Review, Vol. 47, 12, Dec. pp. 1223-1233.RussiaDiamond inclusions
DS200612-0833
2006
Logvinova, A.M., Wirth, R., Sobolev, N.V.Nanometric sized mineral and fluid inclusions in cloudy Siberian diamonds: new insights on diamond formation. Internationalnaya, Yubileynaya.International Mineralogical Association 19th. General Meeting, held Kobe, Japan July 23-28 2006, Abstract p. 137.Russia, SiberiaDiamond inclusions
DS200612-0853
2006
Maksimov, S.O., Popov, V.K.The first finding of carbonatite tuffs in Cenozoic basaltic volcano of southeastern Primorye.Doklady Earth Sciences, Vol. 408, 4, pp. 617-622.RussiaCarbonatite
DS200612-0908
2006
Menishikov, Y.P., Krivovichev, S.V., Pakhomovsky, Yakovenchuk, Ivanyuk, Mikhailova, Armbruster,SelivanovaChivruaiite, Ca(Ti,Nb)5(Si6O17)2 (OH,O)5.13-14H20, a new mineral from hydrothermal veins of Khibiny and Lovozero alkaline massifs.American Mineralogist, Vol. 91, 5-6, May pp. 922-928.Russia, Kola PeninsulaMineralogy - alkaline
DS200612-0910
2006
Mertanen, S., Vuollo, J.I., Huhma, H., Arestova, N.A., Kovalenko, A.Early Paleoproterozoic Archean dykes and gneisses in Russian Karelia of the Fennoscandian Shield - new paleomagnetic, isotope age, geochemical investigations.Precambrian Research, Vol. 144, 3-4, Feb. 10, pp. 239-260.Russia, Europe, Finland, Sweden, Kola PeninsulaGeochronology
DS200612-0912
2005
Metelkin, D.V., Vernikovksy, V.A., Lazanskii, A.Yu., Belonos, I.V.The Siberian Craton in the structure of the supercontinent Rodinia: analysis of paleomagnetic data.Doklady Earth Sciences, Vol. 404, 7, pp. 1021-1026.RussiaTectonics, geophysics - paleomagnetism
DS200612-0937
2005
Mityukhin, S.I., Spetsius, Z.V.Paragenesis of inclusions in diamonds from the Botuobinskaya pipe. Nakyn field, Yakutia.Russian Geology and Geophysics, Vol. 46, 12, pp. 1225-1236.Russia, YakutiaDiamond inclusions - Botuobinskaya
DS200612-0979
2006
Nikiforov, A.V., Bolonin, A.V., Pokrovsky, B.G., Sugorokova, A.M., Chugaev, A.V., Lykhin, D.A.Isotope geochemistry ( O, C, S. Sr) and Rb-Sr age of carbonatites in Central Tuva.Geology of Ore Deposits, Vol. 48, 4, pp. 256-276.RussiaCarbonatite
DS200612-0980
2005
Nikiforov, A.V., Bolonin, A.V., Sugorakova, A.M., Popov, V.A., Lykhin, D.A.Carbonatites of central Tuva: geological structure and mineral and chemical composition.Geology of Ore Deposits, Vol. 47, 4, pp. 326-345.RussiaGeochemistry - carbonatites
DS200612-0998
2006
Ogasawara, Y.Microdiamond formation during intraslab UHP metasomatism: an example from the Kokchetav Massif.International Mineralogical Association 19th. General Meeting, held Kobe, Japan July 23-28 2006, Abstract p. 139.RussiaKochetav - microdiamond
DS200612-0999
2005
Ogasawara, Y., Aoki, K.The role of fluid for diamond free UHP dolomitic marble from the Kokchetav Massif.International Geology Review, Vol. 47, 11, pp. 1178-1193.RussiaUHP
DS200612-1006
2006
Okamoto, K., Katayama, I., Maruyama, S., Liou, J.G.Zircon inclusion mineralogy of a diamond grade eclogite from the Kokchetav Massif, northern Kazakhstan.International Geology Review, Vol. 48, 10, Oct., pp. 882-891.RussiaEclogite mineralogy
DS200612-1009
2006
Okrugin, A.V., Kostoyanov, A.I., Shevchenko, S.S., Lazarenkov, V.G.The model of Re-Os age of platinum group minerals from Vilyui placers in the eastern Siberian Craton.Doklady Earth Sciences, Vol. 410, 7, pp. 1044-1047.Russia, SiberiaGeochronology - not specific to diamonds
DS200612-1019
2006
O'Reilly, S.Y., Griffin, W.L.Imaging global chemical and thermal heterogeneity in the subcontinental lithospheric mantle with garnets and xenoliths: geophysical implications.Tectonophysics, Vol. 416, 1-4, April 5, pp. 289-309.Mantle, Australia, Russia, CanadaGeothermometry, geochemistry
DS200612-1024
2005
Panina, L.I.Multiphase carbonate salt immiscibility in carbonatite melts: dat a on melt inclusions from the Krestovskiy massif mineral ( Polar Siberia).Contributions to Mineralogy and Petrology, Vol. 150, 1, pp. 19-36.Russia, SiberiaCarbonatite
DS200612-1051
2005
Patyk-Kara, N.G.Evolution of placer formation in shelf regions of Russia.Lithology and Mineral Resources, Vol. 40, 5, Sept. pp. 389-400.RussiaAlluvials, not specific to diamonds
DS200612-1054
2006
Pavlenkova, G.A., Pavlenkova, N.I.Upper mantle structure of the Northern Eurasia from peaceful nuclear explosion data.Tectonophysics, Vol. 416, 1-4, April 5, pp. 33-52.Asia, RussiaGeophysics - seismics, geodynamics, tectonics
DS200612-1055
2006
Pavlenkova, N.I.Long range profile dat a on the upper mantle structure in the Siberian Platform.Russian Geology and Geophysics, Vol. 47, 5, pp. 626-641.Russia, SiberiaGeophysics - seismics
DS200612-1061
2006
Pearson, N.J., Griffin, W.L., Alard, O., O'Reilly, S.Y.The isotopic composition of magnesium in mantle olivine: records of depletion and metasomatism.Chemical Geology, Vol. 226, 3-4, pp. 115-133.Russia, Canada, Northwest Territories, AustraliaGeochronology
DS200612-1074
2006
Perepelov, A.B., Puzankov, M.Yu., Ivanov, A.V., Filosofova, T.M.Basanites of Mt. Khukhch: first mineralogical geochemical dat a on the Neogene K Al alkaline magmatism in western Kamchatka.Doklady Earth Sciences, Vol. 409, 5, pp. 762-764.RussiaBasanites, Foidites
DS200612-1083
2006
Pervov, V.A., Larchenko, V.A., Minchenko, G.V., Stepanov, V.P., Bogomolov, E.S., Levskii, SergeevTiming and duration of kimberlitic magmatism in the Zimnii Bereg Diamondiferous province: evidence from Rb Sr age dat a on kimberlitic sills along the Mela River.Doklady Earth Sciences, Vol. 407, 2, Feb-Mar. pp. 304-307.RussiaGeochronology - Zimnii Bereg
DS200612-1087
2005
Petukhova, L.I., Voinova, I.P., Prikhodko, V.S.Pecularities of alkaline basaltoid mineralogy in Central Sikhote Alin terrigeneous volcanogenic siliceous complexes.Problems of Sources of deep magmatism and plumes., pp. 282-RussiaAlkalic
DS200612-1101
2006
Pontevivo, A., Thybo, H.Test of the upper mantle low velocity layer in Siberia with surface waves.Tectonophysics, Vol. 416, 1-4, April 5, pp. 113-131.Russia, SiberiaGeophysics - seismics
DS200612-1109
2006
Pribavkin, S.V., Nedosekova, I.L.Carbonatite sources of the Ilmeny Vishnevogorsk complex: evidence from Sr and Nd isotope dat a on carbonates.Doklady Earth Sciences, Vol. 408, 4, pp. 627-630.RussiaCarbonatite
DS200612-1121
2006
Ragozin, A.L., Shatsky, V.S., Zetgenizov, D.A., Mityukhin, S.I.Evidence for evolution of diamond crystallization medium in eclogite xenolith from the Udachnaya kimberlite pipe, Yakutia.Doklady Earth Sciences, Vol. 407A, 3, pp. 465-468.Russia, YakutiaDiamond morphology - Udachnaya
DS200612-1129
2006
Rass, I.T., Abramov, S.S., Utenkov, V.A., Kozlovskii, V.M., Korpechkov, D.I.Role of fluid in the genesis of carbonatites and alkaline rocks: geochemical evidence.Geochemistry International, Vol. 44, 7. pp. 656-664.RussiaCarbonatite
DS200612-1157
2006
Reverdatto, V.V., Selyatitskii, A.Y.Olivine garnet olivine spinel and orthopyroxene metamorphic rocks of the Kokchetav Massif, northern Kazakhstan.Petrology, Vol. 13, 6, pp. 513-539.RussiaUHP
DS200612-1162
2005
Ripp, G.S., Badmatsyrenov, M.V., Doroshkevich, A.G., Izbrodin, I.A.New carbonatite bearing area in northern Transbaikalia. Muya and Pogranichnoe.Petrology, Vol. 13, 5, pp. 489-498.RussiaCarbonatite, metasomatism
DS200612-1163
2006
Ripp, G.S., Karmanov, N.S., Doroshkevich, A.G., Badmatsyrenov, M.V., Izbrodin, I.A.Chrome bearing mineral phases in the carbonatites of northern Transbaikalia.Geochemistry International, Vol. 44, 4, pp. 395-402.RussiaCarbonatite
DS200612-1165
2006
Roden, M.F., Paino-Douce, A.E., Jagoutz, E., Lazko, E.E.High pressure petrogenesis of Mg rich garnet pyroxenites from Mir kimberlite, Russia.Lithos, Vol. 90, 1-2, pp. 77-91.Russia, SiberiaMajorite
DS200612-1166
2006
Roden, M.F., PatinoDouce, A.E., Jagoutz, E., Lazko, E.E.High pressure petrogenesis of Mg rich garnet pyroxenites from Mir kimberlite, Russia.Lithos, Vol.90, 1-2, August pp. 77-91.Russia, YakutiaDeposit - Mir, petrology
DS200612-1169
2006
Rolandi, V., Brajkovic, A., Adamo, I., Landonio, M.Diamonds from Udachnaya pipe, Yakutia. Their morphology, optical and Raman characteristics, FTIR and CL features.Australian Gemmologist, Vol. 22, no. 9 Jan-Mar, pp.RussiaDiamond morphology
DS200612-1176
2005
Rosen, O.M., Manakov, A.V., Serenko, V.P.Paleoproterozoic collisional system and Diamondiferous lithospheric keel of the Yakutian kimberlite province.Russian Geology and Geophysics, Vol. 46, 12, pp. 1237-51.Russia, YakutiaTectonics
DS200612-1177
2005
Rosen, O.M., Manakov, A.V., Suvorov, V.D.The collisional system in the northeastern Siberian Craton and a problem of diamond bearing lithospheric keel.Geotectonics, Vol. 39, 6, pp. 42-67.Russia, SiberiaTectonics
DS200612-1180
2005
Rotman, A.Y., Bogush, I.N., Tarskikh, O.V.Kimberlites of Yakutia: standard and anomalous indications.Problems of Sources of deep magmatism and plumes., pp. 114-147.Russia, YakutiaMineral chemistry
DS200612-1197
2005
Sablukov, S.M., Kaminsky, F.V., Sablukova, L.I.Essentially non-kimberlitic old Diamondiferous igneous rocks.Problems of Sources of deep magmatism and plumes., pp. 188-209.RussiaMetamorphic rocks
DS200612-1201
2005
Safonova, I.Yu., Buslov, M.M.Geochemical diversity in oceanic basalts of the Zasurin Formation NE Altai Russia: trace element evidence for mantle plume magmatism.Problems of Sources of deep magmatism and plumes., pp. 247-266.Russia, AltaiMagmatism
DS200612-1209
2006
Salters, V.J., Blichert Toft, V.J., Fekiacova, J., Sachikocher, A., Bizimis, M.Isotope and trace element evidence for depleted lithosphere in the source of enriched Kolau basalts.Contributions to Mineralogy and Petrology, Vol. 151, 3, pp. 297-312.RussiaGeochronology
DS200612-1269
2006
Sharygin, V.V., Kamenentsky, V.S., Kamenetsky, M.B.Alkali carbonates and sulfides in kimberlite hosted chloride carbonate nodules Udachnaya pipe, Russia.Geochimica et Cosmochimica Acta, Vol. 70, 18, p. 24. abstract only.Russia, YakutiaDeposit - Udachnaya - nodule chemistry
DS200612-1270
2005
Shatsky, V.S., Buzlukova, L.V., Jagoutz, F., Kozmenko, O.A., Mityukhin, S.I.Structure and evolution of the lower crust of the Daldyn Alakit district in the Yakutian diamond province ( from dat a on xenoliths).Russian Geology and Geophysics, Vol. 46, 12, pp. 1252-1270.Russia, YakutiaPetrology - peridotites
DS200612-1271
2005
Shatsky, V.S., Palyanov, Y.N., Sokol, A.G., Tomilenko, A.A., Sobolev, N.V.Diamond formation in UHP dolomite marbles and garnet pyroxene rocks of the Kokchetav Massif, northern Kazakstan: natural and experimental evidence.International Geology Review, Vol. 47, 10, pp. 999-1010.RussiaUHP
DS200612-1273
2006
Shatsky, V.S., Sitnikova, E.S., Kozmenko, O.A., Palessky, S.V., Nikolaeva, I.V., Zayachkowsky, A.A.Behaviour of incompatible elements during ultrahigh pressure metamorphism. Kokchetav MassifRussian Geology and Geophysics, Vol. 47, 4, pp. 482-496.Russia, KazakhstanUHP - geochemistry
DS200612-1274
2006
Shatsky, V.S., Stepanov, A.S., Zedgenizov, D.A., Ragozin, A.L.Mineral inclusions in diamonds from chemically heterogeneous eclogite xenolith.Geochimica et Cosmochimica Acta, Vol. 70, 18, p. 25. abstract only.RussiaDiamond inclusions
DS200612-1275
2006
Shatsky, V.S., Zedgenizov, D.A., Ragozin, A.L.Evidence of mantle modification in Diamondiferous eclogite xenolith from Udachnaya kimberlite pipe, Yakutia.Geochimica et Cosmochimica Acta, Vol. 70, 18, p. 25. abstract only.Russia, YakutiaDeposit - Udachnaya, metasomatism
DS200612-1278
2006
Shcheka, S.A., Ignatev, A.V., Nechaev, V.P., Zvereva, V.P.First diamonds from placers in Primorie.Petrology, Vol. 14, 3, pp. 299-Russia, South America, BrazilCarbonado, alluvials, comparison, geochronology
DS200612-1285
2006
Shimizu, R., Ogasawara, Y.Characterization of microdiamonds in K-tourmaline rich UHP rock by raman spectroscopy.International Mineralogical Association 19th. General Meeting, held Kobe, Japan July 23-28 2006, Abstract p. 140.RussiaKokchetav Massif, Microdiamonds
DS200612-1301
2006
Silver, P.G., Behn, M., Kelley, K., Schmitz, M., Savage, B.Understanding cratonic flood basalts.Earth and Planetary Science Letters, in pressAfrica, South Africa, RussiaCraton, lithosphere, origin debate
DS200612-1309
2006
Simonov, V.A., Sklyarov, E.V., Kovyazin, S.V., Perelyaev, V.I.Physicochemical parameters of oldest boninite melts.Doklady Earth Sciences, Vol. 408, 4, pp. 667-670.RussiaBoninites
DS200612-1328
2006
Sobolev, N.V.The new Komsomolskaya mine in Yakutia, Russia: unique features of its diamonds.GIA Gemological Research Conference abstract volume, Held August 26-27, p. 28. 1/2p.Russia, YakutiaDiamond morphology, crystallography
DS200612-1330
2006
Sobolev, N.V., Logvinova, A.M., Zedgenizov, D.A., Kuzmin, D.V., Sobolev, A.V.Olivine inclusions in Siberian diamonds: high precision approach to trace elements.International Mineralogical Association 19th. General Meeting, held Kobe, Japan July 23-28 2006, Abstract p. 137.Russia, SiberiaGeochemistry - mineral inclusiosn
DS200612-1331
2006
Sobolev, N.V., Schertl, H.P., Neuser, R.D.Composition and paragenesis of garnets from ultrahigh pressure calc-silicate metamorphic rocks of the Kokchetav massif.Russian Geology and Geophysics, Vol. 47, 4, pp. 519-Russia, KazakhstanUHP - geochemistry garnets
DS200612-1333
2006
Solovjeva, L.V., Egorov, K.N.Effects of the Yakutian plume on processes within the upper mantle of the Siberian Craton: geochemical data.Vladykin: VI International Workshop, held Mirny, Deep seated magmatism, its sources and plumes, pp. 104-124.Russia, SiberiaHotspots, metamorphism
DS200612-1335
2006
Solovova, I.P., Girnis, A.V., Ryabchikov, I.D., Simakin, S.G.High temperature carbonatite melts and its inter relations with alkaline magmas of the Dundel'dyk complex, southeastern Pamirs.Doklady Earth Sciences, Vol. 410, no. 7 July-August, pp. 1148-51.RussiaCarbonatite
DS200612-1343
2006
Spetsius, Z.V., Ivanov, A.S., Mityukhin, S.I.Diamondiferous xenoliths and megacrysts from the Nyurbinskaya kimberlite pipe, Nakynsky field, Yakutia).Doklady Earth Sciences, Vol. 409, 5, pp. 779-783.RussiaDeposit - Nyurbinskaya
DS200612-1344
2005
Spetsius, Z.V., Spetsius, V.Z.Exsolution textures and minerals In homogeneity in xenoliths from Yakutian kimberlites: evidence for the mantle evolution.Problems of Sources of deep magmatism and plumes., pp. 148-169.Russia, YakutiaMineral chemistry
DS200612-1345
2006
Spetsius, Z.V., Taylor, L.A., Valley, J.V., Ivanov, A.S., Banzeruk, V.L., Spicuzza, M.Garnets of anomalous oxygen isotope composition in Diamondiferous xenoliths Nyurbinskaya pipe, Yakutia.Vladykin: VI International Workshop, held Mirny, Deep seated magmatism, its sources and plumes, pp. 59-78.Russia, YakutiaDeposit - Nyurbaninskaya, mineralogy
DS200612-1391
2006
Sumino, H., Kaneoka, I., Matsufuji, K., Sobolev, A.V.Deep mantle origin of kimberlite magmas revealed by neon isotopes.Geophysical Research Letters, Vol. 33, L1618Russia, SiberiaGeochemistry - noble gases Udachnaya, MORB
DS200612-1392
2006
Sumino, H., Kaneoka, I., Matsufuji, K., Sobolev, A.V.Deep mantle origin of kimberlite magmas revealed by neon isotopes.Geochimica et Cosmochimica Acta, Vol. 70, 18, p. 624. abstract only.Russia, YakutiaGeochronology
DS200612-1397
2006
Suvorov, V.D., Melnik, E.A., Thybo, H., Perchuk, E., Parasotka, B.S.Seismic velocity model of the crust and uppermost mantle around the Mirnyi kimberlite field in Siberia.Tectonophysics, Vol. 420, 1-2, June 26, pp. 49-73.Russia, SiberiaGeophysics - seismic, Mirnyi
DS200612-1415
2006
Taran, M.N., Kvasnytsya, V.M., Langer, K., Ilchenko, K.O.Infrared spectroscopy study of nitrogen centers in microdiamonds from Ukrainian Neogene placers.European Journal of Mineralogy, Vol. 18, 1, pp. 71-81.Europe, Ukraine, RussiaMicrodiamonds
DS200612-1418
2005
Taylor, L.A., Spetsius, Z.V., Wiesli, R., Spicuzza, M., Valley, J.W.Diamondiferous peridotites from oceanic protoliths: crustal signatures from Yakutian.Russian Geology and Geophysics, Vol. 46, 12, pp. 1176-1184.RussiaPeridotite - diamond morphology
DS200612-1427
2006
Tichomirowa, M., Grosche, G., Gotze, J., Belyatsky, B.V., Savva, E.V., Keller, J., Todt, W.The mineral isotope composition of two Precambrian carbonatite complexes from the Kola Alkaline Province - alteration versus primary magmatic signatures.Lithos, In press available,Russia, Kola PeninsulaCarbonatite, geochronology, Tiksheozero, Siilinkarvi
DS200612-1428
2006
Timina, T.Yu., Sharygin, V.V., Golovin, A.V.Melt evolution during the crystallization of basanites of the Tergesh pipe.Geochemistry International, Vol. 44, 8, pp. 752-770.RussiaBasanites, Foidites
DS200612-1429
2006
Titkov, S.V., Gorshkov, A.I., Solodova, Ryabchikov, Magazina, Sivtsov, Gasanov, Sedova, SamosorovMineral Micro inclusions in cubic diamonds from the Yakutian deposits based on analytical electron microscopy data.Doklady Earth Sciences, Vol. 410, no. 7 July-August, pp. 1106-1108.Russia, YakutiaDiamond inclusions
DS200612-1486
2005
Vladykin, N.V., Morikiyo, T., Miyazaki, T.Geochemistry of Sr and Nd isotopes in carbonatites of Siberia and Mongolia and some geodynamic consequences.Problems of Sources of deep magmatism and plumes., pp. 19-37.Russia, Siberia, Asia, MongoliaCarbonatite
DS200612-1487
2005
Vladykin, N.V., Torbeeva, T.S.Lamproites of the Tomtor massif ( eastern Anabar area).Russian Geology and Geophysics, Vol. 46, 10 pp. 1024-1036.RussiaPetrology - lamproites
DS200612-1496
2006
Vrublevskii, V.V., Voitenko, N.N., Romanov, A.P., Polyakov, G.V., Izokh, A.E., Gertner, I.F., Krupchatnikov, V.I.Magma sources of Triassic lamproites of Gornyi Altai and Taimyr: Sr and Nd isotope evidence for plume lithosphere interaction.Doklady Earth Sciences, Vol. 405A 9, pp. 1365-1367.RussiaLamproite
DS200612-1503
2004
Wall, F., Zaitsev, A.N., editorsPhoscorites and carbonatites from mantle to mine: the key example of the Kola alkaline province.Mineralogical Society Series, Vol. 10, 498p. approx $160.USRussia, Kola PeninsulaBook - carbonatites, phoscorites
DS200612-1566
2005
Yarmolyuk, V.V., Kovalenko, V.I., Salnikova, E.B., Nijiforov, A.V., Lotov, A.B., Vladykin, N.V.Late Riphean rifting and breakup of Laurasia: dat a on geochronological studies of ultramafic alkaline complexes in the southern framing of the Siberian Craton.Doklady Earth Sciences, Vol. 404, 7, pp. 1031-1036.RussiaTectonics, geochronology
DS200612-1584
2006
Zedgenizov, D.A., Shiryaev, A.A., Shatsky, V.S., Kagi, H.Water related IR characteristics in natural fibrous diamonds.Mineralogical Magazine, Vol. 70, 2, April pp. 219-229.Russia, Africa, Democratic Republic of Congo, Canada, Northwest TerritoriesSpectroscopy, microinclusions
DS200612-1585
2006
Zegrenizov, D.A., Harte, B., Shatsky, V.S., Politov, A.A., Rylov, G.M., Sobolev, N.V.Directional chemical variations in diamonds showing octahedral following cuboid growth.Contributions to Mineralogy and Petrology, Vol. 151, 1, Jan. pp. 45-57.Russia, YakutiaMineral chemistry, subduction
DS200612-1621
2006
Zorin, Y.A., Turutanov, E.K., Kozhevnikov, V.M., Rasskazov, S.V., Ivanov, A.V.Cenozoic upper mantle plumes in east Siberia and central Mongolia and subduction of the Pacific plate.Doklady Earth Sciences, Vol. 409, 5, pp. 723-726.Asia, Mongolia, Russia, SiberiaPlume
DS200612-1622
2006
Zorin, Yu.A., Turutanov, E.kh., Kozhevnikov, V.M., Rasskazov, S.V., Ivanov, A.I.The nature of Cenozoic upper mantle plumes in east Siberia and central Mongolia.Russian Geology and Geophysics, Vol. 47, 10, pp. 1046-1059.Russia, Siberia, MongoliaPlume, hot spots
DS200712-0032
2007
Ashchepkov, I.V., Pokhilenko, N.P., Logvinova, A.M., Vladykin, N.P., Rotman, Palessky, Alymova, VishnyakovaEvolution of kimberlite magmatic sources beneath Siberia.Plates, Plumes, and Paradigms, 1p. abstract p. A39.RussiaMir
DS200712-0058
2007
Beane, R.J., Sorensen, S.S.Protolith signatures and element mobility of the Maksyutov Complex subducted slab, Southern Ural Mountains, Russia.International Geology Review, Vol. 49, 1, pp. 52-72.Russia, UralsSubduction
DS200712-0059
2007
Beard, A.D., Downes, H., Mason, P.R., Vetrin, V.R.Depletion and enrichment processes in the lithospheric mantle beneath the Kola Peninsula ( Russia): evidence from spinel lherzolite and wehrlite xenoliths.Lithos, Vol. 94, 1-4, pp. 1-24.RussiaXenoliths
DS200712-0089
2007
Boguslavskii, M.A.The geological and geochemical revision of the Komsomolskaya pipe reserves.Moscow University Geology Bulletin, Vol. 62, 4, pp. 286-288.Russia, YakutiaDeposit - Komsomolskaya
DS200712-0115
2006
Brown, D., Puchkov, V., Alvarez Marron, J., Bea, F., Perez Estaun, A.Tectonic processes in the southern and middle Urals: an overview.Geological Society of London Memoir, No. 32, pp. 407-420.Russia, Europe, UralsTectonics
DS200712-0116
2006
Brown, D., Spadea, P., Puchkov, V., Alvarez-Marron, J., Herrington, R., Willner, A.P., Hetzel, R., Gorozhanina, Y., Juhlin, C.Arc continent collision in the southern Urals.Earth Science Reviews, in press availableRussia, UralsBaltica tectonics, UHP, geochemistry
DS200712-0123
2007
Burke, K., Roberts, D., Ashwal, L.D.Alkaline rocks and carbonatites of northwestern Russia and northern Norway: linked Wilson cycle records over two billion years.Tectonics, Vol. 26, 4, TC4015.RussiaCarbonatite
DS200712-0124
2007
Burke, K., Roberts, D., Ashwal, L.D.Alkaline rocks and carbonatites of northwestern Russia and northern Norway: linked Wilson cycle records extending over two billion years.Tectonics, Vol. 26, pp. TC4015 10p.Europe, Russia, NorwayCarbonatite
DS200712-0147
2006
Carlson, R.W., Czamanske, G., Fedorenko, V., Ilupin, I.A comparison of Siberian meimichites and kimberlites: implications for the source of high Mg alkalic flood basalts.Geochemistry, Geophysics, Geosystems: G3, Vol. 7, Q11014 Nov. 21RussiaDeposit - Meymecha-Kotuy - geochemistry
DS200712-0168
2007
Chashchin, V.V.Mineral assemblages and genesis of hornfelses in the outer contact zone of the Khibin a Massif, Kola Peninsula, Russia.Geochemistry International, Vol. 45, 1, pp. 15-31.Russia, Kola PeninsulaKhibina alkaline
DS200712-0244
2007
Diakonova, A.G., Ivanov, K.S., Astafiev, P.F., Vishnev, V.S., Konoplin, A.D.Resistivity pattern of crust and upper mantle in Southern Urals.Russian Geology and Geophysics, Vol. 48, pp. 844-850.Russia, UralsGeophysics - EM, tectonics
DS200712-0253
2007
Dobosi, G., Wall, F., Jeffries, T.Trace element fractionation during exsolution of garnet from clinopyroxene in an eclogite xenolith from Obnazhennaya(Siberia).Plates, Plumes, and Paradigms, 1p. abstract p. A227.Russia, SiberiaObnazhennaya
DS200712-0256
2007
Dobrzhinetskaya, L., Takahata, N., Sano, Y., Green, H.W.Fluid organic matter interaction at high pressure and temperature: evidence from metamorphic diamonds.Frontiers in Mineral Sciences 2007, Joint Meeting of Mineralogical societies Held June 26-28, Cambridge, Abstract Volume p. 279.Russia, Kazakhstan, Europe, GermanyKokchetav and Erzgebirge
DS200712-0257
2007
Dobrzhinetskaya, L., Takahata, N., Sano, Y., Green, H.W.Fluid organic matter interaction at high pressure and temperature: evidence from metamorphic diamonds.Frontiers in Mineral Sciences 2007, Joint Meeting of Mineralogical societies Held June 26-28, Cambridge, Abstract Volume p. 279.Russia, Kazakhstan, Europe, GermanyKokchetav and Erzgebirge
DS200712-0258
2007
Dobrzhinetskaya, L.F., Green, H.W.Diamond synthesis from graphite in the presence of water and SiO2: implications for diamond formation in quartzites from Kazakhstan.International Geology Review, Vol. 49, 5, pp. 389-400.Russia, KazakhstanDiamond genesis
DS200712-0261
2007
Dobtresov, V.Y., Psakhe, S.G., Popov, V.L., Shilko, E.V., Granin, Timofeev,Astafurov, Dimaki, StarchevichIce cover of Lake Baikal as a model for studying tectonic processes in the Earth's crust.Doklady Earth Sciences, Vol. 413, 2, pp. 155-159.RussiaGeomorphology
DS200712-0268
2007
Doroshkevich, A., Wall, F., Ripp, G.Magmatic graphite in dolomite carbonatite at Pogranichnoe North Transbaikalia, Russia.Contributions to Mineralogy and Petrology, Vol. 153, 3, pp. 339-353.RussiaCarbonatite
DS200712-0269
2007
Doroshkevich, A.G., Wall, A.G., Ripp, G.S.Magmatic graphite in dolomite carbonatite at Pogranichnoe, North Transbaikalia, Russia.Contributions to Mineralogy and Petrology, Vol. 153, 3, pp. 339-353.RussiaCarbonatite
DS200712-0270
2007
Doroshkevich, A.G., Wall, F., Ripp, G.S.Calcite bearing dolomite carbonatite dykes from Veseloe, north Transbaikala, Russia, and possible Cr rich mantle xenoliths.Mineralogy and Petrology, Vol. 90, 1-2, pp. 19-49.RussiaCarbonatite
DS200712-0271
2007
Doroshkevich, A.G., Wall, F., Ripp, G.S.Calcite bearing dolomite carbonatite dykes from Veseloe, North Transbaikalia, Russia and possible Cr rich mantle xenoliths.Mineralogy and Petrology, Vol. 90, 1-2, pp. 19-49.RussiaCarbonatite
DS200712-0287
2006
Egorova, V.V., Volkova, N.I., Shelepaev, R.A., Izokh, A.E.The lithosphere beneath the Sangilen Plateau, Siberia: evidence from peridotite, pyroxenite and gabbro xenoliths from alkaline basalts.Mineralogy and Petrology, Vol. 88, 3-4, pp. 419-441.RussiaAlkalic
DS200712-0288
2006
Egorova, V.V., Volkova, N.l., Shelepaev, R.A., Izokh, A.E.The lithosphere beneath the Sangilen Plateau, Siberia: evidence from peridotite, pyroxenite and gabbro xenoliths from alkaline basalts.Mineralogy and Petrology, Vol. 88, 3-4, pp. 419-441.RussiaXenoliths
DS200712-0292
2006
Emmerson, B., Jackson, J., McKensie, D., Priestley, K.Seismicity, structure and rheology of the lithosphere in the Lake Baikal region.Geophysical Journal International, Vol. 167, 3, Dec. 1, pp. 1233-1272.RussiaGeophysics - seismics
DS200712-0363
2007
Gladkochub, D.P., Donskaya, T.V., Mazukabzov, A.M., Stanevich, A.M., Sklyarov, E.V., Ponomarchuk, V.A.Signature of Precambrian extension events in the southern Siberian Craton.Russian Geology and Geophysics, Vol. 48, pp. 17-31.RussiaDike swarm, rifting, Rodinia
DS200712-0364
2007
Glebovitskii, V.A., Nikitina, L.P., Saltykova, A.K., Pushkarev, Y.D., Ovchinnikov, Babushkina, AshchepkovThermal and chemical heterogeneity of the upper mantle beneath the Baikal Mongolia territory.Petrology, Vol. 15, 1, pp. 58-89.RussiaGeothermometry
DS200712-0366
2007
Golovin, A.V., Shatgin, V.V.Petrogenetic analysis of fluid and melt inclusions in minerals from mantle xenoliths from the Bele pipe basanites.Russian Geology and Geophysics, Vol. 48, pp. 811-824.RussiaXenolith - petrology
DS200712-0368
2006
Golubeva, Yu.Yu., Pervov, V.A., Kononova, V.A.Petrogenesis of autoliths from kimberlitic breccias in the V. Grib pipe, Arkangelsk district.Doklady Earth Sciences, Vol. 411, no. 8, pp. 1257-1262.Russia, Kola Peninsula, ArchangelDeposit - Grib
DS200712-0375
2007
Gornova, M.A., Polozov, A.G., Ignatev, A.V., Velivetskaya, T.A.Peridotite nodules from the Udachnaya kimberlite pipe, nonmantle oxygen isotope ratios in garnets.Doklady Earth Sciences, Vol. 415, 5, pp. 777-781.RussiaDeposit - Udachnaya
DS200712-0397
2007
Gusvea, N., Sergeev, S., Lobach-Zhuchenko, S., Larinov, A., Berezhnaya, N.Archean age of miaskite lamproites from the Panzero complex, Karelia.Doklady Earth Sciences, Vol. 413, 3, pp. 420-423.RussiaLamproite
DS200712-0398
2007
Gusvea, N., Sergeev, S., Lobach-Zhuchenko, S., Larinov, A., Berezhnaya, N.Archean age of miaskite lamproites from the Panzero complex, Karelia.Doklady Earth Sciences, Vol. 413, 3, pp. 420-423.RussiaLamproite
DS200712-0461
2007
Ikorsky, S.V., Avedisyan, A.A.Hydrocarbon gases and helium isotopes in the Paleozoic alkaline ultramafic massifs of the Kola Peninsula.Geochemistry International, Vol. 45, 1, pp. 62-69.Russia, Kola PeninsulaGeochronology
DS200712-0470
2007
Itar-TassDe Beers to buy Alrosa diamonds in line with its commitments.Itar-Tass, July 27, 1/4p.RussiaNews item - De Beers, Alrosa
DS200712-0471
2007
Izbekov, E., Podyachev, B., Afanasev, V.Signs of symmetric diamond concentration in the eastern Siberian Platform.Doklady Earth Sciences, Vol. 411, 9, pp. 1339-1340.RussiaDiamond genesis
DS200712-0472
2007
Izbekov, E., Podyachev, B., Afanasev, V.Signs of symmetric diamond concentration in the eastern Siberian Platform.Doklady Earth Sciences, Vol. 411, 9, pp. 1339-1340.RussiaDiamond genesis
DS200712-0473
2006
Izbekov, E.D., Podyachev, B.P., Afanasev, V.P.Signs of symmetric diamond concentration in the eastern Siberian platform.Doklady Earth Sciences, Vol. 411, 9, Nov-Dec. pp. 1339-1340.Russia, SiberiaDiamond genesis
DS200712-0504
2006
Kamenetsky, V.S., Kamenetsky, M.B., Sharygin, V.V., Faure, K., Golovin, A.V.Chloride and carbonate immiscible liquids at the closure of the kimberlite magma evolution ( Udachnaya-East kimberlite, Siberia).Chemical Geology, Available in press,Russia, SiberiaDeposit - Udachnaya, geochronology
DS200712-0505
2007
Kamenetsky, V.S., Kamenetsky, M.B., Sharygin, V.V., Golovin, A.V.Carbonate chloride enrichment in fresh kimberlites of the Udachnaya East pipe, Siberia: a clue to physical properties of kimberlite magmas?Geophysical Research Letters, Vol. 34, 9, May 16, L09316RussiaDeposit - Udachnaya
DS200712-0506
2007
Kamenetsky, V.S., Kamenetsky, M.B., Sharygin, V.V., Golovin, A.V.Carbonate chloride enrichment in fresh kimberlites of the Udachnaya East pipe, Siberia: a clue to physical properties of kimberlite magmas?Geophysical Research Letters, Vol. 34, 9, May 16, L09316RussiaDeposit - Udachnaya
DS200712-0507
2007
Kamenetsky, V.S., Kamenetsky, M.B., Shaygin, V.V., Faure, K., Golovin, A.V.Chloride and carbonate immiscible liquids at the closure of the kimberlite magma evolution ( Udachnaya-East kimberlite) Siberia.Chemical Geology, Vol. 237m 3-4, March 5, pp. 384-400.Russia, SiberiaDeposit - Udachnaya
DS200712-0509
2007
Kaneoka, I.A deep mantle reservoir inferred from isotope signatures of kimberlites.Plates, Plumes, and Paradigms, 1p. abstract p. A461.Europe, Greenland, RussiaGroup I and Group II
DS200712-0536
2007
Khokhrayakov, A.F., Palyanov, Y.N.The evolution of diamond morphology in the process of dissolution: experimental data.Americam Mineralogist, Vol. 92, 5, pp. 909-917.Russia, YakutiaUdachnaya
DS200712-0537
2007
Khokhryakov, A.F., Palyanov, Y.N.The evolution of diamond morphology in the process of dissolution: experimental data.American Mineralogist, Vol. 92, pp. 909-917.RussiaDeposit - Udachnaya diamond morphology
DS200712-0538
2007
Khudolev, A.K., Kropachev, A.P., Tkachenko, V.I., Rublev, A.G., Sergeev, S.A., Matukov, D.I,LyahnitskayaMesoproterozoic to Neoproterozoic evolution of the Siberian Craton and adjacent microcontinents: an overview with constraints for a Laurentian Connection.SEPM Special Publication 86, pp. 209-226.RussiaCraton
DS200712-0539
2007
Khudolev, A.K., Kropachev, A.P., Tkachenko, V.I., Rublev, A.G., Sergeev, S.A., Matukov, D.I,LyahnitskayaMesoproterozoic to Neoproterozoic evolution of the Siberian Craton and adjacent microcontinents: an overview with constraints for a Laurentian Connection.SEPM Special Publication 86, pp. 209-226.RussiaCraton
DS200712-0554
2006
Kobussen, A.F., Christensen, N.I., Thybo, H.Constraints on seismic velocity anomalies beneath the Siberian Craton from xenoliths and petrophysics.Tectonophysics, Vol. 425, 1-4, Oct. 13, pp. 123-135.RussiaGeophysics - seismics, Udachnaya, peridotite, eclogites
DS200712-0558
2006
Kogarko, L.N., Williams, C.T., Woolley, A.R.Compositional evolution and cryptic variation in pyroxenes of the peralkaline Lovozero intrusion, Kola Peninsula, Russia.Mineralogical Magazine, Vol. 70, 4, pp. 347-359.Russia, Kola PeninsulaAlkalic
DS200712-0559
2007
Kogarko, N.L., Zartman, R.Isotopic signatures of the Siberian flood basalts and alkaline magmatism of Polar Siberia ( age, genetic link, heterogeneity of mantle sources).Plates, Plumes, and Paradigms, 1p. abstract p. A503.Russia, SiberiaGeochronology
DS200712-0573
2006
Koreshkova, M.Yu., Nikitina, L.P., Vladykin, N.V., Matukov, D.I.U Pb dating of zircon from the lower crustal xenoliths, Udachnaya pipe, Yakutia.Doklady Earth Sciences, Vol. 411, 9, Nov-Dec. pp. 1389-1392.Russia, YakutiaDeposit - Udachnaya
DS200712-0575
2007
Kostrovitsky, S.I., Morikyo, T., Serov, I.V., Yakovlev, D.A., Amirzhanov, A.A.Isotope geochemical systematics of kimberlites and related rocks from the Siberian Platform.Russian Geology and Geophysics, Vol. 48, pp. 272-290.RussiaGeochronology
DS200712-0594
2007
Lapin, A., Tolstov, A., Antonov, A.Sr and Nd isotopic compositions of kimberlites and associated rocks of the Siberian Craton.Doklady Earth Sciences, Vol. 413, 3, pp. 557-560.RussiaGeochronology
DS200712-0595
2007
Lapin, A., Tolstov, A., Antonov, A.Sr and Nd isotopic compositions of kimberlites and associated rocks of the Siberian Craton.Doklady Earth Sciences, Vol. 413, 3, pp. 557-560.RussiaGeochronology
DS200712-0596
2007
Larikova, T.Geochemical characteristics of eclogites from the Eastern part of the Kokchetav Complex N. Kazakhstan.Plates, Plumes, and Paradigms, 1p. abstract p. A544.Russia, KazakhstanEclogite
DS200712-0612
2006
Lee, M.J., Lee, J.I., Hur, S.D., Kim, Y., Moutte, J., Balaganskaya, E.Sr Nd Pb isotopic composition of the Kovdor phoscorite carbonatite Kola Peninsula, NW Russia.Lithos, Vol. 91, 1-4, pp. 250-261.RussiaGeochronology, carbonatite
DS200712-0638
2006
Liu, K.H., Gao, S.S.Mantle transition zone discontinuities beneath the Baikal rift and adjacent areas.Journal of Geophysical Research, Vol. 111, B 11, B11301.RussiaGeophysics - seismics
DS200712-0646
2007
Logvinova, A.M., Ashchepkov, I.V., Palessky, S.V.LAM ICP study of cloudy diamonds: implications for diamond formation.Plates, Plumes, and Paradigms, 1p. abstract p. A593.Russia, SiberiaYubileynaya
DS200712-0662
2007
Maas, R., Kamenetsky, V.S., Sharygin, V.V.Recycled oceanic crust as a possible source of kimberlites - isotopic evidence from perovskite, Udachnaya-East pipe, Siberia.Plates, Plumes, and Paradigms, 1p. abstract p. A608.Russia, SiberiaUdachnaya-East
DS200712-0713
2007
Melekin, D.V., Vernikovsky, V.A., KKKKazansky, A.Yu.Neoproterozoic evolution of Rodinia: constraints from new paleomagnetic dat a on the western margin of the Siberian Craton.Russian Geology and Geophysics, Vol. 48, pp. 32-45.RussiaPaleomagnetism
DS200712-0734
2007
Mitchell, R.H.Mobility of REE, Sr, Zr and other rare elements during late stage processes in peralkaline rocks: a mineralogical perspective.Plates, Plumes, and Paradigms, 1p. abstract p. A673.Russia, AfricaMetasomatism
DS200712-0737
2007
Mocek, B., Hellebrand, E., Ionov, D.In situ measurements vs. lattice strain model calculations: distribution of REE between Grt and Cpx in garnet peridotites from Vitim ( Siberia).Plates, Plumes, and Paradigms, 1p. abstract p. A677.Russia, SiberiaVitim
DS200712-0776
2007
Nedosekova, I.L.New dat a on carbonatites of the Ilmensky Vishnevogorsky alkaline complex.Geology of Ore Deposits, Vol. 49, 2, pp. 129-146.RussiaCarbonatite
DS200712-0777
2007
Nestola, F., Longo, M., McCammon, C., Boffa Ballaran, T.Crystal structure refinement of Na bearing clinopyroxenes from mantle derived eclogite xenoliths.American Mineralogist, Vol. 92, pp. 1242-1245.RussiaDeposit - Udachnaya, Zagadochnaya
DS200712-0834
2007
Perepelov, A.B., Puzankov, M.Yu., Ivanov, Filosfova, Demonetova, Smirnova, Chuvshaova, YasnyginaNeogene basanites in western Kamchatka: mineralogy, geochemistry and geodynamic setting.Petrology, Vol. 15, 5, Sept. pp. 488-508.Russia, KamchatkaBasanites, Foidites
DS200712-0838
2007
Petrishchevsky, A.M.Density In homogeneity of the lithosphere in the southeastern periphery of the North Asian Craton.Russian Geology and Geophysics, Vol. 48, 5, pp. 442-455.Asia, RussiaGeophysics - seismics
DS200712-0840
2006
Pharaoh, T.C., Winchester, J.A., Verniers, J., Lassen, A., Seghedi, A.The Western accretionary margin of the East European Craton: an overview.Geological Society of London Memoir, No. 32, pp. 291-312.Russia, Europe, UralsCraton
DS200712-0847
2006
Pisarevsky, S.A., Gladkochub, D.P., Donskaya, T.A., De Waeel, B., Mazukabzov, A.M.Paleomagnetism and geochronology of mafic dykes in south Siberia, Russia: the first precisely dated Permian paleomagnetic pole from the Siberian Craton.Geophysical Journal International, Vol. 167, 2, pp. 649-658.RussiaGeochronology
DS200712-0851
2007
Portnyagin, M., Hoernie, K., Plechov, P., Mironov, N., Khubunaya, S.Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles ( H2) S Cl F) and trace elements in melt inclusions from the Kamchatka Arc.Earth and Planetary Science Letters, Vol. 255, 1-2, pp. 53-69.Russia, KamchatkaGeochemistry
DS200712-0852
2007
Posukhova, T.V.Morphogenesis of diamond and associated minerals from Diamondiferous deposits in the Urals and Timan.Moscow University Geology Bulletin, Vol. 62, 3, pp. 198-205.Russia, Urals, TimanDiamond morphology
DS200712-0857
2007
Pribavkin, S.V., Ronkiv, Yu.L., Travin, A.V., Ponomarenko, V.A.New dat a on the age of lamproite-lamprophyre magmatism in the Urals.Doklady Earth Sciences, Vol. 413, 2, pp. 213-215..Russia, UralsLamproite
DS200712-0875
2007
Rass, I.T.Trace elements fractionation in Ca rich and Ca poor alkaline ultrabasic series.Plates, Plumes, and Paradigms, 1p. abstract p. A822.Russia, SiberiaMaimecha-Kotui
DS200712-0876
2007
Rasskazov, S.V., Ilyasova, A.M., Konev, A.A., Yasnygina, Maslovskaya, Feflov, Demonterova, SaraninaGeochemical evidence of the Zadoi alkaline ultramafic Massif, Cis Sayan area southern Siberia.Geochemistry International, Vol. 45, 1, pp. 1-14.Russia, SiberiaAlkalic
DS200712-0891
2007
Reutsky, V.N., Zedgenizov, D.A.Some specific features of genesis of microdiamonds of octahedral and cubic habit from kimberlites of the Udachanaya pipe inferred from carbon isotopes - defectRussian Geology and Geophysics, Vol. 48, pp. 299-304.Russia, YakutiaMicrodiamonds
DS200712-0920
2007
Ryabchikov, I.D.Potential temperature and volatile contents in mantle plume of Siberian trap province.Plates, Plumes, and Paradigms, 1p. abstract p. A862.Russia, SiberiaMagmatism
DS200712-0922
2007
Rylov, G.M., Fedorova, E.N., Logvinova, A.M., Pokhilenko, N.P., Kulipanov, G.N., Sobolev, N.V.The peculiarities of natural plastically deformed diamond crystals from Internationalnaya pipe, Yakutia.Nuclear Instruments and Methods in Physics Research Section A., Vol. 575, 1-2, pp. 152-154.RussiaDiamond morphology
DS200712-0932
2005
Samykina, E.V., Surkov, A.V., Eppelbaum, L.V., Semenov, S.V.Do old spoils contain large amounts of economically valuable minerals?Minerals Engineering, Vol. 18, 6, May pp. 643-645.Russia, AfricaMineral processing - gravel deposits
DS200712-0964
2007
Seminskii, K., Radziminovich, Y.A.Seismicity of the southern Siberian platform: spatiotemporal characteristics and genesis.Izvestia, Physics of the Solid Earth, Vol. 43, 9, Sept., pp. 726-737. IngentaRussiaGeophysics - seismics
DS200712-0970
2007
Sharygin, V.V., Kamenetsky, V.S., Kamenetskaya, M.B., Seretkin, Yu.V., Pokhilenko, N.P.Rasvumite from the Udachnaya East pipe: the first finding in kimberlites.Doklady Earth Sciences, Vol. 445, 6, pp. DOI:10.1134/S1028334 X07060232Russia, YakutiaMineralogy
DS200712-0974
2006
Shcheka, S.A., Ignatev, A.V., Nechaev, V.F., Zvereva, V.P.First diamonds from placers in Primorie.Petrology, Vol. 14, 3, pp. 299-RussiaAlluvials
DS200712-0975
2006
Shelepaev, R.A., Egorova, V.V., Izokh, A.E., Volkova, N.I.The lithosphere beneath the Sangilen Plateau, Siberia: evidence from peridotite, pyroxenite and gabbro xenoliths from alkaline basalts.Mineralogy and Petrology, Vol. 88, 3-4, pp. 419-441.RussiaAlkalic
DS200712-0983
2007
Shin, D.B., Lee, M.J.Oxygen and sulfur isotope characteristics of the Salmagora Complex, Kola Peninsula.Plates, Plumes, and Paradigms, 1p. abstract p. A932.Russia, Kola PeninsulaIjolite, Meliltolite
DS200712-0987
2006
Silaev, V.I., Petrovsky, V.A., Sukharev, A.E., Filippov, V.N.Inclusions of zircon based solid solutions in diamonds.Doklady Earth Sciences, Vol. 411, no. 8, pp. 1318-RussiaDiamond inclusions
DS200712-0994
2007
Sitnikova, E., Shatsky, V.S.Results of FTIR studying microdiamonds from gneisses and calc-silicate rocks from mine Kumdi-Kol northern Kazakhstan.Plates, Plumes, and Paradigms, 1p. abstract p. A943.Russia, KazakhstanKumdi-Kol
DS200712-1010
2007
Sobolev, N.V., Schertl, H-P., Neuser, R.D., Shatsky, V.S.Relict unusually low iron pyrope grossular garnets from UHPM calc-silicate rocks of the Kochetav Massif, Kazakhstan.International Geology Review, Vol. 49, 8, pp. 717-731.Russia, KazakhstanUHP
DS200712-1013
2007
Soleva, L.V.Reworking of the lithospheric mantle of the Siberian Craton by reduced fluids in the middle Paleozoic kimberlite event: geochemical consequences.Doklady Earth Sciences, Vol. 413, 2, pp. 238-243.RussiaGeochemistry
DS200712-1014
2006
Solodova, Y.P., Sedova, E.A., Samosorov, G.G., Kurbatov, K.K.Comparative investigation of diamonds from various pipes in the Malaya Botuobiya and Daldyn Alakit areas, Siberia.Gems & Gemology, 4th International Symposium abstracts, Fall 2006, p.141-2. abstract onlyRussiaDiamond morphology
DS200712-1026
2007
Spetsius, Z.V., Griffin, W.L., O'Reilly, S.Y., Banzeruck, V.I.Trace elements in garnets of Diamondiferous xenoliths from the Nurbinskaya pipe, Yakutia.Plates, Plumes, and Paradigms, 1p. abstract p. A961.RussiaNurbinskaya
DS200712-1042
2007
Stepanov, A.S., Shatsky, V.S., Zedgenizov, D.A., Sobolev, N.V.Causes of variations in morphology and impurities of diamonds from the Udachnaya pipe eclogite.Russian Geology and Geophysics, Vol. 48, no. 9, pp. 758-769.Russia, YakutiaDiamond morphology
DS200712-1043
2007
Stepanov, A.S., Zedgenizov, D.A., Shatsky, V.S.FTIR water observation in minerals from diamond inclusions and matrix of Diamondiferous eclogite.Plates, Plumes, and Paradigms, 1p. abstract p. A973.RussiaUdachnaya
DS200712-1050
2007
Suk, N.I., Kotelnikov, A.R., Kovalskii, A.M.Mineral thermometry and the composition of fluids of the sodalite syenites of the Lovozero alkaline massif.Petrology, Vol. 15, 5, Sept. pp. 441-458.Russia, Kola PeninsulaGeothermometry
DS200712-1083
2006
Titkov, S.V., Gorshkov, A.I., Zudin, N.G.Micro inclusions in dark gray diamond crystals of octahedral habit from Yakutian kimberlites.Geochemistry International, Vol. 44, 11, pp. 1121-1128.Russia, YakutiaDiamond morphology
DS200712-1084
2006
Titkov, S.V., Solodova, Y.P., Gorshkov, A.I., Magaina, L.O., Sivtsov, A.V., Sedova, E.A., Gasanov, SamosorovInclusions in white gray diamonds of cubic habit from Siberia.Gems & Gemology, 4th International Symposium abstracts, Fall 2006, p.127-8. abstract onlyRussiaDiamond morphology
DS200712-1096
2007
Turkina, O.M., Nozhkin, A.D., Bayanova, T.B., Dimitrieva, N.V., Travin, A.V.Precamrbian terranes in the southwestern framing of the Siberian craton: isotopic provinces, stages of crustal evolution and accretion collision events.Russian Geology and Geophysics, Vol. 48, pp. 61-70.RussiaGeochronology
DS200712-1101
2007
Urakaev, F.K., Shevchenko, V.S., Logvinoa, A.M., Madyukov, I.A., Petrushin, E.I., Yusupov,T.S.Sobolev.Mechano chemical processing of low grade diamond into nanocomposite materials.Doklady Earth Sciences, Vol. 415, 5, pp. 755-758.RussiaMining - mineral processing
DS200712-1104
2007
Valentini, L., Moore, K.R.The possible role of magma mixing in the petrogenesi of carbonatite silicate rock associations: a case study from the Kola alkaline province.Frontiers in Mineral Sciences 2007, Joint Meeting of Mineralogical societies Held June 26-28, Cambridge, Abstract Volume p.233.Russia, Kola PeninsulaCarbonatite
DS200712-1105
2007
Valentini, L., Moore, K.R.The possible role of magma mixing in the petrogenesi of carbonatite silicate rock associations: a case study from the Kola alkaline province.Frontiers in Mineral Sciences 2007, Joint Meeting of Mineralogical societies Held June 26-28, Cambridge, Abstract Volume p.233.Russia, Kola PeninsulaCarbonatite
DS200712-1111
2007
Vasilev, Y.R., Prusskaya, S.N., Mazurov, M.P.A new type of large scale manifestation of within plate intrusive trap magmatism.Doklady Earth Sciences, Vol. 413, 2, pp. 187-191.RussiaMagmatism
DS200712-1117
2007
Vernikovskaya, I.V., Salnikova, Matushkin, YasnevThe Neoproterozoic alkaline rocks of the Yenisey Ridge, western margin of the Siberian Craton: mineralogy, geochemistry and geochronology.Plates, Plumes, and Paradigms, 1p. abstract p. A1065.RussiaIjolite
DS200712-1118
2006
Verzhak, D.V., Garanin, K.V.Diamond deposits of Arkhangelsk Oblast and environmental problems associated with their development.Moscow University Geology Bulletin, Vol. 60, 6, pp. 20-30.Russia, Kola PeninsulaEnvironmental
DS200712-1119
2007
Vetrin, V.R., Lepekhina, E.N., Larionov, A.N., Presnyakov, S.L., Serov, P.A.Initial subalkaline magmatism of the Neoarchean alkaline province of the Kola Peninsula.Doklady Earth Sciences, Vol. 415, No. 5, June-July pp. 714-717.Russia, Kola PeninsulaAlkalic
DS200712-1168
2007
Wirth, R.Modern FIB/TEM nanoanalysis: internal texture, mircstructure, chemicak composition and crystal structure of minerals on a nanometre scale.Frontiers in Mineral Sciences 2007, Joint Meeting of Mineralogical societies Held June 26-28, Cambridge, Abstract Volume p. 84-85.South America, Brazil, RussiaGeochemistry - isotope
DS200712-1169
2007
Wirth, R.Modern FIB/TEM nanoanalysis: internal texture, mircstructure, chemicak composition and crystal structure of minerals on a nanometre scale.Frontiers in Mineral Sciences 2007, Joint Meeting of Mineralogical societies Held June 26-28, Cambridge, Abstract Volume p. 84-85.South America, Brazil, RussiaGeochemistry - isotope
DS200712-1189
2007
Xiaoying, G., Meihua, C.Garnets from diamond deposits in Chin a and the Arkangelsk Diamondiferous province.Moscow University Geology Bulletin, Vol. 62, 5, pp. 342-346.China, Russia, Kola PeninsulaMineralogy - garnets
DS200712-1195
2007
Yakovenchuk, V.N., Pakhomovsky,Y.A., Menshikov, Y.P., Mikhailova, J.A., Ivanyuk, G.Y., Zalkind, O.A.Krivovichevite a new mineral species from the Lovozero alkaline massif, Kola Peninsula, Russia.The Canadian Mineralogist, Vol. 45, 3, pp. 451-456.Russia, Kola PeninsulaAlkaline rocks, mineralogy
DS200712-1196
2007
Yakovenchuk, V.N., Pakhomovsky,Y.A., Menshikov, Y.P., Mikhailova, J.A., Ivanyuk, G.Y., Zalkind, O.A.Krivovichevite a new mineral species from the Lovozero alkaline massif, Kola Peninsula, Russia.The Canadian Mineralogist, Vol. 45, 3, pp. 451-456.Russia, Kola PeninsulaAlkaline rocks, mineralogy
DS200712-1211
2006
Yurevich, S.M., Sergeevich, S.V.The contribution of remote sensing to diamond deposit prospecting on the Russian plate.IAGOD Meeting held August 2006, Abstract 1p.RussiaRemote sensing
DS200712-1212
2007
Zaccarini, F., Thalhammer, O.A.R., Princivalle, F., Lenaz, D., Stanley, C.J., Garuti, G.Djerfisherite in the Guli dunite complex, Polar Siberia: a primary or metasomatic phase?Canadian Mineralogist, Vol. 45, 5, Oct. pp. 1201-1211.RussiaMetasomatism
DS200712-1218
2007
Zedgenizov, D.A., Ragozin, A.L., Shatsky, V.S.Chloride carbonate fluid in diamonds from the eclogite xenolith.Doklady Earth Sciences, Vol. 445, 6, pp. DOI:10.1134/S1028334 X07060293Russia, YakutiaGeochemistry
DS200712-1233
2006
Zhao, G., Sun, M., Wilde, S.A., Li, A., Zhang, J.Some key issues in reconstructions of Proterozoic supercontinents.Journal of African Earth Sciences, Vol. 28, 1, Oct. 15, pp. 3-19.Russia, United StatesAldan, Wyoming , Laurentia, paleomagnetism
DS200712-1246
2007
Zinchuk, N., Koptil, V.Mineralogy of diamonds from the Ozernaya pipe, Ottorzhenets body, Pervomaiskaya and Novogodnyaya veins, Yakutia.Geology of Ore Deposits, Vol. 49, 4, August pp. 308-317.Russia, YakutiaDeposit - Ozernaya
DS200712-1249
2007
Zozulya, D.R., Bayanova, T.B., Serov, P.N.Age and isotopic geochemical characteristics of Archean carbonatites and alkaline rocks of the Baltic shield.Doklady Earth Sciences, Vol. 445, 6, pp. DOI:10.1134/S1028334 X07060104Russia, Baltic ShieldCarbonatite
DS200812-0039
2008
Antonov, A.V., Belyatsky, B.V., Savva, E.V., Rodonov, N.V., Sergeev, S.A.Hydrothermal zircon from Proterozoic carbonatite massif.Goldschmidt Conference 2008, Abstract p.A29.Russia, KareliaTiksheozero
DS200812-0049
2008
Arzamastev, A.A., Glaznev, V.N.Plume lithosphere interaction in the presence of an ancient sublithospheric mantle keel: an example from the Kola alkaline province.Doklady Earth Sciences, Vol. 419A, no. 3, pp. 384-387.Russia, Kola PeninsulaMantle plume
DS200812-0050
2008
Ashcheperov, I.V., Pokhilenko, N.P., Vladykin, N.P., Logovina, A.M., Nikoleva,I., Palessky, RotmanMelts in mantle columns beneath Siberian kimberlites.Goldschmidt Conference 2008, Abstract p.A35.Russia, SiberiaDeposit - Alkite
DS200812-0051
2008
Ashchepkov, I.V., Pokhilenko, Vladykin, Rotam, Afansiev, Logvinova, Kostrovitsky, Karpenko, KuliginReconstruction of mantle sections beneath Yakutian kimberlite pipes using monomineral thermobaraometry.Geological Society of London, Special Publication, SP 293, pp. 335-352.RussiaGeothermometry
DS200812-0052
2007
Ashchepkov, I.V., Vladykin, Pkhilenko, Logvinova, Palessky, Afansiev, Alymova, Stegnitsky, Khmelnikova RotamanVariations of ilmenite compositions from Yakutian kimberlites and the problem of their origin.Vladykin Volume 2007, pp. 71-89.Russia, YakutiaIlmenite, kimberlite
DS200812-0122
2008
Bogatikov, O.A., Kononova, V.A., Dubinina, E.O., Nosova, A.A., Kondrashov, I.A.Nature of carbonates from kimberlites of the Zimnii Bereg field, Arkangelsk: evidence from Rb Sr C and O isotope data.Doklady Earth Sciences, Vol. 421,1, pp. 807-811.Russia, Kola Peninsula, ArchangelDeposit - Zimnii Bereg
DS200812-0123
2008
Bogatikov, O.A.A.A., Larchenko, V.A.A.A., Kononova, V.A.A.A., Nosova, A.A.A.A., Minchenko, G.A.V.A.New kimberlite bodies in the Zimnii Bereg field, Archangelsk district: petrography and prognostic estimates.Doklady Earth Sciences, Vol. 418, 1, pp. 68-72.Russia, Archangel, Kola PeninsulaDeposit - Zimnii Bereg
DS200812-0134
2008
Brady, A.E., Moore, K.R.The role of carbonate in alkaline diatremic magmatism.9IKC.com, 3p. extended abstractEurope, Greenland, Russia, UzbekistanCarbonatite
DS200812-0151
2008
Buchko, I.V., Sorokin, A.P., Yakoleva, S.Z., Plotkina, Y.V.Petrology of the Early Mesozoic ultramafic mafic Luchin a massif ( southeastern periphery of the Siberian Craton).Russian Geology and Geophysics, Vol. 49, 8, pp. 570-581.RussiaUltramafic rocks
DS200812-0169
2008
Buslov, M.M., Vovna, G.M.Composition and geodynamic nature of protoliths of Diamondiferous rocks from the Kumdy-Kol of the Jokchetav metamorphic belt, northern Kazakhstan.Geochemistry International, Vol. 46, 9, pp. 887-896.Russia, KazakhstanDeposit - Kumdy Kol
DS200812-0173
2008
Camara, F., Sokolova, E.The structure of bornemanite, a Group III Ti silicate mineral from Lovozero alkaline massif, Kola Peninsula, Russia.Goldschmidt Conference 2008, Abstract p.A131.Russia, Kola PeninsulaMineralogy
DS200812-0193
2008
Chakhmouradian, A.R., Cooper, M.A., Medici, L., Hawthorne, F.C., Adar, F.Fluorine rich hibschite from silicocarbonatite, AfrikAnd a Complex, Russia: crystal chemistry and conditions of crystallization.Canadian Mineralogist, Vol. 46, 4, August pp.RussiaCarbonatite
DS200812-0217
2008
Chepunov, A.I., Fedorov, I.I., Sonin, V.M., Logvinova, A.M., Chepunov, A.A.Thermal effect on sulfide inclusions in diamonds ( from experimental data).Russian Geology and Geophysics, Vol. 49, pp. 738-742.Russia, YakutiaTechnology - sulphide inclusions, UHP
DS200812-0287
2007
Dobrzhinetskaya, L.Ultrahigh pressure metamorphic fluid: evidence from subduction zone microdiamonds.Geological Society of America Annual Meeting 2007, Denver Oct. 28, 1p. AbstractMantle, Russia, Kazakhstan, Europe, GermanyUHP
DS200812-0288
2008
Dobrzhinetskaya, L., Wirth, R.Fluids role in formation of microdiamonds from ultrahigh pressure metamorphic terranes.Goldschmidt Conference 2008, Abstract p.A221.Russia, Europe, GermanyMicrodiamonds
DS200812-0295
2008
Doroshkevich, A.G., Ripp, G.S., Viladkar, S.G., Vladykin, N.V.The Arshan REE carbonatites, southwestern Transbaiklia, Russia: mineralogy, parageneis, and evolution.Canadian Mineralogist, Vol. 46, 4, August pp.RussiaCarbonatite
DS200812-0296
2007
Downes, H., Mahotkin, I.I., Beard, A.D., Hegner, E.Petrogenesis of alkali silicate, carbonatitic and kimberlitic magmas of the Kola alkaline carbonatite province.Vladykin Volume 2007, pp. 45-56.Russia, Kola PeninsulaCarbonatite
DS200812-0299
2008
Dubopvikova, Z., Polekhovsky, Yu.Some special features of Kimozero kimberlites of Onega Flexure (Karelia, Russia).9IKC.com, 3p. extended abstractRussiaDeposit - Kimozero
DS200812-0313
2008
Egorov, K.N., Koshkarev, D.A., Karpenko, M.A.Mineralogical geochemical criteria of diamond potential of kimberlites in the Yubileinaya multiphase pipe ( Yakutia).Doklady Earth Sciences, Vol. 422, 1, October pp. 1137-1141.Russia, YakutiaDeposit - Yubileinaya
DS200812-0380
2008
Galimov, E.M., Palazhchenko, O.V., Verichev, E.M., Garanin, V.K., Golovin, N.N.Carbon isotope composition of diamonds from the Archangelsk diamond province.Geochemistry International, Vol. 46, 10, pp. 961-970.Russia, Archangel, Kola PeninsulaDiamond chemistry
DS200812-0386
2008
Garanin, V.K., Kopchikov, M.B., Verichev, E.M., Golovin, N.N.New dat a on the morphology of diamonds from tholeiite basalts of the Zimneberezhnyi ( winter Coast) area of the Arkangelsk Diamondiferous province.Moscow University Geology Bulletin, Vol. 63, 2, March-April pp. 114-118.Russia, Archangel, Kola PeninsulaDiamond morphology
DS200812-0413
2008
Gladkochub, D.P., Sklyarov, E.V., Donskaya, T.V., Stanevich, A.M., Mazukabzov, A.M.A period of global uncertainty ( Blank spot) in the Precambrian history of the southern Siberian Craton and the problem of the transproterozoic supercontinent.Doklady Earth Sciences, Vol. 421, 1, pp. 774-778.Russia, SiberiaTectonics
DS200812-0414
2008
Glaznev, V.N., Zhirova, A.M., Raevskii, A.B.New dat a on the deep structure of the Khibiny and Lovozero massifs, Kola Peninsula.Doklady Earth Sciences, Vol. 422, 1 Oct. pp. 391-393.Russia, Kola PeninsulaGeophysics
DS200812-0415
2008
Glebovitsky, V.A., Khiltova, V.Y., Kozakov, I.K.Tectonics of the Siberian craton: interpretation of geological, geophysical geochronological and isotopic geochemical data.Geotectonics, Vol. 42, 1, pp. 8-20.RussiaTectonics
DS200812-0423
2008
Golovin, A.V., Kamenetsky, M.B., Kamenetsky, V.S., Sharygin, V.V., Pokhilenko, N.P.Groundmass of unaltered kimberlites of the Udachnaya East pipe (Yakutia Russia): a sample of the kimberlite melt.9IKC.com, 3p. extended abstractRussiaDeposit - Udachnaya
DS200812-0427
2007
Grakhanov, S.A., Yadrenkin, A.V.Prediction of the diamond potential of Triassic rocks in Taimyr.Doklady Earth Sciences, Vol. 417, 8, pp. 1147-1150.RussiaDiamond genesis
DS200812-0432
2008
Grishina, S.N., Polozov, A.C., Mazurov, M.P., Titov, A.T.Origin of chloride xenoliths of Udachnaya East kimberlite pipe, Siberia: evidence from fluid and saline melt inclusions.9IKC.com, 3p. extended abstractRussia, SiberiaDeposit - Udcahnaya inclusions
DS200812-0498
2008
Iancu, O.G., Cossio, R., Korsakov, A.V., Compagnoni, R., Popa, C.Cathodluminesence spectra of diamonds in UHP rocks from the Kokchetav Massif, Kazakhstan.Journal of Luminescence, Vol. 128, 10, pp. 1684-1688.Russia, KazakhstanSpectroscopy
DS200812-0501
2008
Ionov, D.A., Seitz, H-M.Lithium abundances and isotopic compositions in mantle xenoliths from subduction and intra plate settings: mantle sources vs. eruption histories.Earth and Planetary Science Letters, Vol. 266, 3-4, pp. 316-331.RussiaVitim field
DS200812-0510
2008
Ivanov, A., Demonterova, E., Rasskazov, S., Yasnygina, T.Low Ti melts from southeastern Siberian traps large igneous province: evidence for a water rich mantle source?Journal of Earth System Science, Vol. 117, 1, pp. 1-21.Russia, SiberiaWater
DS200812-0511
2008
Ivanov, A.V., Demonterova, E.I., Rasskazov, S.V., Yasnygina, T.A.Low Ti melts from the southeastern Siberian Traps large Igneous Province: evidence for a water rich mantle source?Journal of Earth System Science, Vol. 117, 1, pp. 1-21.Russia, SiberiaMelting
DS200812-0537
2008
Kamenetsky, M.B., Kamenenetsky, V.S., Sobolev, A.V., Golovin, Sharygin, Demouchy, Faure, KuzminOlivine in the Udachnaya East kimberlite ( Yakutia, Russia): morphology, compositional zoning and origin.9IKC.com, 3p. extended abstractRussiaDeposit - Udachnaya petrograaphy
DS200812-0538
2008
Kamenetsky, M.B., Kamenetsky, V.S, Sobolev, A.V., Golovin, A.V.Can pyroxenes be liquidus minerals in the kimberlite magma?9IKC.com, 3p. extended abstractRussiaDeposit - Udachnaya
DS200812-0539
2008
Kamenetsky, V.S., Kamenetsky, M.B., Golovin, A.V., Maas, R., Sharygin, V.V., Pokhilenko, N.P.Salty kimberlite of the Udachnaya East pipe ( Yakutia, Russia): a petrological oddity, victim of contamination or a new magma type?9IKC.com, 3p. extended abstractRussiaDeposit - Udachnaya - taste!
DS200812-0540
2008
Kamenetsky, V.S., Kamenetsky, M.B., Weiss, Y., Navon, O., Nielsen, T.F.D., Mernagh, T.P.Alkali carbonates and chlorine in kimberlites from Canada and Greenland: evidence from melt inclusions and serpentine.9IKC.com, 3p. extended abstractCanada, Northwest Territories, Greenland, RussiaMelting
DS200812-0541
2008
Kamenetsky, V.S., Kamentsky, M.B., Sobolev, A.V., Golovin, A.V., Demouchy, S., Faure, Sharygin, KuzminOlivine in the Udachnaya east kimberlite ( Yakutia, Russia): types, compositions and origins.Journal of Petrology, Vol. 49, 4, pp. 823-839.Russia, YakutiaDeposit - Udachnaya
DS200812-0542
2008
Kamenetsky, V.S., Maas, R.The merits of 'recycled oceanic crust - eclogite' lineage in the mantle source of group I kimberlite melts.Goldschmidt Conference 2008, Abstract p.A446.Russia, SiberiaDeposit - Udachnaya-East
DS200812-0561
2008
Khachatryan, G.K., Palazhchenko, O.V., Garanin, V.K., Ivannikov, P.V., Verichev, E.M.Origin of disequilibrium diamond crystals from Parpinsky 1 kimberlite pipe using dat a from cathode luminescence and infra red spectroscopy.Moscow University Geology Bulletin, Vol. 63, 2, March-April pp. 86-94.RussiaDiamond morphology
DS200812-0585
2007
Kononova, V.A., Golubeva, Y.Y., Bogatikov, O.A., Kargin, A.V.Diamond resource potential of kimberlites from the Zimny Bereg field, Arkangelsk oblast.Geology of Ore Deposits, Vol. 49, 6, pp. 421-441.Russia, Kola PeninsulaDeposit - Zimny Bereg
DS200812-0597
2008
Kostrovitsky, S.A.I.A., Alymova, N.A., Yakolev, D.A.A., Solvaceva, L.A.V.A., Gornova, M.A.A.A.Origin of garnet megacrysts from kimberlites.Doklady Earth Sciences, Vol. 420, 1, pp. 636-640.RussiaPetrology
DS200812-0598
2008
Koulakov, I.Y.Upper mantle structure beneath southern Siberia and Mongolia, from regional seismic tomography.Russian Geology and Geophysics, Vol. 49, 3, pp. 187-196.Russia, Siberia, MongoliaTectonics
DS200812-0618
2008
Kurszlaukis, S., Lorenz, V.Formation of tuffisitic kimberlites by phreatomagmatic processes.Journal of Volcanology and Geothermal Research, Vol. 174, 1-3, pp. 68-80.Africa, Canada, RussiaDiatreme,emplacement, phreatomagmatic
DS200812-0624
2008
Lahaye, Y., Kogarko, L.N., Brey, G.P.Isotopic (Nd, Hf, Sr) composition of super large rare metal deposits from the Kola Peninsula using in-situ LA MC ICPMS9IKC.com, 3p. extended abstractRussia, Kola PeninsulaDeposit - Khibina, Lovosero
DS200812-0632
2007
Lapin, A.V., Tolstov, A.V., Vasilenko, V.B.Petrochemical characteristics of the kimberlites in the Middle Markha region with application to the problem of the geochemical heterogeneity of kimberlites.Geochemistry International, Vol. 45, 12, Dec. pp. 1197-1209.Russia, YakutiaGeochemistry - comparison Zolotitsa and Grib
DS200812-0646
2008
Lennikov, A.M., Zalisjchak, B.L., Oktyabrsky, R.A., Ivanov, V.V.Variations of chemical composition in platinum group minerals and gold of the Konder alkali ultrabasic massif, Aldan Shield, Russia.Deep Seated Magmatism, its sources and plumes, Ed. Vladykin, N.V., 2008 pp. 181-208.RussiaKonder alkaline massif
DS200812-0647
2008
Lepekhina, E.N., Rotman, AS.Ya., Antonov, A.V., Sergeev, S.A.SHRIMP U Pb dating of perovskite from kimberlites of the Siberian platform ( Verhnemunskoe and Alakite Marhinskoe fields.9IKC.com, 2p. extended abstractRussia, SiberiaEmplacement
DS200812-0648
2008
Lepekhina, E.N., Rotman, AS.Ya., Antonov, A.V., Sergeev, S.A.SHRIMP U Pb zircon ages of Yakutian kimberlite pipes.9IKC.com, 3p. extended abstractRussia, SiberiaGeochronology
DS200812-0682
2008
Logvinova, A.M., Ashchepkov, I.V.Diamond inclusions and eclogites thermobarometry, Siberia.Goldschmidt Conference 2008, Abstract p.A567.Russia, SiberiaDeposit - Mir, Udachnaya
DS200812-0683
2008
Logvinova, A.M., Wirth, R., Federova, E.N., Sobolev, N.V.Nanometre-sized mineral and fluid inclusions in cloudy Siberian diamonds: new insights on diamond formation.European Journal of Mineralogy, Vol. 20, no. 3, pp. 317-331.Russia, SiberiaDiamond genesis
DS200812-0684
2008
Logvinova, A.M., Wirth, R., Fedorova, E.N., Sobolev, N.V.Multi phase assemblages of nanometer sized inclusions in cloudy Siberian diamonds: evidence from TEM.Deep Seated Magmatism, its sources and plumes, Ed. Vladykin, N.V., 2008 pp. 53-70.Russia, SiberiaDiamond inclusions
DS200812-0694
2008
Maas, R., Kamenetsky, V., Paton, C., Sharygin, V.Low 87Sr 86 Sr in kimberlitic perovskite - further evidence for recycled oceanic crust as a possible source of kimberlites.9IKC.com, 3p. extended abstractRussiaDeposit - Udachnaya
DS200812-0696
2008
MacBride, L.M., Chakhmouradian, A.R.The petrology and geochemistry of kimberlite like rocks from the Konozero diatreme, Kola Peninsula, NW Russia.9IKC.com, 3p. extended abstractRussia, Kola Peninsula, Baltic ShieldCarbonatite
DS200812-0737
2008
MEI OnlineModular diamond prospecting plant supplied to Fenswood in Russia. Vharbarovsk and Vladivistok area.MEI Online, Jan. 25, 1p.RussiaNews item - Alrosa
DS200812-0746
2008
Mikhaliov, N.D., Vladykin, N.V., Laptsevich, A.G.Geochemical features of alkali rocks of Paleozoic magmatism of Belarus.Deep Seated Magmatism, its sources and plumes, Ed. Vladykin, N.V., 2008 pp. 169-180.Russia, BelarusAlkaline rocks, magmatism
DS200812-0766
2008
Morozova, G.M., Antonov, E.V.TEM TDEM soundings in the eastern Siberian Craton.Russian Geology and Geophysics, Vol. 49, 11, pp. 877-881.RussiaGeophysics - TEM
DS200812-0798
2008
Nikolenko, E.I., Afanasev, V.P., Pokhilenko, N.P.Garnets of crustal parageneses in alluvial deposits of the eastern Siberian platform: genesis and search significance.Russian Geology and Geophysics, Vol. 49, pp. 655-666.Russia, YakutiaMuna Markha drainage
DS200812-0802
2008
Nivin, V.A.Helium and argon isotopes in rocks and minerals of the Lovozero alkaline massif.Geochemistry International, Vol. 46, 5, May pp. 482-502.RussiaAlkaline rocks, geochronology
DS200812-0833
2008
Ota, T., Kobayashi, K., Kunihiro, T., Nakamura, E.Boron cycling by subducted lithosphere, insights from Diamondiferous tourmaline from the Kochetav ultrahigh pressure metamorphic belt.Geochimica et Cosmochimica Acta, Vol. 72, 14, pp. 3531-3541.Russia, KazakhstanCoesite, UHP
DS200812-0838
2008
Palazhchenko, O.V.Integrated investigations of diamonds from deposits of the Arkangelsk Diamondiferous province: generalization and genetic and applied consequences.Moscow University Geology Bulletin, Vol. 63, 2, March-April pp. 119-127.Russia, Archangel, Kola PeninsulaDiamond genesis
DS200812-0839
2008
Palazhchenko, O.V., Garanin, V.K., Galimov, E.M.Isotope and mineralogical study of diamonds from northwestern Russia.Goldschmidt Conference 2008, Abstract p.A718.Russia, Kola Peninsula, ArchangelDeposit - Lomonosov, Grib
DS200812-0863
2008
Patyk-Kara, N.A.G.A., Andrianova, E.A.A.A., Dubinchuk, V.A.T.A.Secondary alterations of zircons in placers.Doklady Earth Sciences, Vol. 419, 1, pp. 253-256.RussiaAlluvials, not specific to diamonds
DS200812-0864
2008
Patyk-Kara, N.A.G.A., Andrianova, E.A.A.A., Dubinchuk, V.A.T.A.Secondary alterations of zircons in placers.Doklady Earth Sciences, Vol. 419, 2, pp. 253-256.RussiaAlluvials, zircon, Not specific to diamonds
DS200812-0873
2008
Pechnikov, V.A., Kaminsky, F.V.Diamond potential of metamorphic rocks in the Kochetav Massif, northern Kazakhstan.European Journal of Mineralogy, Vol. 20, no. 3, pp. 395-413.Russia, KazakhstanMetamorphic - diamond
DS200812-0905
2008
Pokhilenko, L.N., Pokhilenko, N.P., Fedorov, L.I., Tomilenko, A.A., Usova, L.V., Fomina, L.N., Sobolev, V.S.Fluid regime pecularities of the lithosphere mantle of the Siberian Platform.Deep Seated Magmatism, its sources and plumes, Ed. Vladykin, N.V., 2008 pp. 122-136.Russia, SiberiaMantle chemistry
DS200812-0906
2008
Pokhilenko, N.P.Permo-Triassic superplume and its influence to the Siberian lithospheric mantle.Deep Seated Magmatism, its sources and plumes, Ed. Vladykin, N.V., 2008 pp. 41-53.Russia, SiberiaPlume, hot spots
DS200812-0907
2008
Polozov, A.C., Sukhov, S.S., Gornova, M.A., Grishina, S.N.Salts from Udachnaya East kimberlite pipe ( Yakutia, Russia): occurrences and mineral composition.9IKC.com, 3p. extended abstractRussiaDeposit - Udachnaya
DS200812-0908
2008
Polozov, A.C., Sveneen, H., Planke, S.Chlorine isotopes of salts xenoliths from Udachnaya East kimberlite pipe, Russia.9IKC.com, 3p. extended abstractRussiaDeposit - Udachnaya
DS200812-0913
2008
Pospeeva, E.V.Application of medium scale magnetotelluric sounding to identify deep criteria for promising areas for kimberlite exploration.Russian Journal of Pacific Geology, Vol. 2, 3, pp. 205-217.RussiaGeophysics - magnetotellurics
DS200812-0914
2008
Posukhova, T.V., Xiaoying, G.Mineralogical features of the Chin a kimberlites - comparison with Arkangelsk Diamondiferous province.9IKC.com, 3p. extended abstractChina, RussiaCraton, Hua Bei, Fu Xian
DS200812-0926
2008
Prokopiev, A.V., Toro, J., Miller, E.L., Gehrels, G.E.The paleo-Lena River - 200 m.y. of transcontinental zircon transport in Siberia.Geology, Vol. 36, 9, Sept. pp. 699-702.RussiaVerkhoyansk area
DS200812-0953
2008
Reverdatto, V.V., Selyatitskiy, A.Yu., Carswell, D.A.Geochemical distinctions between crustal and mantle derived peridotites/pyroxenites in high/ultrhigh pressure metamorphic complexes.Russian Geology and Geophysics, Vol. 49, pp. 73-90.Russia, KazakhstanKokchetav massif, UHP
DS200812-0984
2007
Ryabchikov, I.D., Kogarko, L.N.Thermodynamic analysis of magnetite + titanite + clinopyroxene equilibration temperatures in apatite bearing intrusion of the Khibin a alkaline complex.Vladykin Volume 2007, pp. 5-19.RussiaPetrology - Khibina
DS200812-0989
2008
Sablokov, S.M., Sablukova, L.I., Stegnitsky, Y.B., Banzeruk, V.I.Mantle sources for basalt and kimberlite rock bodies with differing age in the Nyurbinskaya pipe ( Nakyn field, Yakutia).9IKC.com, 3p. extended abstractRussia, YakutiaDeposit - Nyurbinskaya geochronology
DS200812-0990
2007
Sablukov, S.M., Sablukova, L.I., Stegnitsky, Yu.B., Banzeruk, V.L.Lithospheric mantle characteristics of the Nakyn field in Yakutia from dates on mantle xenoliths and basalts in the Nyurbinskaya pipe.Vladykin Volume 2007, pp. 140-156.Russia, YakutiaNakyn geochronology
DS200812-0991
2008
Sablukov, S.M., Sabluokva, L.I.Asthenospheric effect on the mantle substrate and diversity of kimberlite rocks in the Zimni Bereg ( Arkangelsk province).9IKC.com, 3p. extended abstractRussia, Archangel, Kola PeninsulaDeposit - Zimny Bereg, Lomonosov, Zololtisky
DS200812-0992
2008
Sabulov, S.M., Sabulukova, L.I., Stegnitsky, Yu.B., Karpenko, M.A., Spivakov, S.V.Volcanic rocks of the Nyurbinskaya pipe: a portrayal of regional upper mantle evolution from the Riphean to the Carboniferous time, and its geodynamic relationship.Deep Seated Magmatism, its sources and plumes, Ed. Vladykin, N.V., 2008 pp. 71-103.Russia, SiberiaDeposit - Nyurbinskaya
DS200812-0994
2008
Safonov, O., Perchuk, L., Litvin, Y., Chertkova, N., Butvina, V.Experimental modeling of chloride bearing diamond related liquids: a review.Goldschmidt Conference 2008, Abstract p.A817.Africa, Botswana, South America, Brazil, Russia, CanadaDiamond inclusions
DS200812-1044
2008
Sharygin, V.V., Kamenetsky, V.S., Kamenetsky, M.B., Golovin, A.V.Mineralogy and genesis of kimberlite hosted chloride containing nodules from Udachnaya East pipe, Yakutia, Russia.9IKC.com, 3p. extended abstractRussiaDeposit - Udachnaya
DS200812-1045
2008
Sharygin, V.V., Lamenetsky, V.S., Kamenetsky, M.B.Potassium sulfides in kimberlite hosted chloride nyereite and chloride clasts of the Udachnaya East pipe, Yakutia, Russia.Canadian Mineralogist, Vol. 46, 4, August pp.Russia, YakutiaDeposit - Udachnaya
DS200812-1047
2007
Sharygin, V.V., Szabo, C., Kothay, K., Timina, T.Ju., Peto, MN., Torok, K., Vapnik, Y., Kuzmin, D.V.Rhonite in silica undersaturated alkali basalts: inferences on silicate melt inclusions in olivine phenocrysts.Vladykin Volume 2007, pp. 157-182.RussiaPetrology
DS200812-1048
2008
Shatsky, V., Ragozin, A., Zedgenizov, D., Mityukhin, S.Evidence for multistage evolution in a xenolith of diamond bearing eclogite from the Udachnaya kimberlite pipe.Lithos, Vol. 105, 3-4, pp. 289-300.Russia, YakutiaDeposit - Udachnaya - distribution of diamonds
DS200812-1078
2008
Skublov, S.G., Lobach Zhuchenko, S.B., Guseva, N.S., Gembitckaya, I.M., Tolmacheva, E.V.REE distribution in zircons from lamproites in Panozero complex of sanukitoids (Karelia, NW Russia).Goldschmidt Conference 2008, Abstract p.A875.Russia, KareliaLamproite
DS200812-1083
2008
Smininsky, K.Zh., Gladkov, A.S., Radziminovich, Ya.B., Cheremnykh, A.V., Bobrov, A.A.Regularities of manifestation of active faults and seismicity in the southern part of the Siberian craton.Doklady Earth Sciences, Vol. 422, 1, October pp. 1068-1972.Russia, SiberiaGeophysics - seismics
DS200812-1092
2008
Sobolev, N.V., Logvinova, A.M., Zedgenizov, D.A., Pokhilenko, N.P., Kuzmin, D.V., Sobolev, A.V.Olivine inclusions in Siberian diamonds: high precision approach to minor elements.European Journal of Mineralogy, Vol. 20, no. 3, pp. 305-315.Russia, SiberiaDiamond inclusions
DS200812-1095
2008
Soloveva, L.V., lavrentew, Y.G., Egorov, K.N., Kostrovitskii, S.I., Korolyuk, V.N., Suvorova, L.F.The genetic relationship of the deformed peridotites and garnet megacrysts from kimberlites with asthenospheric melts.Russian Geology and Geophysics, Vol. 49, 4, pp. 207-224.RussiaPetrology - Udachnaya
DS200812-1101
2008
Spetius, Z.V., Taylor, L.A.Diamonds of Siberia. Photographic evidence for their origin. Excellent photography ...Tranquility Base Press, P.O. Box 473, Lenoir City, TN 37771 USA, goodbook @tranquility basepress.com US $ 92.00Russia, SiberiaBook - diamond genesis
DS200812-1103
2008
Spetsius, Z.V., Taylor, L.A., Valley, J.W., DeAngelsi, M., Spicuzza, M., Ivanov, A.S., Banzeruk, V.I.Diamondiferous xenoliths from crustal subduction: garnet oxygen isotopes from the Nyurbinskaya pipe, Yakutia.European Journal of Mineralogy, Vol. 20, no. 3, pp. 375-385.Russia, YakutiaDeposit - Nyurbinskaya
DS200812-1104
2008
Spetsius, Z.V., Zezekalo, M., Yu, Tarskhix, O.Y.Pecularities of mineralogy and petrography of the upper Muna field kimberlites: application to the lithospheric mantle composition.Deep Seated Magmatism, its sources and plumes, Ed. Vladykin, N.V., 2008 pp. 137-146.Russia, SiberiaDeposit - Muna field
DS200812-1122
2008
Stepanov, A.A.S.A., Shatsky, V.A.S.A., Zedgenisov, D.A.A.A., Ragozin, A.A.L.A.Chemical heterogeneity in the Diamondiferous eclogite xenolith from the Udachanya pipe.Doklady Earth Sciences, Vol. 419, 2, pp. 308-311.RussiaPetrology - Udachnaya
DS200812-1123
2008
Stepanov, A.A.S.A., Shatsky, V.A.S.A., Zedgenizov, D.A.A.A., Ragozin, A.A.L.A.Chemical heterogenity in the Diamondiferous eclogite xenolith from the Udachnaya kimberlite pipe.Doklady Earth Sciences, Vol. 419, 1, pp. 308-311.RussiaGeochemistry - Udachnaya
DS200812-1176
2008
Titkov, S.V., Shigley, J.E., Breeding, C.M., Mineeva, R.M., Zudin, N.G., Sergeev, A.M.Natural color purple diamonds from Siberia. Mir field.Gems & Gemology, Vol. 44, 1, spring pp. 56-64.Russia, SiberiaDiamond - purple
DS200812-1180
2008
Tommasi, A., Vauchez, A., Ionov, D.A.Deformation, static recrystallization, and reactive melt transport in shallow subcontinental mantle xenoliths ( Tok Cenozoic volcanic field, SE Siberia).Earth and Planetary Science Letters, Vol. 272, 1-2, pp. 65-77.Russia, SiberiaXenoliths
DS200812-1190
2008
Tychkov, N.S., Pokhilenko, N.P., Kuligin, S.S., Malygina, E.V.Composition and origin of peculiar pyropes from lherzolites: evidence for the evolution of the lithospheric mantle of the Siberian Platform.Russian Geology and Geophysics, Vol. 49, 4, pp. 225-239.RussiaMineralogy - garnets
DS200812-1196
2008
Ushkov, V.V., Ustinov, V.N., Smith, C.B., Bulanova, G.P., Lukyanova, L.I., Wiggers de Vries, D., PearsonKimozero, Karelia: a Diamondiferous paleoproterozoic metamorphosed volcaniclastic kimberlite.9IKC.com, 3p. extended abstractRussia, KareliaDeposit - Kimozero
DS200812-1207
2008
Vasilenko, V.B., Tolstov, A.V., Minin, V.A., Kuznetsova, L.G., Surkov, N.V.Normative quartz as an indicator of the mass transfer intensity during the postmagmatic alteration of the Botuobinskaya pipe kimberlites ( Yakutia).Russian Geology and Geophysics, Vol. 49,no. 12, pp. 894-907.Russia, YakutiaDeposit - Botuobinskaya
DS200812-1208
2007
Vasilev, E.A., Sofroneev, S.V.Zoning of diamonds from the Mir kimberlite pipe: results of Fourier transformed infrared spectroscopy.Geology of Ore Deposits, Vol. 49, 6, pp. 784-791.Russia, YakutiaDeposit - Mir
DS200812-1209
2008
Vernikovsky, V.A.A., Vernikovskaya, A.A.E.A., Salanikova, E.A.B.A., Berezhnaya, Larionov, Kotov, KovachLate Riphean alkaline magmatism in the western margin of the Siberian craton: a result of continental rifting or accretionary events?Doklady Earth Sciences, Vol. 419, 2, pp. 226-230.RussiaMagmatism
DS200812-1217
2007
Vladykin, N.V.Formation types of lamproite complex - systematics and chemistry.Vladykin Volume 2007, pp. 20-44.RussiaLamproite
DS200812-1219
2008
Vladykin, N.V.Formation types of lamproite complexes - systematization and chemism.9IKC.com, 3p. extended abstractRussia, GlobalLamproite
DS200812-1220
2008
Vladykin, N.V., Vladkar, S.G., Miyazaki, T., Mohan, V.R.Geochemistry of bentonite and associated carbonatites of Sevathur, Jogipatti and Samalpatti, Tamil Nadu, South India and Murun Massif, Siberia.Journal of the Geological Society of India, Vol. 72, 3, pp. 312-324.India, RussiaCarbonatite
DS200812-1216
2007
Vladykin, N.V.editor.Alkaline magmatism, its sources and plumes.Vladykin Volume 2014, 2007, 198p.Russia, Global, MantleIndividual papers listed
DS200812-1266
2008
Wookey, J., Kendall, J.M.Constraints on lowermost mantle mineralogy and fabric beneath Siberia from seismic anisotropy.Earth and Planetary Science Letters, Vol. 275, 1-2, pp. 32-42.RussiaGeophysics - seismics
DS200812-1267
2008
Wookey, J., Kendall, J.M.Constraints on lowermost mantle mineralogy and fabric beneath Siberia from seismic anisotropy.Earth and Planetary Science Letters, Vol. 275, 1-2, pp. 32-42.RussiaGeophysics - seismics
DS200812-1285
2008
Yakovlev, D.A., Kostrovitsky, S.I., Alymova, N.V.Mineral composition features from the Upper Muna field, Yakutia.9IKC.com, 3p. extended abstractRussia, YakutiaMineral chemistry - Verhknemunsk
DS200812-1290
2008
Yang, F., Liu, B., Ni, S., Zeng, X., Dai, Z., Li, Y.Lowermost mantle shear velocity anisotropy beneath Siberia.Acta Seismologica Sinica, Vol. 21, 3, pp. 213-216.RussiaGeophysics - seismics
DS200912-0003
2009
Afanasyev, V.P., Agashev, A.M., Orihashi, Y., Pokhilenko, N.P., Sobolev, N.V.Paleozoic U Pb age of rutile inclusions in diamonds of the V-VII variety from placers of the northeast Siberian platform.Doklady Earth Sciences, Vol. 428, 1, pp. 1151-1155.RussiaDiamond inclusions
DS200912-0005
2008
Anastasenko, G.F., Leybov, M.B.Diamonds of Russia.Rocks and Minerals, Vol. 83, 6, pp. 508-517.RussiaBrief overview
DS200912-0006
2009
Andreeva, I.A., Kovalenko, V.I.Composiitonal characteristics of carbonatite magmas from the Bolshetagninskii Massif, eastern Sayan.alkaline09.narod.ru ENGLISH, May 10, 1p. abstractRussiaCarbonatite
DS200912-0014
2009
Arzamastsev, A.A., Arezamastseva, L.V., Zhirova, A.M.The alkaline polyphase plutons in the NE Fennoscandian Shield, Russia: deep structure and duration of magmatism.alkaline09.narod.ru ENGLISH, May 10, 2p. abstractRussia, Kola PeninsulaLovozero
DS200912-0015
2009
Asavin, A.M., Senin, V.G.Evolution of the meimechite magmas by the dat a of the microprobe research meimechite tuffolavas.alkaline09.narod.ru ENGLISH, May 10, 2p. abstractRussiaMeimechite
DS200912-0016
2009
Aschepokov, L., Logvinova, A., Kuligin, Pokhilenko, Vladykin, Mityukhin, Alymova, Malygina, VishnyakovaClinopyroxene eclogite peridotite thermobarometry of the large Yakutian kimberlite pipes.Goldschmidt Conference 2009, p. A58 Abstract.Russia, YakutiaThermobarometry
DS200912-0021
2009
Babansky, A., Solovova, I.Mineralogy and geochemistry of K rich basalts of the central part of the Sredinnyi Range, Kamchatka.alkaline09.narod.ru ENGLISH, May 10, 2p. abstractRussiaMineralogy
DS200912-0025
2009
Bagdasarov, yu.A.Assignment of igneous rocks to lamproite major and trace element criteria and implications for the history of the Tomtor pluton ( northwestern Yakutia).Russian Geology and Geophysics, Vol. 50, 10, pp. 911-916.RussiaLamproite
DS200912-0026
2009
Bagdasarov, Yu.A.Assignment of igneous rocks to lamproite: major and trace element criteria and implications for the history of the Tomtor pluton ( northwestern Yakutia).Russian Geology and Geophysics, Vol. 50, pp. 911-916.Russia, YakutiaMineralogy
DS200912-0036
2009
Baryshnikov, V.D., Gakhova, L.N.Geomechanical conditions of kimberlite extraction in terms of Internatsionalnaya kimberlite pipe,Journal of Mining Science, Vol. 45, 2, pp. 137-145.RussiaMining
DS200912-0059
2009
Bogatikov, O.A., Kononova, V.A., Nusova, A.A., Kargin, A.V.Polygenetic sources of kimberlites, magma composition and diamond potential exemplified by the East European and Siberian cratons.Petrology, Vol. 17, 6, pp. 605-625.Russia, YakutiaChemistry
DS200912-0060
2009
Bogatikov, O.A., Sharkov, E.V., Bogina, Kononova, Nosova, Samsonov, ChistyakovWithin plate (intracontinental) and postorogenic magmatism of the East European Craton as reflection of the evolution of continental lithosphere.Petrology, Vol. 17, 3, May pp. 207-226.RussiaMagmatism
DS200912-0069
2008
Bradley, D.C.Passive margins through Earth history. CratonsEarth Science Reviews, Vol. 91, 1-4, Dec. pp. 1-26.Mantle, RussiaTectonics, plate velocity, collision, supercontinents
DS200912-0070
2009
Brady, A.E., Moore, K.R.Using the composition of the carbonate phase to investigate the geochemical evolution of subvolcanic intrusions.alkaline09.narod.ru ENGLISH, May 10, 2p. abstractEurope, Ireland, Greenland, Russia, UzbekistanCarbonatite
DS200912-0174
2009
Divaev, F.A.K.A., Shumilova, T.A.G.A., Yushkin, N.A.P.A., Makeev, B.A.A.A.First occurrence of diamonds in shonkinite porphyrys of the northern Tamdytau ( Central Kyzylkumy, western Uzbekistan).Doklady Earth Sciences, Vol. 425, 2, pp. 216-218.Russia, UzbekistanDiamond - shonkinite
DS200912-0175
2009
Divaev, F.K., Golovko, A.V., Golovko, D.P.Mineralogical pecularities of carbonatites of the Chagatay Complex ( Western Uzbekistan).alkaline09.narod.ru ENGLISH, May 10, 2p. abstractRussia, UzbekistanCarbonatite
DS200912-0179
2009
Dobrzhinetskaya, L.F., Wirth, R., Green, H.Lamellae of phylosilicates in K rich diopside from UHP marble of the Kokchetav massif, Kazakhstan: FIB-TEM and synchrotron IR studies.Goldschmidt Conference 2009, p. A296 Abstract.RussiaUHPM - diamond inclusions
DS200912-0180
2009
Dobrzhinetskaya, L.F., Wirth, R., Rhede, D., Liu, Z., Green, H.W.Phlogopite and quartz lamellae in diamond bearing diopside from marbles of the Kokchetav massif, Kazakhstan: exsolution or replacement reaction?Journal of Metamorphic Geology, Vol. 27, 9, pp. 607-620.Russia, KazakhstanDeposit - Kokchetav
DS200912-0182
2009
Donskaya, T.V., Gladkochub, D.P., Pisarevsky, S.A., Poller, U., Mazukabov, A.M., Bayanova, T.B.Discovery of Archean crust within the Akitkan orogenic belt of the Siberian craton: new insight into its architecture and history.Precambrian Research, Vol. 170, 1-2, pp. 61-72.Russia, SiberiaTectonics
DS200912-0185
2009
Doucet, L.S., Ionov, D.A., Ashchepkov, I.New petrographic, major and trace element dat a on lithospheric mantle beneath central Siberian craton.Goldschmidt Conference 2009, p. A302 Abstract.RussiaDeposit - Udachnaya
DS200912-0193
2009
Dyakonova, A.G., Ivanov, K.S., Surina, O.V., Asafev, P.F., Vishnev, V.S., Konoplin, A.D.The structure of the tectonosphere of the Urals and West Siberian platform by electromagnetic data.Doklady Earth Sciences, Vol. 423, 3-6, pp. 1479-1481.RussiaGeophysics - EM
DS200912-0194
2008
Dyakonova, A.G., Ivanov, K.S., Surina, O.V., Astafev, P.F., Vishnev, V.S., Konoplin, A.D.The structure of the tectonosphere of the Urals and West Siberian Platform by electromagnetic data.Doklady Earth Sciences, Vol. 423A, No. 9, pp. 14791482.Russia, SiberiaGeophysics
DS200912-0202
2008
Eremenko, A.A., Kilshin, V.I., Eremenko, V.A., Filatov, A.P.Feasibility study of geotechnology for underground mining at Udachnaya kimberlite pipe under the opencast bottom.Journal of Mining Science, Vol. 44, 3, pp. 271-282.Russia, Siberia, YakutiaMining
DS200912-0226
2009
ForbesRussia stockpiles diamonds.Forbes.com, July 8, 1p.RussiaNews item - economics
DS200912-0260
2008
Goroshko, M.V., Malyshev, Y.F.Regional potassic metasomatism and metallogeny of Precambrian structural-stratigraphic unconformity zones ( southeastern Siberian Craton).Doklady Earth Sciences, Vol. 423, 2, pp. 1459-1461.RussiaMetasomatism
DS200912-0269
2009
Grigorieva, A.A., Zubkova, N.V., Pekov, I.V., Pushcharvsky, D.Yu.Crystal structure of hilarite from Khibiny alkaline massif ( Kola Peninsula).Doklady Earth Sciences, Vol. 428, 1, pp. 1051-1053.Russia, Kola PeninsulaAlkalic
DS200912-0294
2009
Helmer, J.Russia's diamonds up for grabs. Outline of diamond mines and their potential ownerships.Waldman, March 14, 2p.RussiaEconomics
DS200912-0352
2009
Kamenetsky, V.S., Mass, R., Kamenetsky, M.B., Paton, C., Phillips, D., Golovin, A.V., Gornova, M.A.Chlorine from the mantle: magmatic halides in the Udachnaya-East kimberlite, Siberia.Earth and Planetary Science Letters, Vol. 285, pp. 96-104.Russia, SiberiaDeposit - Udachnaya
DS200912-0372
2009
Khachatryan, G.K., Kopchikov, M.B., Garanin, V.K., Chukichev, M.V., Golovin, N.N.New dat a of typomorphic features of diamonds from placers in North Timan.Moscow University Geology Bulletin, Vol. 64, 2, pp. 102-110.Russia, AsiaDiamond morphology, crystallography, IR spectroscopy
DS200912-0375
2009
Khomyakov, A.P.The Kola Peninsula as a unique alkaline mineralogical province.alkaline09.narod.ru ENGLISH, May 10, 2p. abstractRussia, Kola PeninsulaMineralogy
DS200912-0383
2009
Kislelev, A.I., Yarmolyuk, V.V., Egorov, K.N.Potassium basalts and picrobasalts from the Devonian kimberlite fields of western Yakutia, Russia: and their relation to kimberlite magmatism.Geology of Ore Deposits, Vol. 51, 1, pp. 33-50.Russia, YakutiaDeposit - Vilyui-Markha
DS200912-0398
2008
Konanova, N.V.Prospects of bedrock diamond bearing capacity of the conjugation zone between the Sysolsky anticline and Kirovsk-Kazhimsk aulocogen north of Volga-Urals anteclise.Doklady Earth Sciences, Vol. 423A, No. 9, pp. 1348-1351.Russia, UralsDiamond prospectivity
DS200912-0399
2009
Kononova, V.A., Kargin, A.V., Nosova, A.A., Kondrashov, I.A., Bogatikov, O.A.Geochemical comparison of kimberlites from the Siberian and East European platforms: problems of genesis and spatial zoning.Doklady Earth Sciences, Vol. 428, 1, pp. 1156-1161.Russia, EuropeKimberlite genesis
DS200912-0401
2009
Konstantinov, K.M., Gladkov, A.S.Petromagnetic hterogeneities in sintering zones of Permian-Triassic traps of Komsomolsk pipe deposit ( Yakutsk diamond province).Doklady Earth Sciences, Vol. 427, 5, pp. 880-886.Russia, YakutiaDeposit - Komsomolsk
DS200912-0409
2009
Koreshkova, M., Downes, H., Levsky, L.Geochemistry and petrology of lower crustal xenoliths from Udachnaya and Komsomolskaya kimberlite pipes, Siberia.Goldschmidt Conference 2009, p. A683 Abstract.Russia, SiberiaDeposit - Udachnaya
DS200912-0410
2009
Koreshkova, M.Y., Downes, H., Nikitina, L.P., Vladykin, N.V., Larionov, A.N., Sergeev, S.A.Trace element and age characteristics of zircons in granulite xenoliths from the Udachnaya pipe, Siberia.Precambrian Research, Vol. 168, 3-4, pp. 197-212.Russia, YakutiaGeochronology
DS200912-0417
2009
Kurszlaukis, S., Mahotkin, I., Rotman, A.Y., Kolesnikov, G.W., Makovchuk, I.V.Syn and post eruptive volcanic processes in the Yubileinaya kimberlite pipe, Yakutia, Russia and implications for the emplacement of South African style kimberliteLithos, In press available, 36p.Russia, YakutiaDeposit - Yubileinaya
DS200912-0419
2009
Kuznetsova, L.G.Postmagmatic geochemical processes in kimberlites.alkaline09.narod.ru ENGLISH, May 10, 2p. abstractRussia, YakutiaDeposit - Aikhal
DS200912-0422
2009
Laiginhas, F., Pearson, D.G., Phillips, D., Burgess, R., Harris, J.W.Re Os and 40Ar 39Ar isotope measurements of inclusions in alluvial diamonds from the Ural Mountains: constraints on diamond genesis and eruption ages.Lithos, in press availableRussia, UralsGeochronology
DS200912-0426
2009
Lapin, A.V., Tolstov, A.V.Geochemical types of kimberlites and their mantle sources.alkaline09.narod.ru ENGLISH, May 10, 2p. abstractRussia, Kola Peninsula, ArchangelDeposits
DS200912-0432
2009
Lehtonen, M., O'Brien, H., Peltonen, P., Kukkonen, I., Ustinov, V., Verzhak, V.Mantle xenocrysts from the Arkangelskaya kimberlite (Lomonosov); constraints on the composition and thermal state of the Diamondiferous lithospheric mantle.Lithos, in press availableRussia, Kola Peninsula, ArchangelDeposit - Lomonosov
DS200912-0434
2009
Lenaz, D., Logvinova, A.M., Princivalle, F., Sobolev, N.V.Structural parameters of chromite included in diamond and kimberlites from Siberia: a new tool for discriminating ultramafic source.American Mineralogist, Vol. 94, 7, pp. 1067-1070.Russia, SiberiaDiamond inclusions
DS200912-0447
2009
Liu, Y., Taylor, L.A., Sarbadhikari, Valley, Ushikubo, Spicuzza, Kita, Ketchum, Carlson, Shatsky, SobolevMetasomatic origin of diamonds in the world's largest Diamondiferous eclogite.Lithos, In press - available 41p.RussiaDeposit - Udachnaya
DS200912-0465
2009
Makeev, A.B., Andriechev, V.L., Bryanchaninova, N.I.Age of lamprophyres of the Middle Timan: first Rb-Sr data.Doklady Earth Sciences, Vol. 427, 4, pp. 584-587.RussiaLamprophyre
DS200912-0470
2009
Malkovets, V.G., Belousova, E.A., Griffin, W.L., Buzlukova, L.V., Shatsky, V.S., O'Reilly, S.Y., Pokhilenko, N.P.U/Pb dating of zircons from the lower crustal xenoliths from Siberian kimberlites.Goldschmidt Conference 2009, p. A823 Abstract.Russia, SiberiaDeposit - Udachnaya
DS200912-0476
2009
Masago, H., Omori, S., Maruyama, S.Counter clockwise prograde P-T path in collisional orogeny and water subduction at the Precambrian Cambrian boundary: the ultrahigh pressure KochetavGondwana Research, Vol. 15, 2, pp. 137-150.RussiaUHP
DS200912-0485
2009
McCall, G.J.H.The carbonado diamond conundrum.Earth Science Reviews, Vol. 93, 3-4, pp. 85-91.South America, Brazil, Africa, Central African Republic, Russia, Siberia, YakutiaHistory, diamond genesis
DS200912-0490
2009
McNeill, J., Pearson, J.G., Klein Ben-David, O., Nowell, G.M., Ottlet, C.J., Chinn, I.Quantitative analysis of trace element concentration in some gem quality diamonds.Journal of Physics Condensed Matter, in pressSouth America, Venezuela, Russia, Siberia, South AfricaDeposit - Cullinan, Mir, Udachnaya
DS200912-0501
2009
Mineeva, R.M., Titkov, S.V., Speransky, A.V.Structural defects in natural plastically deformed diamonds: evidence from EPR spectroscopy.Geology of Ore Deposits, Vol. 51, 3, pp. 233-242.Russia, UralsSpectroscopy
DS200912-0516
2009
Moore, K.R., Ryan, P.D.R.Finite element modelling of the generation of carbonatite magmas: application to post-orogenic mantle processes.alkaline09.narod.ru ENGLISH, May 10, 2p. abstractEurope, Greenland, Russia, Mongolia, Kola PeninsulaCarbonatite
DS200912-0520
2009
Moskalenko, E.Yu., Vladykin, N.V., Oktyabrsky, R.A.Mineral composition and features of geochemistry of the Koksharovsky massif carbonatites, Prymorye Russia.alkaline09.narod.ru ENGLISH, May 10, 2p. abstractRussiacarbonatite
DS200912-0533
2009
Nedosekova, I.L., Vladykin, N.V., Pribavkin, S.V., Bayanova, T.B.The Ilmensky Vishnevogorsky miaskite carbonatite complex, the Urals, Russia: origin, ore resource potential, and sources.Geology of Ore Deposits, Vol. 51, 2, pp. 139-161.Russia, UralsCarbonatite
DS200912-0582
2009
Perraki, M., Korsakov, A.V., Smith, D.C., Mposkos, E.Raman spectroscopic and microscopic criteria for the distinction of microdiamonds in ultrahigh-pressure metamorphic rocks from diamonds in sample preparation materials.American Mineralogist, Vol. 94, pp. 546-556.Russia, Kazakhstan, Europe, Germany, GreeceUHP
DS200912-0585
2009
Petukkova, L.I., Prikhodko, V.S.Micaeous picrites of the Sikhote Alin ridge.alkaline09.narod.ru ENGLISH, May 10, 2p. abstractRussiaDiamond potential
DS200912-0589
2009
Pokhilenko, N.P.Polymict breccia xenoliths: evidence for the complex character of kimberlite formation.Lithos, In press - available 29p.Russia, Africa, South AfricaDeposit - Premier, Sytykanskaya
DS200912-0612
2009
Rass, I.T.Mineral melt partition coefficients of trace elements in melilite bearing and melilite free rocks of carbonatite complexes.alkaline09.narod.ru ENGLISH, May 10, 2p. abstractRussia, SiberiaMelilite
DS200912-0628
2009
Ripp, G.S., Doroshkevick, A.G., Posokhov, V.F.Age of carbonatite magmatism in Transbaikalia.Petrology, Vol. 17, 1, pp. 73-89.RussiaCarbonatite
DS200912-0637
2009
Rodonov, N.V., Belyatsky, B.V., Antonov, A.V., Presnyakov, S.L., Sergeev, S.A.Baddeleyite U Pb shrimp II age determination as a tool for carbonatite massifs dating.Doklady Earth Sciences, Vol. 428, 1, pp. 1166-1170.RussiaCarbonatite
DS200912-0650
2009
Rubanova, E.V., Garnain, V.K.Multiple stage diamond formation in the Yubileinaya pipe of the Yakutian kimberlite province.alkaline09.narod.ru ENGLISH, May 10, 2p. abstractRussia, YakutiaDiamond genesis
DS200912-0651
2009
Rubanova, E.V., Palazhenko, O.V., Garanin, V.K.Diamonds from the V. Grib pipe, Arkangelsk kimberlite province, Russia.Lithos, In press availableRussia, Archangel, Kola PeninsulaDeposit - Grib
DS200912-0656
2009
Ryabichikov, I.D., Kogarko, L.N., Solovova, I.P.Physicochemical conditions of magma formation at the base of the Siberian plume: insights from the investigation of melt inclusions in the meymechites and alkali picrites of the Maimecha KotuiPetrology, Vol. 17, 3, May pp. 287-199.RussiaPicrite
DS200912-0660
2009
Samsonov, A.A.V.A., Nosova, A.A.A.A., Tretyachenko, V.A.V.A., Larchenko, V.A.A.A., Larionova, Y.A.O.A.Collisional sutures in the early Precambrian crust as a factor for localization of Diamondiferous kimberlites in the northern east European platform.Doklady Earth Sciences, Vol. 425, 2, pp. 226-230.RussiaTectonics
DS200912-0668
2009
Saumet, S., Bascou, J., Ionov, D., Doucet, L.Seismic properties of the Siberian craton mantle from Udachnaya xenoliths.Goldschmidt Conference 2009, p. A1160 Abstract.Russia, SiberiaDeposit - Udachnaya
DS200912-0685
2009
Seliverstov, V.A.Thermobarophyllic mineral paragenesises of Diamondiferous alkaline ultramafic volcanic complex in eastern Kamchatka.Vestnik Kraunz, IN RUSSIAN, 12p.RussiaLamproite
DS200912-0696
2009
Sitnikova, E.S., Shalsky, V.S.New FTIR spectroscopy dat a on the composition of the medium of diamond crystallization in metamorphic rocks of the Kokechetov Massif.Russian Geology and Geophysics, Vol. 50, 10, pp. 842-849.RussiaDiamond morphology
DS200912-0697
2009
Skublov, S.G., Lobach-Zhuchenko, S.B., Guseva, N.S., Gembitskaya, I.M., Tolmacheva, E.V.Rare earth and trace element distribution in zircons from miaskite lamproites of the Panozero complex, central Karelia.Geochemistry International, Vol. 47, 9., Sept. pp. 901-913.RussiaLamproite
DS200912-0706
2009
Sobolev, A.V., Krivolutskaya, N.A., Kuzmin, D.V.Petrology of the parental melts and mantle sources of Siberian trap magmatism.Petrology, Vol. 17, 3, May pp. 253-286.RussiaMagmatism - Not specific to diamonds
DS200912-0708
2009
Sobolev, N.V., Logvinova, A.M., Zedgenizov, D.A., Pokhilenko, N.P., Malygina, E.V., Kuzmin, D.V., Sobolev, A.V.Petrogenetic significance of minor elements in olivines from diamonds and peridotite xenoliths from kimberlites of Yakutia.Lithos, In press - available 38p.Russia, YakutiaDiamond inclusions
DS200912-0722
2009
Spetsius, Z.V., Wiggers De Vries, D.F., Davies, G.R.Combined C isotope and geochemical evidence for a recycled origin for Diamondiferous eclogite xenoliths from kimberlites of Yakutia.Lithos, In press availableRussia, YakutiaGeochronology, geochemistry
DS200912-0740
2009
Sumino, H., Dobrzhinetskaya, L.F.Noble gases in metamorphic diamonds from Kokchetav Massif, Kazakhstan, revisited.Goldschmidt Conference 2009, p. A1291 Abstract.Russia, KazakhstanMicrodiamonds
DS200912-0765
2009
Tolstov, A.V., Minin, V.A., Vasilenko, V.B., Kuznetsova, L.G., Razumov, A.N.A new body of highly Diamondiferous kimberlites in the Nakyn field of the Yakutian kimberlite province.Russian Geology and Geophysics, Vol. 50, 3, pp. 162-173.RussiaMineral chemistry
DS200912-0766
2009
Tomilenko, A.A., Kovyazin, S.V., Pokhilenko, L.N., Sobolev, N.V.Primary hydrocarbon inclusions in garnet of Diamondiferous eclogite from the Udachnaya kimberlite pipe, Yakutia.Doklady Earth Sciences, Vol. 427, 4, pp. 695-8.Russia, YakutiaDeposit - Udachnaya
DS200912-0777
2009
Tsymbal, Yu.S.Typomorphism of the diamond and its mineral satellites from sedimentary rocks of the western part of the Ukrainian shield.Thesis, in Russian, Available 24p.Russia, UkraineMineralogy, sediments
DS200912-0780
2009
Turkina, O.M.Growth and recycling of the Archean crust: isotope dat a on the southwestern margin of Siberian craton.Goldschmidt Conference 2009, p. A1354 Abstract.Russia, SiberiaGeochronology
DS200912-0781
2009
Ustinov, V.N., Zagainyi, A.K., Smith, C.B., Ushkov, Lazko, Lukyanova, LobkovaEarly Proterozoic diamond bearing kimberlites of Karelia and their formation pecularities.Russian Geology and Geophysics, Vol. 50, 9, pp. 739-750.RussiaPetrology, Kimozero
DS200912-0791
2009
Vasilenko, V.B.Mantle plumes and lithosphere thickness are factors governing magmas formation in the Yakutian Diamondiferous province.alkaline09.narod.ru ENGLISH, May 10, 2p. abstractRussia, Yakutia, SiberiaKimberlites - chemistry
DS200912-0794
2009
Verchovsky, A., Tolstikhin, I.N and C isotopic compositons in high 3He Kola plume rocks.Goldschmidt Conference 2009, p. A1378 Abstract.Russia, Kola PeninsulaCarbonatite
DS200912-0797
2009
Vetrin, V.A.R.A., Lepekhina, E.A.N.A., Paderin, I.A.P.A., Rodionov, N.A.V.A.Stages of the lower crust formation of the Belomorian mobile belt, Kola Peninsula.Doklady Earth Sciences, Vol. 425, 2, pp. 269-273.Russia, Kola PeninsulaCraton
DS200912-0801
2009
Vladykin, N.V.Geochemistry of isotopes (Sr Nd) and TR of lamproites from the Aldan Shield.alkaline09.narod.ru ENGLISH, May 10, 2p. abstractRussiaLamproite
DS200912-0828
2009
Yabubchuk, A.Diamond deposits of the Siberian Craton: products of post 1200 Ma plume events affecting the lithospheric keel.Ore Geology Reviews, Vol. 15, pp. 155-163.Russia, SiberiaDiamond deposits
DS200912-0831
2009
Yamamoto, J.,Nakai, S., Nishimura, K., Kaneoka, I., Sato, K., Okumura, T., Prikhodko,V.S., Arai, S.Intergranular trace elements in mantle xenoliths from Russian Far East: example for mantle metasomatism by hydrous melt.Island Arc, Vol. 18, 1, pp. 225-241.RussiaMetasomatism
DS200912-0845
2009
Yusupov, R.G., Stanley, C.J., Welch, M.D., Spratt, J., Cressey, G., Rusmsey, M.S., Seltmann, R., IgamberdievMavlyanovite, Mn5813: a new mineral species from a lamproite diatreme, Chatkal Ridge, Uzbekistan.Mineralogical Magazine, Vol. 73, 1, Feb. pp. 43-50.RussiaLamproite mineralogy
DS200912-0849
2009
Zedgenizov, D.A., Ragozin, A.L., Shjatsky, V.S., Araujo, D., Griffin, W.L., Kagi, H.Mg and Fe rich carbonate silicate high density fluids in cuboid diamonds from the Internationalnaya kimberlite pipe. Yakutia.Lithos, In press availableRussia, YakutiaDeposit - International
DS200912-0869
2009
Zozulya, D.A.R.A., Peltonen, S.A.P.A., O'Brien, H.A., Lehtonen, M.A.Kimberlite depth facies of high pressure pyroxene in the Kola region.Doklady Earth Sciences, Vol. 425, 2, pp. 350-352.Russia, Kola PeninsulaUHP
DS200912-0870
2009
Zozulya, D.R., Mitrofanov, F.P., Peltonen, P., O'Brien, H., Lehtonen, M., Kalachev, V.Yu.Lithospheric mantle structure and diamond prospects in the Kola region: chemical and thermobarometric analyses of kimberlite pyrope.Doklady Earth Sciences, Vol. 427, 5, pp. 746-750.Russia, Kola PeninsulaGeothermometry
DS200912-0871
2008
Zozulya, D.R., Peltonen, P., O'Brien, H.Pyrope and Cr-diopside as indicators of mantle structure and diamond depth facies in the Kola region.Geology of Ore Deposits, Vol. 50, 7, pp. 524-534.Russia, Kola Peninsula, ArchangelTectonics
DS200912-0873
2009
Zozulya, D.R., Peltonen, P., O'Brien, H., Lehtonen, M.Mantle depth facies of high pressure pyroxene in the Kola region.Doklady Earth Sciences, Vol. 424, 1, pp. 52-56.Russia, Kola PeninsulaMineralogy
DS201012-0002
2009
Afanasev, V.P., Zinchuk, N.N., Logvinova, A.M.Distribution of placer diamonds related to Precambrian sources.Geology of Ore Deposits, Vol. 51, 8, pp. 675-683.RussiaAlluvials
DS201012-0005
2010
Agashev, A.M., Pokhilenko, N.P., Cherepanova, Yu.V., Golovin, A.V.Geochemical evolution of rocks at the base of the lithospheric mantle: evidence from study of xenoliths of deformed peridotites from kimberlite of UdachnayaDoklady Earth Sciences, Vol. 432, 2, pp. 746-749.RussiaDeposit - Udachnaya
DS201012-0013
2010
Arzamastsev, A.A., Fedotov, Zn.A., Arzamastseva, L.V., Travin, A.V.Paleozoic tholeiite magmatism in the Kola igneous province: spatial distribution, age, relations with alkaline magmatism.Doklady Earth Sciences, Vol. 430, 2, pp. 205-209.Russia, Kola PeninsulaMagmatism
DS201012-0016
2010
Ashchepkov, I., Afanasiev, Vladykin, Pokhilenko, Ntaflos, Travin, Ionov, Palessky, Logvinova, Kuligin, MityukhinReasons of variations of the mineral compositions of the mantle rocks beneath the Yakutian kimberlite province.International Mineralogical Association meeting August Budapest, abstract p. 141.Russia, YakutiaGeothermometry
DS201012-0017
2010
Ashchepkov, I., Pokhienko, N., Afansiev, V., Logvinova, A., Pokhienko, L.I., Ntaflos, Ionov, Kuligin, MityukhinMonomineral thermobarometry for the diamond inclusions from Siberia: genetic links.International Mineralogical Association meeting August Budapest, abstract p. 184.RussiaThermobarometry - Mir, Alakite
DS201012-0018
2010
Ashchepkov, I.V., Pokhilenko, Vladykin, Logvinova, Afansiev, Kuligin, Malygina, Alymova, KostrovitskyStructure and evolution of the lithospheric mantle beneath Siberian Craton, theromobarometric study.Tectonophysics, Vol. 485, pp. 17-41.RussiaGeothermometry
DS201012-0060
2010
Bobrov, A., Dymshits, A., Litvin, Yu., Litasov, K., Shatskiy, A., Ohtani, E.Sodium bearing majorite garnet: nature and experimental aspects.International Mineralogical Association meeting August Budapest, abstract p. 148.Russia, Timan, South America, Brazil, ChinaUHP
DS201012-0063
2010
Bogatikov, O.A., Kononova, V.A., Nosova, A.A., Kargin, A.V.Polygenetic sources of kimberlites, magma composition, and diamond potential exemplified by the East European and Sibnerian cratons.Petrology, Vol. 17, 6, pp. 606-625.RussiaKimberlite genesis
DS201012-0064
2009
Boguslavskii, M.A., Burnistrov, A.A.Petrophysical properties of kimberlites from the Komsomolsky Pipe and their relationship to its composition, formation conditions and diamond content.Moscow University Geology Bulletin, Vol. 64, 6, Dec. pp. 354-363.Russia, YakutiaDeposit - Komsomolsy
DS201012-0076
2010
Bryanchaninova, N.I., Makeev, A.B.Garnet of the pyrope majorite series.International Mineralogical Association meeting August Budapest, abstract p. 152.Russia, Timan, South America, BrazilUHP
DS201012-0142
2009
De Jong, K.Apparent partial loss 40Ar 39 Ar age spectra of hornblende from the Paleoproterozic Lapland Kola orogen ( Arctic European Russia): insights into modelling ....Geosciences Journal, Vol. 13, 3, Sept. pp. 317-329.Russia, Kola PeninsulaMulti-method-in situ microsampling geochronology
DS201012-0161
2010
Dobrzhinetskaya, L.F., Wirth, R., Rhede, D.Phlogopite and quartz lamellae in diamond bearing diopside from marbles of the Kochetav Massif, Kazakhstan, exsolution or replacement reaction.Journal of Metamorphic Geology, Vol. 27, 9, pp. 607-620.Russia, KazakhstanKochetav area
DS201012-0166
2009
Doroshkevich, A.G., Ripp, G.S.Isotopic systematics of the rocks of the Khalyuta carbonatite complex of western Transbaikalia.Geochemistry International, Vol. 47, 12, pp. 1198-1211.RussiaGeochronology
DS201012-0167
2010
Doroshkevich, A.G., Ripp, G.S., Moore, K.R.Genesis of the Khaluta alkaline basic Ba Sr carbonatite complex (West Transbaikala) Russia.Mineralogy and Petrology, Vol. 98, 1-4, pp. 245-268.RussiaCarbonatite
DS201012-0173
2010
Dubinchuk, V.T., Simakov, S.K., Pechnikov, V.A.Lonsdaleite in diamond bearing metamorphic rocks of the Kokchetav massif.Doklady Earth Sciences, Vol. 430, 1, pp. 40-42.RussiaUHP Mineralogy
DS201012-0234
2010
Gibsher, A., Malkovets, V., Travin, A.New Ar Ar dat a of the lamprophyric dykes of west Sangilen ( southeast Tuva south Russia): the oldest mantle xenoliths bearing basaltic hosts.International Dyke Conference Held Feb. 6, India, 1p. AbstractRussia, TuvaGeochronology
DS201012-0236
2010
Gladkochub, D.P., Pisarevsky, S.A., Ernst, R., Donskaya, T.V., Soderlund, U., Mazukabzov, A.M., Hanes, J.Large igneous province of about 1750 Ma in the Siberian Craton.Doklady Earth Sciences, Vol. 430, 2, pp. 163-167.RussiaMagmatism
DS201012-0237
2010
Gladkov, A.S., Makovchuk, I.V., Lunina, O.V., Bornyakov, S.A., Potekhina, I.A.The Yubieinaya kimberlite pipe site, Russia: 3 D model of the fault block structure.Geology of Ore Deposits, Vol. 52, 3, pp. 234-251.RussiaStructure
DS201012-0242
2010
Golovko, A.V., Kaminsky, F.V.The shoshonite absarokite picrite Karashoho pipe, Uzbekistan: an unusual diamond deposit in an atypical tectonic environment.Economic Geology, Vol. 105, pp. 825-840.Russia, UzbekistanDeposit - Karashoho
DS201012-0247
2010
Grakhanov, S.A., Malanin, Yu.A., Pavlov, Afanasev, Pokhilenko, Gerasimchuk, LipashovaRhaetian diamond placers in Siberia.Russian Geology and Geophysics, Vol. 51, pp. 127-135.Russia, Yakutia, SakhaAlluvials
DS201012-0310
2010
Ionov, D.A., Doucet, L.S., Ashchepkov, I.V.Composition of the lithospheric mantle in the Siberian craton: new constraints from fresh peridotites in the Udachnaya East kimberlite.Journal of Petrology, Vol. 51, 11, pp. 2177-2210.RussiaMantle petrology
DS201012-0313
2010
Isaenko, S.I., Shumilova, T.G., Divaev, F.K.Morphological and spectroscopic features of microdiamond from Chatatay carbonatites ( Uzbekistan).International Mineralogical Association meeting August Budapest, abstract p. 570.Russia, UzbekistanDiamond genesis
DS201012-0314
2010
Ivanov, K.S., Valizer, P.M., Erokhin, Yu.V., Pogramoskaya, O.E.Genesis of carbonatites of fold belts ( exemplified by the Urals).Doklady Earth Sciences, Vol. 435, 1, pp. 1423-1426.Russia, UralsCarbonatite
DS201012-0316
2009
Izbekov, E.D., Podyachev, B.P., Surnin, A.A.Minerageny ( spelling) of the Yakut buried basement uplift in the Siberian platform.Doklady Earth Sciences, Vol. 425, 2, April pp. 378-379.Russia, SiberiaTectonics
DS201012-0334
2010
KamenetskyUdachnaya East kimberlite: a major resource of diamonds and knowledge.13th. IAGOD Symposium, April 6-9, Adelaide Australia, RussiaDeposit - Udachnaya
DS201012-0336
2009
Kamenetsky, V.S., Kamenetsky, M.B., Weiss, Y., Naov, O., Nielsen, T.F.D., Mernagh, T.P.How unique is the Udachnaya East kimberlite? Comparison with kimberlites from the Slave Craton (Canada) and SW Greenland.Lithos, Vol. 112 S pp. 334-346.Russia, Canada, Northwest Territories, Europe, GreenlandOlivine, phenocrysts
DS201012-0340
2010
Kaminsky, F.V.Vernadsky Readings. Prestigious lecture series. Kaminsky was the invited lecturer on March 12, 2010. Mineralogy and Geochemistry of the Lower Mantle.Russian Academy, March 12.Russia, MoscowLecture honour - Kaminsky
DS201012-0354
2008
Khachatryan, G.K., Palazhchenko, O.V., Garanin, V.K., Ivannikov, P.V., Verichev, E.M.Origin of disequilibrium diamond crystals from Karpinsky - 1 kimberlite pipe using dat a from cathode luminescence and infra red spectroscopy.Moscow University Geology Bulletin, Vol. 63, pp. 86-94.RussiaSpectroscopy
DS201012-0358
2010
Khomyakov, A.P., Camara, F., Sokolova, E., Abdu, Y., Hawthorne, F.C.Paraershovite, a new mineral species from the Khibin alkaline massif, Kola Peninsula, Russia: description and crystal structure.Canadian Mineralogist, Vol. 48, 2, pp. 291-300.Russia, Kola PeninsulaAlkalic
DS201012-0391
2010
Kislyakov, V.E., Korzon, O.A., Lakin, D.A.Shelf placer deposits: a new technology for winter mining.Russian Geology and Geophysics, Vol. 51, pp. 143-145.RussiaMining - coolants related to placer gold deposits
DS201012-0394
2009
Klein-BenDavid, O., Logvinova, A.M., Schrauder, M., Spetius, Z.V., Weiss, Hauri, Kaminsky, Sobolev, Navon, O.High Mg carbonatitic Micro inclusions in some Yakutian diamonds - a new type of diamond forming fluid.Lithos, Vol. 112 S pp. 648-659.RussiaMineral chemistry - end member
DS201012-0405
2010
Kornilova, V.P., Spetsius, Z.V., Lelukh, M.I., Gerasimchuk, A.V.Pecularities of garnets from kimberlites of Nakynsky field, Yakutia.International Mineralogical Association meeting August Budapest, abstract p. 571.Russia, YakutiaChemistry - Mayaskaya, Nuyrbinskaya pipes
DS201012-0406
2010
Korsakov, A.V., Perraki, M., Zedgenizov, D.A., Bindi, L.Diamond graphite relationships in ultrahigh pressure metamorphic rocks from the Kochetav Massif, northern Kazakhstan.Journal of Petrology, Vol. 51, 3, pp. 763-783.RussiaUHP
DS201012-0408
2010
Kovalchuk, N.Rare earth mineral phases in carbonatites ( Timan Province, Russia).International Mineralogical Association meeting August Budapest, abstract p. 572.Russia, TimanCarbonatite
DS201012-0412
2010
Krasnobaev, A.A., Rusin, A.I., Valizer, P.M., Busharina, S.V.Zirconology of calcite carbonatite of the Vishnevogorsk massif, southern Urals.Doklady Earth Sciences, Vol. 431, 1, pp. 390-393.Russia, UralsCarbonatite
DS201012-0414
2010
Krivovichev, S.V., Yakovenchuk, V.N., Zhitova, E.S., Zolotarev, A.A., Pakhomovsky, Y.A., Ivanyuk, G.Yu.Crystal chemistry of natural layered double hydroxides, 1. Quintinite -2H-3c from the Kovdor alkaline massif, Kola Peninsula, Russia.Mineralogical Magazine, Vol. 74, pp. 821-832.Russia, Kola PeninsulaCarbonatite
DS201012-0433
2010
Lenaz, D., Skogby, H., Logvinova, A.M., Princivalle, F., Sobolev, N.V.Fe3+ Fe tot ratio in the mantle: a micro-Mossbauer study of chromites included in diamond and kimberlites.International Mineralogical Association meeting August Budapest, abstract p. 431.Russia, YakutiaOxidation state
DS201012-0435
2010
Lepekhina, E.N., Antonov, A.V., Belyatsky, B.V., Sergeev, S.A.Perovskite from the Proterozoic Tiksheozero carbonatite ( Russia): age and genesis.International Mineralogical Association meeting August Budapest, abstract p. 445.RussiaCarbonatite
DS201012-0446
2010
Linnen, R.L.Rare metal peraluminous granites: similarities and contrasts with pegmatite deposits.International Workshop Geology of Rare Metals, held Nov9-10, Victoria BC, Open file 2010-10, extended abstract pp. 33-34.Russia, China, EgyptPegmatites
DS201012-0467
2010
Makeev, A.B., Bryanchaninova, N.I.Lamprophyres of Middle Timan, Russia.International Mineralogical Association meeting August Budapest, abstract p. 574.Russia, TimanLamprophyre
DS201012-0468
2010
Makeyev, A.B.Informative value of the diamonds' minerals - indicators study.International Mineralogical Association meeting August Budapest, abstract p. 185.RussiaDiamond - synthesis
DS201012-0498
2009
Minaeva, Yu.A., Egorov, K.N.Mineralogy and petrology of a kimberlite picrite dike in the northwestern Urik Iya graben, the eastern Sayan region.Geology of Ore Deposits, Vol. 51, 7, pp. 565-576.Russia, SayanDeposit - Bunder
DS201012-0499
2010
Mints, M.V., Belousova, E.A., Konilov, A.N., Natapov, Shchipansky, Griffin, O'Reilly, Dokukina, KaulinaMesoarchean subduction processes: 2.87 Ga eclogites from the Kola Peninsula, Russia.Geology, Vol. 38, 8, pp. 739-742.Russia, Kola PeninsulaBelomorian
DS201012-0500
2010
Mints, M.V., Konilov, A.N., Dokukina, Kaulina, Belousova, Natapov, Griffin, O'ReillyThe Belomorian eclogite province: unique evidence of Meso-Neoarchean subduction and collisionsDoklady Earth Sciences, Vol. 434, 2, pp. 1311-1316.RussiaEclogite
DS201012-0540
2010
Nikitina, L.P., Goncharov, A.K., Babushkina, M.S.The redox state of the continental mantle of the Baikal Mongolia region.Geochemistry International, Vol. 48, 1, pp. 15-40.Russia, AsiaRedox
DS201012-0541
2010
Nikolenko, E.I., Afanasev, V.P., Pokhilenko, N.P.Pecularities of the composition of zoned picroilmenites from the Massadou field, (Guinea) and Dachanya pipe ( Yakutia) kimberlites.Doklady Earth Sciences, Vol. 434, 2, pp.1386-1389.Africa, Guinea, RussiaGeochemistry - Massadou, Dachanaya
DS201012-0550
2010
Oktaybrskii, N.V., Vladykin, A.M., Lennikov, A.A., Vrzhosek, T.A., Yasnygina, et al.Chemical composition and geochemical characteristics of the Koksharovka alkaline ultrabasic massif with carbonatites.Geochimica et Cosmochimica Acta, Vol.74, 19, pp. 778-791.Asia, RussiaCarbonatite
DS201012-0560
2008
Palazhchencko, O.V.Integrated investigations of diamonds from deposits of the Arkhangelsk Diamondiferous province: generalization and genetic and applied consequences.Moscow University Geology Bulletin, Vol. 63, pp. 119-127.Russia, Archangel, Kola PeninsulaDeposit - Archangel
DS201012-0573
2009
Perchuk, A.L., Davydova, V.V., Burchard, M., Maresch, W.V., Schertl, H.P., Yapaskurt, V.O., Safonov, O.G.Modification of mineral inclusions in garnet under high pressure conditions: experimental simulation and application to carbonate silicate rocks of KokchetetavRussian Geology and Geophysics, Vol. 50, 12, pp. 1153-1168.RussiaMineralogy
DS201012-0584
2009
Piip, V.B.Structure of the Siberian upper mantle from superlong seismic profile data.Moscow University Geology Bulletin, Vol. 64, 5, Oct. pp. 296-305.RussiaGeophysics - seismics
DS201012-0593
2010
Posukhova, T.V.Morphogenetic evidence of the mantle fluid activity. Mentions diamond and water.International Mineralogical Association meeting August Budapest, abstract p. 156.Russia, Kola Peninsula, Archangel, Africa, Sierra LeoneDiamond morphology
DS201012-0594
2010
Posukhova, T.V., Dorofeev, S.A., Gao, Y.Mineralogy of the wastes from diamond bearing mines. Arkangelsk LiaoninInternational Mineralogical Association meeting August Budapest, abstract p. 349.Russia, ChinaMining - recycling
DS201012-0602
2009
Puchkov, V.N.The evolution of the Uralian orogen.Ancient Orogens and Modern Analogues, Geological Society of London Special Publication, No. 327, pp. 161-195.RussiaTectonics
DS201012-0606
2010
Pystin, A., Pystina, Y.Paleogeodynamic criteria of the presence of diamonds in the northern part of the European craton.International Mineralogical Association meeting August Budapest, abstract p. 241.Russia, Urals, TimanMagmatism
DS201012-0607
2009
Ragozin, A.L., Shatskii, V.S., Zedgenizov, D.A.New dat a on the growth environment of diamonds of the variety V from placers of the northeastern Siberian platform.Doklady Earth Sciences, Vol. 425, 2, April pp. 436-440.Russia, SiberiaAlluvials
DS201012-0619
2010
Reguir, E.P., Chakhmouradian, A.R., Halden, N.M., Yang, P.Trace element variations in clinopyroxene from calcite carbonatites.International Mineralogical Association meeting August Budapest, abstract p. 575.Canada, Ontario, Russia, Aldan Shield, Kola PeninsulaCarbonatite
DS201012-0620
2010
Reguir, E.P., Chakhmouradian, A.R., Halden, N.M., Yang, P.Contrasting trends of trace element zoning in phlogopite from calcite carbonatites.International Mineralogical Association meeting August Budapest, abstract p. 575.United States, Colorado Plateau, Russia, Canada, Ontario, QuebecCarbonatite
DS201012-0624
2010
RiaNovostiIndia seeks long term diamond supply contracts with Russia.en.rian.ru, Oct. 1, 1p.Russia, IndiaNews item - Alrosa
DS201012-0626
2010
Riches, A.J.V., Liu, Y., Day, J.M.D., Spetsius, Z.V., Taylor, L.A.Evolution of the Siberian platform: constraints from Diamondiferous xenoliths of Nyurbinskaya.Goldschmidt 2010 abstracts, abstractRussiaDeposit - Nyurbinskaya
DS201012-0627
2010
Riches, A.J.V., Liu, Y., Day, J.M.D., Spetsius, Z.V., Taylor, L.A.Subducted oceanic crust as diamond hosts revealed by garnets of mantle xenoliths from Nyyurbinskaya, Siberia.Lithos, In press available, 54p.Russia, YakutiaPetrology
DS201012-0666
2010
Savva, E.V., Belyatsky, B.V., Antonov, A.V.Carbonatitic zircon - geochemical analysis. Mud Tank, Kovdor examples.International Mineralogical Association meeting August Budapest, abstract p. 576.Australia, Russia, Antarctica, globalCarbonatite
DS201012-0681
2010
Seltmann, R., Solovive, S., Shatov, V., Piranjo, F., Naumov, E., Cherkasov, S.Metallogeny of Siberia: tectonic, geologic and metallogenic settings of selected significant deposits.Australian Journal of Earth Sciences, Vol. 57, no. 8, pp. 655-706.Russia, SiberiaOverview ... brief mention of diamonds
DS201012-0686
2009
Sharapov, V.N.,Chudnenko, K.V., Mazurov, M.P., Perepechko, Yu.V.Metasomatic zoning of subduction lithosphere in Siberia: physiochemical modeling.Russian Geology and Geophysics, Vol. 50, 12, pp. 1107-1118.Russia, SiberiaSubduction
DS201012-0689
2010
Sharygin, V.V., Kamenetsky, V.S.Major and trace elements in pervoskite from a micacous kimberlite nodule, Udachnaya East pipe, Siberia.International Mineralogical Association meeting August Budapest, abstract p. 446.Russia, SiberiaMineral chemistry
DS201012-0691
2010
Shatskii, V.S., Zedgenizov, D.A., Ragozin, A.L.Majoritic garnets in diamonds from placers of the northeastern Siberian Platform.Doklady Earth Sciences, Vol. 432, 2, pp. 839-845.RussiaAlluvials
DS201012-0702
2010
Shiryaev, A.A., Safonov, O.G., Ragozin, A.L.XANES spectroscopy at the potassium K edge of inclusions in kimberlitic diamonds.International Mineralogical Association meeting August Budapest, abstract p. 186.Russia, South America, BrazilSpectroscopy
DS201012-0714
2010
Simonov, V.A., Prikhodko, V.S., Kovyazin, S.V., Tarnavsky, A.V.Crystallization conditions of dunites in the Konder platiniferous alkaline ultramafic massif of the southeastern Aldan Shield.Russian Journal of Pacific Geology, Vol. 4, 5, pp. 429-440.Russia, Aldan ShieldAlkalic
DS201012-0719
2009
Sklyarov, E.V., Fedorovsky, V.S., Kotov, A.B., Lavrenchuk, A.V., Mazukebzov, A.M., Levitsky, V.I., et al.Carbonatites in collisional settings and pseudo-carbonatites of the Early Paleozoic Olkhon collisional system.Russian Geology and Geophysics, Vol. 50, 12, pp. 1091-1106.RussiaTectonics
DS201012-0721
2010
Smelov, A.P., Andreev, Altukhova, Babushkin, Bekrenev, Zaitsev.Izbekov, Koroleva, Mishmin, Okrugin, OleinkovKimberlites of the Manchary pipe: a new kimberlite field in central Yakutia.Russian Geology and Geophysics, Vol. 51, pp. 121-126.Russia, YakutiaDeposit - Manchary
DS201012-0723
2010
Smironov, A.V., Tarduno, J.A.Co-location of eruption sites of the Siberian Traps and North Atlantic Igneous Province: implications for the nature of hotspots and mantle plumes.Earth and Planetary Science Letters, Vol. 297, 3-4, pp. 687-690..RussiaHotspots
DS201012-0724
2010
Smironov, A.V., Tarduno, J.A.Co-location of eruption sites of the Siberian Traps and North Atlantic Igneous Province: implications for the nature of hotspots and mantle plumes.Earth and Planetary Science Letters, Vol. 297, 3-4, pp. 687-690..RussiaHotspots
DS201012-0726
2010
Smith, B., Downes, H.Trace element distribution in carbonatites from Vuorijarvi ( Kola Peninsula) Russia.International Mineralogical Association meeting August Budapest, abstract p. 554.Russia, Kola PeninsulaAlkalic
DS201012-0733
2009
Sobolev, A.V., Sobolev, S.V., Kuzmin, D.V., Malitch, K.N., Petrunin, A.G.Siberian meimechites: origin and relation to flood basalts and kimberlites.Russian Geology and Geophysics, Vol. 50, 12, pp. 999-1033.Russia, SiberiaMeimechite
DS201012-0736
2010
Sokolova, E.L., Spiridonov, E.M., Vorobev, S.A.Cl bearing lizardite in metamorphosed kimberlites from the Udachnaya Vostochnaya pipe, Yakutia.Petrology, Vol. 18, 2, pp. 126-130.RussiaDeposit - Udachnaya
DS201012-0737
2010
Soloveva, L.V., Yasnygina, T.A., Korolyuk, V.N., Egorov, K.N.Geochemical evolution of deep fluids in the mantle lithosphere of the Siberian Craton during the Middle Paleozoic kimberlite cycle.Doklady Earth Sciences, Vol. 434, 2, pp.1330-1336.RussiaGeochemistry - melting
DS201012-0738
2010
Soloveva, L.V., Yasnygina, T.A., Kostrovitskii, S.I.Isotopic and geochemical evidence for a subduction setting during formation of the mantle lithosphere in the northeastern part of the Siberian Craton.Doklady Earth Sciences, Vol. 432, 2, pp. 799-803.RussiaSubduction
DS201012-0739
2010
Solovova, I., Girnis, A.Potassium rich carbonatite magma: mechanism of formation and mineralogy as a result of examination melt inclusions (eastern Pamir).International Mineralogical Association meeting August Budapest, abstract p. 577.Russia, PamirCarbonatite
DS201012-0743
2010
Spetsius, Z.Environment of diamonds in eclogites from kimberlites ( Yakutia): application to their genesis.International Mineralogical Association meeting August Budapest, AbstractRussiaDiamond genesis
DS201012-0744
2010
Spiridonov, E.M., Paulov, L.A., Sokolova, E.L., Vorobev, E.I., Agakhanov, A.A.Chlorine bearing lizardite from metakimberlite of the Udachanaya East pipe.Doklady Earth Sciences, Vol. 431, 1, pp. 403-405.Russia, YakutiaDeposit - Udachnaya East
DS201012-0770
2010
Sumino, H., Dobrzhinetskaya, L.Deep mantle derived noble gases in metamorphic microdiamonds from the Kokchetav Massif, Kazakhstan.Goldschmidt 2010 abstracts, abstractRussiaMicrodiamonds
DS201012-0774
2010
Suvorov, V.D., Mishenkina, Z.R., Melnik, E.A.Upper mantle roots of Siberian craton basement structures along the Rift DSS profile.Russian Geology and Geophysics, Vol. 51, pp. 885-897.Russia, SiberiaGeophysics
DS201012-0790
2010
Tomshin, M.D.Magmatites of the Ebe Khaya dike belt as a possible primary source of placer diamonds in the northeastern part of the Siberian platform..Doklady Earth Sciences, Vol. 431, 1, pp. 285-287.Russia, SiberiaAlluvials
DS201012-0800
2009
Trubetskoy, K.N., Galchenko, Y.P., Ainbinder, L.L., Sabinyan, G.V.Outlook for the enhanced safety and improved efficiency of diamond deposit mining.Journal of Mining Science, Vol. 45, 6, pp. 581-590.RussiaMining - Yakutia pipes
DS201012-0814
2010
Vasilenko, V.B., Tolstov, A.V., Kuznetsova, L.G., Minin, V.A.Petrochemical evaluation of the diamond potentials of Yakutian kimberlite fields.Geochemistry International, Vol. 48, 4, pp. 346-354.RussiaMineralogy
DS201012-0822
2009
Vladykin, N.V.Potassium alkaline lamproite carbonatite complexes: petrology, genesis and ore reserves.Russian Geology and Geophysics, Vol. 50, 12, pp. 1119-1128.RussiaLamproite
DS201012-0823
2010
Vladykin, N.V., Lepekina, E.A.The age of unusual xenogenic zircons from Yakutian kimberlites.Doklady Earth Sciences, Vol. 429, 2, pp. 1451-1456.Russia, YakutiaGeochronology
DS201012-0824
2010
Vovna, G.M., Mishkin, M.A., Sakhno, V.G., Zarubina, N.V.Early Archean sialic crust of the Siberian craton: the composition and origin of magmatic protoliths.Doklady Earth Sciences, Vol. 429, 2, pp. 1439-1442.RussiaMagmatism
DS201012-0864
2010
Xiaoying, G., Posukkhova, T.V.Chromium spinels in north Chinese kimberlites , Huabei platform.Moscow University Geology Bulletin, Vol. 65, 4, pp. 234-243.China, RussiaMengyin, Fuxian, Arkangel
DS201012-0874
2010
Yevzerov, V.Ya., Nikolaeva, S.B.Reconstruction of the surface of the Late Vaidal ice sheet in the area of Khibini and Lovozerskii mountain ranges on the Kola Peninsula.Doklady Earth Sciences, Vol. 430, 1, pp. 101-103.Russia, Kola PeninsulaGeomorphology
DS201012-0884
2010
Zaitsev, V.Graphite bearing carbonatite of Dolbykha Massif, Polar Siberia, Russia.International Mineralogical Association meeting August Budapest, AbstractRussiaCarbonatite
DS201012-0897
2009
Zozulya, D.R., O'Brien, H., Peltonen, P., Lehtonen, M.Thermobarometry of mantle derived garnets and pyroxenes of Kola region ( NW Russia): lithosphere composition, thermal regime and diamond prospectivity.Bulletin of the Geological Society of Finland, Vol. 81, pp. 143-158.Russia, Kola PeninsulaGeothermometry
DS201012-0898
2009
Zozulya, D.R., O'Brien, H., Peltonen, P., Lehtonen, M.Thermobarometry of mantle derived garnets and pyroxenes of Kola region ( NW Russia): lithosphere composition, thermal regime and diamond prospectivity.Bulletin of the Geological Society of Finland, Vol. 81, pp. 143-158.Russia, Kola PeninsulaGeothermometry
DS201112-0005
2011
Afanasev, V.P., Lobanov, S.S., Pokhilenko, N.P., Koptil, Mityukhin, Gerasimchuk, Pomazanski, GorevPolygenesis of diamonds in Siberian Platform. Five groups of diamonds have been distinquished.Russian Geology and Geophysics, Vol.l 52, pp. 259-274.Russia, SiberiaDiamond placers, alluvials
DS201112-0006
2010
Afanasiev, V.P., Tychkov, N.S., Pokhilenko, N.P., Ovchinnikov, Yu.I.About kimberlite indicator minerals in the Triassic tuffs of the Tunguska sineclise.Doklady Earth Sciences, Vol. 435, 2, pp. 1555-1559.RussiaDiamond exploration
DS201112-0032
2011
Arzamastev, A.A., Arzamasteva, L.V.Paleozoic tholeiite magmatism in the Kola Province, Russia: relations with alkaline magmatism.Goldschmidt Conference 2011, abstract p.456.Russia, Kola PeninsulaCarbonatite, Khibina, Lovozero
DS201112-0034
2011
Ashchepkov, I.V., Andre, L., Downes, H., Belyatsky, B.A.Pyroxenites and megacrysts from Vitim picrite basalts ( Russia): polybaric fractionation of rising melts in the mantle?Journal of Asian Earth Sciences, Vol. 42, 1-2, pp. 14-37.RussiaPicrite
DS201112-0036
2011
Ashchepkov, I.V., Ionov, D.A., Ntaflos, T., Downes, H., Palessky, S.V.Origin of craton mantle layering according to PT reconstruction.Goldschmidt Conference 2011, abstract p.459.Russia, YakutiaKimberlite
DS201112-0037
2010
Ashchepkov, Ntaflos, Vladykin, Ionov, Kuligin, Malygina, Pokhilenko, Logvinova, Mityukhin, Palessky, Khmelnikova, RotmasDeep seated xenoliths from the phlogopite bearing brown breccia of the Udachnaya pipe.Vladykin, N.V., Deep Seated Magmatism: its sources and plumes, pp. 164-186.RussiaMetasomatism
DS201112-0063
2011
Bascou, J., Doucet, L.S., Saumet, S., Ionov, D.A., Ashchepkov, I.V., Golovin, A.V.Seismic velocities, anisotropy and deformation in Siberian cratonic mantle: EBSD dat a on xenoliths from the Udachnaya kimberlite.Earth and Planetary Science Letters, Vol. 304, 1-2, pp. 71-84.RussiaDeposit - Udachnaya
DS201112-0074
2011
BBC NewsAt the heart of Russia's diamond industry ... Mirny is a giant hole in the ground.BBC News, April 28, 2p.Russia, YakutiaNews item - Mirny history
DS201112-0080
2011
Benard, A., Ionov, D.A., Shimizu, N., Plechov, P.Y.The volatile content of subduction zone melts and fluids.Goldschmidt Conference 2011, abstract p.513.Russia, KamchatkaHarzburgite xenoliths
DS201112-0121
2011
Bruce, L.F., Kopylova, M.G., Longo, M., Ryder, J., Dobrzhinetskaya, L.F.Luminescence of diamonds from metamorphic rocks.American Mineralogist, Vol. 96, 1, pp. 14-22.Canada, Ontario, Wawa, Russia, GermanyUHP, cathodluminescence
DS201112-0126
2011
Buikin, A.I., Verchovsky, A.B., Grinenko, V.A., Kogarko, L.N.The first stepwise crushing dat a on C, N and Ar isotopic and elemental ratios in Guli carbonatites.Goldschmidt Conference 2011, abstract p.596.Russia, YakutiaMaymecha-Kotuy magmatic complex
DS201112-0194
2011
Cocks, L.R.M., Torsvik, T.H.The Paleozoic geography of Laurentia and western Laurussia: a stable craton with mobile margins.Earth Science Reviews, Vol. 106, 1-2, pp. 1-51.Russia, GondwanaCraton
DS201112-0240
2011
Davies, A.W., Davies, R.Zone of anomalous mantle. Proterozoic lithosphere underplated an Archean Craton.Goldschmidt Conference 2011, abstract p.726.Canada, Northwest Territories, Russia, SiberiaLinear distribution of kimberlites
DS201112-0276
2011
Doboshkevich, A.G., Ripp, G.S., Savatenkov, V.M.Alkaline magmatism of Vitim Province West Transbaikalia, Russia: age, mineralogical, geochemical and isotope (O, C,D,Sr,Nd) data.Peralk-Carb 2011... workshop June 16-18, Tubingen, Germany, Abstract p.35-38.RussiaIjolite
DS201112-0277
2011
Doboshkevich, A.G., Ripp, G.S., Savatenkov, V.M.Alkaline magmatism of Vitim Province West Transbaikalia, Russia: age, mineralogical, geochemical and isotope (O, C,D,Sr,Nd) data.Peralk-Carb 2011... workshop June 16-18, Tubingen, Germany, Abstract p.35-38.RussiaIjolite
DS201112-0279
2011
Dobrzhinetskaya, L., Wirth, R., Green, H.W., Sumino, H.Fluids nature at peak of ultrahigh pressure metamorphism in deep subduction zones - evidence from diamonds.Goldschmidt Conference 2011, abstract p.769.Russia, Kazakhstan, Europe, GermanyUHP - Kokchetav
DS201112-0284
2011
Doroshkevich, A.G., Ripp, G.S., Savatenkov, V.M.Alkaline magmatism of Vitim province, West Transbaikalia, Russia: age, mineralogical, geochemical and isotope (O, C,D, Sr, Nd) data.Peralk-Carb 2011, workshop held Tubingen Germany June 16-18, PosterRussiaMagmatism
DS201112-0287
2011
Doucet, L.S., Ionov, D.A., Carlson, R.W., Golovin, A.V., Ashchepkov, I.V.Os isotope and PGE dat a on the age and evolution of lithospheric mantle in the central Siberian Craton.Goldschmidt Conference 2011, abstract p.777.RussiaUdachnaya kimberlite
DS201112-0298
2010
Egorov, K.N., Kiselev, A.I., Menshagin, Yu.V., Minaeva, Yu.A.Lamproite and kimberlite of the Sayany area: composition, sources and diamond potenial.Doklady Earth Sciences, Vol. 435, 2, pp. 1670-1675.RussiaDiamond exploration
DS201112-0299
2011
Egorov, K.N., Kiselev, A.I., Yarmolyuk, V.V., Nikiforov, A.V.Composition and sources of magmatism of the middle Paleozoic Vilyui rift area and the problem of combination of its basic and kimberlitic derivatives.Doklady Earth Sciences, Vol. 436, 1, pp. 76-82.RussiaMagmatism
DS201112-0309
2011
Evans, D.A.D., Mitchell, R.N.Assembly and breakup of the core of Paleoproterozoic- Mesoproterozoic supercontinent Nuna.Geology, Vol. 39, 5, pp. 443-336.Russia, Siberia, Baltic ShieldCraton, Nuna
DS201112-0310
2011
Evans, D.A.D., Mitchell, R.N.Assembly and breakup of the core of Paleoproterozoic Mesoproterozoic supercontinent Nuna.Geology, Vol. 39, 5, pp. 443-446.Russia, Siberia, Baltic ShieldPaleomagnetism
DS201112-0360
2011
Gertner, I., Tishin, P., Vrublevskii, V., Sazonov, A., Zvyagina, E., Kolmakov, Y.Neoproterozoic alkaline igneous rocks, carbonatites and gold deposits of the Yenisei Ridge, central Siberia: evidence of mantle plume activity and late collision...Resource Geology, Vol. 61, 4, pp. 316-343.Russia, SiberiaTectonics - carbonatites
DS201112-0380
2011
Goncharov, A.G., Ionov, D.A., Doucet, L.S., Ashchepkov, I.V.Redox state of lithospheric mantle in central Siberian craton: a Mossbauer study of peridotite xenoliths from the Udachnaya kimberlite.Goldschmidt Conference 2011, abstract p.930.RussiaGeochronology
DS201112-0450
2011
Hopp, J., Dmitri, A.Tracing partial melting and subduction related metasomatism in the Kamchatkan mantle wedge using noble gas compositions.Earth and Planetary Science Letters, Vol. 302, 1-2, pp. 121-131.RussiaMetasomatism - not specific to diamonds
DS201112-0465
2011
Ionov, D.A., Doucet, L.S., Carlson, R.W., Pokhilenko, N.P., Golovin, A.V., Ashchepkov, I.V.Peridotite xenolith inferences on the formation and evolution of the central Siberian cratonic mantle.Goldschmidt Conference 2011, abstract p.1085.Russia, SiberiaUdachnaya
DS201112-0492
2011
Kamenetsky, V.S.Volatiles in the kimberlite melt - what drives ascent and causes explosive eruption?Goldschmidt Conference 2011, abstract p.1139.RussiaUdachnaya
DS201112-0493
2011
Kamenetsky, V.S.A quest for a kimberlite primary melt: separating facts from myths.Peralk-Carb 2011... workshop June 16-18, Tubingen, Germany, Abstract p. 63-65.RussiaUdachnaya-East
DS201112-0494
2011
Kamenetsky, V.S.A quest for a kimberlite primary melt: separating facts from myths.Peralk-Carb 2011... workshop June 16-18, Tubingen, Germany, Abstract p. 63-65.RussiaUdachnaya-East
DS201112-0495
2011
Kamenetsky, V.S., Mass, R., Kamenetsky, M.B., Paton, C., Phillips, D., Golovin, A.V.Chlorine from the mantle: magmatic halides in the Udachnaya East kimberlite, Siberia.Deep Seated Magmatism, its sources and plumes, Ed. Vladykin, N.V., pp. 132-149.Russia, SiberiaModel magma compositions
DS201112-0500
2011
Kaneoka, I.Uniqueness of kimberlite magma: its source characteristics and transportation systems revealed by isotope signatures.Goldschmidt Conference 2011, abstract p.1142.Europe, Greenland, RussiaGroup 1 and Group II
DS201112-0502
2011
Kargin, A.V., Golubeva, Yu.Yu., Kononova, V.A.Kimberlites of the Daldyn-Alakit region (Yakutia): spatial distribution of the rocks with different chemical characteristics.Petrology, Vol. 19, 5, pp. 496-520.Russia, YakutiaGroup 1 kimberlites
DS201112-0503
2011
Kargin, A.V., Golubeva, Yu.Yu., Kononova, V.A.Kimberlites of the Daldyn Alakit region ( Yakutia): spatial distribution of the rocks with different chemical characteristics.Petrology, Vol. 19, 5, pp. 496-520.RussiaPetrochemical data
DS201112-0532
2011
Kogarko, L.N., Zartman, R.E.A Pb isotope investigation of the Guli Massif, Maymecha Kotuy alkaline ultramafic complex, Siberian flood basalt province, Polar Siberia.Deep Seated Magmatism, its sources and plumes, Ed. Vladykin, N.V., pp. 76-95.Russia, SiberiaMetasomatism, geochronology
DS201112-0539
2011
Korchak, Yu.A., Menshikov, Yu.P., Pakhomovskii, Ya.A., Yakovenchuk, V.N., Ivanyuk, G.Yu.Trap formation of the Kola Peninsula.Petrology, Vol. 19, 1, pp. 87-101.Russia, Kola PeninsulaAlkaline rocks, Lovozero and Khibiny
DS201112-0540
2011
Koreshkova, M.Yu., Downes, H., Levsky, L.K., Vladykin, N.V.Petrology and geochemistry of granulite xenoliths from Udachnaya and Komosomolskaya kimberlite pipes, Siberia.Journal of Petrology, Vol. 52, 10, pp. 1857-1885.Russia, SiberiaDeposit - Udachnaya, Komosmolskaya
DS201112-0541
2011
Koreshkova, M.Yu., Downes, H., Levsky, L.K., Vladykin, N.V.Petrology and geochemistry of granulite xenoliths from Udachnaya and Komosomskaya kimberlite pipes, Siberia.Journal of Petrology, Vol. 52, no. 10, pp. 1857-1885.Russia, SiberiaDeposit - Udachnaya, Komosmskaya
DS201112-0542
2011
Koreshkova, M.Yu., Downes, H., Levsky, L.K., Vladykin, N.V.Petrology and geochemistry of granulite xenoliths from Udachnaya and Komosomolskaya kimberlite pipes, Siberia.Journal of Petrology, Vol. 52, 10, pp. 1857-1885.Russia, SiberiaDeposit - Udachnaya, Komosomolskaya
DS201112-0543
2011
Korsakov, A.V., Golovin, A.V., Dieing, T., Toporski, J.Fluid inclusions in rock forming minerals of ultrahigh pressure metamorphic rocks ( Kokchetav massif, northern Kazakhstan).Doklady Earth Sciences, Vol. 437, 2, pp. 473-478.Russia, KazakhstanUHP
DS201112-0553
2011
Kriulina, G.Yu., Garanin, V.K., Rotman, A.Ya., Kovalchuk, O.E.Pecularities of diamonds from the commercial deposits of Russia.Moscow University Geology Bulletin, Vol. 66, 3, pp. 171-183.Russia, Yakutia, Kola PeninsulaArkhangelsk, Grib, Lomonosov, Mir, Internationalnaya
DS201112-0563
2011
Kuzmin, M.I., Yarmolyuk, V.V., Kravchiniski, V.A.Absolute paleogeographic reconstructions of the Siberian Craton in the Phanerozoic: a problem of time estimation of superplumes.Doklady Earth Sciences, Vol. 437, 1, pp. 311-315.Russia, SiberiaMagmatism - age, hot spots, African comparison
DS201112-0586
2010
Levin, A.V., Letnikova, A.F.Tourmaline granite of the Kumdykol graphite diamond deposit.Doklady Earth Sciences, Vol. 435, 2, pp. 1637-1640.RussiaPetrology
DS201112-0614
2010
Logvinova, A.M., Wirth, R.Black cluster Micro inclusions in the core of Yakutian diamonds: implications for diamond nucleation.Vladykin, N.V., Deep Seated Magmatism: its sources and plumes, pp. 93-103.RussiaDiamond genesis, morphology
DS201112-0636
2011
Malitch, K.N., Karpisky, A.P., Sorokhtina, N.V., Goncharov, M.M.Carbonatite of the Guli massif as a possible source of gold: evidence from zirconolite inclusions in Au rich nuggets.Peralk-Carb 2011... workshop June 16-18, Tubingen, Germany, Abstract p.147-150.Russia, SiberiaGuli
DS201112-0637
2011
Malitch, K.N., Karpisky, A.P., Sorokhtina, N.V., Goncharov, M.M.Carbonatite of the Guli massif as a possible source of gold: evidence from zirconolite inclusions in Au rich nuggets.Peralk-Carb 2011... workshop June 16-18, Tubingen, Germany, Abstract p.147-150.Russia, SiberiaGuli
DS201112-0638
2011
Malitch, K.N., Sorokhtina, N.V., Goncharov, N.N., Goncharov, M.M.Carbonatite of the Guli Massif as a possible source of gold: evidence from zirconolite inclusions in au-rich nuggets.Peralk-Carb 2011, workshop held Tubingen Germany June 16-18, PosterRussia, SiberiaCarbonatite
DS201112-0639
2011
Malkovets, V.G., Griffin, Pearson, Rezvukhin, O'Reilly, Pokhilenko, Garanin, Spetsius, LitasovLate metasomatic addition of garnet to the SCLM: Os-isotope evidence.Goldschmidt Conference 2011, abstract p.1395.RussiaUdachnaya, Daldyn
DS201112-0640
2011
Malkovets, V.G., Zedgenizov, Sobolev, Kuzmin, Gibsher, Shchukina, Golovin, Verichev, PokhilenkoContents of trace elements in olivines from diamonds and peridotite xenoliths of the V.Grib kimberlite pipe ( Arkhangel'sk Diamondiferous province, Russia).Doklady Earth Sciences, Vol. 436, 2, pp. 301-307.RussiaDeposit - Grib
DS201112-0650
1997
Mason, K.Crater facies kimberlites. Yubileinya depositThesis, 'BSc. Lakehead University, Russia, YakutiaThesis - note availability based on request to author
DS201112-0674
2010
Mikhailov, N.D., Laptsevich, A.G., Vladykin, N.V.Alkali lamprophyres of the Paleozoic igneous complex of Belarus.Vladykin, N.V., Deep Seated Magmatism: its sources and plumes, pp. 187-199.RussiaLamprophyre
DS201112-0727
2010
Naumov, V.B., Tolstykh, M.L., Grib, E.N., Leonov, V.L., Kononkova, N.N.Chemical composition, volatile components, and trace elements in melts of the Karymskii volcanic centre, Kamchatka and Golovnin a volcano, Kunashir Island....Vladykin, N.V., Deep Seated Magmatism: its sources and plumes, pp. 104-127.RussiaMineral inclusions
DS201112-0730
2011
Nedosekova, I.L., Belousova, E.A., Sharygin, V.V.Sources for the Il'meno Vishnevogorsky alkaline complex: evidence from the Lu-Hf isotopic dat a for zircons.Deep Seated Magmatism, its sources and plumes, Ed. Vladykin, N.V., pp. 205-212.RussiaAlkalic
DS201112-0733
2011
Nestola, F., Nimis,P., Harris, J.W.Crystallographic relationships between diamond and its olivine inclusions.Goldschmidt Conference 2011, abstract p.1533.RussiaUdachnaya
DS201112-0752
2011
Ogassawara, Y., Hasiguchi, Y., Igarashi, M., Harada, Y.Microdiamonds: a relict of intermediate phase for diamond formation.Geological Society of America, Annual Meeting, Minneapolis, Oct. 9-12, abstractRussiaKokchetav massif, UHP
DS201112-0775
2011
Pechnikov, V.A., Kaminsky, F.V.Structural and microstructual regularities of the distribution of diamond in metamorphic rocks of the Kumdy-Kol and Barchi-Kol deposits, Kokchetav Massif, Northern Kazakhstan.The Canadian Mineralogist, Vol. 49, 3, pp. 673-690.Russia, KazakhstanDiamond morphology - Kokchetav
DS201112-0787
2011
Petrishchevsky, A.M.Rheological model of the crust beneath southern Sikhote-Alin: evidence from gravity data.Russian Journal of Pacific Geology, Vol. 5, 3, pp. 210-224.RussiaGeophysics
DS201112-0788
2010
Petrov, O.V., Proskurin, V.F.Early Mesozoic carbonatites in folded formations of the Taimyr Peninsula.Doklady Earth Sciences, Vol. 435, 2, pp. 1592-1595.RussiaCarbonatite
DS201112-0792
2010
Petukhova, L.L., Prikhodko, V.S.Lamprophyres of south Sikhote-Alin.Vladykin, N.V., Deep Seated Magmatism: its sources and plumes, pp. 200-RussiaLamprophyre
DS201112-0800
2011
Piper, J.D.A.SWEAT and the end of SWEAT: The Laurentia- Siberia configuration during Meso-Neoproterozoic times.International Geology Review, Vol. 53, 11-12, pp. 1265-1279.Canada, RussiaGondwana
DS201112-0801
2011
Piper, J.D.A.SWEAT and the end of SWEAT: the Laurentia-Siberia configuration during Meso-Proterozoic times.International Geology Review, Vol. 53, no. 11-12, pp. 1265-1279.RussiaTectonics
DS201112-0807
2010
Pokhilenko, L.N., Pokhilenko, N.P., Vladykin, N.V.Garnet orthopyroxenites from the Udachnaya kimberlite pipe ( Yakutia): features of their composition and orogin.Vladykin, N.V., Deep Seated Magmatism: its sources and plumes, pp. 128-144.Russia, YakutiaMineralogy - genesis
DS201112-0818
2011
Potter, J.Unravelling the stable isotopic evidence for the origin of hydrocarbons in peralkaline complexes: new dat a from the Lovozero and Strange Lake peralkaline plutons.Peralk-Carb 2011, workshop held Tubingen Germany June 16-18, AbstractRussia, CanadaGeochronology
DS201112-0831
2010
Proskurnin, V.F., Petrov, Bagdasarov, Rozinov, Tolmacheva, Larionov, Bilskaya, Gavrish, Mozoleva, PetrushkovOrigin of carbonatites of eastern Taimyr deduced from an isotopic and geochemical study of zircons.Geology of Ore Deposits, Vol. 52, 8, pp. 711-724.RussiaPetrology - carbonatites
DS201112-0850
2001
Reguir, E.Mineralogy of the Little Murun alkaline complex, Yakutia.Thesis: Msc. Lakehead University, Russia, YakutiaThesis - note availability based on request to author
DS201112-0860
2011
RianovostiHefty 136 carat diamond discovered in Siberia. Honey yellow colour at Udachnaya.en.rian.ru, April 21, 1/8p.Russia, YakutiaNews item - diamond notable
DS201112-0861
2010
Riches, A.J.V., Liu, Y., Day, J.M.D., Spetsius, Z.V., Taylor, L.A.Subducted oceanic crust as diamond hosts revealed by garnets of mantle xenoliths from Nyurbinskaya, Siberia.Lithos, Vol. 120, pp. 368-378.Russia, SiberiaEclogite, genesis
DS201112-0867
2011
Ripp, G.S., Doboshkevich, A.G., Ripp, G.S., Lastochkin, Izbrodin, RampilovA way of carbonatite formation from alkaline gabbros, Oshurkovo massif.Peralk-Carb 2011... workshop June 16-18, Tubingen, Germany, Abstract p.39-41.RussiaOshurkovo
DS201112-0868
2011
Ripp, G.S., Doboshkevich, A.G., Ripp, G.S., Lastochkin, Izbrodin, RampilovA way of carbonatite formation from alkaline gabbros, Oshurkovo massif.Peralk-Carb 2011... workshop June 16-18, Tubingen, Germany, Abstract p.39-41.RussiaOshurkovo
DS201112-0869
2011
Ripp, G.S., Doroshkevich, A.G.A way of carbonatite formation from alkaline gabbros, Oshurkovo Massif (Transbaikalia, Russia).Peralk-Carb 2011, workshop held Tubingen Germany June 16-18, PosterRussiaCarbonatite
DS201112-0894
2010
Ryabchikova, I.D., Kogarko, L.N.Thermodynamic analysis of mineral assemblages in magnetite bearing nepheline syenites ( Khibiny pluton).Vladykin, N.V., Deep Seated Magmatism: its sources and plumes, pp. 54-74.RussiaThermometry
DS201112-0896
2010
Sablukov, S.M., Belov, A.V., Sablukova, L.I.The alkaline ultrabasic magmatism of the Onega peninsula Nenoksa fields - reflection (display) of the plume and subduction processes in Belomorsky region.Vladykin, N.V., Deep Seated Magmatism: its sources and plumes, pp. 145-163.Russia, Kola Peninsula, ArchangelSubduction
DS201112-0902
2011
Salknikova, E.B., Yakoleva, S.Z., Kotov, A.B., Plotkina, Yu.V.TIMS U-Pb dating of bastnasite, calzitite and tantalite as a powerful tool for timing of rare metal granites and carbonatites, (Eastern Siberia).Goldschmidt Conference 2011, abstract p.1785.RussiaGeochronology
DS201112-0917
2011
Savko, A.D., Shevyrev, L.T.Analysis of the mineral composition of the Phanerozoic sediments of the Voronezh anteclise cover: implication for the primary diamond potential.Lithology and Mineral Resources, Vol. 46, 3, pp. 282-298.Russia, Archangel, Kola Peninsula, Karelia, Europe, FinlandIndicator Mineralogy
DS201112-0940
2011
Sharapov, V.N., Mazurov, M.P., Tomilenko, A.A., Faleev, V.A.Mass transfer in garnet ultramafic xenoliths subject to partial melting under hot reduced gas flows.Russian Geology and Geophysics, Vol. 52, pp. 165-177.Russia, YakutiaDeposit - Udachnaya Vostochnaya
DS201112-0942
2011
Sharygin, I.S., Golovin, A.V., Pokhilenko, N.P.Djerfisherite in kimberlites of the Kuoikskoe field as an indicator of enrichment of kimberlite melts in chlorine.Doklady Earth Sciences, Vol. 436, 2, pp. 219-223.RussiaPetrology
DS201112-0944
2011
Shatski, V.S., Zedgenizov, D.A., Ragozin, A.L., Kalinina, V.V., Reutskii, V.N.Local variations in carbon isotopes and nitrogen contents in diamonds from placers of the northeastern portion of the Siberian Platform.Doklady Earth Sciences, Vol. 440, 1, pp.Russia, SiberiaGeochronology
DS201112-0945
2011
Shatsky, V.S., Malkovets, V.G., Buzlukova, L., Griffin, W.L., Belousova, E.A., O'Reilly, S.Y.Deep crust of the Siberian craton evidence from xenolith.Goldschmidt Conference 2011, abstract p.1850.RussiaUdachnaya, Leningradskaya, Yubileynaya
DS201112-0950
2011
Shestakov, N.V., Gerasimenko, Takalhashi, Tasahara, Bormotov, Bykov,Kolomiets et al.Present tectonics of the southeast of Russia as seen from GPS observations.Geophysical Journal International, Vol. 184, 2, pp. 529-540.RussiaGeodynamics
DS201112-0954
2011
Shiryaev, A.A., Griffin, W.L., Stoyanov, E.Moissanite (SiC) from kimberlites: polytypes, trace elements, inclusions and speculations on origin.Lithos, Vol. 122, pp. 152-164.Russia, YakutiaDeposit - Mir, Aikhal, Udachnaya
DS201112-0970
2011
Sirotkina, E.A., Bobrov, A.V., Garanin, V.K., Bovkun, A.V., Shkurskii, B.B., Korost, D.V.Pyroxene and olivine exsolution textures in majoritic garnets from the Mir kimberlitic pipe, Yakutia.Goldschmidt Conference 2011, abstract p.1885.RussiaMir
DS201112-0971
2011
Skublov, S.G., Astafev, B.Yu., Marin, Yu.B., Berezin, A.V., Melnik, A.E., Presnyakov, S.L.New dat a on the age of eclogites from the Belmorian mobile belt at Gridino settlement area.Doklady Earth Sciences, Vol. 439, 2, pp.1163-1170.RussiaEclogite
DS201112-0972
2011
Skublov, S.G., Shchukina, E.V., Guseva, N.S., Malkovets, V.G., Golovin, N.N.Geochemical characteristics of zircons from xenoliths in the V. Grib kimberlite pipe, Archangelsk Diamondiferous province.Geochemistry International, Vol. 49, 4, pp. 415-421.Russia, Kola PeninsulaGeochemistry
DS201112-0973
2011
Skuzovatov, S.Yu., Zedgenizov, D.A., Shatsky, V.S., Ragozin, A.L., Kuper, K.E.Composition of cloudy Micro inclusions in octahedral diamonds from the Internatsional'naya kimberlite pipe ( Yakutia).Russian Geology and Geophysics, Vol. 52, pp. 85-96.Russia, YakutiaDiamond morphology, inclusions
DS201112-0982
2011
Sobolev, N.V., Schertl, H-P., Valley, J.W., Page, F.Z., Kita, N.T., Spicuzza, M.J., Neuser, R.D., Logvinova, A.M.Oxygen isotope variations of garnets and clinopyroxenes in a layered Diamondiferous calcsilicate rock from Kokchetav Massif, Kazakhstan: a window into geochemicalContributions to Mineralogy and Petrology, Vol. 162, 5, pp.1079-1092.Russia, KazakhstanDeeply subducted UHPM rocks
DS201112-0983
2011
Solodova, Y.Mineralogical characteristics of diamonds from the Nurbinskaya pipe, Yakutian diamond bearing province.GIA International Symposium 2011, Gems & Gemology, Summer poster abstract p. 134-5.Russia, YakutiaDiamond morphology
DS201112-0987
2011
Sorokhtina, N.V., Asavin, A.M., Konomkova, N.N., Senin, V.Composition of K bearing sulfide associations in carbonatites of the Guli massif of the Polar Siberia.Peralk-Carb 2011... workshop June 16-18, Tubingen, Germany, Abstract p.144-146.Russia, SiberiaGuli
DS201112-0988
2011
Sorokhtina, N.V., Asavin, A.M., Konomkova, N.N., Senin, V.Composition of K bearing sulfide associations in carbonatites of the Guli massif of the Polar Siberia.Peralk-Carb 2011... workshop June 16-18, Tubingen, Germany, Abstract p.144-146.Russia, SiberiaGuli
DS201112-0989
2011
Sorokhtina, N.V., Asavin, A.M., Kononkova, N.N.Composition of K bearing sulfide associations in carbonatites of the Guli Massif of the Polar Siberia.Peralk-Carb 2011, workshop held Tubingen Germany June 16-18, PosterRussia, SiberiaCarbonatite
DS201112-0991
2011
Spetsius, Z.V., Belousova, E.A., Griffin, W.L., O'Reilly, S.Y., Ivanov, A.S.Zircon from kimberlites of the Nyurbinskaya pipe as indicator of kimberlite emplacement and lithosphere evolution.Goldschmidt Conference 2011, abstract p.1922.RussiaNakynsky
DS201112-1012
2011
Stremprok, M., Seifert, Th., Dolejs, D.Geochemistry of lamprophyres in rare metal districts related to granitoids.Goldschmidt Conference 2011, abstract p.1937.Europe, RussiaMinette, kersantite
DS201112-1018
2011
Sumino, H., Dobrzhinetskaya, I.F., Burgess, R., Kagi, H.Deep mantle derived noble gases in metamorphic diamonds from the Kokchetav massif, Kazakhstan.Earth and Planetary Science Letters, Vol. 307, 3-4, pp. 439-449.Russia, KazakhstanMicrodiamonds - SCLM, metasomatism, subduction
DS201112-1048
2011
Timms, N.E., Kinny, P.D., Reddy, S.M., Evans, K., Clark, C., Healy, D.Relationship among titanium, rare earth elements, U-Pb ages and deformation microstructures in zircon: implications for Ti in zircon thermometry.Chemical Geology, Vol. 280, 1-2, pp. 33-46.Russia, SiberiaXenoliths
DS201112-1049
2011
Titkov, S.V., Ryabchikov, I.D., Pomazanskii, B.S., Magazina, L.O.Chloride Micro inclusions in diamonds of the Siberian Platform.Doklady Earth Sciences, Vol. 437, 2, pp. 503-506.Russia, SiberiaDiamond inclusions
DS201112-1050
2011
Tomilenko, A.A., Kovyazin, S.V., Pokhilenko, L.N., Sobolev, N.V.Silicate globules in kyanite from grospydites of the Zagadochnaya kimberlite pipe, Yakutia: the problem of origin.Doklady Earth Sciences, Vol. 436, 1, pp. 98-101.Russia, YakutiaPetrology
DS201112-1059
2011
Tschegg, C., Bizimis, M., Schneider, D., Akinin, V.V., Ntaflos, T.Magmatism at the Eurasian North American modern plate boundary: constraints from alkaline volcanism in the Chersky belt (Yakutia).Lithos, Vol. 125, pp. 825-835.Russia, YakutiaAlkaline rocks, volcanism, mantle melting
DS201112-1062
2011
Tychkov, N., Agashev, N., Poikilenko, N., Bazhan, I.Estimation of the refertilization grade of lithosphere roots by the chemical composition of garnets from Siberian kimberlites.Doklady Earth Sciences, Vol. 439, 2, pp. 1175-1178.Russia, SiberiaGarnet geochemistry
DS201112-1063
2011
Tychkov, N.S., Agashev, A.M., Pokhilenko, N.P., Bzhan, I.S.Estimation of the refertilization grade of lithosphere roots by the chemical composition of garnets from Siberian kimberlites.Doklady Earth Sciences, Vol. 439, 2, pp.1175-1178.Russia, SiberiaGeochemistry - garnets
DS201112-1068
2010
Valentini, L.Geochemical and numerical modelling of the interaction between carbonatite and silicate magmas.Department of Earth Sciences, College of Science National University of Ireland Galway, May 154p. * I have a copyRussia, Kola PeninsulaCarbonatite, petrology
DS201112-1089
2011
Vetrin, V.R.Deep structure and crustal growth of the northeastern Baltic Shield.Geochemistry International, Vol. 49, 1, pp. 101-105.Russia, Kola PeninsulaGeophysics - seismics
DS201112-1095
2011
Vrublevskii, V.V., Reverdatto, V.V., Izokh, A.E., Gertner, I.F., Yudin, D.S., Tishin, P.A.Neoproterozoic carbonatite magmatism of the Yenesei Ridge, central Siberia: 40AR39Ar geochronology of the Penchenga rock complex.Doklady Earth Sciences, Vol. 437, 2, pp. 443-448.Russia, SiberiaCarbonatite
DS201112-1101
2011
Wang, K-L., O'Reilly, S.Y., Griffin, W.L., Pearson, N.J., Kovach, V., Yarmolyuk, V.Primordial ages of lithospheric mantle vs ancient relicts in the asthenospheric mantle: in situ Os perspective.Goldschmidt Conference 2011, abstract p.2121.Russia, MongoliaConvection
DS201112-1109
2011
Weiss, Y., Griffin, W.L., Bell, D.R., Navon, O.High Mg carbonatitic HDFs, kimberlites and SCLM.Goldschmidt Conference 2011, abstract p.2143.RussiaFibrous diamonds
DS201112-0231
2011
Wiggers de Vries, D.F., Drury, M.R., de Winter, D.A.M., Bulanova, G.P., Pearson, D.G., Davies, G.R.Three dimensional cathodluminescence imaging and electron backscatter diffraction: tools for studying the genetic nature of diamond inclusions.Contributions to Mineralogy and Petrology, Vol. 161, 4, pp. 565-579.RussiaDeposit - Udachnaya
DS201112-1130
2011
Yamamoto, J., Kurz, M.D., Ishibashi, H., Curtice, J.Noble gas isotopic composition of mantle xenoliths in a kimberlite.Goldschmidt Conference 2011, abstract p.2201.Russia, SiberiaKimberlite magma
DS201112-1132
2011
Yang, J.S., Robinson, P.T.In situ diamonds and moissanite in podiform chromitites of the Loubusa and Ray-Iz ophiolites, Tibet and Russia.Goldschmidt Conference 2011, abstract p.2209.Russia, Asia, TibetDiamonds
DS201112-1135
2011
Yaxley, G.M., Berry, A.J., Kamenetsky, V.S., Woodland, A.B., Paterson, D., De Jong, M.D., Howard, D.L.Redox profile through the Siberian craton: Fe K edge XANES determination of Fe3/Fe2 in garnet from peridotite xenoliths in the Udachnaya kimberlite.Goldschmidt Conference 2011, abstract p.2217.RussiaThermobarometry
DS201112-1153
2011
Zaitsev, V.A.Experiments on titanosilicates ( lamprophyllite group minerals and lomonosvite) melting: phase relations and petrological significance for Lovozero massif.Peralk-Carb 2011, workshop held Tubingen Germany June 16-18, PosterRussiaMelting
DS201112-1173
2011
Ziberna, L., Nimis, P., Zanetti, A., Sobolev, N.V., Marzoli, A.Geochemistry of mantle microxenoliths from Zagadochnaya kimberlite, Yakutia, Russia.Goldschmidt Conference 2011, abstract p.2283.Russia, YakutiaNarren Type II kimberlite
DS201112-1175
2011
Zolotarev, A.A., Krivovichev, S.V., Yakovenchuk, V.N., Zhitova, E.S., Pakhomovsky, Y.A., Ivanyuk, G.Y.Crystal chemistry of natural layered double hydroxides from the Kovdor alkaline massif, Kola. Polytypes of quininite: cation ordering and superstructures.Peralk-Carb 2011, workshop held Tubingen Germany June 16-18, PosterRussia, Kola PeninsulaAlkalic
DS201201-0859
2011
Rodionov, N.V., Belyatsky, B.V., Antonov, A.V., Kapitonov, I.N., Sergeev, S.A.Comparative in-situ U-Th-Pb geochronology and trace element composition of baddeleyite and low U zircon from carbonatites of the Paleozoic Kovdor, Kola Pen.Gondwana Research, in press available 17p.Russia, Kola PeninsulaCarbonatite
DS201212-0004
2012
Afanasiev, V.P., Poikilenko, N.P.Abrasion of diamond: an experimental study and field evidence.10th. International Kimberlite Conference Feb. 6-11, Bangalore India, AbstractRussia, YakutiaDiamond morphology
DS201212-0005
2012
Agashev, A.M., Ionov, D.A., Pokhilenko, N.P., Golovin, A.V., Surgutonova, E.A., Sharygin, I.S.Metasomatism in cratonic mantle root: insight from geochemistry of deformed peridotite xenoliths of Udachnaya pipe.10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractRussia, YakutiaDeposit - Udachnaya
DS201212-0006
2012
Agashev, A.M., Orihashi, Y., Rotman, A.Ua., Pokhilenko, N.P., erov, I.V., Tolstov, A.V.Rutile and titanite as the minerals for dating kimberlite emplacement age: an example of Amakinskaya and Taezhnaya pipes of Mirny field, Siberia10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractRussia, YakutiaDeposit - Mirny field
DS201212-0010
2012
Alifirova, T.A., Pokhilenko, L.N., Malkovets, V.G., Griffin, W.L.Petrological inferences for the role of exsolution in upper mantle: evidence from the Yakutian kimberlite xenoliths.10th. International Kimberlite Conference Feb. 6-11, Bangalore India, AbstractRussia, YakutiaPetrology
DS201212-0009
2012
Alifirova, T.A., Pokhilenko, L.N., Ovchinnikov, Y.I., Riches, A.J.V., Taylor, L.A.Petrologic origin of exsolution textures in mantle minerals: evidence in pyroxenitic xenoliths from Yakutia kimberlites.International Geology Review, in press availableRussia, YakutiaPetrology
DS201212-0011
2012
Aliforova, T.A., Pokhilenko, L.N., Ovchinnikov, Y.I., Donnelly, C.L., Riches, A.J.V., Taylor, L.A.Petrologic origin of exsolution textures in mantle minerals: evidence in pyroxenite xenoliths from Yakutia kimberlites.International Geology Review, Vol. 54, 9, pp. 1071-1092.RussiaDeposit - Yakutia
DS201212-0028
2012
Ashchepkov, I., et al.Structure and evolution of the mantle column beneath the Nakyn kimberlite field.Presentations copernicus.org, 1p. Ppt.RussiaDeposit - Nakyn
DS201212-0029
2012
Ashchepkov, I., et al.Deep seated inclusions in kimberlite from Kharmai field and some fields of Prianbarie.Presentations copernicus.org, 1p. Ppt.RussiaDeposit - Kharmai
DS201212-0030
2012
Ashchepkov, I., et al.Composition and structure of mantle lithsophere in the Russian Far East according to xenoliths study.Presentations copernicus.org, 1p. Ppt.RussiaStructure
DS201212-0032
2012
Ashchepkov, I., et al.Cr pyropes and other mantle diamond associated minerals from placers on Tumanshet River (Birya basin).Presentations copernicus.org, 1p. Ppt.RussiaPlacers
DS201212-0036
2013
Ashchepkov, I.V., Vladykin, N.V., Ntaflos, T., Downes, H., Mitchell, R., Smelov, A.P., Alymova, N.V., Kostrovitsky, S.I., Rotman, A.Ya., Smarov, G.P., Makovchuk, I.V., Stegnitsky, Yu.B., Nigmatulina, E.N., Khmehnikova, O.S.Regularities and mechanism of formation of the mantle lithosphere structure beneath the Siberian Craton in comparison with other cratons.Gondwana Research, Vol. 23, 1, pp. 4-24.Russia, SiberiaKimberlite pipes
DS201212-0037
2012
Ashchepkov, IV., Nntalfos, T., Pokhilenko, L.N., Ionov, D.A., Vladykin, N.V., Kuligin, S.S., Mityukhin, S.I., Palessky, S.V.Mantle structure beneath Udachnaya pipe reconstructed by fresh mantle xenoliths from brown breccia.10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractRussia, YakutiaDeposit - Udachnaya
DS201212-0066
2012
Bessmertnyy, S.F., Shishmarev, R.A.Studying specific features of Daldyn-Alakit Diamondiferous region consolidated crust structure according to regional seismic dat a by CMP method and electrical prospecting by MT sounding.10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractRussia, YakutiaDeposit - Daldyn-Alakit
DS201212-0077
2012
Bobrov, A.V., Sirotkina, E.A., Garanin, V.K., Bovkun, A.V., Korost, D.V., Shkurski, B.B.Majoritic garnets with exsolution textures from the Mir kimberlitic pipe ( Yakutia)Doklady Earth Sciences, Vol. 444, 1, pp. 574-578.Russia, YakutiaDeposit - Mir
DS201212-0084
2012
Bovkun, A.V., Biller, A.Y., Skvortsova, V.L., Garanin, V.K.Polyphase hydrocarbon inclusions in garnet from the Mir pipe ( Yakutia, Russia).10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractRussia, YakutiaDeposit - Mir
DS201212-0097
2012
Bulanova, G.P., Wiggers de Vries, D.F., Beard, A., Pearson, D.G., Mikhail, S.S., Smelov, A.P., Davies, G.R.Two stage origin of eclogitic diamonds recorded by a single crystal from the Mir pipe, Yakutia.10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractRussia, YakutiaDeposit - Mir
DS201212-0104
2012
Camara, F.,Sokolova, E., Hawthorne, F.C.Kazanskyite, Ba Ti Nb Na3 Ti (Si207) 202 (OH) 2 (H20)4, a group III Ti disilicate mineral from the Khibiny alkaline massif, Kola Peninsula, Russia: description and crystal structure.Mineralogical Magazine, Vol. 76, 3, pp. 473-492.Russia, Kola PeninsulaAlkalic
DS201212-0117
2012
Chakhmouradian, A.R., Zaitsev, A.N.Rare earth mineralization in igneous rocks: sources and processes.Elements, Vol. 8, 5, Oct. pp. 347-353.Global, RussiaMineralogy, REE, deposits, carbonatites
DS201212-0158
2012
Degtyarev, K.E., Tretyakov, Kotov, Salnikova, Shatagi, Yakovleva, Anismova, PlotkinaThe Chelkar peridotite-gabbronorite pluton ( Kokchetav massif, northern Kazakhstan): formation type and geochronology.Doklady Earth Sciences, Vol. 446, 2, pp. 1162-1166.Russia, KazakhstanGeochronlogy
DS201212-0169
2012
Doroshkevich, A.G., Ripp, G.S., Izbrodin, I.A., Savatenkov, V.M.Alkaline magmatism of the Vitim province, west Transbaikalia, Russia: age, mineralogical, geochemical and isotope (O,C,D,Sr and Nd) data.Lithos, Vol. 152, pp. 157-172.RussiaMagmatism
DS201212-0182
2012
Egorov, K.N., Soloveva, L.V., Koshkarev, D.A.Rare element composition of pyropes and lamproites and ancient dispersion haloes of the southwestern Siberian platform.Doklady Earth Sciences, Vol. 443, 2, pp. 496-501.Russia, SiberiaLamproites - Ingashin, Prisayan region
DS201212-0183
2012
Egorov, K.N., Soloveva, L.V., Koshkarev, D.A.Rare element composition of pyropes and lamproites and ancient dispersion haloes of the southwestern Siberian platform.Doklady Earth Sciences, Vol. 443, 2, pp. 496-501.Russia, SiberiaIngashin field
DS201212-0197
2012
Fedorova, E.N., Logvinova, A.M., Mashkovtsev, R., Sobolev, N.V.Internal structure and color of the natural plastically deformed diamonds from the Internationalnaya kimberlite pipe, Yakutia.10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractRussia, YakutiaDeposit - Internationnaya
DS201212-0238
2012
Ghobadi, M., Gerdes, A., Kogarko, L., Brey, G.New dat a on the composition and hafnium isotopes of zircons from carbonatites of the Khibiny Massif.Doklady Earth Sciences, Vol. 446, 1, pp. 1083-1085.RussiaCarbonatite
DS201212-0242
2012
Gibsher, A.A., Malkovets, V.G., Griffin, W.L., O'Reilly, S.Y.Petrogenesis of composite xenoliths from alkaline basalts ( West Sangilen) Russia10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractRussiaAlkalic
DS201212-0245
2012
Giuliani, A., Kamenetsky, V.S., Phillips, D., Kendrick, M.A., Wyatt, B.A., Goemann, K.Nature of alkali-carbonate fluids in the sub-continental lithospheric mantle.Geology, Vol. 40, 11, pp. 967-970.Mantle, RussiaDeposit - Udachnaya
DS201212-0254
2012
Goncharov, A.G., Ionov, D.A.Redox state of deep off-craton lithospheric mantle: new dat a from garnet and spinel peridotites from Vitim, southern Siberia.Contributions to Mineralogy and Petrology, in press available 18p.Russia, SiberiaMetasomatism
DS201212-0255
2012
Goncharov, A.G., Ionov, D.A.Redox state of deep off-craton lithospheric mantle: new dat a from garnet and spinel peridotites from Vitim, southern Siberia.Contributions to Mineralogy and Petrology, Vol 164, pp. 731-745.RussiaXenoliths - redox
DS201212-0256
2012
Goncharov, A.G., Ionov, D.A.Redox state of deep off-craton lithospheric mantle: new dat a from garnet and spinel peridotites from Vitim, southern Siberia.Mineralogy and Petrology, Vol. 164, 5, pp. 731-745.RussiaRedox
DS201212-0257
2012
Goncharov, A.G., Ionov, D.A., Doucet, L.S., Pokhilenko, L.N.Thermal stress, oxygen fugacity and C O H fluid appreciation in cratonic lithospheric mantle: new dat a on peridotite xenoliths from the Udachnaya kimberlite, Siberia.Earth and Planetary Science Letters, Vol. 357-358, pp. 99-110.RussiaDeposit - Udachnaya
DS201212-0336
2012
Jakovlev, A.V., Bushenkova, N.A., Koulakov, I.yu., Dobretsov, N.L.Structure of the upper mantle in the circum-artic region from regional seismic tomography.Russian Geology and Geophysics, Vol. 53, 10. pp. 963-971.RussiaGeophysics - seismic
DS201212-0347
2012
Kamenetsky, V.S., Kamenetsky, M.B., Golovin, A.V., Shaygin, V.V., Maas, R.Ultrafresh salty kimberlite of the Udachnaya-East pipe ( Yakutia, Russia): a petrological oddity or fortuitous discovery?Lithos, Vol. 152, pp. 173-186.RussiaDeposit - Udachnaya-East
DS201212-0348
2011
Kargin, A.V., Golubeva, Yu.Yu., Kononova, V.A.Kimberlites of the Daldyn Alakit region, Yakutia: spatial distribution of the rocks with different chemical characteristics.Petrology, Vol. 19, 5, pp. 496-520.RussiaDeposit - Daldyn-Alakit
DS201212-0355
2012
Kiflawi, I.,Weiss, Y., Navon, O.The IR absorption spectrum of water in Micro inclusions in diamonds.10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractAfrica, Lesotho, Canada, Northwest Territories, RussiaDiamond inclusions
DS201212-0359
2012
Kiselev, A.I., Ernst, R.E., Yarmoluk, V.V., Egorov, K.N.Radiating rifts and dyke swrms of the middle Paleozoic Yakutsk plume of eastern Siberian craton.Journal of Asian Earth Sciences, Vol. 45, 2, pp. 1-16.Russia, YakutiaDeposit - Mirmyi, Nakyn, Dladyn-Alakit
DS201212-0369
2012
Konstantinov, K.M., Stegnitskii, Yu.B.The late Silurian-Early Devonian natural remanent magnetization of kimberlites and traps in the Yakutian Diamondiferous province.Doklady Earth Sciences, Vol. 442, 1, pp. 152-158.Russia, YakutiaGeophysics
DS201212-0373
2012
Koreshkova, M.Yu., Downes, H., Rodionov, N.V., Antonov, A.V., Glebovitski, V.A., Sergeev, S.A., Schukina, E.V.Trace element and age characteristics of zircons in lower crustal xenoliths from the Grib kimberlite pipe, Arkhangelsk province, Russia.emc2012 @ uni-frankfurt.de, 1p. AbstractRussia, Archangel, Kola PeninsulaDeposit - Grib
DS201212-0374
2012
Korobkov, I.G., Nocopashin, A.V., Evstratov, A.A.Volcanic tectonic structures of western Yakutia and their role in formation of high -Diamondiferous kimberlites.10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractRussia, YakutiaTectonics
DS201212-0376
2012
Kostrovitskii, S.I., Soloveva, L.V., Gornova, M.A., Alymova, N.V., Yakolev, D.A., Ignative, A.V., Velivetskaya, T.A., Suvorova, L.F.Oxygen isotope composition in minerals of mantle parageneses from Yakutian kimberlites.Doklady Earth Sciences, Vol. 444, 1, pp. 579-584.Russia, YakutiaDeposit - Udachnaya, Komsomolskaya
DS201212-0377
2012
Kostrovitsky, S.I., Kopylova, M.G., Egorov, K.N., Yakolev, D.A., Kalashnikova, T.V., Sandmirova, G.P.The exceptionally fresh Udachnaya -East kimberlite: evidence for brine and evaporite contamination.10th. International Kimberlite Conference Feb. 6-11, Bangalore India, AbstractRussia, YakutiaDeposit - Udachnaya -east
DS201212-0378
2012
Kostrovitsky, S.I.,Gornova, M.A.,Solovyevas, L.V., Yakolev, D.A.Isotope heterogeneity from oxygen in rocks of lithospheric mantle.10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractRussiaDeposit - Udachnaya
DS201212-0381
2012
Kriulina, G.Y., Kyazimov, V.O., Vasillev, E.A., Matveeva, O.P.New dat a on the structure of the cubic habit diamonds from the M.V. Lomonosov diamond deposit. Archangelsk Diamondiferous Province, Russia.10th. International Kimberlite Conference Feb. 6-11, Bangalore India, AbstractRussia, Archangel, Kola PeninsulaDeposit - Lomonosov
DS201212-0417
2012
Logvinova, A.I., Wirth, R., Sobolev, N.V., Taylor, L.A.Multi-phase sub-micrometer silicate sulfide and fluid inclusions in diamonds: expressions of metasomatism evidenced in peridotites and eclogites.10th. International Kimberlite Conference Feb. 6-11, Bangalore India, AbstractRussiaMetasomatism - diamond inclusions
DS201212-0418
2012
Lokhov, K., Lukyanova, L., Kapitonov, I.N., Lepekhina, E.N., Antonov, A.V.,Sergeev, S.A.,Shokalsky, S.P.U-Pb and LU-HF isotopic systems in zircons from some kimberlites of the Siberian platform and from Ebeliakh alluvial deposit: age and geochemical pecularities of the source rocks.10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractRussiaDeposit - Ebeliakh
DS201212-0419
2012
Lokhov, K., Lukyanova, L., Antonev, A.V., Polekhovsky, I.N., Antonov, A.V., Afanasev, Z.L., Bogomolov, E.S., Sergeev, S.A.U Pb and Lu-Hf isotopic systems in zircons and Hf-Nd isotopic systemization of the Kimozero kimberlites, Karelia.10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractRussia, Archangel, Kola PeninsulaDeposit - Kimozero
DS201212-0421
2012
London Mining JournalBack in business…. Russia has become a resource powerhouse and has shifted its production focus to Siberia. ( one word only on diamonds!)London Mining Journal, Sept. 21, 3p.Russia, SiberiaMetal mining overview
DS201212-0439
2012
Malkovets, V.G., Griffin, W.L., Pokhilenko, N.P., O'Reilly, S.Y., Dak, A.I., Tolstov, A.V., Serov, I.V., Bazhan, I.S., Kuzmin, D.V.Lithosphere mantle structure beneath the Nakyn kimberlite field, Yakutia.10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractRussia, YakutiaDeposit - Nakyn
DS201212-0448
2012
Martin, R.F., Sokolov, M., Magaji, S.S.Punctuated anorogenic magmatism.Lithos, Vol. 152, pp. 132-140.Canada, Greenland, Russia, AfricaMagmatism
DS201212-0513
2012
Nedosekova, I.L., Belousova, E.A., Sharygin, V.V., Belyatsky, B.V., Bayanova, T.B.Origin and evolution of the Ilmeny-Visnevogorsky carbonatites (Urals, Russia): insights from trace element compositions, and Rb-Sr, Sm-Nd, U-Pb, Lu-Hf isotope data.Mineralogy and Petrology, in press availableRussiaCarbonatite
DS201212-0514
2012
Nedosekova, I.L., Belousova, E.A., Sharygin, V.V., Belyatsky, B.V., Bayanova, T.B.Origin and evolution of the Ilmeny Vishnevogorsky carbonatites ( Urals, Russia): insights from trace element compositions and Rb Sr, Sm Nd, U Pb, Lu Hf isotope data.Mineralogy and Petrology, in press availableRussiaCarbonatite
DS201212-0521
2012
Nikiforova, A.Y.New dat a about typochemism of garnets from various productivity kimberlites of the Yakutian Diamondiferous province.10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractRussia, YakutiaGarnet mineralogy
DS201212-0523
2012
Nikolenko, E., Afanasev, V.P., Chepurov, A.Fe rich ilmenite and kimberlite melt interaction, experimental researchs.10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractRussia, Africa, Angola, GuineaDeposit - Dachnaya, Catoca, Massadon
DS201212-0559
2012
Pokhilenko, L.N., Alifirova, T.A., Yudin, D.S.40Ar/39Ar dating of phlogopite of mantle xenoliths from kimberlite pipes of Yakutia: evidence for deep ancient metasomatism of the Siberian platform.10th. International Kimberlite Conference Feb. 6-11, Bangalore India, AbstractRussia, YakutiaGeochronology
DS201212-0560
2012
Pokhilenko, L.N., Aliflrova, T.A., Yudin, D.S.40Ar/39Ar dating of phlogopite of mantle xenoliths from kimberlite pipes of Yakutia: evidence for deep ancient metasomatism of the Siberian platform.10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractRussia, SiberiaGeochronology
DS201212-0561
2012
Pokhilenko, N.P.Mineralogical and petrological evidences of lithosphere thickness variations inside ancient cratons.10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractRussia, Canada, Northwest TerritoriesCraton
DS201212-0563
2012
Polansky, O.P., Korobeynikov, S.N., Babichev, A.V., Reverdatto, V.V.Formation and upwelling of mantle diapirs through the cratonic lithosphere: numerical thermomechanical modeling.Petrology, Vol. 20, 2, pp. 120-137.Russia, SiberiaMagmatism
DS201212-0577
2012
Rakin, V.I.Mechanical abrasion surfaces on diamond crystals.Doklady Earth Sciences, Vol. 442, 1, pp. 105-108.RussiaDiamond morphology
DS201212-0583
2012
Rezvukhin, D.I., Malkovets, V.G., Gibsher, A.A., Kuzmin, D.V., Griffin, W.L., Pokhilenko, N.P., O'Reilly, S.Y.Mineral inclusions in pyropes from some kimberlite pipes of Yakutia.10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractRussia, YakutiaDeposit - Internationskaya
DS201212-0593
2012
Rodionov, N.V., Belyatsky, B.V., Antonov, A.V., Kapitonov, I.N., Sergeev, S.A.Comparative in-situ U-Th-Pb geochronology and trace element composition of baddeleyite and low U-zircon from carbonatites of the Paleozoic Kovdor alkaline ultramafic complex Kola Peninsula, Russia.Gondwana Research, Vol. 21, 4, pp. 728-744.Russia, Kola PeninsulaCarbonatite
DS201212-0613
2012
Sablukov, L.I., Sablukova, S.M.,Verichev, E.M., Antonov, A.V.Grospydite xenoliths from Grib pipe, kimberlites ( Arkangelsk Province, Russia).10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractRussia, Archangel, Kola PeninsulaDeposit - Grib
DS201212-0614
2012
Sablukov, S.M.TA-SC diagram, the universal discrimination diagram for geochemical classification of the kimberlitic rocks.10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractRussia, Archangel, Kola PeninsulaDeposit - Zimni Berg
DS201212-0615
2012
Sablukov, S.M., Sablukova, L.I., Stegnitsky, Y.u., Karpenko, M.A.Banded alkremite xenoliths from Nyurbinskaya kimberlite pipes Nakyn field.10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractRussia, YakutiaDeposit - Nyurbinskaya
DS201212-0620
2012
Samsonov, A.V., Tretyachenko, W., Nosova, A.A., Larionova, Yu.O., Lepekhina, E.N., Larionov, A.N., Ipatieva, I.S.Sutures in the early Precambrian crust as a factor responsible for localization of Diamondiferous kimberlites in the northern east European platform.10th. International Kimberlite Conference Feb. 6-11, Bangalore India, AbstractRussia, Kola PeninsulaStructure
DS201212-0630
2012
Sears, J.W.Transforming Siberia along the Laurussian margin.Geology, Vol. 40, 6, pp. 535-538.RussiaCraton
DS201212-0632
2012
Selyatitskii, A.Yu., Reverdatto, V.V., Kuzmin, D.V., Sobolev, N.V.Minor elements in unusual olivines from high pressure peridotites of the Kokchetav Massif (Northern Kazakhstan).Doklady Earth Sciences, Vol. 445, 2, pp. 1015-1020.Russia, KazakhstanDeposit - Kokchetav
DS201212-0636
2012
Sharygin, I.S., Golovin, A.V., Pokhilenko, N.P.Djerfisherite in xenoliths of sheared peridotite in the Udachanaya East pipe ( Yakutia): origin and relationship with kimberlitic magmatism.Russian Geology and Geophysics, Vol. 53, 3, pp. 247-261.Russia, YakutiaDeposit - Udachnaya
DS201212-0637
2012
Sharygin, I.S., Golovin, A.V., Pokhilenko, N.P.Djerfisherite in kimberlite - hosted mantle xenoliths: textural features, composition and origin.10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractRussiaDeposit - Udachnaya East
DS201212-0642
2012
Shchukina, E.V., Malkovets, V.G., Golovin, N.N., Pokhilenko, N.P.Peridotitic mantle section beneath V Grib kimberlite pipe ( Arkhangelsk region, Russia): mineralogical composition P-T conditions, metasomatism.10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractRussia, Archangel, Kola PeninsulaDeposit - Grib
DS201212-0643
2012
Shchulina, E.V., Golovin, N.N., Malkovets, V.G., Pokhilenko, N.P.Mineralogy and equilibrium P-T estimates for peridotite assemblages from the V Grib kimberlite pipe (Arkangelsk kimberlite province).Doklady Earth Sciences, Vol. 444, 2, pp. 776-781.Russia, Kola Peninsula, ArchangelDeposit - Grib
DS201212-0659
2012
Sirotkina, E.A., Bobrov, A.V., Garanin, V.K., Bovkin, A.V., Shkurski, B.B., Korost, D.V.Exsolution textures in majoritic garnets from the Mir kimberlite pipe, Yakutia, Russia.10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractRussia, YakutiaDeposit - Mir
DS201212-0661
2012
Sizoya, E., Gerya, T., Brown, M.Exhumation mechanisms of melt bearing ultrahigh pressure crustal rocks during collision of spontaneously moving plates.Journal of Metamorphic Geology, in press availableRussia, KazakhstanKokchetav Massif, UHP
DS201212-0666
2012
Skublov, S.G., Nikitina, L.P., Marin, Yu.B., Levskii, L.K., Guseva, N.S.U Pb age and geochemistry of zircons from xenoliths of the V. Grib kimberlitic pipe, Arkhangelsk diamond province.Doklady Earth Sciences, Vol. 444, 1, pp. 595-600.Russia, Archangel, Kola PeninsulaDeposit - Grib
DS201212-0670
2012
Smelov, A.P., Shatsky, V.S., Ragozin, A.L., Reutskii, V.N., Molotkov, A.E.Diamondiferous Archean rocks of the Olondo greenstone belt ( western Aldan-Stanovoy shield).Russian Geology and Geophysics, Vol. 53, pp. 1012-1022.RussiaDiamond - genesis
DS201212-0671
2012
Smelov, A.P., Zaitsev, A.The age and localization of kimberlite magmatism in the Yakutian kimberlite province - constraints from isotope geochronology.10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractRussia, YakutiaGeochronology
DS201212-0673
2012
Smith, B., Baziotis, I., Carmody, L., Liu, Y.,Taylor, L.A., Poikilenko, N.The subcontinental lithospheric mantle of the NE Siberian craton: peridotites from Obnazhennaya.GSA Annual Meeting, Paper no. 249-7, abstractRussiaDeposit - Obnazhennaya
DS201212-0683
2012
Sobolev, N.V., Sobolev, A.V., Tomilenko, A.A., Kovyazin, S.V., Kuzmin, D.V.Pyrope lherzolite assemblage of Ti bearing olivine macrocryst from Udachanya ultrafresh kimberlite, Yakutia, Russia.emc2012 @ uni-frankfurt.de, 1p. AbstractRussiaDeposit - Udachnaya
DS201212-0684
2012
Sokol, A.G., Kupriyanov, I., Palyanov, Yu., Kruk, A.Water activity in kimberlite magmas: constrains from melting experiments at 6.3 Gpa.10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractRussiaDeposit - Udachnaya
DS201212-0685
2013
Sokol, A.G., Kupriyanov, I.N., Palyanov, Y.N., Kruk, A.N., Sobolev, N.V.Melting experiments on the Udachnaya kimberlite at 6.3-7.5 Gpa: implications for the role of H2O in magma generation and formation of hydrous olivine.Geochimica et Cosmochimica Acta, Vol. 101, pp. 133-155.RussiaDeposit - Udachnaya
DS201212-0686
2012
Sokol, A.G., Kupriyanov, I.N., Palyanov, Yu.N., Kruk, A.N., Sobolev, N.V.Melting experiments on the Udachnaya kimberlite at 6.3-7.5 Gpa: implications for the role of H2O in magma generation and formation of hydrous olivine.emc2012 @ uni-frankfurt.de, 1p. AbstractRussiaDeposit - Udachnaya
DS201212-0689
2012
Soloveva, Kostrovitsky, S., Yasnygina, T.A.Fluid and magma transfer in subcontinental lithospheric mantle of the Siberian craton and its geochemical evolution.10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractRussia, SiberiaGeochemistry
DS201212-0695
2012
Spetsius, Z.V., Griffin, W.L., Ivanov, A.S.Inclusions and internal structure of diamonds: a key to their genetic growth.emc2012 @ uni-frankfurt.de, 1p. AbstractRussiaDeposit - Udachnaya, Nurbinskaya
DS201212-0696
2012
Spetsius, Z.V., Kamenetsky, V.S.Mapping of mineral phases around diamonds in eclogite xenoliths from the Udachnaya kimberlite pipe ( Yakutia): remarks to their metasomatic genesis.10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractRussia, YakutiaDeposit - Udachnaya
DS201212-0697
2012
Spetsius, Z.V., Kovalchuck, O.E., Bogush, I.N.Properties of diamonds in xenoliths from kimberlites of Yakutia: implication to their origin and exploration.10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractRussia, YakutiaXenoliths
DS201212-0713
2012
Svortsova, V.L., Petrovskiy, V.A.,Kriulina, G.Y.Shells (imprints) of diamond in kimberlite10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractRussiaDeposit - Mir, Udachnaya
DS201212-0729
2012
Tichomirowa, M., Whitehouse, M., Gerdes, A., Gotze, J.Carbonatite metasomatism: evidence from geochemistry and isotope composition ( U-Pb, Hf, O) on zircons from two Precambrian carbonatites of the Kola alkaline province.Goldschmidt Conference 2012, abstract 1p.Russia, Kola Peninsula, ArchangelCarbonatite
DS201212-0733
2012
Tretyachenko, W., Bovkun, A.V., Garanin, K.V., Garanin, V.K., Tretyachenko, N.G.Formation features of the early Hercynic alkaline ultrabasic and basic volcanic complexes from Zimny Bereg area, north east of Archangelsk region, Russia.10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractRussia, Archangel, Kola PeninsulaAlkalic
DS201212-0739
2012
Tychkov, N.S., Agashev, A.M., Pokhilenko, N.P.Refertilisation grade estimations of lithosphere roots by the chemical composition of garnets from Siberian kimberlites.10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractRussia, SiberiaGarnet
DS201212-0740
2012
Ukhanov, A.V., Khachatryan, G.K.Diamonds from the Poiskovaya, Zapolyarnaya and Leningrad kimberlite pipes, northern Yakutia: correlation of carbon isotopic composition and nitrogen content as an indicator of fluid diamond formation.Geology of Ore Deposits, Vol. 53, 8, pp. 783-791.Russia, YakutiaDiamond morphology, geochemistry
DS201212-0751
2012
Vasilenko, V.B., Kuznetsova, L.G., Minin, V.A., Tolstov, A.V.Behavior of major and rare earth elements during the postmagmatic alteration of kimberlites.Russian Geology and Geophysics, Vol. 53, pp. 62-76.RussiaAlteration
DS201212-0752
2012
Vasilev, Yu.R.,Gora, M.P.The origin of dunites and olivinites in the alkali-ultrabasic intrusive complexes of the Siberian craton.Doklady Earth Sciences, Vol. 442, 1, pp.36-39.Russia, SiberiaAlkalic
DS201212-0768
2012
Weiss, Y., Kiflawi, I., Griffin, W.L.,Navon, O.Fluid Micro inclusions in monocrystalline diamonds.10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractRussiaDeposit - Yakutia
DS201212-0789
2012
Wirth, R.FIB, TEM and combined FIB/SEM systems: ideal tools for the investigation of diamonds and inclusions therein.KIEV Kimberlite conference, pp. 38-40. abstractGlobal, Africa, Russia, Canada, South AmericaCrystallography, carbonado
DS201212-0799
2012
Yakolev, D.A., Kostrovitsky, S., Suvorova, L.F.Typomorphic features of groundmass minerals from Diamondiferous kimberlites of Yakutia.10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractRussia, YakutiaPetrology
DS201212-0802
2012
Yaxley, G.M., Berry, A.J., Kamenetsky, V.S., Woodland, A.B., Golovin, A.V.An oxygen fugacity profile through the Siberian craton - Fe K-edge XANES determinations of Fe3 Fe in garnets in peridotite xenoliths from the Udachnaya East kimberlite.Lithos, in press availableRussia, SiberiaDeposit - Udachnaya
DS201212-0803
2012
Yaxley, G.M., Berry, A.J., Kamenetsky, V.S., Woodland, A.B., Paterson, D., DeJonge, M.D., Howard, D.Application of Fe K-edge xanes determinations of Fe3+/OFE in garnet to peridotite xenoliths from the Udachnaya kimberlite.10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractRussia, YakutiaDeposit - Udachnaya
DS201212-0804
2012
Yaxley, G.M., Berry, A.J., Kamenetsky, V.S., Woodland, A.B., Paterson, D., DeJonge, M.D., Howard, D.Application of Fe K-edge xanes determinations of Fe3+/OFE in garnet to peridotite xenoliths from the Udachnaya kimberlite.10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractRussia, YakutiaDeposit - Udachnaya
DS201212-0806
2012
Yelisseyev, A.P., Afanasiev, V.P., Kopylova, M.G., Bulbak, T.A.The effect of metamorphic annealing and Betairradiation in optical properties of type 1AA diamonds.10th. International Kimberlite Conference Held Bangalore India Feb. 6-11, Poster abstractCanada, Ontario, RussiaDiamond - metamorphism
DS201212-0817
2012
Zhang, R.Y.,Liou, J.G., Omori, S., Sobolev, N.V., Shatsky, V.S., Iizuka, C.H-O.Tale of the Kulet eclogite from the Koketchev Massive, Kazakhstan: initial tectonic setting and transition from amphibolite to eclogite.Journal of Metamorphic Geology, in press availableRussia, KazakhstanEclogite
DS201312-0006
2013
Afanasiev, V., Agashev, A., Pokhilenko, N.Dispersion haloes of kimberlite indicator minerals in the Siberian Platform: history and formation conditions.Geology of Ore Deposits, Vol. 55, 4, pp. 256-264.RussiaMineral chemistry
DS201312-0007
2013
Afanasiev, V.P., Aschepkov, I.V., Verzhak, V.V., O'Brien, H., Palessky, S.V.PT conditions and trace element variations of picroilmenites and pyropes from placers and kimberlites in the Arkhangelsk region, NW Russia.Journal of Asian Earth Sciences, Vol. 70, pp. 45-63.Russia, Kola Peninsula, ArchangelDeposit - Verkhotinskoe , Kepinskoe fields
DS201312-0010
2013
Agashev, A.M., Ionov, D.A., Pkhilenko, N.P., Golovin, A.V., Cherepanova, Yu., Sharygin, I.S.Metasomatism in lithospheric mantle roots: constraints from whole rock and mineral chemical composition of deformed peridotite xenoliths from kimberlite pipe Udachnaya.Lithos, Vol. 160-161, pp. 201-215.Mantle, Russia, SiberiaDeposit - Udachnaya
DS201312-0014
2013
Alifirova, T.A., Pokhilenko, L.N.Apatite exsolution as an indicator of Udachnaya grospydite UHP history.Goldschmidt 2013, AbstractRussiaUHP
DS201312-0022
2012
Andreeva, I.A., Nikiforov, A.V.Genesis of magmas of carbonate- bearing ijolites and carbonatites from the Belaya Zima carbonatite complex ( eastern Sayan Russia) dat a from melt inclusion study.Vladykin, N.V. ed. Deep seated magmatism, its sources and plumes, Russian Academy of Sciences, pp. 133-163.RussiaCarbonatite
DS201312-0023
2013
Anfilogov, V.N., Khachai, Yu.V.Origin of kimberlitic diamond bearing lithosphere of cratons.Doklady Earth Sciences, Vol. 451, 2, pp. 814-817.RussiaDeposit - AK8
DS201312-0028
2013
Artemieva, I., Herceg, M., Cherepanova, Y., Thybo, H.Compositional heterogeneity of the upper mantle beneath the Siberian craton: reconciling thermal, seismic and gravity data.Goldschmidt 2013, AbstractRussiaGeophysics
DS201312-0030
2013
Ashchepkov, I.Delaminated lithospheric mantle and exotic metasomatism beneath east Russia.Goldschmidt 2013, AbstractRussiaMetasomatism
DS201312-0031
2013
Ashchepkov, I.Melt modified mantle lithosphere beneath Dalnyayay Pip.Goldschmidt 2013, AbstractRussiaMelting
DS201312-0032
2013
Ashchepkov, I.V., Alymova, N.V., Logvinova, A.M., Vladykin, N.V., Kuligin, S.S., Mityukhin, S.I., Stegnitsky, Y.B., Prokopyev, S.A., Salikhov, R.F., Palessky, V.S., Khmelnikova, O.S.Picroilmenites in Yakutian kimberlites: variations and genetic models.Solid Earth, Vol. 5, pp. 1259-1334.Russia, YakutiaDeposits
DS201312-0034
2012
Ashchepkov, I.V., Kuligin, S.S., Vavilov, M.A., Vladykin, N.V., Nigmatulina, E.NB., Lkhmelnikova, O.S., Rotman, A.Ya.Characteristic feature of the mantle beneath Kharamai field in comparison with the other regions in Prianabarie.Vladykin, N.V. ed. Deep seated magmatism, its sources and plumes, Russian Academy of Sciences, pp. 226-RussiaGeophysics - seismics
DS201312-0045
2013
Ashchepkov, I.V., Ntaflos, T., Kuligin, S.S., Malygina, E.V., Agashev, A.M., Logvinova, A.M., Mitukhin, S.I., Vladykin, N.V.Deep seated xenoliths from the brown breccia of the Udachnaya pipe, Siberia.Proceedings of the 10th International Kimberlite Conference, Vol. 1, Special issue of the Journal of Geological Society of India, Vol. 1, pp. 59-73.RussiaDeposit - Udachnaya
DS201312-0055
2013
Barry, P.Ancient recycled nitrogen isotope signatures in Siberian xenoliths.Goldschmidt 2013, AbstractRussia, SiberiaGeochronology
DS201312-0125
2013
Carmody, L., Barry, P.H., Shervais, J.W., Kluesner, J.W., Taylor, L.A.Oxygen isotopes in subducted oceanic crust: a new perspective from Siberian Diamondiferous eclogites.Geochemistry, Geophysics, Geosystems: G3, Vol. 14, 9, pp. 3479-3493.Russia, SiberiaEclogite
DS201312-0133
2013
CBC NewsExploding meteor over Russia injures hundreds. CBC.ca, Feb. 14Russia, UralsMeteorite
DS201312-0148
2013
Chanturia, V.A., Bogachev, V.I., Trofimova, E.A., Dvoichenkova, G.P.Mechanism and efficiency of water based removal of grease from diamonds during grease seperation.Journal of Mining Science, Vol. 48, 3, pp. 559-564.Russia, YakutiaDeposit - Mir
DS201312-0152
2013
Chepurov, A.A., Tychikov, N.S., Sobolev, N.V.Experimental modeling of the conditions of crystallization of subcalcium chromium pyropes.Doklady Earth Sciences, Vol. 452, 2, pp. 1062-1066.RussiaDeposit - Udachnaya
DS201312-0154
2013
Chepurov, A.I., Zhimulev, E.I., Agafonov, L.V., Sonin, V.M., Chepurov, A.A., Tomilenko, A.A.The stability of ortho- and clinopyroxenes, olivine and garnet in kimberlitic magma.Russian Geology and Geophysics, Vol. 54, 4, pp. 406-415.RussiaMineral chemistry
DS201312-0155
2013
Cherepanova, Y.The mantle and the crust of the Western Siberian basin.GEM Diamond Workshop Feb. 21-22, Noted onlyRussiaPetrology
DS201312-0156
2013
Cherepanova, Y., Artemieva, I.M.Geophysical evidences for eclogites beneath the West Siberian basin.Goldschmidt 2013, AbstractRussiaAccretion
DS201312-0190
2013
Davies, R., Davies, A.W.Zone of anomalous mantle.Proceedings of the 10th. International Kimberlite Conference, Vol. 2, Special Issue of the Journal of the Geological Society of India,, Vol. 2, pp. 143-156.Canada, RussiaLineaments
DS201312-0215
2013
Dobretsov, N.L., Buslov, M.M., De Grave, J., Sklyarov, E.V.Interplay of magmatism, sedimentation, and collision processes in the Siberian craton and the flanking orogens.Russian Geology and Geophysics, Vol. 54, 10, pp. 1135-1149.RussiaMagmatism
DS201312-0225
2013
Doroshkevich, A., Ripp, G., Vladykin, N., Savatenkov, V.Sources of the Late Riphean carbonatite magmatism of northern Transbaikalia.Geochemistry International, Vol. 49, 12, pp. 1195-1207.RussiaCarbonatite
DS201312-0226
2013
Doucet, L.S., Ionov, D.A., Golovin, A.V.The origin of coarse garnet peridotites in cratonic lithosphere: new dat a on xenoliths from the Udachnaya kimberlite, central Siberia.Contributions to Mineralogy and Petrology, Vol. 165, pp. 1225-1242.Russia, SiberiaDeposit - Udachnaya
DS201312-0236
2013
Earth Sky NewsGiant fragment of Chelyabinsk meteorite lifted from Russian Lake. ( also on CNN video)Earth Sky News, Oct. 17, 1/2p.RussiaMeteorite
DS201312-0259
2013
Fang, L.Morphology and spectral characteristics of octahedral diamond crystals from Yubilenaya diamond pipe, Yakutia.Journal of Superhard Materials, Vol. 35, 4, pp. 214-219.RussiaDeposit - Jubulenaya
DS201312-0276
2013
Frantz, N.A., Rodionov, N.V., Lokhov, K.I.Carbonatites age of the Tiksheozero massive (North Karelia, Russia).Goldschmidt 2013, AbstractRussiaCarbonatite
DS201312-0315
2013
Gladkochub, D.P., Kostrovitskii, S.I., Donskaya, T.V., De Waele, B., Mazukabzov, A.M.Age of zircons from diamond bearing lamproites of the East Sayan as an indicator of known and unkonwn endogenous events in the south Siberian craton.Doklady Earth Sciences, Vol. 450, 2, June pp. 597-601.Russia, SayanLamproite
DS201312-0318
2013
Glukhovskii, M.Z., Kuzmin, M.I.The Kotuikan ring structure as possible evidence for a large impact event in the northern Siberian craton.Russian Geology and Geophysics, Vol. 54, 8, pp. 663-673.RussiaAstrobleme
DS201312-0325
2013
Gorkovets, V.Y., Rudashevski, N.S., Rudashevski, V.N., Popov, M.G., Antonov, A.V.Indicator minerals of diamond in the lamproitic diatreme, Kostomuksha region, Karelia.Doklady Earth Sciences, Vol. 450, 1, pp. 475-478.Russia, KareliaLamproite
DS201312-0326
2013
Gornova, M.A., Belyaev, V.A., Belozerova, O.Yu.Textures and geochemistry of the Saramta peridotites ( Siberian craton): melting and refertilization during early evolution of the continental lithospheric mantle.Journal of Asian Earth Sciences, Vol. 62, pp. 4-17.RussiaHarzburgite
DS201312-0334
2013
Griban, J.G., Samsonov, A.V., Salnikov, E.B., Lepehina, E.N.Kimberlitic zircons from the Paleoproterozoic Kimzero kimberlites ( Karelia): mineralogy, geochemistry and U-Pb geochronology.Goldschmidt 2013, AbstractRussia, KareliaDeposit - Kimozero
DS201312-0338
2013
Grishina, S.N.The world turns over: Hadean-Archean crust mantle evolution.Goldschmidt 2013, AbstractRussia, SiberiaDeposit - Udachnaya
DS201312-0401
2014
Howarth, G.H., Barry, P.H., Pernet-Fisher, J.F., Baziotis, I.P., Pokhilenko, N.P., Pokhilenko, L.N., Bodnar, R.J., Taylor, L.A.Superplume metasomatism: evidence from Siberian mantle xenoliths.Lithos, Vol. 184-187, pp. 209-224.Russia, SiberiaMetasomatism
DS201312-0427
2013
Imamura, K., Ogasawara, Y., Yurimoto, H., Kusakabe, M.Carbon isotope heterogeneity in metamorphic diamond from the Kokchetav UHP dolomite marble, northern Kazakhstan.International Geology Review, Vol. 55, 4, pp. 453-467.Russia, KazakhstanDeposit- Kokchetav
DS201312-0429
2013
Ionov, D.A., Doucet, L.S., Golovin, A.V.The origin of garnet peridotites in the Siberian cratonic mantle from chemical, modal and textural data.Goldschmidt 2013, AbstractRussia, SiberiaDeposit - Udachnaya
DS201312-0453
2013
Kaminsky, F.V., Golubev, Y.K.Geological overview of Russia and its diamond deposit regions.PDAC 2013, March 4, 1/2p. AbstractRussiaOverview - geology
DS201312-0459
2013
Kargin, A.V., Nosova, A.A., Kovalchuk, E.V.Four types of olivine from orangeites of Kostomuksha-Lentiro area, Russia, Finland.Goldschmidt 2013, AbstractRussia, Europe, FinlandOrangeites
DS201312-0489
2013
Klein-BenDavid, O., Pearson, D.G., Nowell, G.M., Ottley, C., McNeill, J.C.R., Logvinova, A., Sobolev, N.V.The sources and time integrated evolution of diamond forming fluid - trace elements and Sr isotopic evidence.Geochimica et Cosmochimica Acta, Vol. 125, pp. 146-169.Russia, Africa, Democratic Republic of Congo, Canada, Northwest TerritoriesFibrous diamonds, HDF, Diavik, Udachnaya
DS201312-0491
2013
Kogarko, L.N., Ryabchikov, I.D.Diamond potential versus oxygen regime of carbonatites.Petrology, Vol. 21, 4, pp. 316-335.Russia, Ukraine, UzbekistanDeposit - Chermogovka, Chagatai
DS201312-0492
2013
Kogarko, L.N., Ryabchikov, I.D., Kuzmin, D.V.High-Ba mica in olivinites of the Guli Massif ( Meimecha-Kotui province Siberia).Russian Geology and Geophysics, Vol. 53, 11, pp. 1209-1215.Russia, SiberiaGuli Massif
DS201312-0493
2013
Kogarko, L.N., Sorokhtina, N.V., Kononkova, N.N., Klimovich, I.V.Uranium and thorium in carbonatitic minerals from the Guli Massif, Polar Siberia.Geochemistry International, Vol. 51, 10, pp. 767-776.RussiaCarbonatite
DS201312-0494
2012
Kogarko, L.N., Williams, C.T., Woolley, A.R.Compositional evolution and cryptic variation in pyroxenes of the peralkaline Loverzero intrusion, Kola Peninsula Russia.Vladykin, N.V. ed. Deep seated magmatism, its sources and plumes, Russian Academy of Sciences, pp. 5-22Russia, Kola PeninsulaDeposit - Lovozero
DS201312-0501
2013
Kopylova, M.G., Kostrovitsky, S.I., Egorov, K.N.Salts in southern Yakutian kimberlites and the problem of primary alkali kimberlite melts.Earth Science Reviews, Vol. 119, pp. 1-16.Russia, YakutiaDeposit - Udachnaya
DS201312-0508
2013
Kostrovitsky, S.I., Kopylova, M.G.The exceptionally fresh Udachnaya-East kimberlite: evidence from brine and evaporite contamination.Proceedings of the 10th. International Kimberlite Conference, Vol. 1, Special Issue of the Journal of the Geological Society of India,, Vol. 1, pp. 75-91.Russia, SiberiaDeposit -Udachnaya-East
DS201312-0509
2013
Kostrovitsky, S.I., Soloveva, L.V., Yakovlev, D.A., Suvorova, L.F., Sandimirova, G.P., Travin, A.V., Yudin, D.S.Kimberlites and megacrystic suite: isotope geochemical studies.Petrology, Vol. 21, 2, pp. 127-144.Russia, YakutiaDeposit - Udachnaya
DS201312-0512
2013
Kovach, V.,Salnikova, E., Wang, K-L., Jahn, B-M., Chiu, H-Y., Reznitskiy, L., Kotov, A., Lizuka, Y., Chung, S-L.Zircon ages and Hf isotopic constraints on sources of clastic metasediments of the Slyudyansky high grade complex, southeastern Siberia: implication for continental growth and evolution of the Central Asian orogenic belt.Journal of Asian Earth Sciences, Vol. 62, pp. 18-36.Russia, SiberiaUHP, Geochronology
DS201312-0515
2013
Krasnobaev, A.A., Valizer, P.M., Cherednichenko, S.V., Busharina, S.V., Medvedeva, E.V., Presyakov, S.L.Zirconology of carbonate rocks ( marbles-carbonatites) of the Ilmeno-Visnevogorskii complex, southern Urals.Doklady Earth Sciences, Vol. 450, 1, pp. 504-508.Russia, UralsCarbonatite
DS201312-0525
2013
Kvasnytsya, V.Late Cretaceous ultramafic lamprophyres and carbonatites from the Delitzsch Complex, Germany.Chemical Geology, in press availableRussiaYakutian kimberlites
DS201312-0526
2013
Kvasnytsya, V.Crystal forms of natural microdiamonds.Diamond and Related Materials, Vol. 39, pp. 89-97.Russia, YakutiaDiamond morphology
DS201312-0527
2013
Kvasnytsya, V., Wirth, R.Micromorphology and internal structure of apographitic impact diamonds: SEM and TEM study.Diamond and Related Materials, In press pp. 7-16.RussiaDeposit - Popigai
DS201312-0531
2013
Lenaz, D., Skogby, H., Logvinova, A.M., Sobolev, N.V., Princivalle, F.A micro-Mossbauer study of chromites included in diamond and other mantle related rocks.Physics and Chemistry of Minerals, Vol. 40, 9, pp. 671-679.Russia, SiberiaSpectroscopy - diamond
DS201312-0534
2013
Letnikova, E.F., Lobanov, S.S., Pokhilenko, N.P., Izokh, A.E., Nikolenko, E.I.Sources of clastic material in the Carnian diamond bearing horizon of the northeastern part of the Siberian Platform.Doklady Earth Sciences, Vol. 451, 1, pp. 702-705.Russia, SiberiaCarnion
DS201312-0568
2012
Makeev, A.B., Kriulina, G.Y.Metal films on the surfaces and within diamond crystals from Arkangelskaya and Yakutian diamond provinces.Geology of Ore Deposits, Vol. 54, 8, pp. 663-673.Russia, YakutiaDeposit - Lomonosovskaya, Archangelsk, Snegurochka, XXIII Congress, Internationalnaya
DS201312-0585
2013
Matson, J.What do we know about the Russian meteor. Discussion with Margaret Campbell-Brown.Scientific American, Feb. 15, 2p.RussiaMeteorite
DS201312-0601
2013
Mescheryakov, M.The development of the Grib pipe: the world's next major diamond mine.PDAC 2013, March 4, 1/2p. AbstractRussiaDeposit - Grib
DS201312-0603
2012
Mikhno, A.O., Korsakov, A.V.Prograde zonation in ultrapotassic clinopyroxene from ultrahigh pressure garnet clinopyroxene rocks from the Kumdy-Kol mine ( Kokchetav Massif, Kazakhstan).Doklady Earth Sciences, Vol. 447, 2, pp. 1333-1337.Russia, KazakhstanDeposit - Kokchetav
DS201312-0605
2013
Miller, E.L., Solovev, A.V., Prokopiev, A.V., Toro, J., Harris, D., Kuzmichev, A.B., Gehrels, G.E.Triassic river systems and the paleo-Pacific margin of northwestern Pangea. Lena River systemGondwana Research, Vol. 23, 4, pp. 1631-1645.RussiaSource areas
DS201312-0641
2013
Nedosekova, I.L., Belousova, E.A., Sharygin, V.V., Belyatsky, B.V.,Bayanova, T.B.Origin and evolution of the Ilmeny-Vishnevogorsky carbonatites ( Urals, Russia): insights from trace element compositions, and Rb Sr Sm Nd, U Pb, Lu Hf isotope data.Mineralogy and Petrology, Vol. 107, 1, pp. 101-123.Russia, UralsCarbonatite
DS201312-0643
2013
Nestola, F., Nimis, P., Milani, S., Angel, R., Bruno, M., Harris, J.W.Crystallographic relationships between diamond and its olivine inclusions. An update.Goldschmidt 2013, AbstractRussia, YakutiaUdachnaya
DS201312-0651
2013
Nimis, P., Goncharov, A., Ionov, D.Fe3 partitioning systematics between orthopyroxene and garnet in well equilibriated mantle xenoliths.Goldschmidt 2013, AbstractRussia, MongoliaUdachnaya, Obnazhennaya, Dariganaga
DS201312-0666
2013
Ordin, A.A., Nikolsky, A.M., Golubev, Yu.G.Lag modeling and design capacity optimization at operating diamond placer mines "Solur and Vostochny" Republic of Sakha ( Yakutia).Journal of Mining Science, Vol. 48, 3, pp. 515-524.Russia, YakutiaDeposit - Solur, Vostochny
DS201312-0681
2013
Panina,L.I.,Motorina, I.V.Meimechmites, porhyritic alkaline picrites, and melanephelinites of Siberia: conditions of crystallization, parental magmas, and sources.Geochemistry International, Vol. 51, 2, pp. 109-128.RussiaAlkalic
DS201312-0714
2013
Pokhilenko, N.P., Afanasiev, V.P.New prospective for diamond deposits in Siberia.PDAC 2013, March 4, 1/2p. Abstract only as conflict in his scheduleRussiaOverview - Siberia
DS201312-0729
2013
Ragozin, A.L., Shatsky, V.S., Zedgenizov, D.A., Griffin, W.L.Growth medium and carbon source of unusual rounded diamonds from alluvial placers of the north-east of Siberian platform.Goldschmidt 2013, AbstractRussia, SiberiaPlacers, alluvials
DS201312-0732
2013
Rass, I., Kovalchuk, E.Compositions and zoning of coexiting minerals in alkaline ultrabasic rocks, phoscorites, and carbonatites from the Kovdor Complex, Kola Peninsula.Goldschmidt 2013, AbstractRussia, Kola PeninsulaCarbonatite
DS201312-0751
2012
Romanova, I.V., Vernikovskaya, A.E., Vernikovsky, V.A., Matushkin, N.Yu., Larionov, A.N.Neoproterozoic alkaline magmatism and associated igneous rocks in the western framing of the Siberian craton: petrography, geochemistry, and geochronology.Russian Geology and Geophysics, Vol. 53, 11, pp. 1176-1196.RussiaMagmatism
DS201312-0766
2012
Ryabchikov, I.D., Kogarko, L.N.Oxygen potential and PGE geochemistry of alkaline ultramafic complexes.Vladykin, N.V. ed. Deep seated magmatism, its sources and plumes, Russian Academy of Sciences, pp. 23-39.RussiaGeochemistry - alkaline rocks
DS201312-0768
2013
Ryder, J.Archean & Phanerozoic paleoplacers: large volume diamond deposits as prospective new targets for diamond exploration and exploitation in Russia and world.PDAC 2013, 1p. AbstractRussia, GlobalAlluvials
DS201312-0772
2014
Sakamaki, K., Ogasawara, Y.Hydroxyl in clinopyroxene and titanite in a UHP diamond free garnet clinopyroxene rock from the Kokchetav Massif, northern Kazakhstan.International Geology Review, Vol. 56, 2, pp. 133-149.Russia, KazakhstanDeposit - Kokchetav
DS201312-0775
2013
Samsonov, A.V., Griban, J.G., Larionova, Y.O., Nosova, A.A., Tretyachenko, V.V.Evolution of deep crustal roots of the Arhangelsk Diamondiferous province: evidences from crustal xenoliths and xenocrysts from Devonian kimberlite pipes.Goldschmidt 2013, 1p. AbstractRussia, Kola PeninsulaDeposit - Arkangel
DS201312-0803
2013
Sharygin, I.S., Litasov, K.D., Shatskiy, A., Golovin, A.V., Ohtani, E., Pokhilenko, N.P.Melting phase relations in Udachnaya-East kimberlite and search for parental melt composition. Group IGoldschmidt 2013, AbstractRussiaDeposit - Udachnaya
DS201312-0805
2013
Shatsky, V.S., Zedgenizov, D.A., Ragozin, A.L.Evidence for formation of alluvial diamonds from north-east of Siberian platform in subduction environment.Goldschmidt 2013, 1p. AbstractRussiaAlluvials
DS201312-0808
2013
Shephard, G., Muller, R.D., Seton, M.The tectonic evolution of the Arctic since Pangea breakup: integrating constraints from surface geology and geophysics with mantle structure.Earth Science Reviews, Vol. 124, pp. 148-183.Mantle, Circum-Arctic, Russia, CanadaTectonics
DS201312-0831
2012
Skuzovatov, S.Yu., Zedgenizov, D.A., Ragozin, A.L., Shatsky, V.S.Growth medium composition of coated diamonds from the Sytykanskaya kimberlite pipe ( Yakutia).Russian Geology and Geophysics, Vol. 53, 11, pp. 1197-1208.RussiaDeposit - Sytykanskaya
DS201312-0834
2012
Smelov, A.P., Shatsky, V.S., Ragozin, A.L., Reutskii, V.N., Molotkov, A.E.Diamondiferous Archean rocks of the Olondo greenstone belt ( western Aldan-Stanovoy shield).Russian Geology and Geophysics, Vol. 53, pp. 1012-1022.RussiaDiamond morphology
DS201312-0835
2013
Smelov, A.P., Zaitsev, A.I.The age and localization of kimberlite magmatism in the Yakutian kimberlite Province: constraints from isotope geochronology - an overview.Proceedings of the 10th. International Kimberlite Conference, Vol. 1, Special Issue of the Journal of the Geological Society of India,, Vol. 1, pp. 225-234.Russia, YakutiaGeochronology
DS201312-0839
2012
Smith, B., Baziotis, I., Carmody, L., Liu, Y., Taylor, L.A., Pokhilenko, N., Pokhilenko, L.The subcontinental lithospheric mantle of the NE Siberian craton: peridotites from Obnazhennaya.Geological Society of America Annual Meeting abstract, Paper 249-7, 1/2p. AbstractRussiaDeposit - Obnazhennaya
DS201312-0844
2013
Smith, E.Vapours Vs. melt inclusions in Siberian placer diamonds.GEM Diamond Workshop Feb. 21-22, Noted onlyRussia, SiberiaDiamond inclusions
DS201312-0864
2013
Sokol,A.G.,Kupriyanov, I.N., Palyanov, Y.N., Kruk, A.N., Sobolev, N.V.Melting experiments in the Udachnaya kimberlite at 6.3-7.5 Gpa: implications for the role of H2O in magma generation and formation of hydrous olivine.Geochimica et Cosmochimica Acta, Vol. 101, Jn. 15, pp. 133-155.RussiaDeposit - Udachnaya
DS201312-0867
2012
Soloveva, L.V., Yasnygina, T.A., Egorov, K.N.Metasomatic parageneses in deep seated xenoliths from pipes Udachnaya and Komosomolskaya Magnitinaya as indicators of fluid transfer through the manyle lithosphere of the Siberian Craton.Russian Geology and Geophysics, Vol. 53, 12, pp. 1291-1303.RussiaDeposit - Udachnaya, Komosomolskaya
DS201312-0874
2012
Spetsius, Z.V., Kornilova, V.P., Tarskikh, O.V.Pecularities of petrography and mineralogy kimberlites from deep levels of the Internationalaya pipe.Vladykin, N.V. ed. Deep seated magmatism, its sources and plumes, Russian Academy of Sciences, pp. 204-225.RussiaDeposit - Internationalaya
DS201312-0917
2013
Tolmacheva, T.Yu., Alekseev, A.S., Reimers, A.N.Conodonts in xenoliths from kimberlite pipes of the southeastern White Sea region ( Arkhangelsk Oblast): key to Ordovician stratigraphic and paleogeographic reconstructions of the East European Platform.Doklady Earth Sciences, Vol. 451, 1, pp. 687-691.Russia, Archangel, Kola PeninsulaGeochronology
DS201312-0922
2013
Toyama, C., Muramatsu, Y., Sumino, H., Yamamoto, J., Kaneoka, I.Halogen ratios in kimberlites and their xenoliths related to the origin.Goldschmidt 2013, 1p. AbstractRussia, Africa, South AfricaKimberlite genesis
DS201312-0930
2013
Ustinov, V., Serv, V., Mituykhin, S.Diamond exploration of Alrosa in Russia: present and future.PDAC 2013, March 4, 1/2p. AbstractRussiaOverview - Alrosa
DS201312-0932
2010
Valentini, L.Geochemical and numerical modelling of the interaction between carbonatite and silicate magmas.Thesis, Dept. of Earth and Ocean Sciences, College of Science, National University of Ireland, Galway, 139p. Paper copy donated by R. SageRussia, FranceKola alkaline, Massif Central
DS201312-0943
2013
Vorotnikov, V.Gondwana from top to base in space and time.Engineering and Mining Journal, www.e-mj.com Sept. pp. 72-77.RussiaDiamond production
DS201312-0951
2013
Wang, K-L., Chien, Y-H., Kuzmin, M.I., O'Reilly, S.Y., Griffin, W.L.Geochemical fingerprints in Siberian mantle xenoliths reveal progressive erosion of an Archean lithospheric root.Goldschmidt 2013, 1p. AbstractRussiaVitim Plateau
DS201312-0970
2013
Wiggers de Vries, D.F., Pearson, D.G., Bulanova, G.P., Smelov, A.P., Pavlushin, A.D., Davies, G.R.Re-Os dating of sulphide inclusions zonally distributed in single Yakutian diamonds: evidence for multiple episodes of Proterozoic formation and protracted timescales of diamond growth.Geochimica et Cosmochimica Acta, Vol. 120, pp. 363-394.Russia, YakutiaDeposit - Mir, 23, Udachnaya
DS201312-0986
2013
Wu,F-Y., Arzamastsev, A.A., Mitchell, R.H., Li, Q-L., Sun, J., Yang, Y-H., Wang, R-C.Emplacement age and Sr-Nd isotopic compositions of the AfrikAnd a alkaline ultramafic complex, Kola Peninsula, Russia.Chemical Geology, Vol. 353, pp. 210-229.Russia, Kola PeninsulaAfrikanda Complex
DS201312-0995
2013
Yelisseyev, A., Meng, G.S., Afanasyev, V., Pokhilenko, N., Pustovarov, V., Isakova, A., Lin, Z.S, Lin, H.Q.Optical properties of impact diamonds from the Popigai astroblemes.Diamond and Related Materials, Vol. 37, pp. 8-16.Russia, SiberiaMeteortic diamonds
DS201312-1003
2013
Zaitsev, A.N., Kamenetsky, V.S.Magnetite hosted melt inclusions from phoscorites and carbonatites ( Kovdor, Kola): a hydrous analog of Oldoinyo Lengai natrocarbonatites?Goldschmidt 2013, 1p. AbstractRussia, Kola Peninsula, Africa, TanzaniaCarbonatite
DS201312-1007
2013
Zedgenizov, D.A., Ragozin, A.L., Shatsky, V.S., Griffin, W.L.Parental growth media of Siberian diamonds - relation to kimberlites.Goldschmidt 2013, 1p. AbstractRussiaDiamond morphology
DS201312-1022
2013
Ziberna, L., Nimis, P., Zanetti, A., Marzoli, A., Sobolev, N.V.Metasomatic processes in the central Siberian cratonic mantle: evidence from garnet xenocrysts from the Zagadochnaya kimberlite.Journal of Petrology, Vol. 54, pp. 2379-2409.Russia, SiberiaDeposit - Zagadochnaya
DS201412-0011
2014
Andreeva, I.A.Salt (carbonatite) melts of the Bol'shaya Tagna massif, the eastern sayan region: evidence from melt inclusions.Deep Seated Magmatism, its sources and plumes, Ed. Vladykin, N.V., pp. 148-154.RussiaCarbonatite
DS201412-0018
2014
Arzamastev, A.A., Wu, F-Y.U Pb geochronology and Sr-Nd isotopic systematics of minerals from the ultrabasic-alkaline massifs of the Kola province.Petrology, Vol. 22, 5, pp. 462-479.Russia, Kola PeninsulaAlkalic
DS201412-0019
2014
Arzamastsev, A.A., Arzamasteva, L.V., Zhirova, A.M., Glaznev, V.N.Model of formation of the Khibiny-Lovozero ore bearing volcanic-plutonic complex.Deep Seated Magmatism, its sources and plumes, Ed. Vladykin, N.V., pp. 124-147.RussiaModelling
DS201412-0020
2014
Ashchepkov, I., Remirs, L., Ntaflos, T., Vladykin, N., Logvinova, A., Travin, A., Yudin, D., Karpenko, K., Makovchuk, I., Palessky, S., Salikhov, R.Evolution of mantle column of pipe Sytykanskaya, Yakutia kimberlite.Goldschmidt Conference 2014, 1p. AbstractRussia, YakutiaDeposit - Sytykanskaya
DS201412-0021
2014
Ashchepkov, I.V., Alymova, N.V., Lognova, A.M., Vladykin, N.V., Kuligin, S.S., Lityukhin, S.I., Downes, H., Stegnitsky, Yu.B., Prokopiev, S.A., Salikhov, R.F., Palessky, V.S., Khmelnikova, O.S.Picroilmenites in Yakutian kimberlites: variations and genetic models.Solid Earth, Vol. 5, pp. 915-938.Russia, YakutiaKimberlite genesis
DS201412-0022
2014
Ashchepkov, I.V., Vladykin, N.N., Ntaflos, T., Kostrovitsky, S.I., Prokopiev, S.A., Downes, H., Smelov, A.P., Agashev, A.M., Logvinova, A.M., Kuligin, S.S., Tychkov, N.S., Salikhov, R.F., Stegnitsky, Yu.B., Alymova, N.V., Vavilov, M.A., Minin, V.A., BabusLayering of the lithospheric mantle beneath the Siberian Craton: modeling using thermobarometry of mantle xenolith and xenocrysts. Tectonophysics, Vol. 634, 5, pp. 55-75.Russia, YakutiaDaldyn, Alakit, Malo-Botuobinsky fields
DS201412-0023
2014
Ashchepkov, I.V., Vladykin, N.V., Ntaflos, T., Yudin, D.S., Karpenko, M.A., Palesskiy, V.S., Khmelnikova, O.S.Deep seated xenoliths and xencrysts from Stykanskaya pipe: evidence for the evolution of the mantle beneath Alakit, Yakutia.Deep Seated Magmatism, its sources and plumes, Ed. Vladykin, N.V., pp. 203-229.RussiaDeposit - Stykanskaya
DS201412-0049
2014
Belyatsky, B.Baddeleyite trace element composition as a source of isotope geochemical and geochronological information about magmatic processes: Kovdor alkaline ultramafic massif as an example.ima2014.co.za, AbstractRussiaAlkalic
DS201412-0078
2014
Buikin, A.I., Verchovsky, A.B., Sorokhtina, N.V., Kogarko, L.N.Composition and sources of volatiles and noble gases in fluid inclusions in pyroxenites and carbonatites of the Seblyar Massif, Kola Peninsula.Petrology, Vol. 22, 5, p. 507-520.Russia, Kola PeninsulaAlkalic
DS201412-0082
2014
Bulanova, G.P., Wiggers de Vries, D.F., Pearson, D.G., Beard, A., Mikhail, S., Smelov, A.P., Davies, G.R.An eclogitic diamond from Mir pipe (Yakutia), recording two growth events from different isotopic sources.Chemical Geology, Vol. 381, pp. 40-54.Russia, YakutiaDeposit - Mir
DS201412-0091
2014
Camara, F., Skolova, E., Abdu, Y.A., Hawthorne, F.C.Nafertisite Na3Fe2 10Ti2(Si6017)02(OH)6F(H2))2 from Mt. Kukisvumchorr Khibiny alkaline massif, Kola Peninsula, Russia: refinement of the crystal structure and revision of the chemical formula.European Journal of Mineralogy, Vol. 26, pp. 689-700.Russia, Kola PeninsulaKhibiniy Massif
DS201412-0101
2014
Carmody, L., Taylor, L.A., Thaisen, K.G., Tychkov, N., Bodnar, R.J., Sobolev, N.V., Poikhilenko, L.N., Poikilenko, N.P.Ilmenite as a diamond indicator mineral in the Siberian craton: a tool to predict diamond potential.Economic Geology, Vol. 109, no. 3, pp. 775-783.RussiaIlmenite, chemistry
DS201412-0126
2014
Cherepanova, Y., Artemieva, I.M.Density heterogeneity of the cratonic lithosphere: a case study of the Siberian craton.Gondwana Research, in press available 17p.RussiaKimberlites - metasomatism
DS201412-0199
2014
Dokuchits, E.Y., Vladykin, N.V.Chemical composition, geochemical features and genesis of charoite and charoite rocks, Murun Complex.30th. International Conference on Ore Potential of alkaline, kimberlite and carbonatite magmatism. Sept. 29-, RussiaCharoite
DS201412-0203
2014
Doroshkevich, A.G., Ripp, G.S., Izbrodin, I.A., Sergeev, S.A., Travin, A.V.Geochronology of the Gulkhen Massif, Vitim alkali province, western Transbaikalia.Doklady Earth Sciences, Vol. 457, 2, pp. 940-944.RussiaAlkalic
DS201412-0205
2014
Doucet, L.S., Ionov, D.A., Golovin, A.V.Paleoproterozoic formation age for the Siberian cratonic mantle: Hf and Nd isotope dat a on refractory peridotite xenoliths from the Udachnaya kimberlite.Chemical Geology, Vol. 391, pp. 42-55.RussiaDeposit - Udachnaya
DS201412-0206
2014
Doucet, L.S., Peslier, A.H., Ionov, D.A.High water contents in the Siberian cratonic mantle linked to metasomatism: an FTOR study of Udachnaya peridotite xenoliths.Geochimica et Cosmochimica Acta, Vol. 137, pp. 159-187.Russia, YakutiaDeposit - Udachnaya
DS201412-0208
2014
Doucet, L.S., Peslier, A.H., Ionov, D.A., Brandon, A.D., Golovin, A.V., Goncharov, A.G., Ashchepkov, I.V.High water contents in the Siberian cratonic mantle linked to metasomatism: an FTIR study of Udachnaya peridotite xenoliths.Geochimica et Cosmochimica Acta, in press availableRussia, SiberiaDeposit - Udachnaya
DS201412-0222
2003
El Goresy, A., Dubrovinsky, L.S., Gillet, P., Mostefaoui, S., Graup, G., Drakopoulos, M., Simionovici, A.S., Swamy, V., Masaitis, V.L.A new natural, super-hard, transparent polymorph of carbon from the Popigai impact crater, Russia.Comptes Rendus Geoscience, Vol. 335, pp. 889-898.Russia, YakutiaMeteorite
DS201412-0267
2014
Garanin, V.K., Bovkun, A.V., Garanin, K.V., Kriulina, G.Y., Iwanich, W.Diamonds and its grade in different petrochemical types of kimberlites ( based on Russian diamond deposits).6 Simposio Brasileiro de Geologia do Diamante, Aug. 3-7, 4p. AbstractRussiaMineral chemisty
DS201412-0269
2014
Garanin, V.K., Garanin, K.V., Iwanuch, W.Diamonds from Russia. History6 Simposio Brasileiro de Geologia do Diamante, Aug. 3-7, 5p. AbstractRussiaHistory and discoveries
DS201412-0270
2014
Garanin, V.K., Garanin, K.V., Kriulina, G.Y.Granitoids of different geochemical types of Baikal area: their diamonds from Russia.30th. International Conference on Ore Potential of alkaline, kimberlite and carbonatite magmatism. Sept. 29-, http://alkaline2014.comRussiaDiamonds
DS201412-0293
2014
Giuliani, A., Phillips, D., Kamenetsky, V.S., Fiorentini, M.L., Farqukar, J., Kendrick, M.A.Stable isotope ( C,O,S) compositions of volatile rich minerals in kimberlites: a review.Chemical Geology, Vol. 374-375, pp. 61-83.Africa, South Africa, Canada, Northwest Territories, RussiaDeposit - Kimberley, Lac de Gras, Udachnaya
DS201412-0299
2014
Glorie, S., Zhimulev, F.I., Buslov, M.M., Andersen, T., Plavsa, D., Izmer, A., Vanhaecke, F., De Grave, J.Formation of the Kokchetav subduction collision zone - northern Kazakhstan : insights from zircon U-Pb and Lu-Hf isotope systematics.Gondwana Research, Vol. 27, pp. 424-438.Russia, KazakhstanSubduction
DS201412-0307
2014
Gordeev, E.I., Karpov, G.A., Anikin, L.P., Krivovichev, S.V., Filatov, S.K., Antonov, A.V., Ovsyannikov, A.A.Diamonds in lavas of the Tolbachik fissure eruption in Kamchatka.Doklady Earth Sciences, Vol. 454, 1, pp. 47-49.RussiaTolbachik fissure
DS201412-0308
2014
Goryainov, S.V., Likhacheva, A.Y., Rashchenko, S.V., Shubin, A., Afanasev,V.P., Poikilenko, N.P.Raman identification of lonsdalaeite in Popigai impactites.Journal of Raman Spectroscopy, Vol. 45, 4, pp. 305-313.RussiaLonsdaleite
DS201412-0311
2014
Grakova, O.Geological characteristics of diamond bearing terrigenous rocks in the north-east borderland of the East European platform.ima2014.co.za, PosterRussiaGeology
DS201412-0316
2014
Grishina, S.N., Polozov, A.G., Mazurov, M.P., Goryinov, S.V.Genesis of chloride-carbonate segregations of the Udachnaya-East pipe.Doklady Earth Sciences, Vol. 458, 1, pp. 1129-1131.Russia, YakutiaDeposit - Udachnaya-East
DS201412-0373
2014
Howarth, G.H., Barry, P.H., Pernet-Fisher, J.F., Baziotis, I.P., Pokhilenko, N.P., Poikhilenko, L.N., Bodnar, R.L., Taylor, L.A., Agashev, A.M.Superplume metasomatism: evidence from Siberian mantle xenoliths.Lithos, Vol. 184-187, pp. 209-224.RussiaMetasomatism
DS201412-0374
2014
Howarth, G.H., Sobolev, N.V., Pernet-Fisher, J.F., Barry, P.H., Penumado, D., Puplampu, S., Ketcham, R.A., Maisano, J.A., Taylor, D., Taylor, L.A.The secondary origin of diamonds: multi-modal radiation tomography of Diamondiferous mantle eclogites.International Geology Review, Vol. 56, 9, pp. 1172-1180.Russia, Siberia3D
DS201412-0413
2014
Ivanov, A.Volatile fluxing causes cratonic flood basalt volcanism: case study of the Siberian Craton.V.S. Sobolev Institute of Geology and Mineralogy Siberian Branch Russian Academy of Sciences International Symposium Advances in high pressure research: breaking scales and horizons ( Courtesy of N. Poikilenko), Held Sept. 22-26, 4p. AbstractRussia, SiberiaDevonian kimberlites, lamproites
DS201412-0439
2014
Kamenetsky, V.S., Golovin, A.V., Maas, R., Giuliani, A., Kamenetsky, M.B., Weiss, Y.Towards a new model for kimberlite petrogenesis: evidence from unaltered kimberlites and mantle minerals. Earth Science Reviews, Vol. 139, pp. 145-151.Russia, YakutiaDeposit - Udachnaya
DS201412-0443
2014
Kargin, A., Nosova, A., Larionova, Yu., Kononova, V., Borisovsky, S., Kovalchuk, E., Griboedova, I.Mesoproterozoic orangeites ( Kimberlites II) of west Karelia: mineralogy, geochemistry and Sr-Nd isotope composition.Petrology, Vol. 22, 2, pp. 151-183.RussiaOrangeites
DS201412-0457
2014
Kilalea, D.Site visit Mir, Nyurbinskaya, Udachnaya, JubileeRBC Capital Markets, August 6, 6p.Russia, YakutiaDiamond mines overview
DS201412-0465
2014
Kogarko, L.N.Geochemical features of radioactive elements in ultramafic-alkaline rocks ( example - largest in the globe Guli complex).Deep Seated Magmatism, its sources and plumes, Ed. Vladykin, N.V., pp. 22-31.RussiaGuli complex
DS201412-0466
2014
Kogarko, L.N.Conditions of accumulation of radioactive metals in the process of differentiation of ultrabasic alkaline-carbonatite rock associations.Geology of Ore Deposits, Vol. 56, 4, pp. 262-271.Russia, Siberia, UkraineCarbonatite
DS201412-0467
2014
Kogarko, L.N.Conditions of accumulation of radioactive metals in the process of differentiation of ultrabasic alkaline-carbonatite rock associations.Geology of Ore Deposits, Vol. 56, 4, pp. 230-238.Russia, Polar Siberia, UkraineCarbonatite
DS201412-0469
2014
Kolesnichenko, M., Zedgenizov, D., Ragozin, A., Litasov, K.Water content in olivines of mantle xenoliths from Udachnaya kimberlite pipe, Yakutia.V.S. Sobolev Institute of Geology and Mineralogy Siberian Branch Russian Academy of Sciences International Symposium Advances in high pressure research: breaking scales and horizons ( Courtesy of N. Poikilenko), Held Sept. 22-26, 2p. AbstractRussia, YakutiaDeposit - Udachnaya
DS201412-0471
2013
Kopylova, M.Yakutian kimberlites: from discovery to 55 years of mining.Vancouver Kimberlite Cluster, Dec. 6, 1/2p. AbstractRussia, YakutiaHistory
DS201412-0472
2014
Koreshkova, M.Yu., Downes, H., Glebovitsky, V.A., Rodionov, N.V., Antonov, A.V., Sergeev, S.A.Zircon trace element characteristics and ages in granulite xenoliths: a key to understanding the age and origin of the lower crust, Arkhangelsk kimberlite province, Russia.Contributions to Mineralogy and Petrology, Vol. 167, pp. 973-980.Russia, Archangel, Kola PeninsulaDeposit - Grib
DS201412-0473
2014
Korikovsky, S., Kotov, A., Salnikova, E., Aranovich, L., Korpechkov, D., Yakovleva, S., Tolmacheva, E., Anisimova, I.The age of the protolith of metamorphic rocks in the southeastern Lapland granulite belt, southern Kola Peninsula: correlation with the Belomorian mobile belt in the context of the problem of Archean eclogites.Petrology, Vol. 22, 2, pp. 91-108.Russia, Kola PeninsulaEclogite
DS201412-0482
2014
Kriulina, G.Yu., Garanin, V.K., Rotman, A.Ya., Kovalchuk, O.E.Pecularities of diamonds from the commercial deposits of Russia.Moscow University Geology Bulletin, Vol. 66, 3, pp. 171-183.Russia, Yakutia, Kola Peninsula, ArchangelDiamond Morphology
DS201412-0490
2014
Kuskov, O., Kronrod, V., Prokofev, A., Pavlenkova, N.Petrological -geophysical models of the internal structure of the lithospheric mantle of the Siberian craton.Petrology, Vol. 22, 1, pp. 17-44.RussiaGeophysics - geodynamics
DS201412-0491
2014
Kuskov, O.L., Kronrod, V.A., Prokofyev, A.A., Pavlenkova, N.I.Thermo-chemical structure of the lithospheric mantle underneath the Siberian craton inferred from long-range seismic profiles.Tectonophysics, Vol. 615-616, pp. 154-166.Russia, SiberiaGeothermometry
DS201412-0504
2013
Lenaz, D., Skogby, H., Logvinova, A., Sobolev, N., Princivalle, F.A micro-mossbauer study of chromites included in diamond and other mantle related rocks.Physics and Chemistry of Minerals, Vol. 40, 9, pp. 671-679.Russia, SiberiaDiamond inclusions
DS201412-0524
2014
Logvinova, A., Wirth, R., Taylor, L.A., Sobolev, N.V.Aragonite, magnesite and dolomite inclusions in Yakutian diamonds: TEM observations.V.S. Sobolev Institute of Geology and Mineralogy Siberian Branch Russian Academy of Sciences International Symposium Advances in high pressure research: breaking scales and horizons ( Courtesy of N. Poikilenko), Held Sept. 22-26, 1p. AbstractRussia, YakutiaDeposit - Komsomolskaya, Yubileinaya, Udachnaya
DS201412-0543
2014
Malkovets, V.Mineralogy and geochemistry of megacrystalline pyrope peridotites from the Udachnaya pipe, Siberian craton.ima2014.co.za, AbstractRussia, YakutiaDeposit - Udachnaya
DS201412-0558
2013
Masaitis, V.L.Impact diamonds of the Popigai astrobleme: main properties and practical use.Geology of Ore Deposits, Vol. 55, 8, pp. 607-612.Russia, SiberiaAstrobleme
DS201412-0571
2014
Medvedeva, E.V., Rusin, A.I., Krasnobaev, A.A., Baneva, N.N., Valizer, P.M.Structural compositional evolution and isotopic age of Ilmeny Vishnevogorsky complex, south urals, Russia.30th. International Conference on Ore Potential of alkaline, kimberlite and carbonatite magmatism. Sept. 29-, Russia, UralsCarbonatite
DS201412-0581
2014
Mikhail, S., Verchovsky, A.B., Howell, D., Hutchison, M.T., Southworth, R., Thomson, A.R., Warburton, P., Jones, A.P., Milledge, H.J.Constraining the internal variability of the stable isotopes of carbon and nitrogen within mantle diamonds.Chemical Geology, Vol. 366, pp. 14-23.Africa, Russia, South America, BrazilDiamond inclusions
DS201412-0582
2014
Mikhailenko, D., Korsakov, A.Xenolith of diamond bearing coesite eclogite from the Udachnaya kimberlite pipe, Yakutia.V.S. Sobolev Institute of Geology and Mineralogy Siberian Branch Russian Academy of Sciences International Symposium Advances in high pressure research: breaking scales and horizons ( Courtesy of N. Poikilenko), Held Sept. 22-26, 2p. AbstractRussia, YakutiaDeposit - Udachnaya
DS201412-0583
2014
Mikhno, A., Shcheptova, O., Mikhailenko, D., Korsakov, A.Sulfides in ultrahigh pressure rocks of the Kokchetav Massif.V.S. Sobolev Institute of Geology and Mineralogy Siberian Branch Russian Academy of Sciences International Symposium Advances in high pressure research: breaking scales and horizons ( Courtesy of N. Poikilenko), Held Sept. 22-26, 2p. AbstractRussia, KazakhstanKokchetav massif
DS201412-0597
2014
Moskovitch, K.Mysterious Siberian crater attributed to methane.Nature, July 31, 2p.Russia, SiberiaCrater
DS201412-0614
2014
Nasdala, L., Kostrovitsky, S., Kennedy, A.K., Zeug, M., Esenkulova, S.A.Retention of radiation damage in zircon xenocrysts from kimberlites, northern Yakutia.Lithos, Vol. 206-207, pp. 252-261.Russia, YakutiaKuoika, Ary-Mastakh fields
DS201412-0618
2014
Nedosekova, I.L., Belousova, E.A., Belyatsky, B.V.Trace element and isotopes Hf as a signature of zircon genesis during evolution of alkaline carbonatite magmatic system ( Ilmeny Vishnevogorsky complex, urals, Russia.)30th. International Conference on Ore Potential of alkaline, kimberlite and carbonatite magmatism. Sept. 29-, http://alkaline2014.comRussia, UralsCarbonatite
DS201412-0620
2014
Nestola,F., Nimis, P.,Angel, R.J., Milani, Bruno, S.,Prencipe, M., Harris, J.W.Olivine with diamond-imposed morphology included in diamonds. Syngenesis or Protogenesis.International Geology Review, Vol. 56, 13, pp. 1658-1667.RussiaDeposit - Udachnaya
DS201412-0676
2014
Pernet-Fisher, J.F., Howarth, G.H., Liu, Y., Barry, P.H., Carmody, L., Valley, J.W., Bodnar, R.J., Spetsius, Z.V., Taylor, L.A.Komsomolskaya Diamondiferous eclogites: evidence for oceanic crustal protoliths.Contributions to Mineralogy and Petrology, Vol. 167, pp. 1-17.Russia, SiberiaDeposit - Komsomolskaya
DS201412-0682
2014
Petrovskii, M.N., Bayanova, T.B., Petrovskaya, L.S., Bazai, A.V.Mesoproterozoic peridotite-shonkinite series: a new type of intraplate magmatism in the Kola alkaline province.Doklady Earth Sciences, Vol. 457, 2, pp. 915-920.Russia, Kola PeninsulaMagmatism
DS201412-0683
2014
Petrovsky, V.A., Silaev, V.I., Sukharev, A.E., Vasilyev, E.A., Pomazansky, B.S., Zemnukhov, A.L.Yakutites: mineralogical geochemical properties and new version of the genesis. Part 1.Izvestiya VUZ'ov Geologia I Razvedka ** in Russia Courtesy of Felix, No. 3, pp. 24-33.Russia, YakutiaCarbonado, with lonsdaleite
DS201412-0695
2014
Poikhilenko, N.P., Afanasiev, V.P., Agashev, A.M., Malkovets, V.G., Poikhilenko, L.N.New archean terranes with thick lithosphere of arctic regions of Siberia and North American ancient platforms: are they prospective for Diamondiferous kimberlites?30th. International Conference on Ore Potential of alkaline, kimberlite and carbonatite magmatism. Sept. 29-, Russia, CanadaKimberlite
DS201412-0696
2014
Poikhilenko, N.P., Afanasiev, V.P., Poikhilenko, L.N.Polymict breccia xenolith from Noyabrskaya pipe.30th. International Conference on Ore Potential of alkaline, kimberlite and carbonatite magmatism. Sept. 29-, Russia, SiberiaDeposit - Noyabrskaya
DS201412-0697
2014
Pokhilenko, L.Classification pecularities of mantle eclogites from Udachnaya-East pipe ( Yakutia).ima2014.co.za, AbstractRussia, YakutiaDeposit - Udachnaya-East
DS201412-0698
2014
Pokhilenko, L.N., Malkovets, V.G., Kuzmin, D.V., Pokhilenko, N.P.New dat a on the mineralogy of megacrystalline pyrope peridotite from the Udachnaya kimberlite pipe, Siberian Craton, Yakutian Diamondiferous province.Doklady Earth Sciences, Vol. 454. no. 2, pp. 179-184.Russia, YakutiaDeposit - Udachnaya
DS201412-0699
2014
Pokhilenko, N.Kimberlite indicator minerals in terrigine sediments of Arctic regions of Siberian and North American ancient platforms: evidence of new cratons with thick lithosphere.ima2014.co.za, PosterRussia, CanadaGeochemistry
DS201412-0706
2014
Posukhova, T.Diamonds and accompanying minerals in the North Yakutian placers, Russia.ima2014.co.za, PosterRussiaAlluvials
DS201412-0714
2014
Priyatkina, N., Khudoley, A.K., Ustinov, V.N., Kullerud, K.1.92 Ga kimberlitic rocks from Kimozero, NW Russia: their geochemistry tectonic setting and unusual field occurrence.Precambrian Research, Vol. 249, pp. 162-179.RussiaDeposit - Kimozero
DS201412-0718
2014
Ragozin, A.L., Zedgenizov, D.A., Shatskii, V.S., Orihashi, Y., Agashev, A.M., Kagi, H.U Pb age of rutile from the eclogite xenolith of the Udachnaya kimberlite pipe.Doklady Earth Sciences, Vol. 457, 1, pp. 861-864.Russia, YakutiaDeposit - Udachnaya
DS201412-0721
2014
Rakhmanova, M.I., Nadolinny, V.A., Yuryeva, O.P., Pokhilenko, N.P.Pecularities of nitrogen impurity aggregation in diamonds from the Sytykanskaya pipe, Yakutia.European Journal of Mineralogy, Vol. 27, 1, pp. 51-56.Russia, YakutiaDeposit - Sytykanskaya
DS201412-0722
2014
Rapaport MagazineLucky find in Yakutia. Alrosa opens its biggest underground mine. Udachny.Rapaport , August 8, 5p.Russia, YakutiaDeposit - Udachnaya
DS201412-0742
2014
Robinson, A.Why timing is everything in business…. Russia's Alrosa and Andreev.Idex Magazine, No. 286, Feb. pp. 98-103.RussiaAlrosa
DS201412-0761
2014
Ryabchikov, I.D.Redox differentiation in deep mantle and oxygen fugacity of diamond forming processes, kimberlites and alkaline ultramafic magmas.30th. International Conference on Ore Potential of alkaline, kimberlite and carbonatite magmatism. Sept. 29-, RussiaKimberlite
DS201412-0765
2014
Sablukov, S.M., Sablukova, L.I., Stegnitskiy, Yu.B., Karpenko, M.A.Origin of the mantle xenoliths with green garnets from kimberlites ( dike Newlands, southern Africa and Nyurbinskaya pipe, Yakutia.Deep Seated Magmatism, its sources and plumes, Ed. Vladykin, N.V., pp. 178-202.RussiaDeposit - Newlands, Nyurbinskaya
DS201412-0770
2014
Sakamaki, K., Ogasawara, Y.Hydroxyl in clinopyroxene and titanite in a UHP diamond-free-garnet-clinopyroxene rock from the Kokchetav Massif, northern Kazakhstan.International Geology Review, Vol. 56, 2, pp. 133-149.Russia, KazakhstanKokchetav massif
DS201412-0796
2014
Sharygin, I., Litasov, K., Shatskiy, A., Golovin, A., Ohtani, E., Pokhilenko, N.Melting phase relations of the Udachnaya East Group 1 kimberlite at 3.0-6.5 GPA: experimental evidence for alkali-carbonatite composition of primary kimberlite melt.V.S. Sobolev Institute of Geology and Mineralogy Siberian Branch Russian Academy of Sciences International Symposium Advances in high pressure research: breaking scales and horizons ( Courtesy of N. Poikilenko), Held Sept. 22-26, 2p. AbstractRussia, YakutiaDeposit - Udachnaya-East
DS201412-0797
2013
Sharygin, I.S., Golovin, A.V., Korsakov, A.V., Pokhilenko, N.P.Eitelite in sheared peridotite xenoliths from Udachnaya-East kimberlite pipe ( Russia) - a new locality and host rock type.European Journal of Mineralogy, Vol. 25, pp. 825-834.Russia, YakutiaDeposit - Udachnaya
DS201412-0798
2014
Sharygin, I.S., Litasov, K.D., Shatskiy, A., Golovin, A.V., Ohtani, E., Pokhilenko, N.P.Melting phase relations of the Udachnaya-East Group 1 kimberlite at 3.0-6.5GPa: experimental evidence for alkali-carbonatite composition of primary kimberlite melts and implications for mantle plumes.Gondwana Research, in press availableRussiaDeposit - Udachnaya-East
DS201412-0801
2014
Shatsky, V.S., Zedgenizov, D.A., Ragozin, A.L., Kalinina, V.V.Carbon isotopes and nitrogen contents in placer diamonds from the NE Siberian craton: implications for diamond origins.European Journal of Mineralogy, Vol. 26, 1, pp. 41-52.RussiaAlluvials
DS201412-0802
2015
Shatsky, V.S., Zedgenizov, D.A., Ragozin, A.L., Kalinina, V.V.Diamondiferous subcontinental lithospheric mantle of the northeastern Siberian craton: evidence from mineral inclusions in alluvial diamonds.Gondwana Research, Vol. 28, 1, pp. 106-120.Russia, SiberiaMineral inclusions
DS201412-0810
1999
Shimizu, N.Young geochemical features in cratonic peridotites from southern Africa and Siberia.Geochemical Society Special Publication No. 6, Mantle Petrology, No. 6, pp.Africa, RussiaPeridotite
DS201412-0817
2014
Shiryaev, A.Micro-FTIR investigation of gem quality cubic diamonds from Siberian placers.ima2014.co.za, AbstractRussia, SiberiaDiamond morphology
DS201412-0823
2014
Shumilova, T., Kis, K.V., Masaitis, V., Isaenko, S., Makeev, B.Onion-like carbon in impact diamonds from the Popigai astrobleme.European Journal of Mineralogy, Vol. 26, 2, pp. 267-277.RussiaLonsdaleite, raman spectroscopy
DS201412-0829
2014
Simakov, S.K.Calculation of the equilibrium C-O-H fluid for ilmenite xenocrysts and estimation of diamond potential.Doklady Earth Sciences, Vol. 458, 1, pp. 1171-1173.Russia, Africa, AngolaIlmenite
DS201412-0838
2013
Skublov, S.G., Melnik, A.E., Marin, Yu.B., Berezin, A.V., Bogomolov, E.S., Ishmurzin, F.I.New dat a on the age ( U-Pb, Sm-Nd) of metamorphism and a protolith of eclogite like rocks from the Krasnaya Guba area, Belomorian belt.Doklady Earth Sciences, Vol. 451, 1, pp. 1156-1164.RussiaEclogite
DS201412-0855
2014
Snetkov, V.I., Talgamer, B.L.Appraisal and exploitation of mining and dressing waste at dredge sites. Journal of Mining Science, Vol. 50, 1, pp. 108-114.Russia, TransbaikaliaDiamond alluvials
DS201412-0856
2014
Snetkov, V.I., Talgamer, B.L.Appraisal and exploitation of mining and dressing waste at dredge sites. ( Mainly gold but diamonds as well).Journal of Mining Science, Vol. 50, 1, pp. 108-114.RussiaDredging
DS201412-0863
2014
Sobolev, N.V., Sobolev, A.V., Tomilenko, A.A., Kovyazin, S.V., Batanova, V.G., Kuzmin, D.V.Paragenesis and origin of olivine macrocrysts from Udachnaya-East hypabyssal kimberlite, Yakutia, Russia.V.S. Sobolev Institute of Geology and Mineralogy Siberian Branch Russian Academy of Sciences International Symposium Advances in high pressure research: breaking scales and horizons ( Courtesy of N. Poikilenko), Held Sept. 22-26, 2p. AbstractRussia, YakutiaDeposit - Udachnaya-East
DS201412-0867
2014
Soloveva, L.V., Kalashnikova, T.V., Kostrovitsky, S.I., Suvorova, L.F.Zoning of garnets in deformed peridotites from the Udachnaya kimberlite pipe.Doklady Earth Sciences, Vol. 457, 2, pp. 997-1002.RussiaDeposit - Udachnaya
DS201412-0876
2014
Spetsius, Z.Metasomatic diamonds in eclogite xenoliths from Yakutian kimberlites: implications for diamond grade estimation.ima2014.co.za, AbstractRussia, YakutiaDiamond grade
DS201412-0877
2014
Spetsius, Z.V., Polyanichko, V.V., Xarlamova, E.I.,Tarskix, O.V., Ivanov, A.S.Geology, petrography and mineralogy of the Zarya pipe kimberlites.Deep Seated Magmatism, its sources and plumes, Ed. Vladykin, N.V., pp. 160-177.RussiaDeposit - Zarya
DS201412-0885
2014
Stepanov, A.S., Hermann, J., Korsakov, A.V., Rubatto, D.Geochemistry of ultrahigh pressure anatexis: fractionation of elements in the Kokchetav gneisses during melting at diamond facies conditions.Contributions to Mineralogy and Petrology, Vol. 67, 25p.RussiaUHP
DS201412-0893
2014
Sukharev, A.Yakutites: mineralogy-geochemical properties and origin.ima2014.co.za, PosterRussiaMineralogy
DS201412-0897
2014
Sun, J., Liu, C-Z., Tappe, S., Kostrovitsky, S.I., Wu, F-Y., Yakovlev, D., Yang, Y-H., Yang, J-H.Repeated kimberlite magmatism beneath Yakutia and its relationship to Siberian flood volcanism: insights from in situ U-Pb and Sr-Nd perovskite isotope analysis.Earth and Planetary Science Letters, Vol. 404, Oct. pp. 283-295.Russia, YakutiaKimberlite magmatism
DS201412-0907
2014
Svortsova, V.Iron containing surfaces of contact of diamond with kimberlite.ima2014.co.za, PosterRussiaMetasomatism
DS201412-0928
2014
The Israeli Diamond IndustryImagine living next to a diamond mine. Photographs of Mirnyblog.israelidiamond.co.il, Photo journal * captions in RussianRussia, YakutiaDeposit - Mirny
DS201412-0937
2014
Tychkov, N.S., Agashev, A.M., Malygina, E.V., Nikolenko, E.I., Pokhilenko, N.P.Thermal pertubations in the lithospheric mantle as evidenced from P-T equilibrium conditions of xenoliths from the Udachnaya kimberlite pipe.Doklady Earth Sciences, Vol. 454, 1, pp. 84-88.Russia, YakutiaDeposit - Udachnaya
DS201412-0942
2014
Vasilev, Yu.R., Gora, M.P.Meimechite-picrite associations in Siberia, Primorye, and Kamchatka ( comparitive analysis and petrogenesis).Russian Geology and Geophysics, Vol. 55, 8, pp. 959-970.RussiaMeimechite
DS201412-0943
2014
Vasilev, Yu.R., Gora, M.P.Meimechite-picrite associations in Siberia, Primorye and Kamchatka ( compartive analysis and petrogenesis).Russian Geology and Geophysics, Vol 55, pp. 959-970.Russia, SiberiaMeimechite, picrite
DS201412-0945
2014
Vasyukova, E.Isotopic dat a for the Chuya lamprophyre dikes of the Gorniy and Mongolian Altai ( Russia and Mongolia) as a key to their petrogenesis.ima2014.co.za, PosterRussia, Asia, MongoliaLamprophyre
DS201412-0952
2014
Vladykin, N.V., Kotov, A.B., Borisenko, A.S., Yarmolyuk, V.V., Pokhilenko, N.P., Salnikova, E.B., Travin, A.V., Yakovleva, S.Z.Age boundaries of formation of the Tomtor alkaline ultramafic pluton: U Pb and 40 Ar 39 Ar geochronological studies.Doklady Earth Sciences, Vol. 454, 1, pp. 7-11.RussiaGeochronology
DS201412-0953
2014
Vladykin, N.V., Sotnikov, I.A., Kotov, A.B., Yarmolyuk, V.V., Salnikova, E.B., Yakovleva, S.Z.Structure, age and ore potential of the Burpala rare-metal alkaline Massif, northern Baikal region.Geology of Ore Deposits, Vol. 56, 4, pp. 239-256.RussiaAlkalic
DS201412-0966
2014
Wang, Y., He, H., Ivanov, A.V., Zhu, R.,Lo, C.Age and origin of charoitite, Malyy Murun massif, Siberia Russia.International Geology Review, Vol. 56, 8, pp. 1007-1019.RussiaCharoite
DS201412-1007
2014
Yelisseyev, A., Khrenov, A., Afanasiev, V., Pustavarov, V., Gromilov, S., Panchenko, A., Poikilenko, N., Litasov, K.Luminesence of impact diamonds from the Popigai astrobleme.V.S. Sobolev Institute of Geology and Mineralogy Siberian Branch Russian Academy of Sciences International Symposium Advances in high pressure research: breaking scales and horizons ( Courtesy of N. Poikilenko), Held Sept. 22-26, 2p. AbstractRussia, SiberiaDiamond luminescence
DS201412-1013
2014
Yudin, D.S., Tomilenko, A.A., Travin, A.V., Agashev, A.M., Pokhilenko, N.P., Orihashi, yu.The age of the Udachnaya-East kimberlite: U/Pb and 40 Ar/39Ar data.Doklady Earth Sciences, Vol. 455, 1, pp. 288-290.RussiaDeposit - Udachnaya
DS201412-1015
2014
Zaitsev, A.N., Williams, C.T., Jeffreis, T.E., Strekopytov, S., Moutte, J., Ivashchenkova, O.V., Spratt, J., Petrov, S.V., Wall, F., Seltmann, R., Borozdin, A.P.Rare earth elements in phoscorites and carbonatites of the Devonian Kola alkaline province, Russia: examples from Kovdor, Khibina, Vuoriyarvi and Turiy Mys complexes.Ore Geology Reviews, Vol. 64, pp. 204-225.Russia, Kola PeninsulaCarbonatite
DS201412-1017
2014
Zaitsev, A.N., Williams, C.T., Jeffries, T.E., Strekopytov, S., Moutte, J., Ivashchenkova, O.V., Spratt, J., Petrov, S.V., Wall, F., Seltmann, R., Borozdin, A.P.Rare earth elements in phoscorites and carbonatites of the Devonian Kola alkaline province, Russia: examples from Kovdor, Khibina, Vuoriyarvi and Turiy Mys complexes.Ore Geology Reviews, Vol. 61, pp. 204-225.Russia, Kola PeninsulaCarbonatite
DS201412-1019
2014
Zaitsev, A.N., Williams, C.T., Jeffries, T.E., Strekopytov, S., Moutte, J., Ivashchenkova, O.V., Spratt, J., Petrov, S.V., Wall, F., Seltmann, R., Borozdin, A.P.Rare earth elements in phoscorites and carbonatites of the Devonian Kola alkaline province, Russia: examples from Kovdor, Khibina, Vuoriyarvi and Turiy Mys complexes.Ore Geology Reviews, in press availableRussia, Kola PeninsulaCarbonatite
DS201412-1020
2014
Zakharov, E.V., Kurilko, A.S.Local minimum of energy consumption in hard rock failure in negative temperature range.Journal of Mining Science, Vol. 50, 2, pp. 284-287.RussiaDeposit - Udachnaya, Internationalskaya
DS201412-1021
2014
Zartman, R.E., Kogarko, L.N.A Pb isotope investigation of the Lovozero agpaitic nepheline syenite, Kola Peninsul, Russia.Doklady Earth Sciences, Vol. 453, 1, pp. 25-28.Russia, Kola PeninsulaGeochronology
DS201412-1029
2014
Zhirov, D.V., Glaznev, V.N., Zhirova, A.M.Structure of upper crust of the Khibiny area on the basis of the geological and geophysical dat a and results of 3D seismic and density modeling.30th. International Conference on Ore Potential of alkaline, kimberlite and carbonatite magmatism. Sept. 29-, RussiaGeophysics
DS201412-1034
2014
Zinchuk, N.Mineralogical specific features of altered kimberlites.30th. International Conference on Ore Potential of alkaline, kimberlite and carbonatite magmatism. Sept. 29-, RussiaKimberlite
DS201501-0032
2014
Simonov, V.A., Prikhodko, V.S., Kovyazin, S.V., Kotlyarov, A.V.Petrogenesis of meymechites of Sikhote Alin inferred from melt inclusions.Russian Journal of Pacific Geology, Vol. 8, 6, pp. 423-442.RussiaMeymechites
DS201502-0040
2015
Ashchepkov, I., Ntaflos, T., Spetsius, Z.Trace element study of the xenoliths study of the mantle xenoliths from Sytykanskaya pipe, Yakutia.Economic Geology Research Institute 2015, Vol. 17,, # 2624, 1p. AbstractRussiaDeposit - Sytykanskaya
DS201502-0041
2014
Batanova, V.G., Lyaskovskaya, Z.E., Savelieva, G.N., Sobolev, A.V.Peridotites from the Kamchatsky Mys: evidence of oceanic mantle melting near a hotspot.Russian Geology and Geophysics, Vol. 55, pp. 1395-1403.RussiaHarzburgite, plumes

Abstract: A suite of mantle peridotites sampled in the Kamchatsky Mys includes spinel lherzolite, clinopyroxene-bearing harzburgite, and harzburgite. Mineral chemistry of olivine, chromian spinel, and clinopyroxene show strongly correlated element patterns typical of peridotite formed by 8% to more than 22% partial melting. Clinopyroxene in the Kamchatka peridotites is compositionally different from that of both abyssal and suprasubduction varieties: Clinopyroxene in lherzolite is depleted in LREE relative to abyssal peridotite and that in harzburgite has very low LREE and Sr unlike the subduction-related counterpart. These composition features indicate that the rocks ultra-depleted in basaltic components originated in the vicinity of a hotspot, possibly, proto-Hawaiian plume, which provided high temperature and melting degree of the MORB source mantle at mid-ocean ridge.
DS201502-0043
2015
Bogina, M., Zlobin, V., Sharkov, E., Chistyakov, A.Petrogenesis of siliceous high-Mg series rocks as exemplified by the Early Paleoproterozoic mafic volcanic rocks of the Eastern Baltic Shield: enriched mantle versus crustal contamination.Economic Geology Research Institute 2015, Vol. 17,, #3510, 1p. AbstractRussiaPlume geodynamics

Abstract: The Early Paleoproterozoic stage in the Earth's evolution was marked by the initiation of global rift systems, the tectonic nature of which was determined by plume geodynamics. These processes caused the voluminous emplacement of mantle melts with the formation of dike swarms, mafic-ultramafic layered intrusions, and volcanic rocks. All these rocks are usually considered as derivatives of SHMS (siliceous high-magnesian series). Within the Eastern Baltic Shield, the SHMS volcanic rocks are localized in the domains with different crustal history: in the Vodlozero block of the Karelian craton with the oldest (Middle Archean) crust, in the Central Block of the same craton with the Neoarchean crust, and in the Kola Craton with a heterogeneous crust. At the same time, these rocks are characterized by sufficiently close geochemical characteristics: high REE fractionation ((La/Yb)N = 4.9-11.7, (La/Sm)N=2.3-3.6, (Gd/Yb)N =1.66-2.74)), LILE enrichment, negative Nb anomaly, low to moderate Ti content, and sufficiently narrow variations in Nd isotope composition from -2.0 to -0.4 epsilon units. The tectonomagmatic interpretation of these rocks was ambiguous, because such characteristics may be produced by both crustal contamination of depleted mantle melts, and by generation from a mantle source metasomatized during previous subduction event. Similar REE patterns and overlapping Nd isotope compositions indicate that the studied basaltic rocks were formed from similar sources. If crustal contamination en route to the surface would play a significant role in the formation of the studied basalts, then almost equal amounts of contaminant of similar composition are required to produce the mafic rocks with similar geochemical signatures and close Nd isotopic compositions, which is hardly possible for the rocks spaced far apart in a heterogeneous crust. This conclusion is consistent with analysis of some relations between incompatible elements and their ratios. In particular, the rocks show no correlation between Th/Ta and La/Yb, (Nb/La)pm ratio and Th content, and eNd and (Nb/La)N ratio. At the same time, some correlation observed in the eNd-Mg# and (La/Sm)N-(Nb/La)N diagrams in combination with the presence of inherited zircons in the rocks does not allow us to discard completely the crustal contamination. Examination of Sm/Yb-La/Sm relations and the comparison with model melting curves for garnet and spinel lherzolites showed that the parental melts of the rocks were derived by 10-30% mantle melting at garnet-spinel facies transition. Two stage model can be proposed to explain such remarkable isotope-geochemical homogeneity of the mafic volcanic rocks over a large area: (1) ubiquitous emplacement of large volumes of sanukitoid melts in the lower crust of the shield at 2.7 Ga; (2) underplating of plume-derived DM melts at the crust-mantle boundary, melting of the lower crust of sanukitoid composition, and subsequent mixing of these melts with formation of SHMS melts at 2.4 Ga. A simple mixing model showed that in this case the Nd isotope composition of obtained melts remained practically unchanged at variable amounts of contaminant (up to 30%). This work was supported by the RFBR no. 14-05-00458.
DS201502-0047
2015
Buslov, M.M., Dobretsov, N.L., Vovna, G.M., Kiselev, V.I.Structural location, composition, and geodynamic nature of diamond bearing metamorphic rocks of the Kokchetav subduction-collision zone of the Central Asian Fold Belt ( Northern Kazakhstan).Russian Geology and Geophysics, Vol. 56, 1-2, pp. 64-80.Russia, KazakhstanKokchetav massif

Abstract: We present data on different aspects of geology, mineralogy, petrology, geochemistry, and geochronology of diamond-bearing metamorphic rocks of the Kumdy-Kol terrane, which show the similarity of their protolith to the sedimentary rocks of the Kokchetav microcontinent. The structural location of the studied objects in the accretion-collision zone evidences that the subduction of the Kokchetav microcontinent beneath the Vendian-Cambrian Ishim-Selety island arc is the main mechanism of transport of graphite-bearing terrigenous-carbonate rocks to zones of their transformation into diamond-bearing metamorphic rocks. The sedimentary rocks of the Kokchetav microcontinent, which are enriched in graphite and iron sulfides and carbonates, contain all components necessary for diamond crystallization in deep-seated subduction zone. This is in agreement with the experimental data and the compositions of fluid-melt inclusions in the minerals of diamond-bearing rocks.
DS201502-0056
2015
Firsov, A., Ashchepkov, I., Rikhvanov, L.The alkali basaltic and picritic magmatism in Minusa and Kusnetsk basin - geochemical study.Economic Geology Research Institute 2015, Vol. 17,, # 2797, 1p. AbstractRussiaPicrite
DS201502-0066
2015
Kalashnyk, A.Regularities of spatial association of major endogenous uranium deposits and kimberlitic dykes in the uranium ore regions of the Ukrainian Shield.Economic Geology Research Institute 2015, Vol. 17,, # 2872, 1p. AbstractRussia, UkraineKimberlite dykes
DS201502-0067
2015
Kargin, A., Sazonova, L., Nosova, A., Kovalchuk, E., Minevrina, E.Metasomatic processes in the mantle beneath the Arkangelsk province, Russia: evidence from garnet in mantle peridotite xenoliths, Grib pipe.Economic Geology Research Institute 2015, Vol. 17,, # 748, 1p. AbstractRussia, Kola Peninsula, ArchangelDeposit - Grib
DS201502-0070
2015
Kiseleva, O., Zhmodik, S.Distribution and PGE mineralization in the formation of chromitite in ophiolite complexes ( Ospina-Kitoi Kharanur) and ultrabasic massifs of eastern Sayan, Southern Siberia.Economic Geology Research Institute 2015, Vol. 17,, #3203, 1p. AbstractRussiaMelting
DS201502-0074
2015
Logvinova, A.M., Taylor, L.A., Fedorova, E.N., Yelisseyev, A.P., Wirth, R., Howarth, G., Reutsky, V.N., Sobolev, N.V.A unique Diamondiferous peridoite xenolith from the Udachnaya kimberlite pipe, Yakutia: role of subduction in diamond formation.Russian Geology and Geophysics, Vol. 56, 1, pp. 306-320.Russia, YakutiaDeposit - Udachnaya
DS201502-0079
2015
Mikhno, A.O., Korsakov, A.V.Carbonate, silicate, and sulfide melts: heterogeneity of the UHP mineral forming media in calc-silicate rocks from the Kokchetav massif.Russian Geology and Geophysics, Vol. 56, 1-2, pp. 81-99.Russia, KazakhstanKokchetav massif
DS201502-0086
2015
Neuser, R.D., Schertl, H-P., Logvinova, A.M., Sobolev, N.V.An EBSD study of olivine inclusions in Siberian diamonds: evidence for syngenetic growth?Russian Geology and Geophysics, Vol. 56, 1, pp. 321-329.RussiaDiamond morphology
DS201502-0087
2015
Nikolenko, E., Tychkov, N., Afanasiev, V.Mantle xenocrysts of the Chompolo kimberlite field, Aldan shield, south Yakutia.Economic Geology Research Institute 2015, Vol. 17,, # 2471, 1p. AbstractRussiaDeposit - Chompolinskoe
DS201502-0094
2015
Ryabov, V.The Early Triassic dyke belt in northern margin of Siberian platform.Economic Geology Research Institute 2015, Vol. 17,, # 2215, 1p. AbstractRussiaMinette, alnoite
DS201502-0095
2014
Saveleva, V.B., Bazarova, E.P., Danilov, B.S.New finds of carbonatite like rocks in the western Baikal region.Doklady Earth Sciences, Vol. 459, 2, pp. 1483-1487.RussiaCarbonatite
DS201502-0097
2015
Sharapov, V., Sorokin, K., Perepechko, Y.Dynamics of mantle rock metasomatic transformation in permeable lithospheric zones beneath Siberian craton.Economic Geology Research Institute 2015, Vol. 17,, # 2153, 1p. AbstractRussiaGeothermometry
DS201502-0099
2014
Sharygin, I.S.Accessory minerals from shared lherzolites in the Udachnaya-East kimberlitic pipe ( Yakutia): origin and petrogenetic meaning. IN RUSSIANThesis, Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciemces, Novosibirsk, 248p. Available IN RUSSIANRussiaDeposit - Udachnaya-East
DS201502-0100
2015
Shchukina, E., Agashev, A., Pokhilenko, N.Multistage metasomatism in lithospheric mantle beneath V. Grib pipe ( Arkhangelsk Diamondiferous province, Russia): evidence from REE patterns in garnet xenocrysts.Economic Geology Research Institute 2015, Vol. 17,, # 1940, 1p. AbstractRussia, Kola Peninsula, ArchangelDeposit - Grib
DS201502-0101
2015
Shertl, H.P., Neuser, R.D., Logvinova, A.M., Wirth, R., Sobolev, N.V.Cathodluminescence microscopy of the Kokchetav ultra high pressure calcsilicate rocks: what can we learn from silicates, carbon hosting minerals and diamond?Russian Geology and Geophysics, Vol. 56, 1-2, pp. 100-112.Russia, KazakhstanKokchetav massif
DS201502-0102
2015
Skuzovatov, S.Yu., Zedgenizov, D.A., Rakevich, A.L., Shatsky, V.S., Martynovich, E.F.Multiple growth events in diamonds with cloudy Micro inclusions from the Mir kimberlite pipe: evidence from the systematics of optically active defects.Russian Geology and Geophysics, Vol. 56, 1, pp. 330-343.RussiaDeposit - Mir
DS201502-0104
2015
Sobolev, N.V., Sobolev, A.V., Tomilenko, A.A., Kovyazin, S.V., Batanova, V.G., Kuzmin, D.V.Paragenesis and complex zoning of olivine macrocrysts from unaltered kimberlite of the Udachnaya-East pipe, Yakutia: relationship with the kimberlite formation conditions and evolution.Russian Geology and Geophysics, Vol. 56, 1, pp. 260-279.Russia, YakutiaDeposit - Udachnaya-East
DS201502-0106
2015
Sotnikova, I., Vladykin, N.Genesis of rare metal pegmatites and alkaline fluorite rocks of Burpala Massif, northern Baikal folded zone.Economic Geology Research Institute 2015, Vol. 17,, # 3020, 1p. AbstractRussiaCarbonatite
DS201502-0107
2015
Spetsius, Z.V., Bogush, I.N., Kovalchuk, O.E.FTIR mapping of diamond plates of eclogitic and peridotitic xenoliths from Nyurbinskaya pipe, Yakutia: genetic implications.Russian Geology and Geophysics, Vol. 56, 1, pp. 344-353.RussiaDeposit - Nyurbinskaya
DS201502-0114
2015
Titkov, S.V., Shiryaev, A.A., Zudina, N.N., Zudin, N.G., Solodova, Yu.P.Defects in cubic diamonds from the placers in the northeastern Siberian platform: results of IR microspectrometry.Russian Geology and Geophysics, Vol. 56, 1, pp. 354-365.RussiaDiamond morphology
DS201502-0120
2015
Vladykin, N.K-alkaline rocks and lamproites of Tomtor Massif.Economic Geology Research Institute 2015, Vol. 17,, # 2937, 1p. AbstractRussiaLamproite
DS201502-0121
2015
Vladykin, N.Maldzhangarsky rare metal carbonatite massif in the NE part of the Anabar shield.Economic Geology Research Institute 2015, Vol. 17,, # 2891, 1p. AbstractRussiaCarbonatite
DS201502-0126
2014
Yang, J., Meng, F., Xu, X., Robinson, P.T., Dilek, Y., Makeyev, A.B., Wirth, R., Wiedenbeck, M., Cliff, J.Diamonds, native elements and metal alloys from chromitites of the Ray-Iz ophiolite of the Polar Urals.Gondwana Research, Vol. 27, 2, pp. 459-485.Russia, UralsChromitite
DS201503-0131
2015
Alifirova, T.A., Pokhilenko, L.N., Korsakov, A.V.Apatite, SiO2, rutile and orthopyroxene precipitates in minerals of eclogite xenoliths from Yakutian kimberlites, Russia.Lithos, Vol. 226, pp. 31-49.Russia, YakutiaDeposit - Udachnaya, Zarnitsa, Obnazhennaya

Abstract: Eclogite mantle xenoliths from the central part of Siberian craton (Udachnaya and Zarnitsa kimberlite pipes) as well as from the northeastern edge of the craton (Obnazhennaya kimberlite) were studied in detail. Garnet and clinopyroxene show evident exsolution textures. Garnet comprises rutile, ilmenite, apatite, and quartz/coesite oriented inclusions. Clinopyroxene contains rutile (± ilmenite) and apatite precipitates. Granular inclusions of quartz in kyanite and garnet usually retain features of their high-pressure origin. According to thermobarometric calculations, studied eclogitic suite was equilibrated within lithospheric mantle at 3.2–4.9 GPa and 813–1080 °C. The precursor composition of garnets from Udachnaya and Zarnitsa eclogites suggests their stability at depths 210–260 km. Apatite precipitation in clinopyroxenes of Udachnaya and Zarnitsa allows us to declare that original pyroxenes could have been indicative of their high P–T stability. Raman spectroscopic study of quartz and coesite precipitates in garnet porphyroblasts confirms our hypothesis on the origin of the exsolution textures during pressure-temperature decrease. With respect to mineralogical data, we suppose the rocks to be subjected to stepwise decompression and cooling within mantle reservoir.
DS201503-0152
2015
Jensen, S.Diamonds beneath the Popigai crater - northern Russia.Denver Geophysical Society, The Record, No. 3, Feb. pp. 3-5.RussiaPopigai - rehash
DS201503-0157
2015
Kozlov, E.N., Arzamastsev, A.A.Petrogenesis of metasomatic rocks in the fenetized zones of the Ozernaya Varaka alkaline ultrabasic complex Kola Peninsula.Petrology, Vol. 23, 1, pp. 45-67.Russia, Kola PeninsulaAlkalic
DS201503-0170
2015
Rakhmanova, M.I., Nadolinny, V.A., Yuryeva, O.P., Pokhilenko, N.P., Logvinova, A.M.Pecularities of nitrogen impurity aggregation in diamonds from the Sytykanskaya pipe, Yakutia.European Journal of Mineralogy, Vol. 27, pp. 51-56.Russia, YakutiaDeposit - Sytykanskaya
DS201504-0183
2015
Barry, P.H., Hilton, D.R., Day, J.M.D., Pernet-Fisher, J.F., Howarth, G.H., Magna, T., Agashev, A.M., Pokhilenko, N.P., Opkhilenko, L.N., Taylor, L.A.Helium isotope evidence for modification of the cratonic lithosphere during the Permo-Triassic Siberian flood basalt event.Lithos, Vol. 216-217, pp. 73-80.Russia, SiberiaDeposit - Udachnaya, Obnazhennaya

Abstract: Major flood basalt emplacement events can dramatically alter the composition of the sub-continental lithospheric mantle (SCLM). The Siberian craton experienced one of the largest flood basalt events preserved in the geologic record — eruption of the Permo-Triassic Siberian flood basalts (SFB) at ~250 Myr in response to upwelling of a deep-rooted mantle plume beneath the Siberian SCLM. Here, we present helium isotope (3 He/ 4 He) and concentra-tion data for petrologically-distinct suites of peridotitic xenoliths recovered from two temporally-separated kim-berlites: the 360 Ma Udachnaya and 160 Ma Obnazhennaya pipes, which erupted through the Siberian SCLM and bracket the eruption of the SFB. Measured 3 He/ 4 He ratios span a range from 0.1 to 9.8 R A (where R A = air 3 He/ 4 He) and fall into two distinct groups: 1) predominantly radiogenic pre-plume Udachnaya samples (mean clinopyroxene 3 He/ 4 He = 0.41 ± 0.30 R A (1?); n = 7 excluding 1 outlier), and 2) 'mantle-like' post plume Obnazhennaya samples (mean clinopyroxene 3 He/ 4 He = 4.20 ± 0.90 R A (1?); n = 5 excluding 1 outlier). Olivine separates from both kimberlite pipes tend to have higher 3 He/ 4 He than clinopyroxenes (or garnet). Helium con-tents in Udachnaya samples ([He] = 0.13–1.35 ?cm 3 STP/g; n = 6) overlap with those of Obnazhennaya ([He] = 0.05–1.58 ?cm 3 STP/g; n = 10), but extend to significantly higher values in some instances ([He] = 49– 349 ?cm 3 STP/g; n = 4). Uranium and thorium contents are also reported for the crushed material from which He was extracted in order to evaluate the potential for He migration from the mineral matrix to fluid inclusions. The wide range in He content, together with consistently radiogenic He-isotope values in Udachnaya peridotites suggests that crustal-derived fluids have incongruently metasomatized segments of the Siberian SCLM, whereas high 3 He/ 4 He values in Obnazhennaya peridotites show that this section of the SCLM has been overprinted by Permo-Triassic (plume-derived) basaltic fluids. Indeed, the stark contrast between pre-and post-plume 3 He/ 4 He ra-tios in peridotite xenoliths highlights the potentially powerful utility of He-isotopes for differentiating between various types of metasomatism (i.e., crustal versus basaltic fluids).
DS201504-0184
2015
Berryman, E.J., Wunder, B., Wirth, R., Rhede, D., Schettler, G., Franz, G., Heinrich, W.An experimental study on K and Na in corporation in dravitic tourmaline and insight into the origin of Diamondiferous tourmaline from the Kokchetav Massif, Kazakhstan.Contributions to Mineralogy and Petrology, Vol. 169, 19p.Russia, KazakhstanDiamondiferous tourmaline

Abstract: Tourmaline was synthesized in the system MgO-Al2O3-B2O3-SiO2-KCl-NaCl-H2O from an oxide mixture and excess fluid at 500-700 °C and 0.2-4.0 GPa to investigate the effect of pressure, temperature, and fluid composition on the relative incorporation of Na and K in dravitic tourmaline. Incorporation of K at the X-site increases with pressure, temperature, and KCl concentration; a maximum of 0.71 K pfu (leaving 0.29 X-vacant sites pfu) was incorporated into K-dravite synthesized at 4.0 GPa, 700 °C from a 4.78 m KCl, Na-free fluid. In contrast, Na incorporation depends predominately on fluid composition, rather than pressure or temperature; dravite with the highest Na content of 1.00 Na pfu was synthesized at 0.4 GPa and 700 °C from a 3.87 m NaCl and 1.08 m KCl fluid. All synthesized crystals are zoned, and the dominant solid solution in the Na- and K-bearing system is between magnesio-foitite [?(Mg2Al)Al6Si6O18(BO3)3(OH)3OH] and dravite [NaMg3Al6Si6O18(BO3)3(OH)3(OH)], with the dravitic component increasing with the concentration of Na in the fluid. In the K-bearing, Na-free system, the dominant solid solution is between magnesio-foitite and K-dravite [KMg3Al6Si6O18(BO3)3(OH)3(OH)], with the K-dravitic component increasing with pressure, temperature, and the concentration of K in the fluid. The unit-cell volume of tourmaline increases with K incorporation from 1555.1(3) to 1588.1(2) Å3, reflecting the incorporation of the relatively large K+ ion. Comparison of our results to the compositional data for maruyamaite (K-dominant tourmaline) from the ultrahigh-pressure rocks of the Kokchetav Massif in Kazakhstan suggests that the latter was formed in a K-rich, Na-poor environment at ultrahigh-pressure conditions near the diamond-stability field.
DS201504-0186
2015
Burtseva, M.V., Ripp, G.S., Posokhov, V.F., Zyablitsev, A.Yu., Murzintseva, A.E.The sources of fluids for the formation of nephritic rocks of the southern folded belt of the Siberian craton.Doklady Earth Sciences, Vol. 460, 1, pp. 82-86.Russia, SiberiaAlkaline rocks, nephrites
DS201504-0202
2015
Howarth, G.H., Sobolev, N.V., Pernet-Fisher, J.F., Ketcham, R.A., Maisano, J.A., Pokhilenko, L.N., Taylor, D.3-D X-ray tomography of Diamondiferous mantle eclogite xenoliths, Siberia: a review.Journal of Asian Earth Sciences, Vol. 101, 1, pp. 39-67.RussiaDeposit - Udachnaya
DS201504-0219
2015
Smith, E.M., Kopylova, M.G., Frezzotti, M.L., Afanasiev, V.P.Fluid inclusions in the Ebelyakh diamonds: evidence of CO2 liberation in eclogite and the effect of H2O on diamond habit.Lithos, Vol. 216-217, pp. 106-117.RussiaDeposit - Ebelyakh River
DS201504-0224
2015
Tarakanov, R.Z., Veselov, O.V., Andreeva, M.Yu.The possible boundary of phase transitions at a depth of 350 km in the transition zone between continents and oceans.Doklady Earth Sciences, Vol. 460, 2, pp. 159-162.Russia, Far EastGeophysics - seismics
DS201505-0249
2015
Belogub, E.V., Krivovichev, S.V., Pekov, I.V., Kuznetsov, A.M., Yapaskurt, V.O., Kitlyarov, V.A., Chukanov, N.V., Belakoviskiy, D.I.Nickelpicromerite, K2Ni(SO4)2*6H2O, a new picromerite group mineral from Slyudorudnik, South Urals, Russia.Mineralogy and Petrology, Vol. 109, 2, pp. 143-152.Russia, UralsMineralogy

Abstract: A new picromerite-group mineral, nickelpicromerite, K2Ni(SO4)2 - 6H2O (IMA 2012-053), was found at the Vein #169 of the Ufaley quartz deposit, near the town of Slyudorudnik, Kyshtym District, Chelyabinsk area, South Urals, Russia. It is a supergene mineral that occurs, with gypsum and goethite, in the fractures of slightly weathered actinolite-talc schist containing partially vermiculitized biotite and partially altered sulfides: pyrrhotite, pentlandite, millerite, pyrite and marcasite. Nickelpicromerite forms equant to short prismatic or tabular crystals up to 0.07 mm in size and anhedral grains up to 0.5 mm across, their clusters or crusts up to 1 mm. Nickelpicromerite is light greenish blue. Lustre is vitreous. Mohs hardness is 2-2½. Cleavage is distinct, parallel to {10-2}. Dmeas is 2.20(2), Dcalc is 2.22 g cm?3. Nickelpicromerite is optically biaxial (+), ? = 1.486(2), ? = 1.489(2), ? = 1.494(2), 2Vmeas =75(10)°, 2Vcalc =76°. The chemical composition (wt.%, electron-microprobe data) is: K2O 20.93, MgO 0.38, FeO 0.07, NiO 16.76, SO3 37.20, H2O (calc.) 24.66, total 100.00. The empirical formula, calculated based on 14 O, is: K1.93Mg0.04Ni0.98S2.02O8.05(H2O)5.95. Nickelpicromerite is monoclinic, P21/c, a = 6.1310(7), b = 12.1863(14), c = 9.0076(10) Å, ? = 105.045(2)°, V = 649.9(1) Å3, Z = 2. Eight strongest reflections of the powder XRD pattern are [d,Å-I(hkl)]: 5.386--34(110); 4.312-46(002); 4.240-33(120); 4.085--100(012, 10-2); 3.685-85(031), 3.041-45(040, 112), 2.808-31(013, 20-2, 122), 2.368-34(13-3, 21-3, 033). Nickelpicromerite (single-crystal X-ray data, R = 0.028) is isostructural to other picromerite-group minerals and synthetic Tutton’s salts. Its crystal structure consists of [Ni(H2O)6]2+ octahedra linked to (SO4)2? tetrahedra via hydrogen bonds. K+ cations are coordinated by eight anions. Nickelpicromerite is the product of alteration of primary sulfide minerals and the reaction of the acid Ni-sulfate solutions with biotite.
DS201506-0256
2015
Bell, K., Zaitsev, A.N., Spratt, J., Frojdo, S., Rukhlov, A.S.Elemental, lead and sulfur isotopic compositions of galena from Kola carbonatites, Russia - implications for melt and mantle evolution.Mineralogical Magazine, Vol. 79, 2, pp. 219-241.RussiaCarbonatite, Kola

Abstract: Galena from four REE-rich (Khibina, Sallanlatvi, Seblyavr, Vuoriyarvi) and REE-poor (Kovdor) carbonatites, as well as hydrothermal veins (Khibina) all from the Devonian Kola Alkaline Province of northwestern Russia was analysed for trace elements and Pb and S isotope compositions. Microprobe analyses show that the only detectable elements in galena are Bi and Ag and these vary from not detectable to 2.23 and not detectable to 0.43 wt.% respectively. Three distinct galena groups can be recognized using Bi and Ag contents, which differ from groupings based on Pb isotope data. The Pb isotope ratios show significant spread with 206Pb/204Pb ratios (16.79 to 18.99), 207Pb/204Pb (15.22 to 15.58) and 208Pb/204Pb ratios (36.75 to 38.62). A near-linear array in a 207Pb/204Pb vs. 206Pb/204Pb ratio diagram is consistent with mixing between distinct mantle sources, one of which formed during a major differentiation event in the late Archaean or earlier. The S isotopic composition (?34S) of galena from carbonatites is significantly lighter (–-6.7 to -–10.3% Canyon Diablo Troilite (CDT) from REE-rich Khibina, Seblyavr and Vuoriyarvi carbonatites, and - 3.2% CDT from REE-poor Kovdor carbonatites) than the mantle value of 0%. Although there is no correlation between S and any of the Pb isotope ratios, Bi and Ag abundances correlate negatively with ?34S values. The variations in the isotopic composition of Pb are attributed to partial melting of an isotopically heterogeneous mantle source, while those of ?34S (together with Bi and Ag abundances) are considered to be process driven. Although variation in Pb isotope values between complexes might reflect different degrees of interaction between carbonatitic melts and continental crust or metasomatized lithosphere, the published noble gas and C, O, Sr, Nd and Hf isotopic data suggest that the variable Pb isotope ratios are best attributed to isotopic differences preserved within a sub-lithospheric mantle source. Different Pb isotopic compositions of galena from the same complex are consistent with a model of magma replenishment by carbonatitic melts/fluids each marked by quite different Pb isotopic compositions.
DS201506-0268
2015
Frizon de Lamotte, D., Fourdan, B., Leleu, S., Leparmentier, F., de Clarens, P.Style of rifting and the stages of Pangea break up.Tectonics, Vol. 34, 5, pp. 1009-1029.Global, RussiaPangea
DS201506-0269
2014
Garanin, V.K., Leybov, M.B.Diamonds: a sketch portrait (History of discovery of Russian deposits and their genesis).Mineralogical Almanac, Vol. 19, 1, pp. 30-47.RussiaHistory
DS201506-0276
2015
Ignatov, P.A., Novikov, K.V., Shmonov, A.M., Razumov, A.N., Kilizhikov, O.K.Comparative analysis of ore-bearing structures in Maiskoe, Markha and Ozernoe kimberlite bodies at the Nakyn Field, Yakutia.Geology of Ore Deposits, Vol. 57, 2, pp. 111-117.RussiaDeposit - Nakyn
DS201506-0287
2015
Nedosekova, I.L., Belousova, E.A., Belyatsky, B.V.Hf isotopes and trace elements as indicators of zircon genesis in the evolution of the alkaline-carbonatite magmatic system ( Il'meno-Visnevogorskii complex, Urals, Russia.)Doklady Earth Sciences, Vol. 461, 2, pp. 384-389.Russia, UralsCarbonatite
DS201506-0288
2015
Nkono, C., Femenias, O., Lene, A., Mercier, J-C., Ngounouno, F.Y., Demaiffe, D.Relationship between the fractal dimension of orthopyroxene distribution and the temperature in mantle xenoliths.Geological Journal, in press availableRussia, PolandXenoliths
DS201507-0317
2015
Ignaov, P.A., Novikov, K.V., Shmonov, A.M., Razumov, A.N., Kilizhikov, O.K.Comparative analysis of ore bearing structures in Maiskoe, Markha and Ozernoe kimberlite bodies at the Nakyn field, Yakutia.Geology of Ore Deposits, Vol. 57, 2, pp. 111-117.RussiaDeposit - Nakyn
DS201507-0320
2015
Lazereva, E.V., Zhmodik, S.M., Dobretsov, N.L., Tolstov, A.V., Shcherbov, B.L., Karmanov, N.S., Gerasimov, E.Yu., Bryanskaya, A.V.Main minerals of abnormally high grade ores of the Tomtor deposit ( Arctic Siberia).Russian Geology and Geophysics, Vol. 56, pp. 844-873.RussiaDeposit - Tomtor
DS201507-0325
2015
Mikhailova, J.A., Kalashnikov, A.O., Sokharev, V.A., Pakhomovsky, Y.A., Konopleva, N.G., Yakovenchuk, V.N., Bazai, A.V., Goryainov, P.M., Ivanyuk, G.Yu.3D mineralogical mapping of the Kovdor phoscorite-carbonatite complex, Russia.Mineralium Deposita, In press available. 19p.RussiaCarbonatite
DS201507-0327
2015
Mints, M.V.Post collisional lamproites of the Por'ya Guba dike fields.East European Craton: Early Precambrian history & 3 D. Model Authors: M.V. Mints, K.A. Dokukina, A.N. Konilov, I.B. Philippova, C.L. Zlobin., GSA SPE 510, 433p. Chapter 11, section 3Russia, Kola PeninsulaLamproite
DS201507-0329
2015
Novella, D., Bolfan-Casanova, N., Nestola, F., Harris, J.W.H2O in olivine and garnet inclusions still trapped in diamonds from the Siberian craton: implications for the water content of cratonic lithosphere peridotites.Lithos, Vol. 230, pp. 180-183.RussiaDeposit - Udachnaya
DS201507-0330
2015
Pavlov, V.E., Shatsilli, A.V.Place of birth of the Siberian platform.Doklady Earth Sciences, Vol. 462, 1, pp. 444-448.RussiaMagmatism
DS201507-0331
2015
Persikov, E.S., Bukhtiyarov, P.G., Sokol, A.G.Change in the viscosity of kimberlite and basaltic magmas during their origin and evolution ( prediction).Russian Geology and Geophysics, Vol. 56, pp. 885-892.Canada, Northwest Territories, RussiaDeposit - Jericho, Udachnaya
DS201507-0333
2015
Sazonova, L.V., Nosova, A.A., Kargin, A.V., Borisovskiy, S.E., Tretyachenko, V.V., Abazova, Z.M., Griban, Yu.G.Olivine from the Pionerskaya and V. Grib kimberlite pipes, Arkangelsk diamond province, Russia: types, composition, and origin.Petrology, Vol. 23, 3, pp. 227-258.RussiaDeposit - Grib
DS201507-0334
2015
Sharapov, V.N., Chudnenko, K.V., Tomilenko, A.A.The physicochemical dynamics of carbonatization of the rocks of lithospheric mantle beneath the Siberian Platform.Russian Geology and Geophysics, Vol. 56, pp. 696-708.RussiaCarbonatite
DS201507-0335
2015
Shatsky, V.S., Zedgenizov, D.A., Ragozin, A.L., Kalinina, V.V.Diamondiferous subcontinental lithospheric mantle of the northeastern Siberian Craton: evidence from mineral inclusions in alluvial diamonds. Kapchan Fold Belt Olenek ProvinceGondwana Research, Vol. 28, 1, pp. 106-120.RussiaDiamond - inclusions
DS201507-0336
2015
Shchukina, E.V., Agashev, A.M., Golovin, N.N., Pokhilenko, N.P.Equigranualr eclogites from the V. Grib kimberlite pipe: evidence for Paleoproterozoic subduction on the territory of the Arkangelsk Diamondiferous province.Doklady Earth Sciences, Vol. 462, 1, pp. 497-501.Russia, Archangel, Kola PeninsulaDeposit - Grib
DS201508-0355
2015
Garanin, V.K.The Fersman mineralogical museum in the 21st century: past, present and future,Mineral @fmmm.ru, Vol. 18, 3, pp. 24-41.RussiaHistory - Fersman
DS201508-0368
2015
Lyalina, L., Zolotarev, A.Jr., Selivanova, E., Savchenko, Ye., Zozulya, D., Krivovichev, S., Mikhailova, Yu.Structural characterization and composition of Y-rich hainite from Sakharojok nepheline syenite pegmatite ( Kola Peninsula, Russia).Mineralogy and Petrology, Vol. 109, 4, pp. 443-451.Russia, YakutiaNepheline syenite
DS201508-0371
2015
Pell, R.Kovdor plans for expansion. International Mining, July p. 16, 18, 20Russia, Kola PeninsulaDeposit - Kovdor
DS201508-0379
2015
Wang, K-L., Prikhodko, V., O'Reilly, S.Y., Griffin, W.L., Pearson, N.J., Kovach, V., Lizuka, Y., Chien, Y-H.Ancient mantle lithosphere beneath the Khanka Massif in Russian Far-East: in situ Re-Os evidence.Terra Nova, Vol. 27, 4, pp. 277-284.RussiaGeochronology
DS201509-0401
2015
Ionov, D.A., Carlson, R.W., Doucet, L.S., Golovin, A.V., Oleinikov, O.B.The age and history of the lithospheric mantle of the Siberian craton: Re-Os and PGE study of peridotite xenoliths from the Obnazhennaya kimberlite.Earth and Planetary Science Letters, Vol. 428, pp. 108-119.Russia, SiberiaDeposit - Obnazhennaya

Abstract: The formation age of the lithospheric mantle of the Siberian craton (one of the largest on Earth) is not well established; nearly all published whole-rock Re–Os data are for mantle xenoliths from a single kimberlite in the center of the craton (Udachnaya). We report Re–Os isotope and PGE concentration data for 19 spinel and garnet peridotite xenoliths from the Obnazhennaya kimberlite in the northeastern portion of the craton. Most samples in this study, and many Obnazhennaya peridotites in general, show a combination of relatively low Al2O3 (0.1–2%) with high CaO (1.4–4%) concentrations. Only four dunites and harzburgites in our sample suite have low contents of both Al2O3 and CaO (0.1–0.8%), but their relatively low Mg# (0.888–0.919) and highly variable Os concentrations (0.6–35 ppb) suggest they may have formed in melt migration channels rather than as residues of partial melt extraction. A group of six Ca-rich (2.0–3.2% CaO) peridotites yields the highest Re–Os model ages (mean TRD = 2.8 Ga, mean TMA = 3.5 Ga). Eight peridotites with low to moderate Al2O3 (<2%) and Mg# ?0.91, including three low-Ca harzburgites, yield lower Re–Os model ages (mean TRD = 1.9 Ga, mean TMA = 2.2 Ga). The remainder of the samples may not yield meaningful TRD ages because they are not refractory (Al2O3 >2.6% and/or Mg# ?0.90). We interpret these results as evidence for a two-stage formation of the lithospheric mantle. The peridotites formed at the two stages show very similar chemical compositions. The enrichment in Ca, which we attribute to widespread post-melting metasomatism by carbonate-rich melts, may have taken place either at the end of the Archean melting event, when at least one Ca–Al-rich peridotite was formed, or later. The combined Re–Os age data on xenoliths from Obnazhennaya and Udachnaya suggest that the lithospheric mantle beneath the Siberian craton was not formed in a single event, but grew in at least two events, one in the late Archean and the other in the Paleoproterozoic. This study further indicates that the formation of highly melt-depleted lithospheric mantle was not limited to the Archean, but continued well into the Paleoproterozoic when the Siberian craton was stabilized.
DS201509-0411
2015
Krupchatnikov, V.I., Vrublevskii, V.V., Kruk, N.N.Early Mesozoic lamproites and monzonitoids of southeastern Gorny Altai: geochemistry, Sr-Nd isotope composition, and sources of melts.Russian Geology and Geophysics, Vol. 56, pp. 825-843.RussiaChuya Complex

Abstract: Small intrusions of lamprophyres and lamproites (Chuya complex) and K-monzonitoids (Tarkhata and Terandzhik complexes) are widespread in southeastern Gorny Altai. Geochronological (U-Pb and Ar-Ar) isotope studies show their formation in the Early-Middle Triassic (~ 234-250 Ma). Lamproites have been revealed within two magmatic areas and correspond in geochemical parameters to the classical Mediterranean and Tibet orogenic lamproites. According to isotope data ((87Sr/86Sr)T = 0.70850-0.70891, (143Nd/144Nd)T = 0.512157-0.512196, 206Pb/204Pb = 17.95-18.05) and Th/La and Sm/La values, the Chuya lamproites and lamprophyres melted out from the enriched lithospheric mantle with the participation of DM, EM1, EM2, and SALATHO. The monzonitoid series of the Tarkhata and Terandzhik complexes are similar in petrographic and geochemical compositions but differ significantly in Sr-Nd isotope composition: The Tarkhata monzonitoids are close to the Chuya lamproites, whereas the Terandzhik ones show a higher portion of DM ((87Sr/86Sr)T = 0.70434-0.70497, (143Nd/144Nd)T = 0.512463-0.512487) in their source, which suggests its shallower depth of occurrence and the higher degree of its partial melting as compared with the derivates of the Chuya and Tarkhata complexes. The studied rock associations tentatively formed in the postcollisional setting under the impact of the Siberian superplume.
DS201509-0427
2015
Shatsky, V.S., Skuzovatov, S.Yu., Ragozin, A.L., Sobolev, N.V.Mobility of elements in a continental subduction zone: evidence from the UHP metamorphic complex of the Kokchetav massif.Russian Geology and Geophysics, Vol. 56, pp. 1016-1034.RussiaKokchetav massif

Abstract: We studied clastics of high-alumina garnet-kyanite-mica schists and garnet-kyanite-quartz granofelses, including diamond-bearing ones, found in the eluvial sediments near Lake Barchi. In contents of major elements the studied rocks correspond to argillaceous shales. The garnet-kyanite-quartz granofelses are poorer in K (0.49-1.35 wt.% K2O) than the garnet-kyanite-mica schists (4.9-2.2 wt.% K2O) but have the same contents of other major components. The REE patterns of most of the garnet-kyanite-phengite schists are similar to those of the Post-Archean Australian Shale (PAAS) (xLa/Yb = 13). All garnet-kyanite-quartz rocks are much stronger depleted in LREE (xLa/Yb = 1.4) and other incompatible elements. Our studies show that allanite and monazite are the main concentrators of LREE and Th in the garnet-kyanite-phengite rocks of the Barchi site. Monazite, occurring as inclusions in garnet, contains not only LREE but also Th, U, and Pb. Rutile of the nondepleted rocks is enriched in Fe and Nb impurities only. The garnet-kyanite-quartz granofelses bear rutile, apatite, and xenotime as accessory phases. Rutile of the depleted rocks shows wide variations in contents of Nb, Ta, and V impurities. In places, the contents of Nb and Ta reach 10.5 and 2.3 wt.%, respectively. The rutile decomposes into rutile with Nb (1.4 wt.%) and Fe (0.87 wt.%) impurities and titanium oxide rich in Fe (6.61 wt.%), Nb (up to 20.8 wt.%), and Ta (up to 2.81%) impurities. Based on the measured contents of incompatible elements in differently depleted high-alumina rocks, the following series of element mobility during UHP metamorphism has been established: Th > Ce > La > Pr > Nd > K > Ba > Rb > Cs > Sm > Eu. The contents of U, P, and Zr in the depleted rocks are similar to those in the nondepleted rocks. The studies have shown that metapelites subducted to the depths with diamond stability conditions can be depleted to different degrees. This might be either due to their exhumation from different depths of the subduction zone or to the presence of an external source of water controlling the temperature of dissolution of phengite and the formation of supercritical fluid/melt.
DS201509-0439
2015
Yelisseyev, A., Khrenov, A., Afanasiev, V., Pustovarov, V., Gromilov, S., Panchenko, A., Pokhilenko, N., Litasov, K.Luminescence of natural carbon nanomaterial: impact diamonds from the Popigai crater.Diamond and Related Materials, Vol. 58, pp. 69-77.RussiaDeposit - Popigai

Abstract: Impact diamonds (IDs) from the Popigai crater are aggregates of nanoparticulate graphite and cubic and hexagonal diamonds. IDs demonstrate broad-band emissions at 3.05, 2.8, 2.3 and 2.0 eV, which are associated with structural defects and are similar to those in detonation ultra-dispersed diamonds and CVD diamond films. A doublet with components at 1.7856 and 1.7892 eV in some ID samples is related to R1,2 lines of Cr3 + ions in corundum inclusions. The presence of N3, H3, NV0 and NV? vibronic systems in some of the ID samples shows that (i) there is nitrogen impurity and (ii) samples underwent high temperature annealing that promoted vacancies and nitrogen diffusion and defect aggregation. The luminescence decay fits with a sum of two exponential components: lifetime of the fast one is in the 5 to 9 ns range. Parameters of the traps responsible for broad thermoluminescence peaks at 148, 180, 276 and 383 K were estimated.
DS201510-1756
2014
Andreeva, I.A.Salt ( carbonatite) melts of the Bol'shaya Tagna Massif, the eastern Sayan region: evidence from melt inclusions.Deep-seated magmatism, its sources and plumes, Proceedings of XIII International Workshop held 2014., Vol. 2014, pp. 148-159.RussiaMineral chemistry
DS201510-1758
2015
Ashchepkov, I.V., Logvinova, A.M., Reimers, L.F., Ntaflos, T., Spetisus, Z.V., Vladykin, N.V., Downes, H., Yudin, D.S., Travin, A.V., Makovchuk, I.V., Palesskiy, V.S., KhmelNikova, O.S.The Sytykanskaya kimberlite pipe: evidence from deep seated xenoliths and xenocrysts for the evolution of the mantle beneath Alakit, Yakutia, Russia.Geoscience Frontiers, Vol. 6, 5, pp. 687-714.Russia, YakutiaDeposit - Sytykanskaya

Abstract: Mantle xenoliths (>150) and concentrates from late autolithic breccia and porphyritic kimberlite from the Sytykanskaya pipe of the Alakit field (Yakutia) were analyzed by EPMA and LAM ICP methods. In P-T-X-f(O2) diagrams minerals from xenoliths show widest variations, the trends P-Fe#-CaO, f(O2) for minerals from porphyric kimberlites are more stepped than for xenocrysts from breccia. Ilmenite PTX points mark moving for protokimberlites from the lithosphere base (7.5 GPa) to pyroxenite lens (5-3.5 GPa) accompanied by Cr increase by AFC and creation of two trends P-Fe#Ol ?10-12% and 13-15%. The Opx-Gar-based mantle geotherm in Alakit field is close to 35 mW/m2 at 65 GPa and 600 °C near Moho was determined. The oxidation state for the megacrystalline ilmenites is lower for the metasomatic associations due to reduction of protokimberlites on peridotites than for uncontaminated varieties at the lithosphere base. Highly inclined linear REE patterns with deep HFSE troughs for the parental melts of clinopyroxene and garnet xenocrysts from breccia were influenced by differentiated protokimberlite. Melts for metasomatic xenoliths reveal less inclined slopes without deep troughs in spider diagrams. Garnets reveal S-shaped REE patterns. The clinopyroxenes from graphite bearing Cr-websterites show inclined and inflected in Gd spectrums with LREE variations due to AFC differentiation. Melts for garnets display less inclined patterns and Ba-Sr troughs but enrichment in Nb-Ta-U. The 40Ar/39Ar ages for micas from the Alakit mantle xenoliths for disseminated phlogopites reveal Proterozoic (1154 Ma) age of metasomatism in early Rodinia mantle. Veined glimmerites with richterite - like amphiboles mark ?1015 Ma plume event in Rodinia mantle. The ?600-550 Ma stage manifests final Rodinia break-up. The last 385 Ma metasomatism is protokimberlite-related.
DS201510-1759
2014
Ashchepkov, I.V., Vladykin, N.V., Ntaflos, T., Logvinova, A.M., Yudin, D.S., Karpenko, M.A., Paleeskiy, V.S., Alymova, N.V., Khmelnikova, O.S.Deep seated xenoliths and xencrysts from Sytykanskaya pipe: evidence for the evolution of the mantle beneath Alakit, Yakutia.Deep-seated magmatism, its sources and plumes, Proceedings of XIII International Workshop held 2014., Vol. 2014, pp. 203-232.Russia, YakutiaDeposit - Sytykanskaya

Abstract: The concentrate from two phases of the kimberlite (breccia and porphyritic kimberlite) and about 130 xenoliths from the Sytykanskaya pipe of the Alakit field (Yakutia) were studied by EPMA and LAM ICP methods. Reconstructions of the PTXfO2 mantle sections were made separately for the two phases. The porphyritic kimberlites and breccia show differences in the minerals although the layering and pressure interval remains the same. For the porphyritic kimberlite the trends P- Fe# - CaO in garnet, fO2 are sub-vertical while the xenocrysts from the breccia show stepped and curved trends possibly due to interaction with fluids. Minerals within xenoliths show the widest variation in all pressure intervals. PT points for the ilmenites which trace the magmatic system show splitting of the magmatic source into two levels at the pyroxenite lens (4GPa) accompanied by peridotite contamination and an increase in Cr in ilmenites. Two groups of metasomatites with Fe#Ol ~ 10-12% and 13-15% were created by the melts derived from protokimberlites and trace the mantle columns from the lithosphere base (Ilm - Gar - Cr diopside) to Moho becoming essentially pyroxenitic (Cr-diopside with Phl). The first Opx-Gar-based mantle geotherm from the Alakit field has been constructed from15 associations and is close to 35 mw/m2 in the lower part of mantle section but deviates to high temperatures in the upper part of the mantle section. The oxidation state for the protokimberlite melts determined from ilmenites is higher than for the other pipes in the Yakutian kimberlite province which probably accounts for the decrease in the diamond grade of this pipe. The geochemistry of the minerals (garnets and clinopyroxenes) from breccias, metasomatic peridotite xenoliths and pyroxenites systematically differ. Xenocrysts from the breccia were produced by the most differentiated melts and enriched protokimberlite or carbonatite; they show highly inclined nearly linear REE patterns and deep troughs of HFSE. Minerals of the metasomatic xenoliths are less inclined with lower La/Cen ratios and without troughs in spider diagrams. The garnets often show S-shaped patterns. Garnets from the Cr websterites show round REE patterns and deep troughs in Ba-Sr but enrichment in Nb-Ta-U. The clinopyroxenes reveal the inclined and inflected on Gd spectrums with variations in LREE due to AFC differentiation. The 40Ar-39Ar ages for micas from the Alakit field reveal three intervals for the metasomatism. The first (1154 Ma) relates to dispersed phlogopites found throughout the mantle column, and probably corresponds to the continental arc stage in the early stage of Rodinia. Veined highly alkaline and Ti-rich veins with richterite ~1015 Ma corresponds to the plume event within the Rodinia mantle. The ~600-550 Ma stage marks the final Rodinia break-up. The last one near 385 Ma is protokimberlite related.
DS201510-1761
2014
Chakhmouradian, A.R., Cooper, M.A., Ball, N., Reguir, E.P., Medici, L., Abdu, Y., Antonov, A.A.Vladykinite, Na3Sr4(Fe2+Fe3+)Si8024: a new complex sheet silicate from peralkaline rocks of the Murun Complex, eastern Siberia, Russia.Deep-seated magmatism, its sources and plumes, Proceedings of XIII International Workshop held 2014., Vol. 2014, pp. 5-21.Russia, SiberiaDeposit - Murun

Abstract: Vladykinite, ideally Na3Sr4(Fe2+Fe3+)Si8O24, is a new complex sheet silicate occurring as abundant prismatic crystals in a dike of coarse-grained peralkaline feldspathoid syenite in the north-central part of the Murun complex in eastern Siberia, Russia (Lat. 58° 22? 48? N; Long. 119° 03? 44? E). The new mineral is an early magmatic phase associated with aegirine, potassium feldspar, eudialyte, lamprophyllite, and nepheline; strontianite (as pseudomorphs after vladykinite) and K-rich vishnevite are found in the same assemblage, but represent products of late hydrothermal reworking. Vladykinite is brittle, has a Mohs hardness of 5, and distinct cleavage on {100}. In thin section, it is colorless, biaxial negative [a = 1.624(2), b = 1.652(2), g = 1.657(2), 2Vmeas = 44(1)°, 2Vcalc = 45(1)°] and shows an optic orientation consistent with its structural characteristics (X^a = 5.1° in b obtuse, Z^c = 4.7° in b acute, Y = b). The Raman spectrum of vladykinite consists of the following vibration modes (listed in order of decreasing intensity): 401, 203, 465, 991, 968, 915, 348, 167, 129, 264, 1039, and 681 cm–1; O-H signals were not detected. The Mössbauer spectrum indicates that both Fe2+ and Fe3+ are present in the mineral (Fe3+/FeS = 0.47), and that both cations occur in a tetrahedral coordination. The mean chemical composition of vladykinite (acquired by wavelength-dispersive X?ray spectrometry and laser-ablation inductively-coupled-plasma mass-spectrometry), with FeS recast into Fe2+ and Fe3+ in accord with the Mössbauer data, gives the following empirical formula calculated to 24 O atoms: (Na2.45Ca0.56)S3.01(Sr3.81 K0.04Ba0.02La0.02Ce0.01)S3.90(Fe2+0.75Fe3+0.66Mn0.26Zn0.16Al0.12Mg0.05Ti0.01)S2.01(Si7.81Al0.19)S8.00O24. The mineral is monoclinic, space group P21/c, a = 5.21381(13), b = 7.9143(2), c = 26.0888(7) Å, b = 90.3556(7)°, V = 1076.50(5) Å3, Z = 2. The ten strongest lines in the powder X?ray diffraction pattern are [dobs in Å (I) (hkl)]: 2.957 (100) (123, 123); 2.826 (100) (117, 117); 3.612 (58) (114, 114); 3.146 (37) (120); 2.470 (32) (210, 01.10); 4.290 (30) (111, 111); 3.339 (30) (106, 115, 106); 2.604 (28) (200); 2.437 (25) (034); 1.785 (25) (21.10, 234). The structure of vladykinite, refined by single-crystal techniques on the basis of 3032 reflections with Fo > 4sFo to R1 = 1.6%, consists of tetrahedral sheets parallel to (100) and consisting of (Si8O24)16– units incorporating four-membered silicate rings and joined into five- and eight-membered rings by sharing vertices with larger tetrahedra hosting Fe2+, Fe3+, Mn, Zn, Al, Mg, and Ti. Larger cations (predominantly Na, Sr, and Ca) are accommodated in octahedral and square-antiprismatic interlayer sites sandwiched between the tetrahedral sheets. Structural relations between vladykinite and other sheet silicates incorporating four-, five-, and eight-membered rings are discussed. The name vladykinite is in honor of Nikolay V. Vladykin (Vinogradov Institute of Geochemistry, Russia), in recognition of his contribution to the study of alkaline rocks. Holotype and co-type specimens of the mineral were deposited in the Robert B. Ferguson Museum of Mineralogy in Winnipeg, Canada.
DS201510-1776
2015
Kamenetsky, V.S.,Park, J-W., Mungall, J.E., Pushkarev, E.V., Ivanov, A.V., Kamenetsky, M.B., Yaxley, G.M.Crystallization of platinum group minerals from silicate melts: evidence from Cr-spinel hosted inclusions in volcanic rocks.Geology, Vol. 43, 10, pp. 903-906.RussiaMeimechite

Abstract: The formation of platinum-group minerals (PGM) during magma differentiation has been suggested to be an important process in primitive magma evolution, but decisive textural evidence is difficult to obtain because PGM tend to be very small and very rare. We have investigated Cr-spinel phenocrysts from two oxidized magmas (Siberian meimechite and Vanuatu [Ambae Island] arc picrite) and one reduced magma (Uralian [Russia] ankaramite) for PGM inclusions and their platinum-group element (PGE) contents. We observed Os-Ir and Pt-Fe alloys entrapped as inclusions in Cr-spinel in all three suites of lava. The alloys may occur in association with PGE-bearing sulfides and co-trapped silicate melt. Cr-spinel crystals also contain measurable amounts of Os, Ir, Ru, and Rh, which are at concentrations 2×–100× higher than mantle values. Thermodynamic models indicate that the arc picrite and ankaramite melts were probably both saturated with the observed PGM phases, whereas the Os-Ir alloy grain observed in the meimechite is not in equilibrium with the “bulk” melt. Our results demonstrate that PGM (alloys and sulfides) occur as liquidus phases in primitive (unfractionated) melts at high temperature and at a variety of redox conditions, and that Cr-spinel is a significant host of PGE, either in the crystal structure or as PGM inclusions.
DS201510-1778
2015
Kogarko, L.N.Fractionation of zirconium and hafnium during evolution of a highly alkaline magmatic system, Lovozero massif, Kola Peninsula.Doklady Earth Sciences, Vol. 463, 2, pp. 792-794.Russia, Kola PeninsulaLovozero Masdif
DS201510-1779
2014
Kogarko, L.N.Geochemical features of radioactive elements in ultramafic-alkaline rocks ( example - largest in the globe Guli complex). Deep-seated magmatism, its sources and plumes, Proceedings of XIII International Workshop held 2014., Vol. 2014, pp. 22-31.Russia, SiberiaDeposit - Guli Complex
DS201510-1789
2015
Moe, K.S., Yang, J-S, Johnson, P., Xu, X., Wang, W.Microdiamonds in chromitite and peridotite. Type 1aB and 1bGSA Annual Meeting, Paper 300-5, 1p. Abstract only BoothRussiaSpectroscopy
DS201510-1797
2015
Pashkevich, I.K., Savchenko, A.S., Starostenko, V.I., Sharov, N.V.A three dimensional geophysical model of the Earth's crust in the central part of the Karelian Craton.Doklady Earth Sciences, Vol. 463, 2, pp. 808-812.RussiaGeophysics
DS201510-1801
2014
Sablukov, S.M., Sablukova, L.I., Stegnitskiy, Yu.B., Karpenko, M.A.Origin of the mantle xenoliths with green garnets from kimberlites ( Dike Newlands, southern Africa and Nyurbinskaya pipe, Yakutia).Deep-seated magmatism, its sources and plumes, Proceedings of XIII International Workshop held 2014., Vol. 2014, pp. 178-202.Africa, South Africa, Russia, YakutiaDeposit - Dike Newlands, Nyurbinskaya

Abstract: Green garnets occur in concentrates of diamondiferous kimberlite bodies in Yakutia (Udachnaya, Mir, etc.), South Africa (Newlands, Bellsbank), Venezuela (Guaniamo sills), and Canada (Mud Lake field). Mantle xenoliths of rocks containing such garnets are very rare. We found peridotite xenoliths with green garnet in situ in kimberlites of the Newlands dike. Xenoliths are irregular in form, 4.5*1.9 cm, 1.5*0.8 cm, and 1.0*0.5 cm in size, and have similar modal compositions: gar(70)+ol(28)+sp(2), gar(9)+ol(90)+sp(1) and gar(50)+ol(30)+sp(20). Rock texture is medium-crystalline, while structure is massive. We also identified a garnet macrocryst of 0.5*0.4 cm in size with a pale green kelyphytic rim. Garnet composition in the studied samples is quite constant and is characterized by the high Cr2O3 content (10.94-11.99%) and CaO content (19.52-24.94%) at the reduced contents of TiO2 (0.24-0.52%). The chrome spinel is high Cr2O3 (55%) content and the low TiO2 (0.5-0.6%) content. Olivine is high-Mg (Fo95), but elevated CaO content (0.09%). Isotopic composition of oxygen in garnet (?18O = 4.05-4.25 pm) and olivine (?18O = 4.91 pm) differs drastically from the mantle values. Rb-Sr and Sm-Nd isotopic composition show the relatively "young" model age of the sample relative to the depleted mantle (1.78 billion years), the age of formation of this rocks is also relatively "young" - probable mezoproterozoic. In kimberlites and placers of the Nyurbinskaya pipe (Nakyn field, Yakutia) there are 4 green garnet grains of 0.5-2.0 mm in size, including one intergrowth gar+sp. Most garnets are characterized by the higher CaO (18.06-22.87%) and TiO2 (1.46, 1.65, 1.75%) contents not noted before for similar garnets. Studied green garnets have the similar "sine wave" type of REE distribution for low-Ti garnets and a "raised" type of REE distribution with enrichment in medium and light REE for high-Ti garnet. All green garnets are characterized by an increased content of light REE and Sc. High-Ti garnets are characterized by an increased content of light and middle REE, as well as titanium, and a particularly sharply increased content of Zr (!). Paragenesis ol+sp is formed at 805oand 23.4 kbar, and paragenesis ol+gar is formed at 1080oand 23.8 kbar. The rocks are characterized by nonequilibrium paragenesis ol+sp+gar and formation at moderate depths (80-90 km) under conditions of high heat flow (52-55 mW/m2). Judging from modal composition of studied xenoliths (absence of clinopyroxene), variations in chemical compositions and trace element compositions, relatively "young" model age and non-mantle isotopy of oxygen in garnets, these rocks are not "wehrlites" and likely represent metasomatic rocks such as uvarovite-chromite veins or schlierens at the moderate depths of upper mantle - it is similar to uvarovite-chromite veins of the metasomatic or a hydrothermal origin in the crustal serpentinites.
DS201510-1803
2015
Shapovalov, Yu.B., Gorbachev, N.S., Kostyuk, A.V., Sultanov, D.M.Geochemical features of carbonatites of the Fennoscandian shield.Doklady Earth Sciences, Vol. 463, 2, pp. 833-838.Europe, Norway, Russia, Kola Peninsula, KareliaCarbonatite

Abstract: The petrochemistry of carbonatites of three formation types were studied: (1) ultrahigh-pressure garnet-containing carbonatites (UHPC) of the Caledonian sheet (Tromsö, Norway); (2) rocks of the carbonatite-lkaline-ultrabasic Kovdor massif (the Kola Peninsula); and (3) rocks of the carbonatite-alkaline-gabbroid Tikshozero massif (north of Karelia). The samples of carbonatites were examined and tested with a microprobe; the microelements were determined using the ICP-MS technique at the Institute of Microelectronics Technology and High Purity Materials (Chernogolovka). The carbonatites of the Kovdor and Tikshozero massifs are characterized by similar negative REE trends, with a degree of REE enrichment of the Tikshozero carbonatites. The UHPC from Tromsö are different from those of the Kovdor and Tikshozero massifs in the negative trend along with lower concentrations of light REEs. The Tromsö UHPC are similar to the carbonatites of the Kovdor and Tikshozero massifs in the trend and concentrations of heavy REEs. The carbonatites of the Fennoscandian shield of various formation times and types are characterized by the geochemical similarity to those in different regions of the world with the sources associated to mantle plumes. This similarity might be caused by the formation of the mantle carbonated magmas of carbonatite-containing igneous complexes from a mantle source enriched under either mantle metasomatism or plume-lithosphere interaction, with similar mechanisms of formation. The appearance of the formations as such within a wide time interval points to the long-term occurrence of a superplume at the Fennoscandian shield and to permanent activation of the related processes of magma formation.
DS201510-1805
2015
Sobolev, N.V., Sobolev, A.V., Tomilenko, A.A., Batanova, V.G., Tolstov, A.V., Logvinova, A.M., Kuzmin, D.V.Unique compositional pecularities of olivine phenocrysts from the post flood basalt Diamondiferous Malokuonapskaya kimberlite pipe, Yakutia.Doklady Earth Sciences, Vol. 463, 2, pp. 828-832.RussiaDeposit - Malokuonapskaya
DS201510-1806
2015
Sokol, A.G., Khokhryakov, A.F., Palyanov, Yu.N.Composition of primary kimberlite magma: constraints from melting and diamond dissolution experiments.Contributions to Mineralogy and Petrology, Vol. 170, 19p.RussiaDeposit - Udachnaya

Abstract: Experiments are applied to constrain the composition of primary kimberlitic magmas which were in equilibrium with lithospheric peridotite and could resorb the entrained diamond to form typical dissolution features. The experiments are run on samples of a model carbonatite and a melt of the Udachnaya kimberlite at 6.3 GPa and 1400 °C, and at unbuffered or Re-ReO2-buffered oxygen fugacity (1-2 log units above Ni-O). Near-liquidus dry Fe3+-free carbonatitic melt (derived from carbonated harzburgite) is saturated with the Ol-Grt-Opx-Mgs assemblage and is almost inert to diamond. Carbonatitic melts that bear 4.6-6.8 wt% Fe2O3 or 1.5 wt% H2O are in equilibrium only with Mgs ± Ol near the liquidus. Dissolution of diamond by these melts produces surface textures uncommon (corrosion sculptures) or common (negative-oriented trigons, shield-shaped laminae and elongate hillocks) to kimberlitic diamonds. The near-liquidus melt of the Udachnaya kimberlite (Yakutia) with 10-12 wt% H2O is saturated with the Ol-Grt-px assemblage and may result from melting of carbonated garnet-bearing wehrlite. Hydrous kimberlitic melt likewise resorbs diamonds forming typical negative-oriented trigons, shield-shaped laminae and elongate hillocks on their surfaces. Therefore, the melts that could originate in the thermal conditions of subcratonic lithosphere, entrain diamond and dissolve it to produce dissolution features on crystal surfaces, were compositionally close to kimberlite (16-19 wt% SiO2) and rich in H2O. Dry Fe3+-bearing carbonatites with fO2 controlled by the ferric/ferrous equilibrium slightly above the Ni-NiO buffer cannot be diamond carriers.
DS201510-1807
2014
Spetsius, Z.V., Polyanichko, V.V., Xarlamova, E.I., Tarskix, O.V., Ivanov, A.S.Geology, petrography and mineralogy of the Zarya pipe kimberlites.Deep-seated magmatism, its sources and plumes, Proceedings of XIII International Workshop held 2014., Vol. 2014, pp. 160-177.RussiaDeposit - Zarya
DS201511-1844
2015
Ivanov, A.V.Why volatiles are required for cratonic flood basalt volcanism: two examples from the Siberian craton.Geological Society of America Special Paper, No. 514, pp. SPE514-19.Russia, SiberiaMagmatism

Abstract: The Siberian craton was affected by flood basalt volcanism at least twice during the Devonian (Yakutsk-Vilyui province) and Permian-Triassic (Siberian province) periods. In both cases volcanism appeared as brief pulses of flood basalt eruptions, followed by kimberlitic (and lamproitic) emplacement. Pressure estimations for the kimberlite-entrained mantle xenoliths reflect that the lithosphere was 190-230 km thick at the time of the Devonian flood basalt volcanism. Differently from Devonian kimberlites, the majority of Triassic kimberlites are diamond free, but at least one Triassic kimberlite pipe and some lamproites are diamondiferous, suggesting that the Siberian lithosphere remained thick during the Permian-Triassic flood basalt volcanic activity. If both the lithosphere and the asthenosphere were volatile poor, thick cratonic lithosphere prevented melting even at an elevated geotherm. During the Paleozoic, Siberia was surrounded by subduction systems. The water deep cycle in association with fast subduction and slab stagnation in the mantle transition zone is proposed to cause fluxing of the asthenosphere by water plus other fluids via wet diapir formation in the mantle transition zone. Such diapirs started to melt in the asthenosphere beneath thick cratonic lithosphere, producing voluminous melts. Mafic melts probably accumulated beneath cratonic lithosphere and rapidly erupted on the surface in response to stress-induced drainage events, as assumed for some other cratonic flood basalts.
DS201511-1849
2016
Kalashnikov, A.O., Yakovenchuk, V.N., Pakhomovsky, Y.A.A., Bazai, A.V., Sokharev, V.A., Konopleva, N.G., Mikhailova, J.A., Goryainov, P.M., Ivanyuk, G.Yu.Scandium of the Kovdor baddeleyite apatite magnetite deposit ( Murmansk region, Russia): mineralogy, spatial distribution, and potential source.Ore Geology Reviews, Vol. 72, pp. 532-537.RussiaCarbonatite
DS201511-1869
2015
Presser, J.International Mir - example using seismics[email protected], 1p. AvailableRussiaGeophysics - Mir
DS201512-1903
2015
Chakhmouradian, A.R., Cooper, M.A., Medici, L., Abdu, Y.A., Shelukhina, Y.S.Anzaite-(Ce), a new rare earth mineral and structure type from the AfrikAnd a silicocarbonatite, Kola Peninsula.Mineralogical Magazine, Vol. 79, 5, pp. 1231-1244.RussiaCarbonatite

Abstract: Anzaite-(Ce), ideally Formula Fe2+Ti6O18(OH)2, is a new, structurally complex mineral occurring as scarce minute crystals in hydrothermally altered silicocarbonatites in the Afrikanda alkali-ultramafic complex of the Kola Peninsula, Russia. The mineral is a late hydrothermal phase associated with titanite, hibschite, clinochlore and calcite replacing the primary magmatic paragenesis. The rare-earth elements (REE) (dominated by Ce), Ti and Fe incorporated in anzaite-(Ce) were derived from primary Ti oxides abundant in the host rock. Anzaite-(Ce) is brittle and lacks cleavage; the density calculated on the basis of structural data is 5.054(6) g cm?3. The mineral is opaque and grey with a bluish hue in reflected light; its reflectance values range from 15-16% at 440 nm to 13-14% at 700 nm. Its infrared spectrum shows a prominent absorption band at 3475 cm?1 indicative of OH? groups. The average chemical composition of anzaite-(Ce) gives the following empirical formula calculated on the basis of 18 oxygen atoms and two OH? groups: (Ce2.18Nd0.85La0.41Pr0.26Sm0.08Ca0.36Th0.01)?4.15Fe0.97(Ti5.68Nb0.22Si0.04)?5.94O18(OH)2. The mineral is monoclinic, space group C2/m, a = 5.290(2), b = 14.575(6), c = 5.234(2) Å, ? = 97.233(7)°, V = 400.4(5) Å3, Z = 1. The ten strongest lines in the X-ray micro-diffraction pattern are [dobs in Å (I) hkl]: 2.596 (100) 002; 1.935 (18) 170; 1.506 (14) 133; 1.286 (13) 1.11.0; 2.046 (12) 2?41; 1.730 (12) 003; 1.272 (12) 0.10.2; 3.814 (11) 1?11; 2.206 (9) 061; 1.518 (9) 172. The structure of anzaite-(Ce), refined by single-crystal techniques to R1 = 2.1%, consists of alternating layers of type 1, populated by REE (+ minor Ca) in a square antiprismatic coordination and octahedrally coordinated Fe2+, and type 2, built of five-coordinate and octahedral Ti, stacked parallel to (001). This atomic arrangement is complicated by significant disorder affecting the Fe2+, five-coordinate Ti and two of the four anion sites. The order-disorder pattern is such that only one half of these positions in total occupy any given (010) plane, and the disordered (010) planes are separated by ordered domains comprising REE, octahedral Ti and two anion sites occupied by O2?. Structural and stoichiometric relations between anzaite-(Ce) and other REE-Ti (±Nb, Ta) oxides are discussed. The name anzaite-(Ce) is in honour of Anatoly N. Zaitsev of St Petersburg State University (Russia) and The Natural History Museum (UK), in recognition of his contribution to the study of carbonatites and REE minerals. The modifier reflects the prevalence of Ce over other REE in the composition of the new mineral.
DS201512-1932
2015
Isaenko, S.I., Shumilova, T.G., Shevchuk, S.S.Carbon matter in kimberlite rocks of the Charteskii Complex ( Subpolar Urals).Doklady Earth Sciences, Vol. 464, 2, pp. 1062-1065.RussiaCarbon

Abstract: Results of the study of carbon material (CM) discovered in kimberlite-like rocks of the Charteskii Complex (Subpolar Urals) are considered. It is shown that CM is represented by partially oxidized graphite and optically transparent amorphous CM (presumably diamond-like carbon). The data obtained are important for estimation of the diamond potential of this object, as well as for understanding of the new mechanism of the formation of diamond-like carbon and diamond.
DS201512-1938
2015
Malich, K.N., Khiller, V.V., Badanina, I.Yu., Belousova, E.A.Results of dating of thorianite and badeleyite from carbonatites of the Guli massif, Russia.Doklady Earth Sciences, Vol. 464, 2, pp. 1029-1032.RussiaCarbonatite

Abstract: The isotopic -geochronological features of thorianite and baddeleyite from carbonatites of the Guli massif, located within Maimecha -Kotui province in the north of the Siberian Platform, are characterized for the first time. The economic complex platinum-group element (PGE) and gold placer deposits are closely related to the Guli massif. Similar geochronological data for thorianite (250.1 ± 2.9 Ma, MSWD = 0.09, n = 36) and baddeleyite (250.8 ± 1.2 Ma, MSWD = 0.2, n = 6) obtained by two different methods indicate that carbonatites were formed close to the Permian -Triassic boundary and are synchronous with tholeiitic flood basalts of the Siberian Platform.
DS201512-1984
2015
Wang, K-L., Prikhodo, V., O'Reilly, S.Y., Griffin, W.L., Pearson, N.J., Kovach, V., Iizuka, Y., Chien, Y-H.Ancient mantle lithosphere beneath the Khanka massif in the Russian Far East: in situ Re-Os evidence.Terra Nova, Vol. 27, 4, pp. 277-284.RussiaGeochronology

Abstract: The Os-isotope compositions of sulphides in mantle xenoliths hosted by Late Miocene alkali basalts from the Sviyaginsky volcano, Russian Far East, reveal the presence of Archaean-Proterozoic subcontinental lithospheric mantle beneath the Khanka massif. Their TMA and TRD model ages reveal similar peaks at 1.1 and 0.8 Ga suggesting later thermotectonic events in the subcontinental lithospheric mantle, whereas TRD model ages range back to 2.8 ± 0.5 (2?) Ga. The events recognized in the subcontinental lithospheric mantle are consistent with those recorded in the crust of the Khanka massif. The sulphide Os-isotope data show that the subcontinental lithospheric mantle beneath the Khanka massif had formed at least by the Mesoproterozoic, and was subsequently metasomatized by juvenile crustal-growth events related to the evolution of the Altaids. The Khanka massif is further proposed to have tectonic affinity to the Siberia Craton and should originate from it accordingly.
DS201601-0025
2015
Kargin, A.V., Babarina, I.I., Bogatikov, O.A., Yutkina, E.V., Kondrashov, I.A.Paleproterozoic Kimozero kimberlite ( Karelian Craton): geological setting and geochemical typing.Doklady Earth Sciences, Vol. 465, 1, pp. 1135-1138.RussiaDeposit - Kimozero

Abstract: Geological and structural mapping of Paleoproterozoic Kimozero kimberlite with account for lithological facies and geochemical specialization provides evidence for the multiphase structure of the kimberlite pipe, which underwent fragmentation as a result of shear–faulting deformations. Two geochemical types of kimberlite (magnesium and carbonate) are distinguished.
DS201601-0029
2015
Milidragovic, D., Francis, D.Ca 2.7 Ga ferropicrite magmatism: a record of Fe-rich heterogeneities during Neoarchean global mantle melting.Geochimica et Cosmochimica Acta, in press available, 14p.Canada, Africa, RussiaMelting

Abstract: Although terrestrial picritic magmas with FeOTOT ?13 wt.% are rare in the geological record, they were relatively common ca. 2.7 Ga during the Neoarchean episode of enhanced global growth of continental crust. Recent evidence that ferropicritic underplating played an important role in the ca. 2.74-2.70 Ga reworking of the Ungava craton provides the impetus for a comparison of ca. 2.7 Ga ferropicrite occurrences in the global Neoarchean magmatic record. In addition to the Fe-rich plutons of the Ungava craton, volumetrically minor ferropicritic flows, pyroclastic deposits, and intrusive rocks form parts of the Neoarchean greenstone belt stratigraphy of the Abitibi, Wawa, Wabigoon and Vermillion domains of the southern and western Superior Province. Neoarchean ferropicritic rocks also occur on five other Archean cratons: West Churchill, Slave, Yilgarn, Kaapvaal, and Karelia; suggesting that ca. 2.7 Ga Fe-rich magmatism was globally widespread.
DS201601-0042
2015
Schertl, H-P.Diamonds in the Kokchetav Massif.Acta Geologica Sinica, Vol. 89, 2, pp. 81-83.RussiaKokchetav massif
DS201601-0044
2015
Skvortsova, V.L., Samoylovich, M.I., Belyanin, A.F.Studies of phase composition of contact sites of diamond crystals and surrounding rocks.Doklady Earth Sciences, Vol. 465, 1, pp. 1187-1190.RussiaDeposit - Udachnaya

Abstract: The composition, structure, and morphology of iron-containing diamond-kimberlite contact sites were studied by means of scanning electron microscopy and Raman spectroscopy. The data obtained confirm the hypothesis of the similarity of mechanisms of diamond formation in nature and in experiments.
DS201601-0047
2015
Tomilenko, A.A., Kuzmin, D.V., Bulbak, T.A., Timina, T.Yu., Sobolev, N.V.Composition of primary fluid and melt inclusions in regenerated olivines from hypabyssal kimberlites of the Malokuonapskaya pipe ( Yakutia).Doklady Earth Sciences, Vol. 465, 1, pp. 1168-1171.RussiaDeposit - Malokuonapskaya
DS201601-0051
2015
Yang, J.S., Wirth, R., Wiedenbeck, M., Griffin, W.L., Meng, F.C., Chen, S.Y., Bai, W.J., Xu, X.X., Makeeyev, A.B., Bryanchaniniova, N.I.Diamonds and highly reduced minerals from chromitite of the Ray-Iz ophiolite of the Polar Urals: deep origin of podiform chromitites and ophiolitic diamonds.Acta Geologica Sinica, Vol. 89, 2, p. 107.Russia, Polar UralsOphiolite
DS201602-0195
2016
Bruno, M., Rubbo, M., Aquilano, D., Massaro, F.R., Nestola, F.Diamond and olivine inclusions: a strange relation revealed by ab initio simulations.Earth and Planetary Science Letters, Vol. 435, 1, pp. 31-35.RussiaDeposit - Udachnaya

Abstract: The study of diamond and its solid inclusions is of paramount importance to acquire direct information on the deepest regions of the Earth. However, although diamond is one of the most studied materials in geology, the diamond-inclusion relationships are not yet understood: do they form simultaneously (syngenesis) or are inclusions pre-existing objects on which diamond nucleated (protogenesis)? Here we report, for the first time, adhesion energies between diamond (D) and forsterite (Fo) to provide a crucial contribution to the syngenesis/protogenesis debate. The following interfaces were investigated at quantum-mechanical level: (i) (001)D/(001)Fo, (ii) (001)D/(021)Fo, and (iii) (111)D/(001)Fo. Our data, along with the ones recently obtained on the (110)D/(101)Fo interface, revealed an unexpected thermodynamic behaviour, all interfaces showing almost equal and low adhesion energies: accordingly, diamond and olivine have an extremely low chemical affinity and cannot develop preferential orientations, even during an eventual epitaxial growth. Combining these results with those of our previous work concerning the morphology constraints of diamond on its inclusions, we can state that the two main arguments used so far in favour of diamond/inclusions syngenesis cannot be longer considered valid, at least for olivine.
DS201602-0206
2016
Grakhanov, S.A., Zinchuk, N.N., Sobolev, N.V.The age of predictable primary diamond sources in the northeastern Siberian platform.Doklady Earth Sciences, Vol. 465, 2, pp. 1297-1301.Russia, SiberiaDeposit - Malokuonapskaya

Abstract: The U-Pb (SHRIMP) age was determined for zircons collected from 26 observation and sampling sites of diamonds and index minerals in the northeastern Siberian Platform. This part of the region hosts 15 low-diamondiferous Paleozoic and Mesozoic kimberlite fields, excluding the near economic Triassic Malokuonapskaya pipe in the Kuranakh field. Four epochs of kimberlite formation (Silurian, Late Devonian to Early Carboniferous, Middle to Late Triassic, and Middle to Late Jurassic) of the Siberian Platform, including its northeastern part, are confirmed as a result of our studies. Most observation points, including economic Quaternary diamond placers, contain Middle to Late Triassic zircons, which confirms the abundant Late Triassic volcanism in this region. The positive correlation of diamonds and major index minerals of kimberlites (mostly, garnets) at some observation sites indicates the possible Triassic age of the predictable diamondiferous kimberlites.
DS201602-0216
2015
Konopleva, N.G., Ivanyuk, G.Yu., Pakhomovsky, Ya.A., Yakovenchuk, V.N., Mikhailova, Yu.A., Selivanova, E.A.Typochemistry of rinkite and products of its alteration in the Khibiny alkaline pluton, Kola Peninsula.Geology of Ore Deposits, Vol. 57, 7, pp. 614-625.Russia, Kola PeninsulaDeposit - Khibiny

Abstract: The occurrence, morphology, and composition of rinkite are considered against the background of zoning in the Khibiny pluton. Accessory rinkite is mostly characteristic of foyaite in the outer part of pluton, occurs somewhat less frequently in foyaite and rischorrite in the central part of pluton, even more sparsely in foidolites and apatite-nepheline rocks, and sporadically in fenitized xenoliths of the Lovozero Formation. The largest, up to economic, accumulations of rinkite are related to the pegmatite and hydrothermal veins, which occur in nepheline syenite on both sides of the Main foidolite ring. The composition of rinkite varies throughout the pluton. The Ca, Na, and F contents in accessory rinkite and amorphous products of its alteration progressively increase from foyaite and fenitized basalt of the Lovozero Formation to foidolite, rischorrite, apatite-nepheline rocks, and pegmatite-hydrothermal veins.
DS201602-0225
2015
Menshikov, Yu.P., Mikhailova, Yu.A., Pakhomovsky, Ya.A., Yakovenchuk, V.N., Ivanyuk, G.Yu.Minerals of zirconolite group from fenitized xenoliths in nepheline syenites of Khibiny and Lovozero plutons, Kola Peninsula.Geology of Ore Deposits, Vol. 57, 7, pp. 591-599.Russia, Kola PeninsulaDeposit - Lovozero

Abstract: Zirconolite, its Ce-, Nd-, and Y-analogs, and laachite, another member of the zirconolite group, are typomorphic minerals of the fenitized xenoliths in nepheline syenite and foidolite of the Khibiny-Lovozero Complex, Kola Peninsula, Russia. All these minerals are formed at the late stage of fenitization as products of ilmentie alteration under the effect of Zr-bearing fluids. The diversity of these minerals is caused by the chemical substitutions of Na and Ca for REE, Th, and U compensated by substitution of Ti and Zr for Nb, Fe and Ta, as well as by the redistribution of REE between varieties enriched in Ti (HREE) or Nb (LREE). The results obtained can be used in the synthesis of Synroc-type titanate ceramics assigned for the immobilization of actinides.
DS201602-0226
2016
Mikhailova, J.A., Kalashnikov, A.O., Sokharev, V.A., Pakhomovsky, Y.A., Konopleva, N.G., Yakovenchuk, V.N., Bazai, A.V., Goryainov, P.M., Ivanyuk, G.Y.3D mineralogical mapping of the Kovdor phoscorite carbonatite complex ( Russia).Mineralium Deposita, Vol. 51, 1, pp. 131-149.RussiaDeposit - Kovdor

Abstract: The Kovdor baddeleyite-apatite-magnetite deposit in the Kovdor phoscorite-carbonatite pipe is situated in the western part of the zoned alkali-ultrabasic Kovdor intrusion (NW part of the Fennoscandinavian shield; Murmansk Region, Russia). We describe major intrusive and metasomatic rocks of the pipe and its surroundings using a new classification of phoscorite-carbonatite series rocks, consistent with the IUGS recommendation. The gradual zonation of the pipe corresponds to the sequence of mineral crystallization (forsterite-hydroxylapatite-magnetite-calcite). Crystal morphology, grain size, characteristic inclusions, and composition of the rock-forming and accessory minerals display the same spatial zonation pattern, as do the three minerals of economic interest, i.e. magnetite, hydroxylapatite, and baddeleyite. The content of Sr, rare earth elements (REEs), and Ba in hydroxylapatite tends to increase gradually at the expense of Si, Fe, and Mg from early apatite-forsterite phoscorite (margins of the pipe) through carbonate-free, magnetite-rich phoscorite to carbonate-rich phoscorite and phoscorite-related carbonatite (inner part). Magnetite displays a trend of increasing V and Ca and decreasing Ti, Mn, Si, Cr, Sc, and Zn from the margins to the central part of the pipe; its grain size initially increases from the wall rocks to the inner part and then decreases towards the central part; characteristic inclusions in magnetite are geikielite within the marginal zone of the phoscorite-carbonatite pipe, spinel within the intermediate zone, and ilmenite within the inner zone. The zoning pattern seems to have formed due to both cooling and rapid degassing (pressure drop) of a fluid-rich magmatic column and subsequent pneumatolytic and hydrothermal processes.
DS201602-0237
2015
Shchukina, E.V., Agashev, A.M., Kostrovitsky, S.I., Pokhilenko, N.P.Metasomatic processes in the lithospheric mantle beneath the V. Grib kimberlite pipe ( Arkangelsk Diamondiferous province, Russia).Russian Geology and Geophysics, Vol. 56, pp. 1701-1716.RussiaDeposit - Grib

Abstract: New data on metasomatic processes in the lithospheric mantle in the central part of the Arkhangelsk diamondiferous province (ADP) are presented. We studied the major- and trace-element compositions of minerals of 26 garnet peridotite xenoliths from the V. Grib kimberlite pipe; 17 xenoliths contained phlogopite. Detailed mineralogical, petrographic, and geochemical studies of peridotite minerals (garnet, clinopyroxene, and phlogopite) have revealed two types of modal metasomatic enrichment of the lithospheric-mantle rocks: high temperature (melt) and low-temperature (phlogopite). Both types of modal metasomatism significantly changed the chemical composition of the peridotites. Low-temperature modal metasomatism manifests itself as coarse tabular and shapeless phlogopite grains. Two textural varieties of phlogopite show significant differences in chemical composition, primarily in the contents of TiO2, Cr2O3, FeO, Ba, Rb, and Cs. The rock-forming minerals of phlogopite-bearing peridotites differ in chemical composition from phlogopite-free peridotites, mainly in higher FeO content. Most garnets and clinopyroxenes in peridotites are the products of high-temperature mantle metasomatism, as indicated by the high contents of incompatible elements and REE pattern in these minerals. Fractional-crystallization modeling gives an insight into the nature of melts (metasomatic agents). They are close in composition to picrites of the Izhmozero field, basalts of the Tur’ino field, and carbonatites of the Mela field of the ADP. The REE patterns of the peridotite minerals make it possible to determine the sequence of metasomatic enrichment of the lithospheric mantle beneath the V. Grib kimberlite pipe.
DS201602-0240
2016
Sokol, A.G., Kruk, A.N., Chebotarev, D.A., Palynaov, Yu.N., Sobolev, N.V.Conditions of carbonation and wehrlitization of lithospheric peridotite upon interaction with carbonatitic melts.Doklady Earth Sciences, Vol. 465, 2, pp. 1262-1267.RussiaDeposit - Udachnaya

Abstract: Study of the mechanism of carbonation and wehrlitization of harzburgite upon metasomatism by carbonatitic melts of various genesis was carried out. Experiments with durations of 60-150 h were performed at 6.3 GPa and 1200°C. The data showed that carbonatite with MgO/CaO > 0.3 percolating into the peridotitic lithosphere may provide crystallization of magnesite in it. The influence of all studied carbonatites results in wehrlitization of peridotite. The compositions of melts formed by interaction with harzburgite (?2 wt % SiO2, Ca# = 36-47) practically do not depend on the composition of the initial carbonatite. Based on the data obtained, we conclude that the formation of magnesite-bearing and magnesite-free metasomatized peridotites may have a significant influence on the CO2 regime in the further generation of kimberlitic magmas of groups I and II.
DS201602-0241
2015
Sokolova, E., Abdu, Y., Hawthorne, F.C., Genovese, A., Camara, F., Khomyakov, A.P.From structure topology to chemical composition. XVIII. Titanium silicates: revision of the crystal structure and chemical formula of Betalomonosovite, a group IV TS-block mineral from the Lovozero alkaline massif, Kola Peninsula.The Canadian Mineralogist, Vol. 53, pp. 401-428.Russia, Kola PeninsulaLovozero Massif

Abstract: The crystal structure of betalomonosovite, ideally Na6?4Ti4(Si2O7)2[PO3(OH)][PO2(OH)2]O2(OF), a 5.3331(7), b 14.172(2), c 14.509(2) Å, ? 103.174(2), ? 96.320(2), ? 90.278(2)°, V 1060.7(4) Å3, from the Lovozero alkaline massif, Kola peninsula, Russia, has been refined in the space group PFormula to R = 6.64% using 3379 observed (Fo > 4?F) reflections collected with a single-crystal APEX II ULTRA three-circle diffractometer with a rotating-anode generator (MoK?), multilayer optics, and an APEX-II 4K CCD detector. Electron-microprobe analysis gave the empirical formula (Na5.39Ca0.36Mn0.04Mg0.01)?5.80 (Ti2.77Nb0.48Mg0.29Fe3+0.23Mn0.20Zr0.02Ta0.01)?4(Si2.06O7)2[P1.98O5(OH)3]O2[O0.82F0.65(OH)0.53]?2, Dcalc. = 2.969 g cm?3, Z = 2, calculated on the basis of 26 (O + F) apfu, with H2O determined from structure refinement. The crystal structure of betalomonosovite is characterized by extensive cation and anion disorder: more than 50% of cation sites are partly occupied. The crystal structure of betalomonosovite is a combination of a titanium silicate (TS) block and an intermediate (I) block. The TS block consists of HOH sheets (H-heteropolyhedral, O-octahedral) and exhibits linkage and stereochemistry typical for Group IV (Ti + Mg + Mn = 4 apfu) of the TS-block minerals. The I block is a framework of Na polyhedra and P tetrahedra which ideally gives {Na2?4[PO3(OH)][PO2(OH)2]} pfu. Betalomonosovite is an Na-poor OH-bearing analogue of lomonosovite, Na10Ti4(Si2O7)2(PO4)2O4. In the betalomonosovite structure, there is less Na in the I block and in the TS block when compared to the lomonosovite structure. The OH groups occur mainly in the I block where they coordinate P and Na atoms and in the O sheet of the TS block (minor). The presence of OH groups in the I block and in the TS block is supported by IR spectroscopy and bond-valence calculations on anions. High-resolution TEM of lomonosovite shows the presence of pervasive microstructural intergrowths, accounting for the presence of signals from H2O in the infrared spectrum of anhydrous lomonosovite. More extensive lamellae in betalomonosovite suggest a topotactic reaction from lomonosovite to betalomonosovite.
DS201602-0245
2016
Taylor, L.A., Logvinova, A.M., Howarth, G.H., Liu, Y., Peslier, A.H., Rossman, G.R., Guan, Y., Chen, Y., Sobolev, N.V.Low water contents in diamond mineral inclusions: proto-genetic origin in a dry cratonic lithosphere.Earth and Planetary Science Letters, Vol. 433, pp. 125-132.Russia, AfricaKaapvaal and Siberian SCLMs

Abstract: The mantle is the major reservoir of Earth's water, hosted within Nominally Anhydrous Minerals (NAMs) (e.g., , , and ), in the form of hydrogen bonded to the silicate's structural oxygen. From whence cometh this water? Is the water in these minerals representative of the Earth's primitive upper mantle or did it come from melting events linked to crustal formation or to more recent metasomatic/re-fertilization events? During diamond formation, NAMs are encapsulated at hundreds of kilometers depth within the mantle, thereby possibly shielding and preserving their pristine water contents from re-equilibrating with fluids and melts percolating through the lithospheric mantle. Here we show that the NAMs included in diamonds from six locales on the Siberian Craton contain measurable and variable H2O concentrations from 2 to 34 parts per million by weight (ppmw) in olivine, 7 to 276 ppmw in clinopyroxene, and 11-17 ppmw in garnets. Our results suggest that if the inclusions were in equilibrium with the diamond-forming fluid, the water fugacity would have been unrealistically low. Instead, we consider the H2O contents of the inclusions, shielded by diamonds, as pristine representatives of the residual mantle prior to encapsulation, and indicative of a protogenetic origin for the inclusions. Hydrogen diffusion in the diamond does not appear to have modified these values significantly. The H2O contents of NAMs in mantle xenoliths may represent some later metasomatic event(s), and are not always representative of most of the continental lithospheric mantle. Results from the present study also support the conclusions of Peslier et al. (2010) and Novella et al. (2015) that the dry nature of the SCLM of a craton may provide stabilization of its thickened continental roots.
DS201602-0249
2015
Zayakina, N.V., Oleinikov, O.B., Vasileva, T.I., Oparin, N.A.Coalingite from kimberlite breccia of the Manchary pipe, central Yakutia.Geology of Ore Deposits, Vol. 57, 8, pp. 732-736.Russia, YakutiaDeposit - Manchary

Abstract: Coalingite, Mg10Fe2(CO3)(OH)24 • 2H2O, rare Mg -Fe hydrous carbonate, has been found in the course of the mineralogical study of a disintegrated kimberlite breccia from the Manchary pipe of the Khompu -May field located in the Tamma Basin, Central Yakutia, 100 km south of Yakutsk. Coalingite occurs as small reddish brown platelets, up to 0.2 mm in size. It is associated with lizardite, chrysotile and brucite, which are typical kimberlitic assemblage. Coalingite is a supergene mineral, but in this case, it is produced by the interaction of brucite-bearing kimberlite and underground water circulating through a vertical or oblique fault zone.
DS201603-0363
2016
Alexeev, S.V., Alexeeva, L.P., Kononov, A.M.Trace elements and rare earth elements in ground ice in kimberlites and sedimentary rocks of western Yakutia.Cold Regions Science and Technology, Vol. 123, pp. 140-148.RussiaGeomorphology

Abstract: The paper presents unique results of studying the composition of the ground ice (major components, trace elements, and rare earth elements — REEs) encountered at a depth of 200-250 m in sedimentary and magmatic rocks in the Western Yakutia diamond-bearing regions. In addition to those established earlier, three new geochemical types of ground ice have been defined: (i) sulfate-hydrocarbonate, (ii) chloride-hydrocarbonate, and (iii) sulfate-chloride types with mixed cation composition. The ground ice geochemical features are caused by evolutionary processes of interaction in the water-rock system during permafrost formation. The enclosed rocks were the source for the addition of sulfate and chlorine ions, as well as trace elements, to the ground waters of the active water exchange zone that had existed before freezing. The distribution pattern of REEs in ground ice has a special form distinct from that of sedimentary rocks, kimberlites, and ocean waters, but similar to the REE pattern in local river waters. This REE pattern features the positive europium (Eu) anomaly and approximate equality of light and heavy REEs. The obtained results essentially expand the insight into ice-formation processes in sedimentary and magmatic rocks.
DS201603-0369
2015
Cherepanova, Y., Artemieva, I.M.Density heterogeneity of the cratonic lithosphere: a case study of the Siberian craton.Gondwana Research, Vol. 28, 4, pp. 1344-1360.RussiaGeophysics - seismics

Abstract: Using free-board modeling, we examine a vertically-averaged mantle density beneath the Archean-Proterozoic Siberian Craton in the layer from the Moho down to base of the chemical boundary layer (CBL). Two models are tested: in Model 1 the base of the CBL coincides with the LAB, whereas in Model 2 the base of the CBL is at a 180 km depth. The uncertainty of density model is < 0.02 t/m3 or < 0.6% with respect to primitive mantle. The results, calculated at in situ and at room temperature (SPT) conditions, indicate a heterogeneous density structure of the Siberian lithospheric mantle with a strong correlation between mantle density variations and the tectonic setting. Three types of cratonic mantle are recognized from mantle density anomalies. ‘Pristine’ cratonic regions not sampled by kimberlites have the strongest depletion with density deficit of 1.8-3.0% (and SPT density of 3.29-3.33 t/m3 as compared to 3.39 t/m3 of primitive mantle). Cratonic mantle affected by magmatism (including the kimberlite provinces) has a typical density deficit of 1.0-1.5%, indicative of a metasomatic melt-enrichment. Intracratonic sedimentary basins have a high density mantle (3.38-3.40 t/m3 at SPT) which suggests, at least partial, eclogitization. Moderate density anomalies beneath the Tunguska Basin imply that the source of the Siberian LIP lies outside of the Craton. In situ mantle density is used to test the isopycnic condition of the Siberian Craton. Both CBL thickness models indicate significant lateral variations in the isopycnic state, correlated with mantle depletion and best achieved for the Anabar Shield region and other intracratonic domains with a strongly depleted mantle. A comparison of synthetic Mg# for the bulk lithospheric mantle calculated from density with Mg# from petrological studies of peridotite xenoliths from the Siberian kimberlites suggests that melt migration may produce local patches of metasomatic material in the overall depleted mantle.
DS201603-0392
2016
Kostrovitsky, S.I., Skuzovatov, S.Y., Yakolev, D.A., Sun, J., Nasdala, L., Wu, F.Age of Siberian craton crust beneath the northern kimberlite fields: insights to the craton evolution. ( Olenek -Anabar)Gondwana Research, in press available 70p.RussiaGeochronology

Abstract: Comprehensive studies of zircon xenocrysts from kimberlites of the Kuoika field (northeastern Siberian craton) and several kimberlite fields of the eastern Anabar shield, along with data compilation on the age of kimberlite-hosting terranes, reveal details of the evolution of the northern Siberian craton. The age distribution and trace element characteristic of zircons from the Kuoika field kimberlites (Birekte terrane) provide evidence of significant basic and alkaline-carbonatite magmatism in northern Siberia in the Paleozoic and Mesozoic periods. The abundance of 1.8-2.1 Ga zircons in both the Birekte and adjacent Hapchan terranes (the latter hosting kimberlites of the eastern Anabar shield) supports the Paleoproterozoic assembly and stabilization of these units in the Siberian craton and the supercontinent Columbia. The abundance of Archean zircons in the Hapchan terrane reflects the input of an ancient source other than the Birekte terrane and addresses the evolution of the terrane to west (Magan and Daldyn terranes of the Anabar shield). The present study has also revealed the oldest known remnant of the Anabar shield crust, whose 3.62 Ga age is similar to that of the other ancient domain of Siberia, the Aldan shield. The first Hf isotope data for the Anabar shield coupled with the U-Pb systematics indicate three stages of crustal growth (Paleoproterozoic, Neoarchean and Paleoarchean) and two stages of the intensive crustal recycling in the Paleoproterozoic and Neoarchean. Intensive reworking of the existing crust at 2.5-2.8 Ga and 1.8-2.1 Ga is interpreted to provide evidence for the assembly of Columbia. The oldest Hf model age estimation provides a link to Early Eoarchean (3.7-3.95 Ga) and possibly to Hadean crust. Hence, some of the Archean cratonic segments of the Siberian craton could be remnants of the Earth's earliest continental crust.
DS201603-0406
2015
Ogasawara Y., Shimizu, R., Sakamaki, K.Diversity of the Kokchetav metamorphic diamonds and their formation related to h ( sub 2) o-rich fluid conditions.Geological Society of America Annual Meeting, Vol. 47, 7, p. 169. abstractRussiaMetamorphic diamonds

Abstract: The metamorphic diamonds in the Kokchetav Massif show very diverse features in morphologies and grain sizes with other crystal characters, Raman spectra (FWHM, PL), cathodoluminescence spectra, C isotope, abundance, paragenesis with silicates and carbonates. The formations of these diamonds, however, seem to be related to H2O-fluid conditions.?Dolomite marble has the highest abundance in diamond. The diamond grew at two stages and 2nd stage growth was from H2O fluid. Grt-Bt gneiss is 2nd highest and the diamond shows several morphologies; however, no 2nd stage growth. In dolomite marble, diamond at 2nd stage has light carbon isotope, -17 to -27 whereas 1st stage diamond has -8 to -15. The light carbon of 2nd stage could be organic carbon in gneisses carried by H2O-fluid; dissolution of diamond in gneisses could have occurred. No 2nd stage growth in gneisses supports this idea. Carbon-bearing H2O fluid infiltration into dolomite marble caused the change of carbon solubility in fluid to precipitate abundant fine diamonds (10-20 mm), quickly. Recently discovered sp2 graphitic carbon inclusions in 2nd stage diamond (AGU2014F V13B-4771), which is a relic of metastable intermediate phase for diamond formation, suggest the diamond participation from H2O fluid. A minor amount of diamond (large-grained, ca. 150 µm at average) occurs in Grt-Cpx rock. Recently, we found the overgrowth of large-grained cubic diamond on small-grained one by multi-layered 2D Raman mappings (JpGU2014 No.02541). This indicates slow-growth in H2O-fluid having low oversaturation degree of carbon. UHP calcite marble contains a trace amount of small-grained diamond (no 2nd stage growth) only in diopside; titanite with coesite exsolution does not contain diamond. These suggest that very high H2O activity for titanite stability makes diamond unstable, and dissolution of diamond was possible. This is a similar relation with UHP dolomitic marble, which Arg-Fo and Arg-Ti-Chum were stable but diamond was unstable. In Tur-Fel-Qtz rock, diamond is included in new mineral "maruyamaite" (K-rich Tur); recent experiments show high-P and fluid-bearing conditions for maruyamaite. Summarizing these diverse features of the Kokchetav diamonds, those formation and their possible dissolutions have strong relationships with H2O-fluid conditions.
DS201603-0410
2015
Paktovskiy, Yu.G., Popov, A.G., Chaykovskiy, I.I. .New deposits in the Devonian diamond reservoirs of the northern Urals. *** IN RUSSIANProblems of Mineralogy, petrography and metallogeny , No. 18, pp. 286-289.RussiaDiamond occurrences ***
DS201603-0427
2016
Ustinov, V.N.Terrigenous diamond-bearing rocks of the Siberian, East-European and African platforms.Alrosa publication, 532p. Title, abstract, table of contents in english ( courtesy of Ustinov)Russia, Europe, AfricaDiamondiferous strata - structure, morphology, zones, exploration technology
DS201603-0435
2016
Zedgenizov, D., Rubatto, D., Shatsky, V., Ragozin, A., Kalinina, V.Eclogitic diamonds from variable crustal protoliths in the northeastern Siberian Craton: trace elements and coupled Delta13C-delta 180 signatures in diamonds and garnet inclusions.Chemical Geology, Vol. 422, pp. 46-59.RussiaGeochronology
DS201604-0589
2016
Agrosi, G., Nestola, F., Tempestra, G., Bruno, M., Scandale, E., Harris, J.X-ray topographic study of a diamond from Udachnaya: implications for the genetic nature of inclusions.Lithos, Vol. 248-251, pp. 153-159.RussiaDeposit - Udachnaya

Abstract: In recent years, several studies have focused on the growth conditions of the diamonds through the analysis of the mineral inclusions trapped in them. In these studies, it is crucial to distinguish between protogenetic, syngenetic and epigenetic inclusions. X-ray topography (XRDT) can be a helpful tool to verify, in a non-destructive way, the genetic nature of inclusions in diamond. With this aim, a diamond from the Udachnaya kimberlite, Siberia, was investigated. The diamond, previously studied by Nestola et al. (2011), has anomalous birefringence and the two largest olivines have typical “diamond-imposed” shapes. The study of the topographic images shows that the diamond exhibits significant deformation fields related to post growth plastic deformation. The absence of dislocations starting from the olivine inclusions, and the dark contrasts around them represent the main results obtained by XRDT, contributing to the elucidation of the relationships between the diamond and the olivines at the micron-meter scale. The dark halo surrounding the inclusions was likely caused by the effect of different thermo-elastic properties between the diamond and the inclusions. The absence of dislocations indicates that the diamond-imposed morphology did not produce the volume distortion commonly associated with the entrapment of the full-grown inclusions and, thus, only based on such evidence, a syngenetic origin could be proposed. In addition, stepped figures optically observed at the interface between diamond and one of the olivines suggest processes of selective partial dissolution that would contribute to a change in the final morphology of inclusions. These results show that a diamond morphology may be imposed to a full-grown (protogenetic) olivine during their encapsulation, suggesting that the bulk of the inclusion is protogenetic, whereas its more external regions, close to the diamond-inclusion interface, could be syngenetic.
DS201604-0611
2016
Ivanyuk, G.Yu., Kalashnikov, A.O., Pakhomovsky, Ya.A., Mikhailov, J.A., Yakovenchuk, V.N., Konopleva, N.G., Sokharev, V.A., Bazai, A.V., Goryainov, P.M.Economic minerals of the Kovdor baddeleyite apatite magnetite deposit, Russia: mineralogy, spatial distribution and ore processing optimization.Ore Geology Reviews, in press available 73p.RussiaDeposit - Kovdor

Abstract: The comprehensive petrographical, petrochemical and mineralogical study of the Kovdor magnetite-apatite-baddeleyite deposit in the phoscorite-carbonatite complex (Murmansk Region, Russia) revealed a spatial distribution of grain size and chemical composition of three economically extractable minerals — magnetite, apatite, and baddeleyite, showing that zonal distribution of mineral properties mimics both concentric and vertical zonation of the carbonatite-phoscorite pipe. The marginal zone of the pipe consists of (apatite)-forsterite phoscorite carrying fine grains of Ti-Mn-Si-rich magnetite with ilmenite exsolution lamellae, fine grains of Fe-Mg-rich apatite and finest grains of baddeleyite, enriched in Mg, Fe, Si and Mn. The intermediate zone accommodates carbonate-free magnetite-rich phoscorites that carry medium to coarse grains of Mg-Al-rich magnetite with exsolution inclusions of spinel, medium-grained pure apatite and baddeleyite. The axial zone hosts carbonate-rich phoscorites and phoscorite-related carbonatites bearing medium-grained Ti-V-Ca-rich magnetite with exsolution inclusions of geikielite-ilmenite, fine grains of Ba-Sr-Ln-rich apatite and comparatively large grains of baddeleyite, enriched in Hf, Ta, Nb and Sc. The collected data enable us to predict such important mineralogical characteristics of the multicomponent ore as chemical composition and grain size of economic and associated minerals, presence of contaminating inclusions, etc. We have identified potential areas of maximum concentration of such by-products as scandium, niobium and hafnium in baddeleyite and REEs in apatite.
DS201604-0612
2016
Kaminisky, F.V., Wirth, R., Anikin, L.P., Morales, L., Schreiber, A.Carbonado-like diamond from the Avacha active volcano in Kamchatka, Russia.Lithos, in press available, 15p.RussiaCarbonado

Abstract: In addition to a series of finds of diamond in mafic volcanic and ultramafic massive rocks in Kamchatka, Russia, a carbonado-like diamond aggregate was identified in recent lavas of the active Avacha volcano. This aggregate differs from ‘classic carbonado’ by its location within an active volcanic arc, well-formed diamond crystallites, and cementing by Si-containing aggregates rather than sintering. The carbonado-like aggregate contains inclusions of Mn-Ni-Si-Fe alloys, native ?-Mn, tungsten and boron carbides, which are uncommon for both carbonado and monocrystalline diamonds. Mn-Ni-Si-Fe alloys, trigonal W2C and trigonal B4C are new mineral species that were not previously found in the natural environment. The formation of the carbonado-like diamond aggregate started with formation at ~ 850-1000 °C of tungsten and boron carbides, Mn-Ni-Si-Fe alloys and native ?-Mn, which were used as seeds for the subsequent crystallization of micro-sized diamond aggregate. In the final stage, the diamond aggregate was cemented by amorphous silica, tridymite, ?-SiC, and native silicon. The carbonado-like aggregate was most likely formed at near-atmospheric pressure conditions via the CVD mechanism during the course or shortly after one of the volcanic eruption pulses of the Avacha volcano. Volcanic gases played a great role in the formation of the carbonado-like aggregate.
DS201604-0625
2015
Sharygin, I.S., Litasov, K.D., Shatskiy, A., Golovin, A.V., Ohtani, E., Pokhilenko, N.P.Melting phase relations of the Udachnaya-East group 1 kimberlite at 3.0-6.5 Gpa: experimental evidence for alkali- carbonatite composition of primary kimberlite melts and implications for mantle plumes.Gondwana Research, Vol. 28, pp. 1391-1414.RussiaDeposit - Udachnaya -East

Abstract: Experiments on the origin of the Udachnaya-East kimberlite (UEK) have been performed using a Kawai-type multianvil apparatus at 3-6.5GPa and 900-1500°C. The studied composition represents exceptionally fresh Group-I kimberlite containing (wt.%): SiO2=25.9, TiO2=1.8, Al2O3=2.8, FeO=9.0, MgO=30.1, CaO=12.7, Na2O=3.4, K2O=1.3, P2O5=1.0, Cl=0.9, CO2=9.9, and H2O=0.5. The super-solidus assemblage consists of melt, olivine (Ol), Ca-rich (26.0-30.2wt.% CaO) garnet (Gt), Al-spinel (Sp), perovskite (Pv), a CaCO3 phase (calcite or aragonite), and apatite. The low pressure assemblage (3-4GPa) also includes clinopyroxene. The apparent solidus was established between 900 and 1000°C at 6.5GPa. At 6.5GPa and 900°C Na-Ca carbonate with molar ratio of (Na+K)/Ca?0.44 was observed. The UEK did not achieve complete melting even at 1500°C and 6.5GPa, due to excess xenogenic Ol in the starting material. In the studied P-T range, the melt has a Ca-carbonatite composition (Ca#=molar Ca/(Ca+Mg) ratio=0.62-0.84) with high alkali and Cl contents (7.3-11.4wt.% Na2O, 2.8-6.7wt.% K2O, 1.6-3.4wt.% Cl). The K, Na and Cl contents and Ca# decrease with temperature. It is argued that the primary kimberlite melt at depths>200km was an essentially carbonatitic (<5wt.% SiO2), but evolved toward a carbonate-silicate composition (up to 15-20wt.% SiO2) during ascent. The absence of orthopyroxene among the run products indicates that xenogenic orthopyroxene was preferentially dissolved into the kimberlite melt. The obtained subliquidus phase assemblage (Ol+Sp+Pv+Ca-rich Gt) at P-T conditions of the UEK source region, i.e. where melt was in the last equilibrium with source rock before magma ascent, differs from the Opx-bearing peridotitic mineral assemblage of the UEK source region. This difference can be ascribed to the loss of substantial amounts of CO2 from the kimberlite magma at shallow depths, as indicated by both petrological and experimental data. Our study implies that alkali-carbonatite melt would be a liquid phase within mantle plumes generated at the core-mantle boundary or shallower levels of the mantle, enhancing the ascent velocity of the plumes. We conclude that the long-term activity of a rising hot mantle plume and associated carbonatite melt (i.e. kimberlite melt) causes thermo-mechanical erosion of the subcontinental lithosphere mantle (SCLM) roots and creates hot and deformed metasomatic regions in the lower parts of the SCLM, which corresponds to depths constrained by P-T estimates of sheared Gt-peridotite xenoliths. The sheared Gt-peridotites undoubtedly represent samples of these regions.
DS201605-0816
2016
Buikin, A.I., Verchovsky, A.B., Kogarko, L.N., Grinenko, V.A., Kuznetsova, O.V.The fluid phase evolution during the formation of carbonatite of the Guli Massif: evidence from the isotope ( C, N, Ar) data.Doklady Earth Sciences, Vol. 466, 2, Feb. pp. 135-137.RussiaCarbonatite

Abstract: The first data on variations of the isotope composition and element ratios of carbon, nitrogen, and argon in carbonatites of different generations and ultrabasic rocks of the Guli massif obtained by the method of step crushing are reported. It is shown that early carbonatite differs significantly from the later ones by the concentration of highly volatile components, as well as by the isotope compositions of carbon (CO2), argon, and hydrogen (H2O). The data obtained allow us to conclude that the mantle component predominated in the fluid at the early stages of formation of rocks of the Guli massif, whereas the late stages of carbonatite formation were characterized by an additional fluid source, which introduced atmospheric argon, and most likely a high portion of carbon dioxide with isotopically heavy carbon.
DS201605-0829
2016
Dostal, J.Rare metal deposits associated with alkaline/peralkaline igneous rocks.SEG Reviews in Economic Geology, editors Verplanck, P.L., Hitzman, M.W., No. 18, pp. 33-54.Canada, Northwest Territories, Ontario, Europe, Greenland, Russia, Sweden, Africa, South AfricaThor, Nechalacho, Ilmmassaq, Loverzero, Kipawa, Noira Karr, Planesberg
DS201605-0847
2016
Ivanyuk, G.Yu., Kalashnikov, A.O., Pakhomovsky, Ya.A., Mikhailova, J.A., Yakovenchuk, V.N., Konopleva, N.G., Sokharev, V.A., Bazai, A.V., Goryainov, P.M.Economic minerals of the Kovdor baddeleyite apatite magnetite deposit, Russia: mineralogy, spatial distribution and ore procesing optimization.Ore Geology Reviews, Vol. 77, pp. 279-311.RussiaCarbonatite, Kovdor

Abstract: The comprehensive petrographical, petrochemical and mineralogical study of the Kovdor magnetite-apatite-baddeleyite deposit in the phoscorite-carbonatite complex (Murmansk Region, Russia) revealed a spatial distribution of grain size and chemical composition of three economically extractable minerals — magnetite, apatite, and baddeleyite, showing that zonal distribution of mineral properties mimics both concentric and vertical zonation of the carbonatite-phoscorite pipe. The marginal zone of the pipe consists of (apatite)-forsterite phoscorite carrying fine grains of Ti-Mn-Si-rich magnetite with ilmenite exsolution lamellae, fine grains of Fe-Mg-rich apatite and finest grains of baddeleyite, enriched in Mg, Fe, Si and Mn. The intermediate zone accommodates carbonate-free magnetite-rich phoscorites that carry medium to coarse grains of Mg-Al-rich magnetite with exsolution inclusions of spinel, medium-grained pure apatite and baddeleyite. The axial zone hosts carbonate-rich phoscorites and phoscorite-related carbonatites bearing medium-grained Ti-V-Ca-rich magnetite with exsolution inclusions of geikielite-ilmenite, fine grains of Ba-Sr-Ln-rich apatite and comparatively large grains of baddeleyite, enriched in Hf, Ta, Nb and Sc. The collected data enable us to predict such important mineralogical characteristics of the multicomponent ore as chemical composition and grain size of economic and associated minerals, presence of contaminating inclusions, etc. We have identified potential areas of maximum concentration of such by-products as scandium, niobium and hafnium in baddeleyite and REEs in apatite.
DS201605-0853
2016
Katayama, I.Magmatic S-isotopic compositions of sulfides and sulfates in the "salty" Udachanay-East kimberlite.DCO Edmonton Diamond Workshop, June 8-10Russia, YakutiaDeposit - Udachnaya-East
DS201605-0887
2016
Rezvukhin, D.I., Malkovets, V.G., Sharygin, I.S., Kuzmin, D.V., Litasov, K.D., Gibsher, A.A., Pokhilenko, N.P., Sobolev, N.V.Inclusions of Cr- and Cr-Nb-Rutile in pyropes from the Internationalnaya kimberlite pipe, Yakutia.Doklady Earth Sciences, Vol. 466, 2, Feb. pp. 173-176.Russia, YakutiaDeposit - International

Abstract: The results of study of rutile inclusions in pyrope from the Internatsionalnaya kimberlite pipe are presented. Rutile is characterized by unusually high contents of impurities (up to 25 wt %). The presence of Cr2O3 (up to 9.75 wt %) and Nb2O5 (up to 15.57 wt %) are most typical. Rutile inclusions often occur in assemblage with Ti-rich oxides: picroilmenite and crichtonite group minerals. The Cr-pyropes with inclusions of rutile, picroilmenite, and crichtonite group minerals were formed in the lithospheric mantle beneath the Mirnyi field during their joint crystallization from melts enriched in Fe, Ti, and other incompatible elements as a result of metasomatic enrichment of the depleted lithospheric mantle.
DS201605-0888
2016
Rezvukhin, D.I., Malkovets, V.G., Sharygin, I.S., Kuzmin, D.V., Litasov, K.D., Gibsher, A.A., Pokhilenko, N.P., Sobolev, N.V.Inclusions of crichonite group minerals in pyropes from the Internatsionalnaya kimberlite pipe, Yakutia.Doklady Earth Sciences, Vol. 466, 2, Feb. pp. 206-209.Russia, YakutiaDeposit - International
DS201605-0905
2016
Stepanov, A.S., Rubatto, D., Hermann, J., Korsakov, A.V.Contrasting P-T paths within the Barchi-Kol terrain ( Kokchetav Complex): implications for subduction and exhumation of continental crust.American Mineralogist, Vol. 101, pp. 788-807.RussiaUHP - subduction

Abstract: The Barchi-Kol terrain is a classic locality of ultrahigh-pressure (UHP) metamorphism within the Kokchetav metamorphic belt. We provide a detailed and systematic characterization of four metasedimentary samples using dominant mineral assemblages, mineral inclusions in zircon and monazite, garnet zonation with respect to major and trace elements, and Zr-in-rutile and Ti-in-zircon temperatures. A typical diamond-bearing gneiss records peak conditions of 49 ± 4 kbar and 950-1000 °C. Near isothermal decompression of this rock resulted in the breakdown of phengite associated with a pervasive recrystallization of the rock. The same terrain also contains mica schists that experienced peak conditions close to those of the diamond-bearing rocks, but they were exhumed along a cooler path where phengite remained stable. In these rocks, major and trace element zoning in garnet has been completely equilibrated. A layered gneiss was metamorphosed at UHP conditions in the coesite field, but did not reach diamond-facies conditions (peak conditions: 30 kbar and 800-900 °C). In this sample, garnet records retrograde zonation in major elements and also retains prograde zoning in trace elements. A garnet-kyanite-micaschist that reached significantly lower pressures (24 ± 2 kbar, 710 ± 20 °C) contains garnet with major and trace element zoning. The diverse garnet zoning in samples that experienced different metamorphic conditions allows to establish that diffusional equilibration of rare earth element in garnet likely occurs at ~900-950 °C. Different metamorphic conditions in the four investigated samples are also documented in zircon trace element zonation and mineral inclusions in zircon and monazite. -Pb geochronology of metamorphic zircon and monazite domains demonstrates that prograde (528-521 Ma), peak (528-522 Ma), and peak to retrograde metamorphism (503-532 Ma) occurred over a relatively short time interval that is indistinguishable from metamorphism of other UHP rocks within the Kokchetav metamorphic belt. Therefore, the assembly of rocks with contrasting P-T trajectories must have occurred in a single subduction-exhumation cycle, providing a snapshot of the thermal structure of a subducted continental margin prior to collision. The rocks were initially buried along a low geothermal gradient. At 20-25 kbar they underwent near isobaric heating of 200 °C, which was followed by continued burial along a low geothermal gradient. Such a step-wise geotherm is in good agreement with predictions from subduction zone thermal models.
DS201606-1095
2016
Ilyina, O.V., Tychkov, N.S., Agashev, A.M., Golovin, A.V., Izokh, A.E., Kozmenko, O.A., Poikilanko, N.P.PGE distribution in deformed lherzolites of the Udachnaya kimberlite pipe ( Yakutia).Doklady Earth Sciences, Vol. 467, 2, pp. 408-411.Russia, YakutiaDeposit - Udachnaya

Abstract: The results of the first study of the PGE distribution in deformed lherzolites of the Udachnaya kimberlite pipe (Yakutia) are presented here. The complex character of evolution of the PGE composition in the Deformed lherzolites is assumed to be the result of silicate metasomatism. At the first stage, growth in the amount of clinopyroxene and garnet in the rock is accompanied by a decrease in the concentration of the compatible PGE (Os, Ir). During the final stage, the rock is enriched with incompatible PGE (Pt, Pd) and Re possible due to precipitation of submicron-sized particles of sulfides in the interstitial space of these mantle rocks.
DS201606-1111
2016
Samdanov, D.A., Afanasiev, V.P., Tychkov, N.S., Pokhilenko, N.P.Mineralogical zoning of the Diamondiferous areas: application experience of paragenetic analysis of garnets from kimberlites.Doklady Earth Sciences, Vol. 467, 1, pp. 228-231.Russia, YakutiaDeposit area - Muna-Markha

Abstract: Paragenetic analysis of pyropes from alluvial deposits of the Muna—Markha interfluve (Sakha-Yakutia Republic) made it possible to distinguish relatively uniform areas that are promising for the discovery of kimberlite bodies.
DS201606-1115
2016
Sharygin, I.S., Golovin, A.V., Korsakov, A.V., Pokhilenko, N.P.Tychite in mantle xenoliths from kimberlites: the first find of a new genetic type.Doklady Earth Sciences, Vol. 467, 1, pp. 270-274.Russia, YakutiaDeposit -Udachnaya East

Abstract: Tychite Na6Mg2(CO3)4(SO3) is a rare natural Na and Mg sulfatocarbonate. It is found only as minor mineral in deposits of saline lakes in the United States, Canada, Uganda, and China. In these continental evaporites tychite has sedimentary genesis. In this study, we report the first occurrence of tychite as a crystal phase in the melt inclusions in olivine from mantle xenoliths of the Udachnaya-East kimberlite pipe. This find provides an evidence for the probability of tychite crystallization from melts; i.e., this rare sulfatocarbonate may have a magmatic origin as well.
DS201607-1328
2016
Artemieva, I.Density structure of the cratonic mantle in Siberia, correlations with mantle petrology and kimberlite distribution.IGC 35th., Session A Dynamic Earth 1p. AbstractRussiaKimberlite
DS201607-1287
2016
Bunin, I. Zh., Chanturia, V.A., Anashkina, N.E., Ryazantseva, M.V.Experimental validation of mechanism for pulsed energy effect on structure, chemical properties and microhardness of rock forming minerals of kimberlites.Journal of Mining Science, Vol. 51, 4, pp. 799-810.RussiaSpectroscopy

Abstract: Using the Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), microscopy and microhardness test methods, the change in the crystalline and chemical properties and in microhardness of rock-forming minerals of kimberlites as a result of exposure to high-power nanosecond electromagnetic pulses (HPEM) has been studied. From FTIR and XPS data the non-thermal effect of HPEM results in damage of surface microstructure of dielectric minerals due to formation of microcracks, surface breakdowns and other defects, which ensure effective weakening of rock-forming minerals and reduction in their microhardness by 40-66%.
DS201607-1291
2016
Chepurov, A., Turkin A., Dereppe, J-M. .Interaction of serpentine and chromite as a possible formation mechanism of subcalcic chromium garnet in the upper mantle: an experimental study.European Journal of Mineralogy, Vol. 28, pp. 329-336.RussiaDeposit - Udachnaya

Abstract: An experimental simulation of serpentine and chromite interaction was conducted at the pressure (P) and temperature (T) conditions of garnet-peridotite stability in order to clarify the potential role of serpentinite as a source for the crystallization of subcalcic garnet in the depleted subcratonic mantle. The experiments were performed at 4 GPa and 1100 C and 5.5 GPa and 1200 C using the high-pressure apparatus BARS. Natural antigorite from ophiolites of the Eastern Sayan (Russia) was used as a starting material. Two groups of chromite grains with different Cr# ¼ 100Cr/(Cr þ Al) ratios (from spinel peridotite xenoliths from the Udachnaya kimberlite pipe, Yakutia) were added to the antigorite. Newly formed garnet, spinel, olivine and orthopyroxene were observed as the products in the experiments. Garnet formed only around chromite grains with the lower Cr# value (46.4). Garnet has low CaO contents (,0.05 -1.10 wt.%) with chromium contents showing wide intra- and inter-grain variations (Cr# ¼ 0.7 -33.5). The Cr content increases from core to rim with the outer zones corresponding most closely to the equilibrium composition of the relevant bulk composition. The garnet total FeO content is in the range 3.4 -5.8 wt.%. The experiments demonstrate that serpentinite decomposed at a temperature of 700 C to olivine þ orthopyroxene þ water. If mingled mechanically with spinel-bearing mantlewedge peridotite upon subduction, it could react to form the range of subcalcic garnet compositions found as inclusions in diamonds.
DS201607-1295
2016
Ernst, R.E., Hamilton, M.A., Soderlund, U., Hanes, J.A., Gladkochub, D.P., Okrugin, A.V., Kolotilina, T., Mekhonoshin, A.S., Bleeker, W., LeCheminant, A.N., Buchan, K.L., Chamberlain, K.R., Didenko, A.N.Long lived connection between southern Siberia and northern Laurentia in the Proterozoic.Nature Geoscience, Vol. 9, 6, pp. 464-469.Canada, RussiaProterozoic

Abstract: Precambrian supercontinents Nuna-Columbia (1.7 to 1.3 billion years ago) and Rodinia (1.1 to 0.7 billion years ago) have been proposed. However, the arrangements of crustal blocks within these supercontinents are poorly known. Huge, dominantly basaltic magmatic outpourings and intrusions, covering up to millions of square kilometres, termed Large Igneous Provinces, typically accompany (super) continent breakup, or attempted breakup and offer an important tool for reconstructing supercontinents. Here we focus on the Large Igneous Province record for Siberia and Laurentia, whose relative position in Nuna-Columbia and Rodinia reconstructions is highly controversial. We present precise geochronology—nine U -Pb and six Ar -Ar ages—on dolerite dykes and sills, along with existing dates from the literature, that constrain the timing of emplacement of Large Igneous Province magmatism in southern Siberia and northern Laurentia between 1,900 and 720 million years ago. We identify four robust age matches between the continents 1,870, 1,750, 1,350 and 720 million years ago, as well as several additional approximate age correlations that indicate southern Siberia and northern Laurentia were probably near neighbours for this 1.2-billion-year interval. Our reconstructions provide a framework for evaluating the shared geological, tectonic and metallogenic histories of these continental blocks.
DS201607-1361
2016
Malkovets, V.Timing of the Siberian craton kimberlite magmatism: evidences from the U-Pb dating of kimberlitic zircon.IGC 35th., Session A Dynamic Earth 1p. AbstractRussiaKimberlite
DS201607-1363
2016
Mikhailenko, D.Unusual olivine composition in coesite-bearing eclogite xenoliths from Udachnaya pipe: the traces of 'dry' alkaline and Mg-rich metasomatic events.IGC 35th., Session The Deep Earth 1 p. abstractRussia, SiberiaUdachnaya
DS201607-1373
2016
Radu, I-B.Kyanite bearing eclogite xenoliths from the Udachanaya kimberlites, Siberia.IGC 35th., Session A Dynamic Earth 1p. AbstractRussiaKimberlite
DS201607-1312
2016
Savelyeva, V.B., Demonterova, E.I., Danilova, Yu.V., Bazarova, E.P., Ivanov, A.V., Kamenetsky, V.S.New carbonatite complex in the western Baikal area, southern Siberian craton: mineralogy, age, geochemistry, and petrogenesis.Petrology, Vol. 24, 3, pp. 271-302.RussiaCarbonatite

Abstract: A dike -vein complex of potassic type of alkalinity recently discovered in the Baikal ledge, western Baikal area, southern Siberian craton, includes calcite and dolomite -ankerite carbonatites, silicate-bearing carbonatite, phlogopite metapicrite, and phoscorite. The most reliable 40Ar -39Ar dating of the rocks on magnesioriebeckite from alkaline metasomatite at contact with carbonatite yields a statistically significant plateau age of 1017.4 ± 3.2 Ma. The carbonatite is characterized by elevated SiO2 concentrations and is rich in K2O (K2O/Na2O ratio is 21 on average for the calcite carbonatite and 2.5 for the dolomite -ankerite carbonatite), TiO2, P2O5 (up to 9 wt %), REE (up to 3300 ppm), Nb (up to 400 ppm), Zr (up to 800 ppm), Fe, Cr, V, Ni, and Co at relatively low Sr concentrations. Both the metapicrite and the carbonatite are hundreds of times or even more enriched in Ta, Nb, K, and LREE relative to the mantle and are tens of times richer in Rb, Ba, Zr, Hf, and Ti. The high (Gd/Yb)CN ratios of the metapicrite (4.5 -11) and carbonatite (4.5 -17) testify that their source contained residual garnet, and the high K2O/Na2O ratios of the metapicrite (9 -15) and carbonatite suggest that the source also contained phlogopite. The Nd isotopic ratios of the carbonatite suggest that the mantle source of the carbonatite was mildly depleted and similar to an average OIB source. The carbonatites of various mineral composition are believed to be formed via the crystallization differentiation of ferrocarbonatite melt, which segregated from ultramafic alkaline melt.
DS201608-1404
2016
Galimov, E.M., Sevastyanov, V.S., Karpova, G.A., Shilobreeva, S.N., Maksimov, A.P.Microcrystalline diamonds in the oceanic lithosphere and their nature. MicrodiamondsDoklady Earth Sciences, Vol. 469, 1, pp. 670-673.RussiaTolbachik Volcano

Abstract: The carbon isotope composition of microdiamonds found in products of the Tolbachik Volcano eruption, Kamchatka (porous lavas and ash), was studied. The isotope composition of microdiamonds (with an average value of ?13C =-25.05‰) is close to that of microsized carbon particles in lavas (from-28.9 to-25.3‰). The general peculiarities of the diamond-forming environment include (1) no evidence for high pressure in the medium; (2) a reduced environment; and (3) mineralogical evidence for the presence of a fluid. The geochemical data characterizing the type of diamonds studied allow us to suggest that they were formed in accordance with the mechanism of diamond synthesis during cavitation in a rapidly migrating fluid, which was suggested by E.M. Galimov.
DS201608-1413
2016
Ivanyuk, G.Yu., Kalashnikov, A.O., Pakhomovsky, Ya.A., Mikhailova, J.A., Yakovenchuk, V.N., Konopleva, N.G., Sokharev, V.A., Bazai, A.V., Goryainov, P.M.Economic minerals of the Kovdor baddeleyite apatite magnetite deposit, Russia: mineralogy, spatial distribution and ore processing optimization.Ore Geology Reviews, Vol. 77, pp. 279-311.RussiaDeposit - Kovdor

Abstract: The comprehensive petrographical, petrochemical and mineralogical study of the Kovdor magnetite-apatite-baddeleyite deposit in the phoscorite-carbonatite complex (Murmansk Region, Russia) revealed a spatial distribution of grain size and chemical composition of three economically extractable minerals — magnetite, apatite, and baddeleyite, showing that zonal distribution of mineral properties mimics both concentric and vertical zonation of the carbonatite-phoscorite pipe.The marginal zone of the pipe consists of (apatite)-forsterite phoscorite carrying fine grains of Ti-Mn-Si-rich magnetite with ilmenite exsolution lamellae, fine grains of Fe-Mg-rich apatite and finest grains of baddeleyite, enriched in Mg, Fe, Si and Mn. The intermediate zone accommodates carbonate-free magnetite-rich phoscorites that carry medium to coarse grains of Mg-Al-rich magnetite with exsolution inclusions of spinel, medium-grained pure apatite and baddeleyite. The axial zone hosts carbonate-rich phoscorites and phoscorite-related carbonatites bearing medium-grained Ti-V-Ca-rich magnetite with exsolution inclusions of geikielite-ilmenite, fine grains of Ba-Sr-Ln-rich apatite and comparatively large grains of baddeleyite, enriched in Hf, Ta, Nb and Sc. The collected data enable us to predict such important mineralogical characteristics of the multicomponent ore as chemical composition and grain size of economic and associated minerals, presence of contaminating inclusions, etc. We have identified potential areas of maximum concentration of such by-products as scandium, niobium and hafnium in baddeleyite and REEs in apatite.
DS201608-1417
2016
Kogarko, L.N.Zirconium and hafnium fractionation in differeniation of alkali carbonatite magmatic systems.Geology of Ore Deposits, Vol. 58, 3, pp. 173-181.Russia, UkraineGuli Complex, Chernigov Massif

Abstract: Zirconium and hafnium are valuable strategic metals which are in high demand in industry. The Zr and Hf contents are elevated in the final products of magmatic differentiation of alkali carbonatite rocks in the Polar Siberia region (Guli Complex) and Ukraine (Chernigov Massif). Early pyroxene fractionation led to an increase in the Zr/Hf ratio in the evolution of the ultramafic–alkali magmatic system due to a higher distribution coefficient of Hf in pyroxene with respect to Zr. The Rayleigh equation was used to calculate a quantitative model of variation in the Zr/Hf ratio in the development of the Guli magmatic system. Alkali carbonatite rocks originated from rare element-rich mantle reservoirs, in particular, the metasomatized mantle. Carbonated mantle xenoliths are characterized by a high Zr/Hf ratio due to clinopyroxene development during metasomatic replacement of orthopyroxene by carbonate fluid melt.
DS201608-1428
2016
Nimis, P., Alvaro, M., Nestola, F., Angel, R.J., Marquardt, K., Rustioni, G., Harris, J.W., Marone, F.First evidence of hydrous silicic fluid films around solid inclusions in gem-qualty diamonds.Lithos, Vol. 260, pp. 384-389.Russia, Africa, South AfricaDeposit - Udachnaya, Premier

Abstract: Diamonds form from fluids or melts circulating at depth in the Earth's mantle. Analysis of these fluids is possible if they remain entrapped in the diamond during its growth, but this is rarely observed in gem-quality stones. We provide the first evidence that typical mineral inclusions in gem-quality diamonds from the Siberian and Kaapvaal cratons are surrounded by a thin film of hydrous silicic fluid of maximum thickness 1.5 ?m. The fluid contains Si2O(OH)6, Si(OH)4, and molecular H2O and was identified using confocal micro-Raman spectroscopy and synchrotron-based X-ray tomographic microscopy. As the solid mineral inclusions have both peridotitic and eclogitic affinities and occur in two cratonic regions, our results demonstrate the strong connection between water-rich fluids and the growth of gem-quality lithospheric diamonds. The presence of the fluid films should be taken into account for a proper evaluation of H2O contents in the mantle based on H2O contents in solid inclusions and for a robust assessment of diamond formation pressures based on the residual pressures of the inclusions.
DS201608-1437
2016
Savelieva, G.N., Raznitsin, Yu.N., Merkulova, M.V.Metamorphsm of peridotites in the mantle wedge above the subduction zone: hydration of the lithospheric mantle.Doklady Earth Sciences, Vol. 468, 1, pp. 438-440.Russia, Polar UralsSubduction

Abstract: Two areas with different types of hydration (serpentinization), which occurred in two settings distinct in temperatures, pressures, and stresses, are spatially individualized in the ophiolitic ultramafic massifs of the Polar Urals. The high-temperature hydration of ultramafic rocks occurred in the lithosphere of the mantle wedge directly above the subducted slab. The initial conditions of hydration are limited to 1.2-2 GPa and 650-700°C; a stable assemblage of olivine + antigorite + magnetite ? amphibole ? talc ? chlorite was formed at 0.9-1.2 GPa and 550-600°C. The low-temperature mesh lizardite-chrysotile serpentinization occurred in the crustal, near-surface conditions. Both types of hydration were accompanied by release of hydrogen, which participates in abiogenic CH4 synthesis in the presence of CO2 dissolved in water.
DS201608-1444
2016
Titkov, S.V., Mineeva, R.M., Ryabchikov, I.D., Speransky, A.V.Sites of N1 nitrogen paramagnetic centers in natural diamond crystals: disssymmetrization of the structure as a result of plastic deformation.Doklady Earth Sciences, Vol. 468, 1., pp. 500-502.RussiaMorphology - brown diamonds
DS201608-1445
2016
Tomilenko, A.A., Bulbak, T.A., Khomenko, M.O., Kuzmin, D.V., Sobolev, N.V.The composition of volatile components in olivines from Yakutian kimberlites of various ages: evidence from gas chromatography - mass spectrometry.Doklady Earth Sciences, Vol. 469, 1, pp. 690-694.RussiaDeposit - Olivinvaya, Malokuonapskaya, Udachnaya-East

Abstract: The composition of volatiles from fluid and melt inclusions in olivine phenocrysts from Yakutian kimberlite pipes of various ages (Olivinovaya, Malokuonapskaya, and Udachnaya-East) were studied for the first time by gas chromatography-mass spectrometry. It was shown that hydrocarbons and their derivatives, as well as nitrogen-, halogen-, and sulfur-bearing compounds, played a significant role in the mineral formation. The proportion of hydrocarbons and their derivatives in the composition of mantle fluids could reach 99%, including up to 4.9% of chlorineand fluorine-bearing compounds.
DS201608-1447
2016
Ugapeva, S.S., Pavlushin, A.D., Goryainov, S.V., Afanasiev, V.P., Poikilenko, N.P.Comparative characteristics of diamonds with olivine inclusions from the Ebelyakh placer and kimberlite pipes of the Yakutian Diamondiferous province.Doklady Earth Sciences, Vol. 468, 1, pp. 473-477.RussiaDeposit - Mir, Aykhal, Udachnaya, XXII Congress

Abstract: The results of morphological examination and the character of the structural orientation and estimation of residual pressure calculated from spectra of combination dispersion in olivine inclusions within diamonds of the Ebelyakh placer and kimberlite pipes of the Yakutian Diamondiferous Province are presented. The data analysis aimed at revealing indications of similarity and/or differences between diamonds from the pipes and the placer. Differences in the structural orientation and spectra of combination dispersion of the inclusions of olivine in dodecahedroids of placers of the northeastern part of the Siberian Platform support the assumption of their non-kimberlite nature.
DS201608-1448
2016
Vasilev, Yu.R., Gora, M.P.Nature of voluminous meimechite picrite associations in Siberia and other regions.Doklady Earth Sciences, Vol. 468, 1, pp. 469-472.RussiaMeimechite, picrite

Abstract: Analysis of petrochemical and geochemical information of the same levels, which characterize rocks and primary melt inclusions in olivines of heterochronic meimechite-picrite associations in Siberia (Maimecha-Kotui province), Primorye (Sikhote-Alin), and Kamchatka demonstrated that, besides the similar appearance and identical structural patterns, they are considerably discrepant in the concentration and distribution of incompatible and rare earth elements. Those differences are also observed for the compositions and evolutionary trends of parental high-temperature magnesium-rich melts. This, in turn, was assumed to be a consequence of a variable degree of melting of the mantle protoliths in the mentioned regions, which is supported by geochemical modeling.
DS201608-1449
2016
Viezzoli, A., Kaminski, V.Airborne IP: examples from the Mount Milligan deposit Canada, and the Amakinskaya kimberlite pipe, Russia.Exploration Geophysics , http://dx.doi.org/10.1071/EG16015 10p. AvailableRussiaDeposit Amakinskaya, Geophysics

Abstract: There have been multiple occurrences in the literature in the past several years of what has been referred to as the induced polarisation (IP) effect in airborne time domain electromagnetic (TDEM) data. This phenomenon is known to be responsible for incorrect inversion modelling of electrical resistivity, lower interpreted depth of investigation (DOI) and lost information about chargeability of the subsurface and other valuable parameters. Historically, there have been many suggestions to account for the IP effect using the Cole-Cole model. It has been previously demonstrated that the Cole-Cole model can be effective in modelling synthetic TDEM transients. In the current paper we show the possibility of extracting IP information from airborne TDEM data using this same concept, including inverse modelling of chargeability from TDEM data collected by VTEM, with field examples from Canada (Mt Milligan deposit) and Russia (Amakinskaya kimberlite pipe).
DS201608-1452
2016
Yudin, D.S., Tomilanko, A.A., Alifirova, T.A., Travin, A.V., Murzintsev, N.G., Pokhilenko, N.P.Results of 40 Ar/39 Ar dating of phlogopites from kelphyphitic rims around garnet grains ( Udachnaya- Vostochnaya pipe).Doklady Earth Sciences, Vol. 469, 1, pp. 728-731.RussiaDeposit - Udachnaya - Vostochnaya
DS201609-1724
2016
Kargin, A.V., Sazonova, L.V., Nosova, A.A., Tretyachenko, V.V.Composition of garnet and clinopyroxene in peridotite xenoliths from the Grib kimberlite pipe, Arkhangelsk diamond province, Russia: evidence for mantle metasomatism associated with kimberlite melts.Lithos, Vol. 262, pp. 442-455.RussiaDeposit - Grib

Abstract: Here we present major and trace element data for garnet and clinopyroxene from mantle-derived peridotite xenoliths of the Grib kimberlite, the Arkhangelsk diamond province, Russia, and provide new insights into the metasomatic processes that occur within the subcontinental lithospheric mantle (SCLM) during the kimberlite generation and ascent. The mantle xenoliths examined in this study are both coarse and sheared garnet peridotites and consist of olivine, orthopyroxene, clinopyroxene, garnet with minor ilmenite, magnetite, and Cr-spinel. Based on garnet and clinopyroxene composition, two groups of peridotite are recognized. One group contains high-Ti, light rare earth elements (LREE) enriched garnets and low-Mg# clinopyroxenes with low (La/Sm)n (C1 chondrite-normalized) values. This mineral assemblage was in equilibrium with a high-temperature carbonate-silicate metasomatic agent, presumably, a protokimberlite melt. Pressure-temperature (P-T) estimates (T = 1220 °C and P = 70 kbar) suggest that this metasomatic event occurred at the base of the SCLM. Another group contains low-Ti garnet with normal to sinusoidal rare earth elements (REE) distribution patterns and high-Mg# clinopyroxenes with wide range of (La/Sm)n values. The geochemical equilibrium between garnet and clinopyroxene coupled with their REE composition indicates that peridotite mantle experienced metasomatic transformation by injection of a low-Ti (after crystallizations of the ilmenite megacrysts) kimberlite melt that subsequently percolated through a refractory mantle column. Peridotites of this group show a wide range of P-T estimates (T = 730-1070 °C and P = 22-44 kbar). It is suggested that evolution of a kimberlite magma from REE-enriched carbonate-bearing to carbonate-rich ultramafic silicate compositions with lower REE occurs during the ascent and interaction with a surrounding lithospheric mantle, and this process leads to metasomatic modification of the SCLM with formation of both high and low-Ti garnets and clinopyroxene widely varying in Mg# and (La/Sm)n values.
DS201609-1726
2016
Kopylova, M.G., Gaudet, M., Kostrovitsky, S.I., Polozov, A.G., Yakovlev, D.A.Origin of salts and alkali carbonates in the Udachnaya East kimberlite: insights from petrography of kimberlite phases and their carbonate and evaporite xenoliths.Journal of Volcanology and Geothermal Research, in press available 19p.RussiaDeposit - Udachnaya East

Abstract: The Udachnaya East kimberlite is characterized by the presence of chlorides, sulfates and alkali carbonates. This highly atypical mineralogy underpinned a model for an anhydrous alkali-rich primary kimberlite melt, despite the absence of petrographic studies providing textural context to the exotic minerals. The present work documents the petrography of the Udachnaya East kimberlite in order to address this problem. The pipe comprises two varieties of Fort-a-la-Corne type pyroclastic kimberlite, olivine-rich and magmaclast-rich, and coherent kimberlite. These kimberlites entrain xenoliths of limestones, altered shales and siltstones, halite-dominated rocks, dolomites, and coarse calcite rocks. The distinct varieties of the Udachnaya East kimberlite carry different populations of crustal xenoliths, which partially control the mineralogy of the host kimberlite. In magmaclast-rich pyroclastic kimberlite, where halite is absent from the crustal xenoliths, it is not observed in the interclast matrix, or within the magmaclasts. Halite occurs in the interclast matrix of olivine-rich pyroclastic kimberlite, where halite xenoliths are common. Large, ~ 30 cm halite xenoliths are uniquely restricted to the coherent kimberlite and show a strong reaction with it. The halite xenoliths are sourced from depths of ? 1500 to ? 630 m, where carbonate beds host multiple karst cavities filled with halite and gypsum and occasional sedimentary evaporites. The style of secondary mineralization at Udachnaya depends on whether the kimberlite is coherent or pyroclastic. Shortite, pirssonite and other alkali carbonates replacing calcite and possibly serpentine are abundant only in porous pyroclastic kimberlites of both types and in their shale/siltstone xenoliths. The lower porosity of the coherent kimberlite prevented the interaction of kimberlite with Na brines. Serpentinization localized around halite xenoliths started at temperatures above 500 °C, as indicated by its association with high-temperature iowaite. The model of the “dry” Na and Cl-rich primary kimberlite melt is invalidated on the basis of 1) the restriction of exotic salt minerals to certain kimberlite types and xenoliths; and 2) the absence of halite-rich melt inclusions in olivine of coherent kimberlite.
DS201609-1729
2016
Lykova, I.S., Pekov, I.V., Chukanov, N.V., Belakovskiy, D.I., Yapaskurt, V.O., Zubkova, N.V., Britvin, S.N., Giester, G.Calciomurmanite a new mineral from the Lovozero and Khibiny alkaline complexes, Kola Peninsula.European Journal of Minerlogy, in press avaialbe 15p.RussiaMineralogy
DS201610-1874
2016
Jean, M.M., Taylor, L.A., Howarth, G.H., Peslier, A.H., Fedele, L., Bodnar, R.J., Guan, Y., Doucet, L.S., Ionov, D.A., Logvinova, A.M., Golovin, A.V., Sobolev, N.V.Olivine inclusions in Siberian diamonds and mantle xenoliths: contrasting water and trace -element contents.Lithos, in press available 11p.Russia, SiberiaDiamond inclusions
DS201610-1886
2016
Melkovets, V.G., Rezvukhin, D.I., Belousova, E.A., Griffin, W.L., Sharygin, I.S., Tretiakova, I.G., Pokhilenko, N.P., Sobolev, N.V.Cr-rich rutile: a powerful tool for diamond exploration.Lithos, in press available 8p.Russia, SiberiaDeposit - Internationalnaya

Abstract: Mineralogical studies and U-Pb dating have been carried out on rutile included in peridotitic and eclogitic garnets from the Internatsionalnaya pipe, Mirny field, Siberian craton. We also describe a unique peridotitic paragenesis (rutile + forsterite + enstatite + Cr-diopside + Cr-pyrope) preserved in diamond from the Mir pipe, Mirny field. Compositions of rutile from the heavy mineral concentrates of the Internatsionalnaya pipe and rutile inclusions in crustal almandine-rich garnets from the Mayskaya pipe (Nakyn field), as well as from a range of different lithologies, are presented for comparison. Rutile from cratonic mantle peridotites shows characteristic enrichment in Cr, in contrast to lower-Cr rutile from crustal rocks and off-craton mantle. Rutile with Cr2O3 > 1.7 wt% is commonly derived from cratonic mantle, while rutiles with lower Cr2O3 may be both of cratonic and off-cratonic origin. New analytical developments and availability of standards have made rutile accessible to in situ U-Pb dating by laser ablation ICP-MS. A U-Pb age of 369 ± 10 Ma for 9 rutile grains in 7 garnets from the Internatsionalnaya pipe is consistent with the accepted eruption age of the pipe (360 Ma). The equilibrium temperatures of pyropes with rutile inclusions calculated using Ni-in-Gar thermometer range between ~ 725 and 1030 °C, corresponding to a depth range of ca ~ 100-165 km. At the time of entrainment in the kimberlite, garnets with Cr-rich rutile inclusions resided at temperatures well above the closure temperature for Pb in rutile, and thus U-Pb ages on mantle-derived rutile most likely record the emplacement age of the kimberlites. The synthesis of distinctive rutile compositions and U-Pb dating opens new perspectives for using rutile in diamond exploration in cratonic areas.
DS201610-1888
2016
Mikhailenko, D.S., Korsakov, A.V., Golovin, A.V., Zelenovskiy, P.S., Pohilenko, N.P.The first finding of graphite inclusion in diamond from mantle rocks: the result of the study of eclogite xenolith from Udachnaya pipe ( Siberian craton).Doklady Earth Sciences, Vol. 469, 2, pp. 870-873.RussiaDeposit - Udachnaya

Abstract: A xenolith of eclogite from the kimberlite pipe Udachnaya-East, Yakutia Grt+Cpx+Ky + S + Coe/Qtz + Dia + Gr has been studied. Graphite inclusions in diamond have been studied in detail by Confocal Raman (CR) mapping. The graphite inclusion in diamond has a highly ordered structure and is characterized by a substantial shift in the band (about 1580 cm-1) by 7 cm-1, indicating a significant residual strain in the inclusion. According to the results of FTIR spectroscopic studies of diamond crystals, a high degree of nitrogen aggregation has been detected: it is present mainly in form A, which means an "ancient" age of the diamonds. In the xenolith studied, the diamond formation occurred about 1 Byr, long before their transport by the kimberlite melt, and the conditions of the final equilibrium were temperatures of 1020 ± 40°C at 4.7 GPa. Thus, these graphite inclusions found in a diamond are the first evidence of crystallization of metastable graphite in a diamond stability field. They were formed in rocks of the upper mantle significantly below (?20 km) the graphite-diamond equilibrium line.
DS201610-1889
2016
Mochalov, A.G., Yakubovich, O.V., Bortnikov, N.S.190Pt-4He age of PGE ores in the alkaline ultramafic Kondyor Massif ( Khabarovsk district) Russia.Doklady Earth Sciences, Vol. 469, 2, pp. 846-850.RussiaAlkalic

Abstract: A new 190Pt-4He method for dating isoferroplatinum has been developed at the Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences. Here we publish the first results of dating of isoferroplatinum from the main mineralogical and geochemical types of PGE mineralization in dunite. The obtained 190Pt-4He age of isoferroplatinum is 129 ± 6 Ma. The gained 190Pt-4He age of isoferroplatinum specimens of different genesis (magmatic, fluid-metamorphogenic, and metasomatic) from the Kondyor Massif indicates that the PGM mineralization took place synchronously and successively with evolution of primarily picrite, followed by subalkaline and alkaline melts of the Mesozoic tectonic-magmatic activation of the Aldan Shield.
DS201610-1891
2016
Nestola, F., Alvaro, M., Casati, M.N., Wilhelm, H., Kleppe, A.K., Jephcoat, A.P., Domeneghetti, M.C., Harris, J.W.Source assemblage types for cratonic diamonds from x-ray synchroton diffraction.Lithos, in press available 5p.RussiaDeposit - Udachnaya
DS201610-1901
2016
Prokopyev, I.R., Borisenko, A.S., Borovikov, A.A., Pavlova, G.G.Origin of REE rich ferrocarbonatites in southern Siberia ( Russia): implications based on melt and fluid inclusions.Mineralogy and Petrology, in press available 15p.Russia, Kola PeninsulaDeposit - Tuva

Abstract: Fe-rich carbonatites with a mineral assemblage of ankerite-calcite or siderite are widespread in southern Siberia, Russia. The siderite carbonatites are associated with F-Ba-Sr-REE mineralization and have a 40Ar/39Ar age of 117.2 ± 1.3 Ma. Melt and fluid inclusions suggest that the carbonatites formed from volatile-rich alkali- and chloride-bearing carbonate melts. Ankerite-calcite carbonatites formed from carbonatite melt at a temperature of more than 790 °C. The ferrocarbonatites (the second phase of carbonatite intrusion) formed from a sulfate-carbonate-chloride fluid phase (brine-melt) at >650 °C and ?360 MPa. The brine-melt fluid phase had high concentrations of Fe and LREEs. A subsequent hydrothermal overprint contributed to the formation of economically important barite-Sr-fluorite-REE mineralization in polymict siderite breccia.
DS201610-1902
2016
Ragozin, A.L., Zedgenizov, D.A., Kuper, K.E., Shatsky, V.S.Radial mosaic internal structure of rounded diamond crystals from alluvial placers of Siberian platform. EbayakMineralogy and Petrology, in press available 15p.RussiaX-ray topography

Abstract: The specific gray to almost black diamonds of rounded morphology are especially typical in alluvial placers of the northeastern part of the Siberian platform. The results of study of internal structure of these diamonds are presented. X-ray topography and birefringence patterns of polished plates of studied diamonds show their radial mosaic structure. Diamonds consists of slightly misorientated (up to 20?) subindividuals which are combined to mosaic wedge-shaped sectors. Electron back-scatter diffraction technique has demonstrated that subindividuals are often combined in the single large blocks (subgrains). The whole crystals commonly consist of several large subgrains misoriented up to 5° to one another. The total nitrogen content of these diamonds vary in the range 900-3300 ppm and nitrogen aggregation state (NB/(NB + NA)*100) from 25 to 64 %. Rounded diamond crystals of variety V are suggested to have been formed at the high growth rate caused by the high oversaturation of carbon in the crystallization medium. It may result in the splitting of growing crystal and their radial mosaic structure as a sequence. High content of structural nitrogen defects and the great number of mechanical impurities - various mineral and fluid inclusions may also favor to generation of this structure.
DS201610-1909
2016
Sobolev, N.V., Shatsky, V.S., Zedgenizov, D.A., Ragozin, A.L., Reutsky, V.N.Polycrystalline diamond aggregates from the Mir kimberlite pipe, Yakutia: evidence for mantle metasomatism.Lithos, in press available 10p.RussiaDeposit - Mir

Abstract: Polycrystalline diamond aggregates (boart, framesites, diamondites) have been widely studied but their origin is poorly understood. We report the results of a study in situ of two polished fragments of fine-grained (40-400 ?m size of individual diamond grains) dense polycrystalline diamond aggregates from the Mir pipe containing visible multiple interstitial garnet inclusions. They were analyzed for major and trace elements of inclusions and one of them — for ?13C and N abundance and isotopic composition of host diamonds. These aggregates are classified as variety IX by Orlov (1977). No cavities were observed in these samples. Sixty two irregular garnet grains and one clinopyroxene inclusion were detected and analyzed in sample Mr 832. Garnets are homogeneous within single grains but variable in Mg# [100Mg/(Mg + Fe)] from 60 up to 87 and CaO contents (3.3-5.3 wt.%) among grains with a trend to negative correlation. Low Cr (550-640 ppm) confirms eclogitic (E-type) paragenesis. High Na2O contents (5.2 wt.%) of a single pyroxene inclusion are additional evidence of eclogitic nature of this sample. Wide variations in trace elements (ppm) are characteristic for garnet grains: Sr (2.7-25.6), Y (9.7-14.1), Zr (15.6-38.7) and positive Eu anomaly is present. The ?13C of diamonds within studied sample is variable (? 6.4 ÷? 9.8 ‰) as well as N abundance (75-1150 ppm) and ?15N ? 27, ? 38, ? 58 ‰. The second peridotitic (U/P-type) sample Mr 838 contains eight inclusions of Mg-rich Cr-pyropes (Mg# ~ 85, Cr2O3 3.2-3.4 wt.%) and magnesite inclusion with 4.35 wt.% FeO and 1.73 wt.% CaO. Trace element content in pyropes is relatively uniform (ppm): Sr (0.4-1.6), Y (13.2-13.4) and Zr (13.0). We conclude that heterogeneous distribution of the trace elements among garnet grains in Mr 832 and magnesite presence in Mr 838 are indicative of the effects of mantle metasomatism and rapid crystallization shortly before the eruption of the kimberlite.
DS201610-1914
2004
Wall, F., Zaitsev, A.N. .Phoscorites and carbonatites from mantle to mine: the key example of the Kola alkaline province.Mineralogical Society Series, isbn 0-903056-22-4 on sale approx 20lbsRussia, Kola PeninsulaBook - volcanology

Abstract: The first response to the title of this book is often 'What is a phoscorite?'. The exact definition and characteristics of phoscorite are discussed in some detail in Chapter 2 and were the subject of varying opinions amongst the authors of this and other chapters. We nicknamed the book 'the dark side of carbonatites', which covers it nicely. Phoscorites are dark, often very handsome, sometimes economically valuable, magnetite-apatite-silicate rocks, almost always associated with carbonatite. They are key to understanding the longstanding question of how carbonate and carbonate-bearing magmas rise to the crust and the Earth's surface. Despite this, they have been given little attention; a search on geological literature databases will produce thousands of references to carbonatite (up to 4125 on Georef) but not more than thirty references to phoscorite. This book goes some way to redress this balance. Over the last ten years many European and North American scientists have studied Kola rocks in collaboration with Russian colleagues. The idea for this book came from one such project funded by the European organisation, INTAS (Grant No 97-0722). The Kola Peninsula, Russia, is one of the outstanding areas in the World for the concentration and economic importance of alkaline rocks. However, Russian work on the Kola complexes is still relatively Show Less
DS201610-1919
2016
Yelisseyev, A.P., Afansiev, V.P., Panchenko, A.V., Gromilov, S.A., Kaichev, V.V., Sarasev, A.A.Yakutites: are they impact diamonds from the Popigai crater?Lithos, in press available 14p.RussiaImpact diamonds

Abstract: Yakutites are coarse (up to 15 mm or larger) aggregates dispersed for more than 500 km around the Popigai meteorite crater. They share many features of similarity with impact diamonds found inside the crater, in elemental and phase compositions, texture, and optical properties as revealed by X-ray photoelectron spectroscopy, X-ray diffraction, and optical spectroscopy (Raman, absorption, luminescence and microscopic) studies. The N3 vibronic system appearing in the luminescence spectra of Popigai impact diamonds (PIDs) indicates a presence of nitrogen impurity and a high-temperature annealing of diamonds that remained in the crater after solid-phase conversion from graphite. Yakutites lack nitrogen-vacancy centers as signatures of annealing, which may indicate quenching at the time of ejection. Thus, both PIDs and yakutites originated during the Popigai impact event and yakutites were ejected to large distances.
DS201611-2100
2015
Chanturia, V.A., Dvoichenkova, G.P., Kovalchuk, O.E., Timofeev, A.S.Surface composition and role of hydrophilic diamonds in foam separation.Journal of Mining Science , Vol. 51, 5, pp. 1235-1241.RussiaMineral processing ** in Russian

Abstract: The article presents new test results on structural and chemical properties of mineral formations on the surface of natural hydrophilic diamonds using Raman, X-ray phase and Auger spectroscopy methods. Analysis of morphological features of nano formations involved scanning electron microscope Jeol-5610 and analyzer INCA. Based on the studies into phase composition of diamonds non-recovered in the circuit of kimberlite ore processing, two types of mineral formations are discovered on their surface: microformations as silicate nature globules less than 1 ?m in size and silicate nano films more than 5 nm thick. The tests detect also presence of layered talc silicates that make diamond surface hydrophilic.
DS201611-2105
2016
Fedorova, N.M., Bzhenov, M.L., Meert, J.G., Kuznetsov, N.B.Edicaran-Cambrian paleogeography of Baltica: a paleomagnetic view from a diamond pit on the White Sea east coast.Lithosphere, Vol. 8, 5, pp. 564-573.Russia, Baltic ShieldPaleogeography

Abstract: The controversial late Ediacaran to Cambrian paleogeography is largely due to the paucity and low reliability of available paleomagnetic poles. Baltica is a prime example of these issues. Previously published paleomagnetic results from a thick clastic sedimentary pile in the White Sea region (northern Russia) provided valuable Ediacaran paleontological and paleomagnetic data. Until recently, Cambrian-age rocks in northern Russia were known mostly from boreholes or a few small outcrops. A recent mining operation in the Winter Coast region exposed >60 m of red sandstone and siltstone of the Cambrian Brusov Formation from the walls of a diamond pit. Paleomagnetic data from these rocks yield two major components. (1) A single-polarity A component is isolated in ?90% of samples between 200 and 650 °C. The corresponding pole (Pole Latitutde, Plat = 20°S; Pole Longitude, Plong = 227°E, ?95 = 7°) agrees with the Early Ordovician reference pole for Baltica. (2) A dual-polarity B component is identified in ?33% of samples, mostly via remagnetization circles, isolated from samples above 650 °C. The corresponding pole (Plat = 12°S; Plong = 108°E, ?95 = 5°) is close to other late Ediacaran data but far from all younger reference poles for Baltica. We argue for a primary magnetization for the B component and the secondary origin of the other Cambrian poles from Baltica. This in turn requires a major reshuffling of all continents and blocks around the North Atlantic. The early stages of Eurasia amalgamation and models for the evolution of the Central Asian Orogenic Belt require revision.
DS201611-2118
2016
Kalashnikov, A.O., Konpleva, N.G., Pakhomovsky, Ya.A., Ivanyuk, G.Yu.Rare earth deposits of the Murmansk region, Russia - a review.Economic Geology, Vol. 111, no. 7, pp. 1529-1559.RussiaRare earths

Abstract: This paper reviews the available information on the geology, mineralogy, and resources of the significant rare earth element (REE) deposits and occurrences in the Murmansk Region, northwest Russia. The region has one of the largest endowments of REE in the world, primarily the light REE (LREE); however, most of the deposits are of potential economic interest for the REE, only as by-products of other mining activity, because of the relatively low REE grade. The measured and indicated REE2O3 resources of all deposits in the region total 22.4, and 36.2 million tonnes, respectively. The most important resources occur in (1) the currently mined Khibiny titanite-apatite deposits, and (2) the Lovozero loparite-eudialyte deposit. The Kovdor baddeleyite-apatite-magnetite deposit is a potentially important resource of scandium. These deposits all have polymetallic ores, i.e., REE would be a by-product of P, Ti, and Al mining at Khibiny, Fe, Zr, Ta, and Nb mining at Lovozero, and Fe and Ti mining at Afrikanda. The Keivy block has potential for heavy REE exploitation in the peralkaline granite-hosted Yumperuaiv and Large Pedestal Zr-REE deposits and the nepheline syenite-hosted Sakharyok Zr-REE deposit. With the exception of the Afrikanda perovskite-magnetite deposit (LREE in perovskite) and the Kovdor baddeleyite-apatite-magnetite deposit (scandium in baddelyite), carbonatite-bearing complexes of the Murmansk Region appear to have limited potential for REE by-products. The sound transport, energy, and mining infrastructure of the region are important factors that will help ensure future production of the REE.
DS201611-2122
2016
Kis, V.K., Shumilova, T., Masaitis, V.HRTEM study of Popigai impact diamond: heterogeneous diamond nanostructures in native amorphous carbon matrix.Physics and Chemistry of Minerals, Vol. 43, 9, pp. 661-670.RussiaImpact diamonds

Abstract: High-resolution transmission electron microscopy was applied for the detailed nanostructural investigation of Popigai impact diamonds with the aim of revealing the nature of the amorphous carbon of the matrix. The successful application of two complementary specimen preparation methods, focused ion beam (FIB) milling and mechanical cleavage, allowed direct imaging of nanotwinned nanodiamond crystals embedded in a native amorphous carbon matrix for the first time. Based on its stability under the electron beam, native amorphous carbon can be easily distinguished from the amorphous carbon layer produced by FIB milling during specimen preparation. Electron energy loss spectroscopy of the native amorphous carbon revealed the dominance of sp2-bonded carbon and the presence of a small amount of oxygen. The heterogeneous size distribution and twin density of the nanodiamond crystals and the structural properties of the native amorphous carbon are presumably related to non-graphitic (organic) carbon precursor material.
DS201611-2124
2016
Mikhailenko, D.S., Korsakov, A.V., Zelenovskiy, P.S., Golovin, A.V.Graphite diamond relations in mantle rocks: evidence from an eclogitic xenolith from the Udachnaya kimberlite, ( Siberian craton).American Mineralogist, Vol. 101, pp. 2155-2167.RussiaDeposit - Udachnaya

Abstract: Relations of graphite and diamond have been studied in a garnet-kyanite-clinopyroxene+sulfide+coesite/quartz+diamond+graphite eclogite xenolith from the Udachnaya-East kimberlite pipe in the Yakutian diamond province. Euhedral crystals of diamond and graphite occur in the intra- and intergranular space. The equilibrium conditions of diamond formation reconstructed by geothermobarometry for the Grt-Cpx-Ky-Coe mineral assemblage are 1020 ± 40 °C and 4.7 GPa. Raman imaging of graphite enclosed in diamond shows high ordering and a 9 cm?1 shift of the ~1580 cm?1 band. This Raman shift of graphite, as well as a 5 cm?1 shift of the 1332 cm?1 band of diamond, indicate large residual stress in graphite and in diamond around the inclusion, respectively. According to FTIR spectroscopy, nitrogen in diamond is highly aggregated and exists mainly as the A centers, while no other phases occur near graphite inclusions. Therefore, diamond in the analyzed eclogite sample must be quite old: it likely had crystallized long (~1 Byr) before it became entrained with kimberlite melt. New data show that graphite can stay in the upper mantle for billions of years without converting to diamond. Crystallization of various carbon polymorphs, both in laboratory and natural systems, remains poorly constrained. Graphite present in mantle and UHP rocks may be a metastable phase crystallized in the diamond stability field. This fact should be taken into consideration when deducing petrological constrains and distinguishing diamond and graphite subfacies in upper mantle.
DS201611-2144
2016
Stepanov, A.S., Hermann, J., Rubatto, D., Korsakov, A.V., Danyushevsky, L.V.Melting history of an ultrahigh pressure paragneiss revealed by multiphase solid inclusions in garnet, Kokchetav Massif, Kazakhstan.Journal of Petrology, in press available, 24p.Russia, KazakhstanGarnet inclusions

Abstract: Abundant multiphase solid inclusions (MSI) were found in garnet in an ultrahigh-pressure (UHP) paragneiss from the Kokchetav complex, Kazakhstan. The MSI are composed of mineral associations that include rock-forming and accessory minerals, which crystallized during exhumation. We present experimental and analytical protocols for how such inclusions can be homogenized to glass and analysed for major and trace elements. After homogenization we identified two types of glass. One type is present in garnet porphyroblasts in the melanocratic part of the sample and represents a high-pressure melt formed close to peak conditions of >45 kbar, 1000°C. These inclusions are characterized by high concentrations of light rare earth elements (LREE), Th and U. Extraction of these melts resulted in a pronounced depletion of the Kokchetav gneisses in those elements. Measured partition coefficients of large ion lithophile elements (LILE) between phengite inclusions and melt inclusions are DRb?=?1•9-2•5, DBa?=?1•1-6•9 and DCs?=?0•6-0•8, resulting in limited depletion of these elements during partial melting in the presence of phengite. The Nb concentration in melts (27?ppm) is about double that in the restite (15?ppm), indicating slightly incompatible behaviour during UHP anatexis, despite the presence of residual accessory rutile and phengite. A second type of inclusion occurs in garnet from the leucocratic part of the rock and represents a late-stage melt formed during exhumation at 650-750°C and crustal pressures. These inclusions are characterized by low LREE and Nb and high U. Zircon domains formed during high-temperature melting are characterized by high Ti content (100-300?ppm) and unfractionated Th/U (0•4-0•8), whereas the low-temperature domains display low Ti (10?ppm) and Th/U (0•08). The composition of UHP melts with moderate enrichment in LILE, no depletion in Nb and extreme enrichment in LREE and Th is remarkably different from the trace element signature of arc basalts, arguing against involvement of this type of melting in the generation of arc crust. The composition of the UHP melt inclusions is similar to that of melt inclusions from HP crustal xenoliths from Pamir and also to some shoshonites from Tibet. UHP anatexis, as observed in the Kokchetav massif, might be related to the formation of shoshonitic alkaline igneous rocks, which are common in collisional settings.
DS201611-2146
2016
Vladykin, N.V., Alymova, N.V., Perfilev, V.V.Geochemical features of rare metal granites of the Zashikhinsky Massif, East Sayan. ( tantalum)Petrology, Vol. 24, 5, pp. 512-525.Russia, IrkutskRare earths

Abstract: The paper presents detailed geochemical data on the rocks of the Zashikhinsky Massif and mineralogical-geochemical characteristics of the ores of the eponymous deposit. The rare-metal granites are divided into three facies varieties on the basis of the degree of differentiation and ore potential: early facies represented by microcline-albite granites with arfvedsonite, middle facies represented by leucocratic albite-microcline granites, and late (most ore-bearing) facies represented by quartz-albite granites grading into albitites. Microprobe data were obtained on major minerals accumulating trace elements in the rocks and ores. All facies of the rare-metal granites, including the rocks of the fluorite-rare-metal vein, define single compositional trends in the plots of paired correlations of rock-forming and trace elements. In addition, they also show similar REE patterns and spidergrams. The latter, however, differ in the depth of anomalies of some elements. Obtained geological, petrographic, and geochemical data suggest a magmatic genesis of the rocks of different composition and their derivation from a single magma during its differentiation. On the basis of all characteristics, the Zashikhinskoe deposit is estimated as one of the largest tantalum rare-metal deposits of alkaline-granite type in Russia.
DS201611-2150
2016
Ziberna, L., Nimis, P., Kuzmin, D., Malkovets, V.G.Error sources in single clinopyroxene thermobarometry and a mantle geotherm for the Novinka kimberlite, Yakutia. Upper Muna fieldAmerican Mineralogist, Vol. 101, pp. 222-2232.RussiaDeposit - Novinka

Abstract: A new suite of 173 clinopyroxene grains from heavy-mineral concentrates of the diamondiferous Novinka kimberlite (Upper Muna field, Yakutia) has been analyzed for major and minor elements with an electron microprobe to perform a thermobarometric study and model the thermal structure of the Archean Upper Muna lithospheric mantle. Scrupulous evaluation of propagation of analytical uncertainties on pressure estimates revealed that (1) the single-clinopyroxene geobarometer can be very sensitive to analytical uncertainties for particular clinopyroxene compositions, and that (2) most clinopyroxenes from Novinka have compositions that are sensitive to analytical uncertainties, notwithstanding their apparent compositional suitability for single-clinopyroxene thermobarometry based on previously proposed application limits. A test on various mantle clinopyroxenes containing different proportions of the sensitive elements Cr, Na, and Al allowed us to identify clinopyroxene compositions that produce unacceptably high propagated errors and to define appropriate analytical conditions (i.e., higher beam currents and longer counting times for specific elements) that allow precise P-T estimates to be obtained for sensitive compositions. Based on the results of our analytical test, and taking into account the intrinsic limitations of the single-clinopyroxene thermobarometer, we have designed a new protocol for optimum thermobarometry, which uses partly revised compositional filters. The new protocol permits precise computation of the conductive paleogeotherm at Novinka with the single-clinopyroxene thermobarometer of Nimis and Taylor (2000). Thermal modeling of the resulting P-T estimates indicates a ~34 mW/m2 surface heat flow, a thermal lithosphere thickness of ~225 km, and an over 100 km thick “diamond window” beneath Novinka in the middle Paleozoic (344-361 Ma). We estimate that appropriate analytical conditions may extend the applicability of single-clinopyroxene thermobarometry to over 90% of clinopyroxene-bearing garnet peridotites and pyroxenites and to ~70% of chromian-diopside inclusions in diamonds. In all cases, application to clinopyroxenes with Cr/(Cr+Al)mol < 0.1 is not recommended. We confirm the tendency of the single-clinopyroxene barometer to progressively underestimate pressure at P > 4.5 GPa.
DS201612-2273
2016
Alexeev, S.V., Alexeeva, L.P., Kononov, A.M.Trace elements and rare earth elements in ground ice in kimberlites and sedimentary rocks of western Yakutia.Cold Regions Science and Technology, Vol. 123, pp. 140-148.Russia, YakutiaGeomorphology

Abstract: The paper presents unique results of studying the composition of the ground ice (major components, trace elements, and rare earth elements - REEs) encountered at a depth of 200-250 m in sedimentary and magmatic rocks in the Western Yakutia diamond-bearing regions. In addition to those established earlier, three new geochemical types of ground ice have been defined: (i) sulfate-hydrocarbonate, (ii) chloride-hydrocarbonate, and (iii) sulfate-chloride types with mixed cation composition. The ground ice geochemical features are caused by evolutionary processes of interaction in the water-rock system during permafrost formation. The enclosed rocks were the source for the addition of sulfate and chlorine ions, as well as trace elements, to the ground waters of the active water exchange zone that had existed before freezing. The distribution pattern of REEs in ground ice has a special form distinct from that of sedimentary rocks, kimberlites, and ocean waters, but similar to the REE pattern in local river waters. This REE pattern features the positive europium (Eu) anomaly and approximate equality of light and heavy REEs. The obtained results essentially expand the insight into ice-formation processes in sedimentary and magmatic rocks.
DS201612-2274
2016
Ashchepkov, I.V., Logvinova, A.M., Ntaflos, T., Vladykin, N.V., Kostrovitsky, S.I., Spetsius, Z., Mityukhin, S.I., Prokopyev, S.A., Medvedev, N.S., Downe, H.Alakit and Daldyn kimberlite fields, Siberia, Russia: two types of mantle sub-terranes beneath central Yakutia?Geoscience Frontiers, in press availableRussia, SiberiaDeposit - Alakit, Daldyn

Abstract: Mineral data from Yakutian kimberlites allow reconstruction of the history of lithospheric mantle. Differences occur in compositions of mantle pyropes and clinopyroxenes from large kimberlite pipes in the Alakit and Daldyn fields. In the Alakit field, Cr-diopsides are alkaline, and Stykanskaya and some other pipes contain more sub-calcic pyropes and dunitic-type diamond inclusions, while in the Daldyn field harzburgitic pyropes are frequent. The eclogitic diamond inclusions in the Alakit field are sharply divided in types and conditions, while in the Daldyn field they show varying compositions and often continuous Pressure-Temperature (P-T) ranges with increasing Fe# with decreasing pressures. In Alakit, Cr-pargasites to richterites were found in all pipes, while in Daldyn, pargasites are rare Dalnyaya and Zarnitsa pipes. Cr-diopsides from the Alakit region show higher levels of light Rare Earth Elements (LREE) and stronger REE-slopes, and enrichment in light Rare Earth Elements (LREE), sometimes Th-U, and small troughs in Nb-Ta-Zr. In the Daldyn field, the High Field Strength Elements HFSE troughs are more common in clinopyroxenes with low REE abundances, while those from sheared and refertilized peridotites have smooth patterns. Garnets from Alakit show HREE minima, but those from Daldyn often have a trough at Y and high U and Pb. PTXfO2 diagrams from both regions show similarities, suggesting similar layering and structures. The degree of metasomatism is often higher for pipes which show dispersion in P-Fe# trends for garnets. In the mantle beneath Udachnaya and Aykhal, pipes show 6-7 linear arrays of P-Fe# in the lower part of the mantle section at 7.5-3.0 GPa, probably reflecting primary subduction horizons. Beneath the Sytykanskaya pipe, there are several horizons with opposite inclinations which reflect metasomatic processes. The high dispersion of the P-Fe# trend indicating widespread metasomatism is associated with decreased diamond grades. Possible explanation of the differences in mineralogy and geochemistry of the mantle sections may relate to their tectonic positions during growth of the lithospheric keel. Enrichment in volatiles and alkalis possibly corresponds to interaction with subduction-related fluids and melts in the craton margins. Incorporation of island arc peridotites from an eroded arc is a possible scenario.
DS201612-2276
2016
Ashchepkov, I.V., Ntaflos, T., Spetius, Z.V., Salikhov, R.F., Downes, H.Interaction between protokimberlite melts and mantle lithosphere: evidence from mantle xenoliths from the Dalnyaya kimberlite pipe, Yakutia, Russia.Geoscience Frontiers, in press availableRussia, YakutiaDeposit - Dalnyaya

Abstract: The Dalnyaya kimberlite pipe (Yakutia, Russia) contains mantle peridotite xenoliths (mostly lherzolites and harzburgites) that show both sheared porphyroclastic (deformed) and coarse granular textures, together with ilmenite and clinopyroxene megacrysts. Deformed peridotites contain high-temperature Fe-rich clinopyroxenes, sometimes associated with picroilmenites, which are products of interaction of the lithospheric mantle with protokimberlite related melts. The orthopyroxene-derived geotherm for the lithospheric mantle beneath Dalnyaya is stepped similar to that beneath the Udachnaya pipe. Coarse granular xenoliths fall on a geotherm of 35 mWm?2 whereas deformed varieties yield a 45 mWm?2 geotherm in the 2-7.5 GPa pressure interval. The chemistry of the constituent minerals including garnet, olivine and clinopyroxene shows trends of increasing Fe# (=Fe/(Fe + Mg)) with decreasing pressure. This may suggest that the interaction with fractionating protokimberlite melts occurred at different levels. Two major mantle lithologies are distinguished by the trace element patterns of their constituent minerals, determined by LA-ICP-MS. Orthopyroxenes, some clinopyroxenes and rare garnets are depleted in Ba, Sr, HFSE and MREE and represent relic lithospheric mantle. Re-fertilized garnet and clinopyroxene are more enriched. The distribution of trace elements between garnet and clinopyroxene shows that the garnets dissolved primary orthopyroxene and clinopyroxene. Later high temperature clinopyroxenes related to the protokimberlite melts partially dissolved these garnets. Olivines show decreases in Ni and increases in Al, Ca and Ti from Mg-rich varieties to the more Fe-rich, deformed and refertilized ones. Minerals showing higher Fe# (0.11-0.15) are found within intergrowths of low-Cr ilmenite-clinopyroxene-garnet related to the crystallization of protokimberlite melts in feeder channels. In P-f(O2) diagrams, garnets and Cr-rich clinopyroxenes indicate reduced conditions at the base of the lithosphere at ?5 log units below a FMQ buffer. However, Cr-poor clinopyroxenes, together with ilmenite and some Fe-Ca-rich garnets, demonstrate a more oxidized trend in the lower part of lithosphere at ?2 to 0 log units relative to FMQ. Clinopyroxenes from xenoliths in most cases show conditions transitional between those determined for garnets and megacrystalline Cr-poor suite. The relatively low diamond grade of Dalnyaya kimberlites is explained by a high degree of interaction with the oxidized protokimberlite melts, which is greater at the base of the lithosphere.
DS201612-2279
2016
Bardukhinov, L.D., Spetsius, Z.V., Monkhorov, R.V.Coesite inclusions in diamonds of Yakutia. Doklady Earth Sciences, Vol. 470, 2, pp. 1042-1045.Russia, YakutiaDeposit - Zapolyarnaya, Maiskaya, Komsomolskaya-Magnitnaya

Abstract: The results of the study of diamonds with inclusions of high-pressure modification of SiO2 (coesite) by Raman spectroscopy are reported. It is established that the octahedral crystal from the Zapolyarnaya pipe is characterized by the highest residual pressure (2.7 ± 0.07 GPa). An intermediate value of this parameter (2.1 ± 0.07 GPa) was obtained for a crystal of transitional habit from the Maiskaya pipe. The minimal Raman shift was registered for coesite in diamond from the Komsomol’skaya-Magnitnaya pipe and provided a calculated residual pressure of 1.8 ± 0.03 GPa. The residual pressures for crystals from the placer deposits of the Kuoika and Bol’shaya Kuonamka rivers are 2.7 ± 0.07 and 3.1 ± 0.1 GPa, respectively. Octahedral crystals were formed in the mantle at a higher pressure than rhombododecahedral diamonds.
DS201612-2288
2016
Chuvashova, I., Rasskazov, S., Yasnygina, T.Mid-Miocene thermal impact on the lithosphere by sub-lithospheric convective mantle material: transition from high- to moderate MG magmatism beneath Vitim Plateau, Siberia.Geoscience Frontiers, in press availableRussia, SiberiaConvection

Abstract: High-Mg lavas are characteristic of the mid-Miocene volcanism in Inner Asia. In the Vitim Plateau, small volume high-Mg volcanics erupted at 16-14 Ma, and were followed with voluminous moderate-Mg lavas at 14-13 Ma. In the former unit, we have recorded a sequence of (1) initial basaltic melts, contaminated by crustal material, (2) uncontaminated high-Mg basanites and basalts of transitional (K-Na-K) compositions, and (3) picrobasalts and basalts of K series; in the latter unit a sequence of (1) initial basalts and basaltic andesites of transitional (Na-K-Na) compositions and (2) basalts and trachybasalts of K-Na series. From pressure estimation, we infer that the high-Mg melts were derived from the sub-lithospheric mantle as deep as 150 km, unlike the moderate-Mg melts that were produced at the shallow mantle. The 14-13 Ma rock sequence shows that initial melts equilibrated in a garnet-free mantle source with subsequently reduced degree of melting garnet-bearing material. No melting of relatively depleted lithospheric material, evidenced by mantle xenoliths, was involved in melting, however. We suggest that the studied transition from high- to moderate-Mg magmatism was due to the mid-Miocene thermal impact on the lithosphere by hot sub-lithospheric mantle material from the Transbaikalian low-velocity (melting) domain that had a potential temperature as high as 1510 °?. This thermal impact triggered rifting in the lithosphere of the Baikal Rift Zone.
DS201612-2293
2016
Demonterova, E.I., Ivanov, A.V., Savelyeva, V.B.Mafic, ultramafic and carbonatitic dykes in the southern Siberian Craton with age of ca 1 Ga: remnants of a new large igneous province?Acta Geologica Sinica, Vol. 90, July abstract p. 9.Russia, SiberiaCarbonatite
DS201612-2294
2016
Dokukina, K.A., Mints, M.V., Konilov, A.N.Mesoarchean Gridino mafic dykes swarm of the Belomorian eclogite province of the Fennoscandian shield ( Russia). Acta Geologica Sinica, Vol. 90, July abstract p. 8.Russia, Kola PeninsulaDykes
DS201612-2297
2016
Egorova, E.O., Afanasev, V.P., Pokhilenko, N.P.Middle Paleozoic kimberlite magmatism in the northeastern Siberia.Doklady Earth Sciences, Vol. 470, 2, pp. 1023-1026.Russia, SiberiaDeposit - Billyakh River placers

Abstract: The mineral chemistry and crystal morphology of kimberlite pyropes from the Billyakh River placer in the northeastern Siberian craton are characterised in terms of the placer history. The pyropes bear signatures of chemical weathering (dissolution), presumably in a Middle Paleozoic laterite profile, and therefore were originally hosted by Middle Paleozoic kimberlites. The broad occurrence of placer pyropes with lateritic dissolution signatures points to the presence of Middle Paleozoic diamond-bearing kimberlites in the study area.
DS201612-2298
2016
Ernst, R.E., Buchan, K.L., Botsyun, S.Map of mafic dyke swarms and related units of Russia and adjacent regions.Acta Geologica Sinica, Vol. 90, July abstract p. 22-23.Russia, SiberiaDykes
DS201612-2299
2016
Fantsuzova, V.I., Danilov, K.B.The structure of the Lomonsov volcanic pipe in the Arkangelsk diamond province from anomalies of the microseismic field.Journal of Volcanology and Seismology, Vol. 10, 5, pp. 339-346.Russia, Kola Peninsula, ArchangelDeposit- Lomonsov

Abstract: This paper presents results from a study of the Lomonosov volcanic pipe as derived from anomalies of the microseismic field. Microseismic sounding revealed that this volcanic pipe is a cone-shaped body with a small gradient of microseismic intensity motion (2 to 5 dB). Discontinuities generally show greater contrasts compared with the variations of microseismic motion in the pipe body. Comparison of the results of this microseismic sounding with other geological and geophysical data showed that the intensities of the micro-seismic field along lines that traversed the pipe reflect realistic structures of a kimberlite pipe and the host rocks. The method of microseismic sounding was used to reconstruct the deeper structure of the volcanic pipe and the host rocks down to depths greater than 2 km. We estimated the velocity contrast and the errors involved in the identification of vertical boundaries of the pipe. The volcanic pipe has a shape that is consistent with a nearly vertical source situated at a depth of a few hundred meters. This is hypothesized to be a typical occurrence for other diamond-bearing pipes as well.
DS201612-2310
2016
Kaminsky, F.V., Wirth, R., Anikin, L.P., Morales, L., Schreiber, A.Carbonado-like diamond from the Avacha active volcano in Kamchatka, Russia.Lithos, Vol. 265, pp. 222-236.RussiaCarbonado

Abstract: Abstract In addition to a series of finds of diamond in mafic volcanic and ultramafic massive rocks in Kamchatka, Russia, a carbonado-like diamond aggregate was identified in recent lavas of the active Avacha volcano. This aggregate differs from ‘classic carbonado’ by its location within an active volcanic arc, well-formed diamond crystallites, and cementing by Si-containing aggregates rather than sintering. The carbonado-like aggregate contains inclusions of Mn-Ni-Si-Fe alloys, native ?-Mn, tungsten and boron carbides, which are uncommon for both carbonado and monocrystalline diamonds. Mn-Ni-Si-Fe alloys, trigonal W2C and trigonal B4C are new mineral species that were not previously found in the natural environment. The formation of the carbonado-like diamond aggregate started with formation at ~ 850-1000 °C of tungsten and boron carbides, Mn-Ni-Si-Fe alloys and native ?-Mn, which were used as seeds for the subsequent crystallization of micro-sized diamond aggregate. In the final stage, the diamond aggregate was cemented by amorphous silica, tridymite, ?-SiC, and native silicon. The carbonado-like aggregate was most likely formed at near-atmospheric pressure conditions via the CVD mechanism during the course or shortly after one of the volcanic eruption pulses of the Avacha volcano. Volcanic gases played a great role in the formation of the carbonado-like aggregate.
DS201612-2311
2016
Kargin, A.V., Sazonova, L.V., Nosova, A.A., Pervov, V.A., Minevrina, E.V., Khvostikov, V.A., Burmii, Z.P.Sheared peridotite xenolith from the V. Grib kimberlite pipe, Arkangelsk diamond province, Russia: texture, composition and origin.Geoscience Frontiers, in press availableRussia, Archangel, Kola PeninsulaDeposit - Grib
DS201612-2315
2016
Larionova, Yu.O., Sazonova, L.V., Lebedeva, N.M., Nosova, A.A., Tretyachenko, V.V., Travin, A.V., Kargin, A.V., Yudin, D.S.Kimberlite age in the Arkhangelsk province, Russia: isotopic geochronologic Rb-Sr and 40Ar/39Ar and mineralogical dat a on phlogopite.Petrology, Vol. 24, 6, pp. 562-593.Russia, Archangel, Kola PeninsulaDeposit - Ermakovskaya-7, Grib, Karpinski

Abstract: The paper reports detailed data on phlogopite from kimberlite of three facies types in the Arkhangelsk Diamondiferous Province (ADP): (i) massive magmatic kimberlite (Ermakovskaya-7 Pipe), (ii) transitional type between massive volcaniclastic and magmatic kimberlite (Grib Pipe), and (iii) volcanic kimberlite (Karpinskii-1 and Karpinskii-2 pipes). Kimberlite from the Ermakovskaya-7 Pipe contains only groundmass phlogopite. Kimberlite from the Grib Pipe contains a number of phlogopite populations: megacrysts, macrocrysts, matrix phlogopite, and this mineral in xenoliths. Phlogopite macrocrysts and matrix phlogopite define a single compositional trend reflecting the evolution of the kimberlite melt. The composition points of phlogopite from the xenoliths lie on a single crystallization trend, i.e., the mineral also crystallized from kimberlite melt, which likely actively metasomatized the host rocks from which the xenoliths were captured. Phlogopite from volcaniclastic kimberlite from the Karpinskii-1 and Karpinskii-2 pipes does not show either any clearly distinct petrographic setting or compositional differentiation. The kimberlite was dated by the Rb-Sr technique on phlogopite and additionally by the 40Ar/39Ar method. Because it is highly probable that phlogopite from all pipes crystallized from kimberlite melt, the crystallization age of the kimberlite can be defined as 376 ± 3 Ma for the Grib Pipe, 380 ± 2 Ma for the Karpinskii-1 pipe, 375 ± 2 Ma for the Karpinskii-2 Pipe, and 377 ± 0.4 Ma for the Ermakovskaya-7 Pipe. The age of the pipes coincides within the error and suggests that the melts of the pipes were emplaced almost simultaneously. Our geochronologic data on kimberlite emplacement in ADP lie within the range of 380 ± 2 to 375 ± Ma and coincide with most age values for Devonian alkaline-ultramafic complexes in the Kola Province: 379 ± 5 Ma; Arzamastsev and Wu, 2014). These data indicate that the kimberlite was formed during the early evolution of the Kola Province, when alkaline-ultramafic complexes (including those with carbonatite) were emplaced.
DS201612-2320
2016
Malkovets, V.G., Rezvukhin, D.I., Belousova, E.A., Griffin, W.L., Sharygin, I.S., Tretiakov, I.G., Gibsher, A.A., O'Reilly, S.Y., Kuzmin, D.V., Litasov, K.D., Logvinova, A.M., Pokhilenko, N.P., Sobolev, N.V.Cr-rich rutile: a powerful tool for diamond exploration.Lithos, Vol. 265, pp. 304-311.Russia, SiberiaDeposit - Internationalskaya

Abstract: Mineralogical studies and U-Pb dating have been carried out on rutile included in peridotitic and eclogitic garnets from the Internatsionalnaya pipe, Mirny field, Siberian craton. We also describe a unique peridotitic paragenesis (rutile + forsterite + enstatite + Cr-diopside + Cr-pyrope) preserved in diamond from the Mir pipe, Mirny field. Compositions of rutile from the heavy mineral concentrates of the Internatsionalnaya pipe and rutile inclusions in crustal almandine-rich garnets from the Mayskaya pipe (Nakyn field), as well as from a range of different lithologies, are presented for comparison. Rutile from cratonic mantle peridotites shows characteristic enrichment in Cr, in contrast to lower-Cr rutile from crustal rocks and off-craton mantle. Rutile with Cr2O3 > 1.7 wt% is commonly derived from cratonic mantle, while rutiles with lower Cr2O3 may be both of cratonic and off-cratonic origin. New analytical developments and availability of standards have made rutile accessible to in situ U-Pb dating by laser ablation ICP-MS. A U-Pb age of 369 ± 10 Ma for 9 rutile grains in 6 garnets from the Internatsionalnaya pipe is consistent with the accepted eruption age of the pipe (360 Ma). The equilibrium temperatures of pyropes with rutile inclusions calculated using Ni-in-Gar thermometer range between ~ 725 and 1030 °C, corresponding to a depth range of ca ~ 100-165 km. At the time of entrainment in the kimberlite, garnets with Cr-rich rutile inclusions resided at temperatures well above the closure temperature for Pb in rutile, and thus U-Pb ages on mantle-derived rutile most likely record the emplacement age of the kimberlites. The synthesis of distinctive rutile compositions and U-Pb dating opens new perspectives for using rutile in diamond exploration in cratonic areas.
DS201612-2326
2016
Panina, L.I., Rokosova, E.Yu., Isakova, A.T., Tolstov, A.V.Lamprophyres of the Tomto Massif: a result of mixing between potassic and sodic alkaline mafic magmas.Petrology, Vol. 24, 6, pp. 608-625.RussiaAlkalic
DS201612-2327
2016
Ragozin, A.L., Palyanov, Yu.N., Zedgenizov, D.A., Kalinin, A.A., Shatsky, V.S.Homogenization of carbonate bearing Micro inclusions in diamond at P-T parameters of the upper mantle.Doklady Earth Sciences, Vol. 470, 2, pp. 1059-1062.RussiaDeposit - Internationalskaya

Abstract: The staged high-pressure annealing of natural cubic diamonds with numerous melt microinclusions from the Internatsional’naya kimberlite pipe was studied experimentally. The results mainly show that the carbonate phases, the daughter phases in partially crystallized microinclusions in diamonds, may undergo phase transformations under the mantle P-T conditions. Most likely, partial melting and further dissolution of dolomite in the carbonate-silicate melt (homogenization of inclusions) occur in inclusions. The experimental data on the staged high-pressure annealing of diamonds with melt microinclusions allow us to estimate the temperature of their homogenization as 1400-1500°C. Thus, cubic diamonds from the Internatsional’naya pipe could have been formed under quite high temperatures corresponding to the lithosphere/asthenosphere boundary. However, it should be noted that the effect of selective capture of inclusions with partial loss of volatiles in relation to the composition of the crystallization medium is not excluded during the growth. This may increase the temperature of their homogenization significantly between 1400 and 1500°C.
DS201612-2335
2016
Sharkov, E., Bogina, M., Chistyakov, A.Magmatic systems of large continental igneous provinces.Geoscience Frontiers, in press availableRussiaMagmatism

Abstract: Large igneous provinces (LIPs) formed by mantle superplume events have irreversibly changed their composition in the geological evolution of the Earth from high-Mg melts (during Archean and early Paleoproterozoic) to Phanerozoic-type geochemically enriched Fe-Ti basalts and picrites at 2.3 Ga. We propose that this upheaval could be related to the change in the source and nature of the mantle superplumes of different generations. The first generation plumes were derived from the depleted mantle, whereas the second generation (thermochemical) originated from the core-mantle boundary (CMB). This study mainly focuses on the second (Phanerozoic) type of LIPs, as exemplified by the mid-Paleoproterozoic Jatulian-Ludicovian LIP in the Fennoscandian Shield, the Permian-Triassic Siberian LIP, and the late Cenozoic flood basalts of Syria. The latter LIP contains mantle xenoliths represented by green and black series. These xenoliths are fragments of cooled upper margins of the mantle plume heads, above zones of adiabatic melting, and provide information about composition of the plume material and processes in the plume head. Based on the previous studies on the composition of the mantle xenoliths in within-plate basalts around the world, it is inferred that the heads of the mantle (thermochemical) plumes are made up of moderately depleted spinel peridotites (mainly lherzolites) and geochemically-enriched intergranular fluid/melt. Further, it is presumed that the plume heads intrude the mafic lower crust and reach up to the bottom of the upper crust at depths ?20 km. The generation of two major types of mantle-derived magmas (alkali and tholeiitic basalts) was previously attributed to the processes related to different PT-parameters in the adiabatic melting zone whereas this study relates to the fluid regime in the plume heads. It is also suggested that a newly-formed melt can occur on different sides of a critical plane of silica undersaturation and can acquire either alkalic or tholeiitic composition depending on the concentration and composition of the fluids. The presence of melt-pockets in the peridotite matrix indicates fluid migration to the rocks of cooled upper margin of the plume head from the lower portion. This process causes secondary melting in this zone and the generation of melts of the black series and differentiated trachytic magmas.
DS201612-2336
2016
Shchukina, E.V., Agashev, A.M., Pokhilenko, N.P.Metasomatic origin of garnet xenocrysts from the V. Grib kimberlite pipe, Arkhangelsk region, NW Russia.Geoscience Frontiers, in press availableRussia, Archangel, Kola PeninsulaDeposit - Grib

Abstract: This paper presents new major and trace element data from 150 garnet xenocrysts from the V. Grib kimberlite pipe located in the central part of the Arkhangelsk diamondiferous province (ADP). Based on the concentrations of Cr2O3, CaO, TiO2 and rare earth elements (REE) the garnets were divided into seven groups: (1) lherzolitic “depleted” garnets (“Lz 1”), (2) lherzolitic garnets with normal REE patterns (“Lz 2”), (3) lherzolitic garnets with weakly sinusoidal REE patterns (“Lz 3”), (4) lherzolitic garnets with strongly sinusoidal REE patterns (“Lz 4”), (5) harzburgitic garnets with sinusoidal REE patterns (“Hz”), (6) wehrlitic garnets with weakly sinusoidal REE patterns (“W”), (7) garnets of megacryst paragenesis with normal REE patterns (“Meg”). Detailed mineralogical and geochemical garnet studies and modeling results suggest several stages of mantle metasomatism influenced by carbonatite and silicate melts. Carbonatitic metasomatism at the first stage resulted in refertilization of the lithospheric mantle, which is evidenced by a nearly vertical CaO-Cr2O3 trend from harzburgitic (“Hz”) to lherzolitic (“Lz 4”) garnet composition. Harzburgitic garnets (“Hz”) have probably been formed by interactions between carbonatite melts and exsolved garnets in high-degree melt extraction residues. At the second stage of metasomatism, garnets with weakly sinusoidal REE patterns (“Lz 3”, “W”) were affected by a silicate melt possessing a REE composition similar to that of ADP alkaline mica-poor picrites. At the last stage, the garnets interacted with basaltic melts, which resulted in the decrease CaO-Cr2O3 trend of “Lz 2” garnet composition. Cr-poor garnets of megacryst paragenesis (“Meg”) could crystallize directly from the silicate melt which has a REE composition close to that of ADP alkaline mica-poor picrites. P-T estimates of the garnet xenocrysts indicate that the interval of ?60-110 km of the lithospheric mantle beneath the V. Grib pipe was predominantly affected by the silicate melts, whereas the lithospheric mantle deeper than 150 km was influenced by the carbonatite melts.
DS201612-2338
2016
Skuzovatov, S., Zedgenizov, D., Howell, D., Griffin, W.L.Various growth environments of cloudy diamonds from Malobotuobia kimberlite field ( Siberian craton).Lithos, Vol. 265, pp. 96-107.Russia, SiberiaDeposit - Malobotuobia

Abstract: Microinclusions of high-density fluids (HDF's) occur in cloudy diamonds from the Mir and Internatsionalnaya kimberlite pipes (Malobotuobia kimberlite field, Siberian platform). These HDFs are of typical high-Mg carbonatitic composition; a few diamonds contain microinclusions that define a low-Mg carbonatitic to silicic trend. The observed variations are interpreted as resulted from mixing of two contrasting fluids derived from the partial melting mainly of carbonated peridotite (the high-Mg carbonatitic HDFs) and eclogite (silica-rich HDFs and HDFs with high Ca/(Ca + Mg + Fe)). Immiscibility of carbonatitic and silica-rich fluids provides a possible mechanism for the co-existence of the observed HDFs but needs further proof. The uniform carbon isotope composition of cloudy diamonds with high-Mg carbonatitic microinclusions from both kimberlite pipes implies a single peridotitic source.
DS201612-2344
2016
Vladykin, N.V., Sotnikova, I.A.Petrology, geochemistry and source characteristics of the Burpala alkaline massif, north Baikal.Geoscience Frontiers, in press availableRussiaAlkalic

Abstract: The Burpala alkaline massif contains rocks with more than 50 minerals rich in Zr, Nb, Ti, Th, Be and rare earth elements (REE). The rocks vary in composition from shonkinite, melanocratic syenite, nepheline and alkali syenites to alaskite and alkali granite and contain up to 10% LILE and HSFE, 3.6% of REE and varying amounts of other trace elements (4% Zr, 0.5% Y, 0.5% Nb, 0.5% Th and 0.1% U). Geological and geochemical data suggest that all the rocks in the Burpala massif were derived from alkaline magma enriched in rare earth elements. The extreme products of magma fractionation are REE rich pegmatites, apatite-fluorite bearing rocks and carbonatites. The Sr and Nd isotope data suggest that the source of primary melt is enriched mantle (EM-II). We correlate the massif to mantle plume impact on the active margin of the Siberian continent.
DS201612-2351
2016
Zedgenizov, D.A., Kalinina, V.V., Reutsky, V.N., Yuryeva, O.P., Rakhmanova, M.I.Regular cuboid diamonds from placers on the northeastern Siberian platform.Lithos, Vol. 265, pp. 125-137.Russia, SiberiaDiamond morphology

Abstract: Alluvial placers of the northeastern Siberian Platform are characterized by a specific diamond population: regular cuboids, forming a continuous color series from yellowish-green to yellow and dark orange. This is the first comprehensive study of a large number of cuboid diamonds focusing on their morphology, N content and aggregation state, photoluminescence, C isotopic composition and inclusions. The cuboids are cubic (i.e. nearly flat faced) to subrounded crystals; most of them are resorbed. The cathodolominescence images and the birefringence patterns show that many cuboid diamonds record deformation. The cuboid diamonds are characterized by unusual FTIR spectra with the presence of C- (single nitrogen atom) and A- (pair of neighbour nitrogen atoms) centers, and two centers of unknown origin, termed X and Y. The presence of single substitutional nitrogen defects (C centers) in all cuboid diamonds testifies either storage in the mantle at relatively cool conditions or formation just prior to eruption of their host kimberlites. The studied diamonds are also characterized by the presence of specific set of luminescence centers: N3, H3, S1, NVo and NV?, some of which are suggested to have formed during deformation subsequent to diamond growth. The cuboid diamonds show a wide range of carbon isotope compositions from mantle-like values towards strongly 13C depleted compositions (? 6.1 to ? 20.2‰ ?13C). Combined with the finding of an eclogitic sulfide inclusion, the light carbon isotope compositions link the formation of the studied cuboids to deeply subducted basic protoliths, i.e. former oceanic crust.
DS201701-0002
2016
An, Y., Huang, J-X., Griffin, W.L., Liu, C., Huang, F.Isotopic composition of Mg and Fe in garnet peridotites from the Kaapvaal and Siberian cratons.Geochimica et Cosmochimica Acta, in press available 45p.Africa, RussiaGeochronology

Abstract: We present Mg and Fe isotopic data for whole rocks and separated minerals (olivine, clinopyroxene, orthopyroxene, garnet, and phlogopite) of garnet peridotites that equilibrated at depths of 134-186 km beneath the Kaapvaal and Siberian cratons. There is no clear difference in ?26Mg and ?56Fe of garnet peridotites from these two cratons. ?26Mg of whole rocks varies from ?0.243‰ to ?0.204‰ with an average of ?0.225 ± 0.037‰ (2?, n = 19), and ?56Fe from ?0.038‰ to 0.060‰ with an average of ?0.003 ± 0.068‰ (2?, n = 19). Both values are indistinguishable from the fertile upper mantle, indicating that there is no significant Mg-Fe isotopic difference between the shallow and deep upper mantle. The garnet peridotites from ancient cratons show ?26Mg similar to komatiites and basalts, further suggesting that there is no obvious Mg isotopic fractionation during different degrees of partial melting of deep mantle peridotites and komatiite formation. The precision of the Mg and Fe isotope data (?±0.05‰ for ?26Mg and ?56Fe, 2?) allows us to distinguish inter-mineral isotopic fractionations. Olivines are in equilibrium with opx in terms of Mg and Fe isotopes. Garnets have the lowest ?26Mg and ?56Fe among the coexisting mantle minerals, suggesting the dominant control of crystal structure on the Mg-Fe isotopic compositions of garnets. Elemental compositions and mineralogy suggest that clinopyroxene and garnet were produced by later metasomatic processes as they are not in chemical equilibrium with olivine or orthopyroxene. This is consistent with the isotopic disequilibrium of Mg and Fe isotopes between orthopyroxene/olivine and garnet/clinopyroxene. Combined with one sample showing slightly heavy ?26Mg and much lighter ?56Fe, these disequilibrium features in the garnet peridotites reveal kinetic isotopic fractionation due to Fe-Mg inter-diffusion during reaction between peridotites and percolating melts in the Kaapvaal craton.
DS201701-0005
2016
Chanturia, V.A., Bunin, I.Zh., Dvoichenkova, G.P., Kovalchuk, O.E.Low temperature effects to improve efficiency of photoluminescence separation of diamonds in kimberlite ore processing.Journal of Mining Science, Vol. 52, no. 2, pp. 332-340.Russia, YakutiaDeposit - Mir

Abstract: The article gives new experimental data on spectral characteristics of photoluminescence of natural diamonds extracted from deep horizons of Mir and Internatsionalnaya Pipes, Republic of Sakha (Yakutia) depending on composition of basic and additional optically active structural defects in crystals and on temperature during spectrum recording, considering kinetics of luminescence. It is hypothesized on applicability of low-temperature effects to enhance efficiency of photoluminescence separation of diamond crystals.
DS201701-0018
2016
Kargin, A.V., Nosova, A.A., Postnikov, A.V., Chugaev, A.V., Postnikova, O.V., Popova, L.P., Poshibaev, V.V., Sazonova, L.V., Dokuchaev, A.Ya., Smirnova, M.D.Devonian ultramafic lamprophyre in the Irkineeva Chadobets trough in the southwest of the Siberian platform: age, composition, and implications for diamond potential prediction.Geology of Ore Deposits, Vol. 58, 5, pp. 383-403.RussiaLamprophyre - aillikite

Abstract: The results of geochronological, mineralogical, petrographical, and geochemical study of the Ilbokich ultramafic lamprophyre are reported. The specific features in the mineral and chemical compositions of the studied ultramafic lamprophyre indicate that it can be regarded as a variety similar to aillikite, while other differences dominated by K-feldspar can be referred to damtjernite. According to Rb-Sr analysis, ultramafic lamprophyre dikes intruded at the turn of the Early and Middle Devonian, about 392 Ma ago. This directly proves the existence of Early Paleozoic alkali-ultramafic magmatism in the northern part of the southwest Siberian Platform. A finding of Devonian alkali-ultramafic lamprophyre is of dual predictive importance. On the one hand, it is indicative of the low probability of finding large diamond-bearing deposits in close association with aillikite. On the other hand, it can be indicative of a possible large Devonian diamond province in the studied territory, where diamondiferous kimberlite is structurally separated from aillikite.
DS201701-0028
2016
Prokopyev, I.R., Borisenko, A.S., Borovikov, A.A., Pavlova, G.G.Origin of REE rich ferrocarbonatites in southern Siberia ( Russia): implications based on melt and fluid inclusions.Mineralogy and Petrology, Vol. 110, pp. 845-859.Russia, SiberiaCarbonatite

Abstract: Fe-rich carbonatites with a mineral assemblage of ankerite-calcite or siderite are widespread in southern Siberia, Russia. The siderite carbonatites are associated with F-Ba-Sr-REE mineralization and have a 40Ar/39Ar age of 117.2 ± 1.3 Ma. Melt and fluid inclusions suggest that the carbonatites formed from volatile-rich alkali- and chloride-bearing carbonate melts. Ankerite-calcite carbonatites formed from carbonatite melt at a temperature of more than 790 °C. The ferrocarbonatites (the second phase of carbonatite intrusion) formed from a sulfate-carbonate-chloride fluid phase (brine-melt) at >650 °C and ?360 MPa. The brine-melt fluid phase had high concentrations of Fe and LREEs. A subsequent hydrothermal overprint contributed to the formation of economically important barite-Sr-fluorite-REE mineralization in polymict siderite breccia.
DS201701-0029
2016
Savelieva, V.B., Danilova, Yu.V., Bazarova, E.P., Ivanov, A.V., Kamenetsky, V.S.Carbonatite magmatism of the southern Siberian Craton 1 Ga ago: evidence for the beginning of breakup of Laurasia in the early Neoproterozoic.Doklady Earth Sciences, Vol. 471, 1, pp. 1140-1143.RussiaCarbonatite

Abstract: Apatite and biotite from dolomite?ankerite and calcite?dolomite carbonatite dikes emplaced into the Paleoproterozoic metamorphic rock complex in the southern part of the Siberian Craton are dated by the U-Pb (LA-ICP-MS) and 40Ar-39Ar methods, respectively. Proceeding from the lower intercept of discordia with concordia, the age of apatite from calcite?dolomite carbonatite is estimated to be 972 ± 21 Ma and that for apatite from dolomite?ankerite carbonatite, as 929 ± 37 Ma. Values derived from their upper intercept have no geological sense. The ages obtained for biotite by the 40Ar-39Ar method are 965 ± 9 and 975 ± 14 Ma. It means that the formation of carbonatites reflects the earliest phases of the Neoproterozoic stage in extension of the continental lithosphere.
DS201701-0034
2016
Surgutanova, E.A., Agashev, A.M., Demonterova, E.I., Golovin, A.V., Pokhilenko, N.P.Sr and Nd isotope composition of deformed peridotite xenoliths from Udachnaya kimberlite pipe.Doklady Earth Sciences, Vol. 471, 1, pp. 1104-1207.RussiaDeposit - Udachnaya

Abstract: New results of Rb-Sr and Sm-Nd isotope analyses have been obtained on samples of deformed peridotite xenoliths collected from the Udachnaya kimberlite pipe (Yakutia). The data obtained imply two main stages of metasomatic alteration of the lithospheric mantle base matter in the central part of the Siberian Craton. Elevated ratios of Sr isotopes may be considered as evidence of an ancient stage of metasomatic enrichment by a carbonatite melt. The acquired Nd isotope composition together with the geochemistry of the deformed peridotite xenoliths suggests that the second stage of metasomatic alteration took place shortly before formation of the kimberlite melt. The metasomatic agent of this stage had a silicate character and arrived from an asthenosphere source, common for the normal OIB type (PREMA) and the Group-I kimberlite.
DS201701-0035
2016
Tretiakova, I.G., Belousova, E.A., Malkovets, V.G., Griffin, W.L., Piazolo, S., Pearson, N.J., O'Reilly, S.Y., Nishido, H.Recurrent magmatic activity on a lithosphere scale structure: crystallization and deformation in kimberlitic zircons.Gondwana Research, Vol. 42, pp. 126-132.RussiaDeposit - Nubinskaya

Abstract: Kimberlites are not only the most economically important source of diamonds; they also carry unique information encapsulated in rock fragments entrained as the magma traverses the whole thickness of the lithosphere. The Nurbinskaya pipe in the Siberian kimberlite province (Russia) is one of several intruded along the Vilyui Rift, a major terrane boundary. The pipe contains three populations of mantle-derived zircon xenocrysts: Archean (mean age 2709 ± 9 Ma), Devonian (mean age 371 ± 2.3 Ma), and a subset of grains with evidence of brittle deformation and rehealing, and a range of ages between 370 and 450 Ma. The Hf-isotope, O-isotope and trace-element signatures of the last group provide a link between the Archean and Devonian events, indicating at least three episodes of magmatic activity and zircon crystallization in the lithosphere beneath the pipe. The emplacement of the Nurbinskaya pipe ca 370 Ma ago was only the youngest activity in a magma plumbing system that has been periodically reactivated over at least 2.7 billion years, controlled by the lithosphere-scale structure of the Vilyui Rift.
DS201702-0192
2017
An, Y., Huang, J-X., Griffin, W.L., Liu, C., Huang, F.Isotopic composition of Mg and Fe in garnet peridotites from the Kaapvaal and Siberian cratons.Geochimica et Cosmochimica Acta, Vol. 200, pp. 167-185.Africa, South Africa, RussiaMetasomatism

Abstract: We present Mg and Fe isotopic data for whole rocks and separated minerals (olivine, clinopyroxene, orthopyroxene, garnet, and phlogopite) of garnet peridotites that equilibrated at depths of 134-186 km beneath the Kaapvaal and Siberian cratons. There is no clear difference in ?26Mg and ?56Fe of garnet peridotites from these two cratons. ?26Mg of whole rocks varies from ?0.243 to ?0.204 with an average of ?0.225 ± 0.037 (2?, n = 19), and ?56Fe from ?0.038‰ o 0.060 with an average of ?0.003 ± 0.068 (2?, n = 19). Both values are indistinguishable from the fertile upper mantle, indicating that there is no significant Mg-Fe isotopic difference between the shallow and deep upper mantle. The garnet peridotites from ancient cratons show ?26Mg similar to komatiites and basalts, further suggesting that there is no obvious Mg isotopic fractionation during different degrees of partial melting of deep mantle peridotites and komatiite formation. The precision of the Mg and Fe isotope data (±0.05 for ?26Mg and ?56Fe, 2?) allows us to distinguish inter-mineral isotopic fractionations. Olivines are in equilibrium with opx in terms of Mg and Fe isotopes. Garnets have the lowest ?26Mg and ?56Fe among the coexisting mantle minerals, suggesting the dominant control of crystal structure on the Mg-Fe isotopic compositions of garnets. Elemental compositions and mineralogy suggest that clinopyroxene and garnet were produced by later metasomatic processes as they are not in chemical equilibrium with olivine or orthopyroxene. This is consistent with the isotopic disequilibrium of Mg and Fe isotopes between orthopyroxene/olivine and garnet/clinopyroxene. Combined with one sample showing slightly heavy ?26Mg and much lighter ?56Fe, these disequilibrium features in the garnet peridotites reveal kinetic isotopic fractionation due to Fe-Mg inter-diffusion during reaction between peridotites and percolating melts in the Kaapvaal craton.
DS201702-0222
2017
Kolesnichenko, M.V., Zedgenizov, D.A., Litasov, K.D., Safonova, I.Y., Ragozin, A.L.Heterogenesous distribution of water in the mantle beneath the central Siberian Craton: implications for Udachnaya kimberlite pipe.Gondwana Research, in press available 18p.RussiaDeposit - Udachnaya

Abstract: The paper presents new petrographic, major element and Fourier transform infrared (FTIR) spectroscopy data and PT-estimates of whole-rock samples and minerals of a collection of 19 relatively fresh peridotite xenoliths from the Udachnaya kimberlite pipe, which were recovered from its deeper levels. The xenoliths are non-deformed (granular), medium-deformed and highly deformed (porphyroclastic, mosaic-porphyroclastic, mylonitic) lherzolites, harzburgite and dunite. The lherzolites yielded equilibration temperatures (T) and pressures (P) ranging from 913 to 1324 °C and from 4.6 to 6.3 GPa, respectively. The non-deformed and medium-deformed peridotites match the 35 mW/m2 conductive continental geotherm, whereas the highly deformed varieties match the 45 mW/m2 geotherm. The content of water spans 2 ± 1-95 ± 52 ppm in olivine, 1 ± 0.5-61 ± 9 ppm in orthopyroxene, and 7 ± 2-71 ± 30 ppm in clinopyroxene. The amount of water in garnets is negligible. Based on the modal proportions of mineral phases in the xenoliths, the water contents in peridotites were estimated to vary over a wide range from < 1 to 64 ppm. The amount of water in the mantle xenoliths is well correlated with the deformation degree: highly deformed peridotites show highest water contents (64 ppm) and those medium-deformed and non-deformed contain ca. 1 ppm of H2O. The high water contents in the deformed peridotites could be linked to metasomatism of relatively dry diamondiferous cratonic roots by hydrous and carbonatitic agents (fluids/melts), which may cause hydration and carbonation of peridotite and oxidation and dissolution of diamonds. The heterogeneous distribution of water in the cratonic mantle beneath the Udachnaya pipe is consistent with the models of mantle plume or veined mantle structures proposed based on a trace element study of similar xenolithic suits. Mantle metasomatism beneath the Siberian Craton and its triggered kimberlite magmatism could be induced by mantle enrichment in volatiles (H2O, CO2) supplied by numerous subduction zones which surrounded the Siberian continent in Neoproterozoic-Cambrian time.
DS201703-0400
2017
Edmonds, M., Manning, C.Synthesizing our understanding of Earth's deep carbon. Udachnaya pipe used as an example.EOS Transaction of AGU, https://doi.org/10.1029/2017EO67913RussiaCarbon
DS201704-0617
2017
An, Y., Huang, J-X., Griffin, W.L.,Liu, C., Huang, F.Isotopic composition of Mg and Fe in garnet peridotites from the Kaapvaal and Siberian cratons.Geochimica et Cosmochimica Acta, Vol. 200, pp. 167-185.Africa, South Africa, RussiaCraton, Peridotite

Abstract: We present Mg and Fe isotopic data for whole rocks and separated minerals (olivine, clinopyroxene, orthopyroxene, garnet, and phlogopite) of garnet peridotites that equilibrated at depths of 134-186 km beneath the Kaapvaal and Siberian cratons. There is no clear difference in ?26Mg and ?56Fe of garnet peridotites from these two cratons. ?26Mg of whole rocks varies from ?0.243‰ to ?0.204‰ with an average of ?0.225 ± 0.037‰ (2?, n = 19), and ?56Fe from ?0.038‰ 0.060 with an average of ?0.003 ± 0.068‰ (2?, n = 19). Both values are indistinguishable from the fertile upper mantle, indicating that there is no significant Mg-Fe isotopic difference between the shallow and deep upper mantle. The garnet peridotites from ancient cratons show ?26Mg similar to komatiites and basalts, further suggesting that there is no obvious Mg isotopic fractionation during different degrees of partial melting of deep mantle peridotites and komatiite formation. The precision of the Mg and Fe isotope data (?±0.05‰ for ?26Mg and ?56Fe, 2?) allows us to distinguish inter-mineral isotopic fractionations. Olivines are in equilibrium with opx in terms of Mg and Fe isotopes. Garnets have the lowest ?26Mg and ?56Fe among the coexisting mantle minerals, suggesting the dominant control of crystal structure on the Mg-Fe isotopic compositions of garnets. Elemental compositions and mineralogy suggest that clinopyroxene and garnet were produced by later metasomatic processes as they are not in chemical equilibrium with olivine or orthopyroxene. This is consistent with the isotopic disequilibrium of Mg and Fe isotopes between orthopyroxene/olivine and garnet/clinopyroxene. Combined with one sample showing slightly heavy ?26Mg and much lighter ?56Fe, these disequilibrium features in the garnet peridotites reveal kinetic isotopic fractionation due to Fe-Mg inter-diffusion during reaction between peridotites and percolating melts in the Kaapvaal craton.
DS201704-0618
2017
Aramastsev, A.A., Vesolovskiy, R.V., Travin, A.V., Yudin, D.S.Paleozoic tholeiitic magmatism of the Kola Peninsula: spatial distribution, age, and relation to alkaline magmatism.Petrology, Vol. 25, 1, pp. 42-65.Russia, Kola PeninsulaMagmatism - alkaline

Abstract: This paper focuses on the occurrences of tholeiitic magmatism in the northeastern Fennoscandian shield. It was found that numerous dolerite dikes of the Pechenga, Barents Sea, and Eastern Kola swarms were formed 380-390 Ma ago, i.e., directly before the main stage of the Paleozoic alkaline magmatism of the Kola province. The isotope geochemical characteristics of the dolerites suggest that their primary melts were derived from the mantle under the conditions of the spinel lherzolite facies. The depleted mantle material from which the tholeiites were derived shows no evidence for metasomatism and enrichment in high fieldstrength and rare earth elements, whereas melanephelinite melts postdating the tholeiites were generated in an enriched source. It was shown that the relatively short stage of mantle metasomatism directly after the emplacement of tholeiitic magmas was accompanied by significant mantle fertilization. In contrast to other large igneous provinces, where pulsed intrusion of large volumes of tholeiitic magmas coinciding or alternating with phases of alkaline magmatism was documented, the Kola province is characterized by systematic evolution of the Paleozoic plume-lithosphere process with monotonous deepening of the level of magma generation, development of mantle metasomatism and accompanying fertilization of mantle materials, and systematic changes in the composition of melts reaching the surface.
DS201704-0624
1969
Egorov, L.S.Melilitic rocks of the Meimecha Kotui Province, Northern Siberia. ***IN RUSNedra Publishing House, Leningrad., 249p. *** in RUSRussiaMelilites
DS201704-0647
2017
Shatskiy, A., Litasov, K.D., Sharygin, I.S., Ohtani, E.Comparison of primary kimberlite melt in a garnet lherzolite mantle source: constraints from melting phase relations in anhydrous Udachnaya-East kimberlite with variable CO2 content at 6.5GPa.Earth and Planetary Science Letters, Vol. 465, pp. 208-227.RussiaDeposit - Udachnaya-East

Abstract: The critical issue in the study of kimberlites, known as principal host rocks of diamonds, is the reconstruction of their primary melt composition, which is poorly constrained due to contamination by xenogenic materials, significant loss of volatiles during eruption, and post-magmatic alteration. It is generally accepted that the last equilibration of primary kimberlite melt with surrounding mantle (garnet lherzolite) occurred beneath cratons at 5-7 GPa (150-230 km depths). However, the subliquidus mineral assemblages obtained in kimberlite melting experiments at mantle pressures differ from lherzolite, probably owing to unaccounted loss of CO2. Here we present experiments at 6.5 GPa and 1200-1600 °C on unaltered kimberlite with an addition of 2-22 mol% CO2 over its natural abundance in the rock (13 mol%), but keeping proportions of other components identical to those in an exceptionally fresh anhydrous kimberlite from Udachnaya-East pipe in Siberia. We found that the partial melt achieves equilibrium with garnet lherzolite at 1500 °C and 19-23 mol% CO2 in the system. Under these conditions this melt contains (mol%): SiO2 = 9, FeO = 6-7, MgO = 23-26, CaO = 16, Na2O = 4, K2O = 1, and CO2 = 30-35. We propose, therefore, the alkali-rich carbonatitic composition of primary kimberlite melt and loss of 34-45 mol% (34-46 wt%) CO2 during ascent of the kimberlite magma to the surface.
DS201704-0649
2017
Ustinov, V.N.Terriginous diamond-bearing rocks of the Siberian, East-European and African platforms. IN RUS***Nauka ***in RUS, 531p. Index of chapters available in english 3p. PdfRussiaBook - 9 chapters * titles descriptions in english
DS201705-0806
2017
Agrosi, G., Tempesta, G., Mele, D., Allegretta, I., Teranzo, R., Nestola, F.Multi analytical approach for non-destructuve analyses of a diamond from Udachnaya and its trapped inclusions: the first report of (fe, Ni) 1+xS machinawite sulphide in diamonds.European Geosciences Union General Assembly 2017, Vienna April 23-28, 1p. 5374 AbstractRussiaDeposit - Udachnaya

Abstract: The study of diamonds and the mineral inclusions trapped in them is of great interest for Earth science, since they can provide insight about deep mantle conditions and its evolution. The conventional techniques commonly used are destructive and thus do not allow the employment of different methods used simultaneously to obtain integrated and complementary results. Significant information about the growth conditions of diamonds and their inclusions still trapped within them can be preferably obtained by in situ investigation. In this study, we propose a multi-analytical approach, using a set of non-destructive techniques with conventional sources, to investigate one diamond from Udachnaya kimberlite (Siberia, Russia). The combined use of micro-X-ray Tomography, micro-X-ray Fluorescence, X-Ray Powder Diffraction and micro-Raman spectroscopy, allowed us to determine the spatial distribution of the inclusions, their chemical and mineralogical composition and, finally, the paragenetic suite, totally preserving the diamond host. The sample was also studied by means of X-ray Diffraction Topography to characterize the structural defects and to obtain genetic information about the growth history of the diamond. The combination of the different data provided a sort of «mapping» of a diamond. The X-Ray Topographic images show that the sample investigated exhibits plastic deformation. Actually, one set of {111} slip lamellae, corresponding to polysynthetic twinning, affect the whole sample. The tomographic images reveal that the primary inclusions, not observable optically, show a poly-faceted shape corresponding to an assemblage of tiny crystals. The chemical data display that the trapped minerals are mono-sulphides of Fe, Ni. The diagrams obtained by the X-Ray diffraction reveal that the inclusions mainly consist of an assemblage of tiny crystals of pentlandite and pyrrothite. Nevertheless, a thorough analysis of the diffraction data suggests the presence of another mono-sulphide of Fe,Ni: mackinawite. Raman spectra taken on these inclusions confirm, for the first time, the presence of this metastable phase as inclusion in diamond. The genetic implications of these results are discussed.
DS201705-0807
2017
Alvaro, M., Angel, R., Nimis, P., Milani, S., Harris, J., Nestola, F.Orientation relationship between diamond and magnesiochromite inclusions.European Geosciences Union General Assembly 2017, Vienna April 23-28, 1p. 12200 AbstractRussiaDeposit - Udachnaya

Abstract: The correct determination of the relative crystallographic orientations of single crystals has many applications. When single crystals undergo phase transitions, especially at high pressures, the relative orientations of the two phases yields insights into transition mechanisms (Dobson et al 2013). On the other hand, determination of the crystallographic orientations of minerals included in diamonds can provide insights into the mechanisms of their entrapment and the timing of their formation relative to the host diamond (e.g. Nestola et al. 2014, Milani et al. 2016). The reported occurrence of non-trivial orientations for some minerals in diamonds, suggesting an epitaxial relationship, has long been considered to reflect contemporaneous growth of the diamond and the inclusion (e.g. syngenesis). Correct interpretation of such orientations requires (i) a statistically significant crystallographic data set for single and multiple inclusions in a large number of diamonds, and (ii) a robust data-processing method, capable of removing ambiguities derived from the high symmetry of the diamond and the inclusion. We have developed a software to perform such processing (OrientXplot, Angel et al. 2015), starting from crystallographic orientation matrixes obtained by X-ray diffractometry or EBSD data. Previous studies of inclusions in lithospheric diamonds, by single-crystal X-ray diffraction and EBSD, indicate a wide variety in the orientations of different inclusion phases with respect to their diamond host (Futergendler & Frank-Kamenetsky 1961; Frank-Kamenetsky 1964; Wiggers de Vries et al. 2011; Nestola et al. 2014, Milani et al. 2016). For example, olivine inclusions in lithospheric diamonds from Udachnaya do not show any preferred orientations with respect to their diamond hosts, but multiple inclusions in a single diamond often show very similar orientations within few degrees. In the present work on magnesiochromite inclusions in diamonds from Udachnaya, there is a partial orientation between inclusion and host. A (111) plane of each inclusion is sub-parallel to a {111} plane of their diamond host, but with random orientations of the magnesiochromite [100], [010] and [001] relative to the diamond. In one case, where a single inclusion comprised a magnesiochromite-olivine touching pair, the magnesiochromite was oriented as noted above and the olivine showed a random orientation. The implications of these observations for the mechanisms of diamond growth will be explored and the results will be compared and combined with previous work.
DS201705-0808
2017
Ashchepkov, I., Ntaflos, T., Logvinova, A., Vladykin, N., Ivanov, A., Spetsius, Z., Stegnitsky, Y., Kostrovitsky, S., Salikhov, R., Makovchuk, I., Shmarov, G., Karpenko, M., Downes, H., Madvedev, N.Evolution of the mantle sections beneath the kimberlite pipes example of Yakutia.European Geosciences Union General Assembly 2017, Vienna April 23-28, 1p. 6337 AbstractRussia, YakutiaDeposit - Sytykanskaya, Dalnyaya, Aykhal, Zarya, Komosomolskaya, Zarnitsa, Udachnaya

Abstract: The PTX diagrams for the separate phases in Sytykanskaya (Ashchepkov et al., 2016) Dalnyaya (Ashchepkov et al., 2017), pipes shows that the PK show the relatively simple P-X trends and geotherms and shows more contrast and simple layering. The PK contain most abundant material from the root of the magma generation they are dunitic veins as the magma feeders represented by the megacrysts. New results for the Aykhal, Zarya and Komsomolskaya pipes in Alake field and Zarnitsa and Udachnaya pipes in Daldyn field show that evolution is accompanied by the developing of metasomatites and branching and veining of the wall rock peridotites . In Aykhal pipe in PK the Gar- dunites prevail, the xenoliths from the dark ABK "Rebus" contain Cr-Ti - rich garnets and ilmenites, more abundant compared with the grey carbonited breccia Nearly the same features were found for Yubileinaya pipe. The example of Komsomolskya pipes show that the ABK contain more eclogitic xenolith than PK. The developing of the magma channel shown in satellite Chukukskaya and Structurnaya pipe was followed by the separation of some parts of the magmatic feeders and crystallization of abundant Gar megacrysts near o the walls blocking the peridotites from the magma feeder. This drastically decrease diamond grade of pipes. Such blocking seems to be the common features for the latest breccias. In Zarnitsa pipe, the dark PK and ABK also contain fresh xenoliths but not only dunites but also sheared and metasomatic varieties and eclogites. Most of dark ABK in Yakutia contain the intergrowth of ilmenites with brown Ti- Cpx showing joint evolution trends. The late breccia contains completely altered peridotite xenoliths mainly of dunite- harzburgite type. The comparison of the trace elements of the coexisting minerals in megacryst show that they were derived from the protokimberlites but are not in complete equilibrium as well as other megacrystalline phases. Ilmenites show inflections of the trace element patterns of most Ilmenites but more regular for the Cpx and Garnets revealing the sub parallel patterns elevating LREE with the rising TRE. But commonly these are not continuous sequances because they developed in the pulsing moving systems like beneath Zarnitsa. The minerals from the feeders like dunites also show the inflected or S-type REE patterns. From the earlier to later phases the TRE compositions became more evolved reflecting the evolution of protokimberlites. The wall rocks also often show the interaction with the more evolved melts and sometimes "cut" spectrums due to the dissolution some phases and repeated melting events So we could suggest the joint evolution of the mantle column protokimberlites and megacrysts composition and type of kimberlites with the diamond grade. The mantle lithospheric base captured by the PK. The developing and rising protokimbelrites was followed by the crystallization of the diamonds in the gradient in FO2 zone in wall rocks due to reductions of C -bearing fluids and carbonatites (> 1 QMF) on peridotites ((< -2 -5 QMF). The most intensive reactions are near the graphite - diamond boundary where protokimberlites are breaking and where most framesites are forming.
DS201705-0810
2016
Bornyakov, S.A., Salko, D.V.Instrumental deformation monitoring system and its trial in open pit diamond mine.Journal of Mining Science, Vol. 52, 2, pp. 388-393.RussiaDeposit - Nyurbisnskaya

Abstract: The designed automated system for pitwall deformation monitoring consists of an independent data recorder, strain sensors, AD converters, and front-end and back-end controls. Data are accumulated on server in on-line mode via cellular modem. The self-contained tools are supplied from accumulators recharged by solar batteries, which expands operational life of the system. The system has been trailed in an open pit mine at Nyurbinskaya kimberlite pipe in deformation monitoring of faults in the eastern pitwall and estimation of its stability.
DS201705-0817
2016
Chanturia, V.A., Dvoichenkova, G.P., Kovalchuk, O.E.Classification of mineral species on the surface of natural diamond crystals.Journal of Mining Science, Vol. 52, 3, pp. 535-540.RussiaDiamond morphology

Abstract: The analytical research has yielded differences in composition of mineral species on the surface of natural diamonds of hyperaltered kimberlites under conditions of diamond ore occurrence and processing. The classification of the mineral species is based on the mineral origin, properties and attachment on the diamond crystal surface.
DS201705-0818
2015
Chanturia, V.A., Dvoichenkova, G.P., Kovalchuk, O.E.Surface properties of diamonds recovered from metasomatically modified kimberlites duing processing.Journal of Mining Science, Vol. 51, 2, pp. 353-362.RussiaDiamond morphology
DS201705-0819
2015
Chanturia, V.A., Dvoichenkova, G.P., Kovalchuk, O.E., Timofeev, S.A.Surface composition and role of hydrophillic diamonds in foam seperation.Journal of Mining Science, Vol. 51, 6, pp. 1235-1241.RussiaDiamond morphology

Abstract: The article presents new test results on structural and chemical properties of mineral formations on the surface of natural hydrophilic diamonds using Raman, X-ray phase and Auger spectroscopy methods. Analysis of morphological features of nano formations involved scanning electron microscope Jeol-5610 and analyzer INCA. Based on the studies into phase composition of diamonds non-recovered in the circuit of kimberlite ore processing, two types of mineral formations are discovered on their surface: microformations as silicate nature globules less than 1 ?m in size and silicate nano films more than 5 nm thick. The tests detect also presence of layered talc silicates that make diamond surface hydrophilic.
DS201705-0828
2017
Garanin, V.K., Kriulina, G.Y.Diamonds in Russia. ( discoveries)lithographie.org, No. 19, pp. 94-103.RussiaBook - history
DS201705-0845
2017
Lebedeva, N., Kargin, A., Sazonova, L., Nosova, A.Geochemistry of clinopyroxene megacrysts from the Grib kimberlite pipe, Arkhangelsk province, Russia: metasomatic origin and genetic relationship with clinopyroxene phlogopite metasomatic xenoliths.European Geosciences Union General Assembly 2017, Vienna April 23-28, 1p. 220 AbstractRussia, Archangel, Kola PeninsulaDeposit - Grib

Abstract: Kimberlite is a composite rock that contains juvenile magmatic material and xenoliths of crustal and mantle rocks, including metasomatically reworked rocks and megacrysts. In spite of nearly 40-50 years of continuous study of kimberlites and SCLM, some aspects of their origin remain controversial. In particular, it is unclear yet whether the megacrysts are magmatic or metasomatic in origin and how they are related to kimberlite magmas. In this contribution, we compare the major (EMPA) and trace element (SIMS, LA-ICP-MS) compositions of clinopyroxene megacrysts from the Grib kimberlite (Arkhangelsk province, Russia) with clinopyroxenes from metasomatic clinopyroxene-phlogopite xenoliths and garnet peridotite xenoliths. The Grib kimberlite (376±3 Ma, Larionova et al., 2016) is located in the central part of the Arkhangelsk province (the northern part of the East European craton) in the Chernoozero kimberlite field. The geochemical composition of the kimberlites is similar to widespread South Africa group I kimberlites . The Grib kimberlite is well known for hosting a variety of mantle xenoliths, e.g., garnet peridotite, sheared peridotite, eclogite, metasomatised mantle material, as well as megacrysts of clinopyroxene, garnet, olivine, phlogopite, and ilmenite. The clinopyroxene megacrysts occur as rounded or angular grains up to 2 cm in size. They are usually surrounded by ultrafine kimberlite rim. The xenoliths of the metasomatic clinopyroxene-phlogopite rocks reach up to 6 cm in size and have a granoblastic texture. They consist of clinopyroxene (55 vol. %), phlogopite (45 vol. %) and minor calcite, barite, perovskite. Some clinopyroxene grains contain inclusion of relict olivine that is similar in composition to olivine from mantle-derived peridotite xenoliths within the Grib kimberlite (Sazonova et al., 2015). This suggests that these xenoliths could be formed by metasomatic reworking of SCLM peridotites. The megacryst clinopyroxene is compositionally similar to the clinopyroxene found in metasomatic xenoliths and corresponds to diopside. As compared to the typical clinopyroxene megacrysts worldwide, it has higher Mg# (>0.92), Cr# (0.21-0.62) and Ca# values (0.47-0.49) and lower Ti (659-1966 ppm) composition. The clinopyroxenes have (La/Sm)CI values from 0.58 to 1.57, and trace element patterns with deep negative Ti and shallow negative Zr-Hf anomalies. The major and trace-element compositions of these clinopyroxenes are very close to those of clinopyroxenes from garnet peridotite xenoliths in the Grib pipe (Kargin et al., 2016) that could be formed during the ascent and interaction of kimberlite mamas with a surrounding lithospheric mantle after crystallization of garnet and ilmenite megacrysts. Calculations showed that metasomatic agents in equilibrium with clinopyroxene megacrysts are similar in composition to kimberlite, which is consistent with proposed model. To sum up, we suggest that the formation of clinopyroxenes of megacrysts and mantle-derived clinopyroxene-phlogopite metasomatic xenoliths from the Grib kimberlite was related to the late-stage metasomatic reworking of SCLM by kimberlite magmas.
DS201705-0851
2017
Macdonald, R., Baginski, B., Zozulya, D.Differing responses of zircon, chevkinite - (Ce), monazite-(Ce) and fergusonite-(Y) to hydrothermal alteration: Evidence from the Keivy alkaline province, Kola Peninsula.Mineralogy and Petrology, in press available 22p.Russia, Kola PeninsulaAlkaline rocks

Abstract: A quartzolite from the Rova occurrence, Keivy alkali granite province, Kola Peninsula, Russia, is used to examine the differing responses of certain rare-metal minerals during interaction with hydrothermal fluids. The minerals are two silicates [chevkinite-(Ce) and zircon], a phosphate [monazite-(Ce)] and an oxide [fergusonite-(Y)]. Textural evidence is taken to show that the dominant alteration mechanism was interface-coupled dissolution-reprecipitation. Zircon was the most pervasively altered, possibly by broadening of cleavage planes or fractures; the other minerals were altered mainly on their rims and along cracks. The importance of cracks in promoting fluid access is stressed. The compositional effects of the alteration of each phase are documented. The hydrothermal fluids carried few ligands capable of transporting significant amounts of rare-earth elements (REE), high field strength elements (HFSE) and actinides; alteration is inferred to have been promoted by mildly alkaline, Ca-bearing fluids. Expansion cracks emanating from fergusonite-(Y) are filled with unidentified material containing up to 35 wt% UO2 and 25 wt% REE2O3, indicating late-stage, short-distance mobility of these elements. Electron microprobe chemical dating of monazite yielded an age of 1665 ± 22 Ma, much younger than the formation age of the Keivy province (2.65-2.67 Ga) but comparable to that of the Svecofennian metamorphic event which affected the area (1.9-1.7 Ga) or during fluid-thermal activation of the region during rapakivi granite magmatism (1.66-1.56 Ga). Dates for altered monazite range from 2592 ± 244 Ma to 773 ± 88 Ma and reflect disturbance of the U-Th-Pb system during alteration.
DS201705-0858
2017
Moe, K., Yang, J-S., Johnson, P., Wang, W.Spectroscopic analysis of microdiamonds in ophiolitic chromitite and peridotite.Lithosphere, 9p.Asia, Tibet, Russia, UralsMicrodiamonds

Abstract: Microdiamonds ?200 ?m in size, occurring in ophiolitic chromitites and peridotites, have been reported in recent years. Owing to their unusual geological formation, there are several debates about their origin. We studied 30 microdiamonds from 3 sources: (1) chromitite ore in Luobusa, Tibet; (2) peridotite in Luobusa, Tibet; and (3) chromitite ore in Ray-Iz, polar Ural Mountains, Russia. They are translucent, yellow to greenish-yellow diamonds with a cubo-octahedral polycrystalline or single crystal with partial cubo-octahedral form. Infrared (IR) spectra revealed that these diamonds are type Ib (i.e., diamonds containing neutrally charged single substitutional nitrogen atoms, Ns0, known as the C center) with unknown broad bands observed in the one-phonon region. They contain fluid inclusions, such as water, carbonates, silicates, hydrocarbons, and solid CO2. We also identified additional microinclusions, such as chromite, magnetite, feldspar (albite), moissanite, hematite, and magnesiochromite, using a Raman microscope. Photoluminescence (PL) spectra measured at liquid nitrogen temperature suggest that these diamonds contain nitrogen-vacancy, nickel, and H2 center defects. We compare them with high-pressure-high-temperature (HPHT) synthetic industrial diamond grits. Although there are similarities between microdiamonds and HPHT synthetic diamonds, major differences in the IR, Raman, and PL spectra confirm that these microdiamonds are of natural origin. Spectral characteristics suggest that their geological formation is different but unique compared to that of natural gem-quality diamonds. Although these microdiamonds are not commercially important, they are geologically important in that they provide an understanding of a new diamond genesis.
DS201705-0863
2017
Nosova, A.A., Dubinina, E.O., Sazonova, L.V., Vargin, A.V., lebedeva, N.M., Khvostikov, V.A., Burmii, Zh.P., Kondrashov, I.A., Tretyachenko, V.V.Geochemistry and oxygen isotopic composition of olivine in kimberlites from the Arkhangelsk Province: contribution of mantle metasomatism.Petrology, Vol. 25, 2, pp. 150-180.Russia, Archangel, Kola PeninsulaDeposit - Grib, Pionerskaya

Abstract: The paper presents data on the composition of olivine macrocrysts from two Devonian kimberlite pipes in the Arkhangelsk diamond province: the Grib pipe (whose kimberlite belongs to type I) and Pionerskaya pipe (whose kimberlite is of type II, i.e., orangeite). The dominant olivine macrocrysts in kimberlites from the two pipes significantly differ in geochemical and isotopic parameters. Olivine macrocrysts in kimberlite from the Grib pipe are dominated by magnesian (Mg# = 0.92-0.93), Ti-poor (Ti < 70 ppm) olivine possessing low Ti/Na (0.05-0.23), Zr/Nb (0.28-0.80), and Zn/Cu (3-20) ratios and low Li concentrations (1.2-2.0 ppm), and the oxygen isotopic composition of this olivine ?18O = 5.64‰ is higher than that of olivine in mantle peridotites (?18O = 5.18 ± 0.28‰). Olivine macrocrysts in kimberlite from the Pionerskaya pipe are dominated by varieties with broadly varying Mg# = 0.90-0.93, high Ti concentrations (100-300 ppm), high ratios Ti/Na (0.90-2.39), Zr/Nb (0.31-1.96), and Zn/Cu (12-56), elevated Li concentrations (1.9-3.4 ppm), and oxygen isotopic composition ?18O = 5.34‰ corresponding to that of olivine in mantle peridotites. The geochemical and isotopic traits of low-Ti olivine macrocrysts from the Grib pipe are interpreted as evidence that the olivine interacted with carbonate-rich melts/fluids. This conclusion is consistent with the geochemical parameters of model melt in equilibrium with the low-Ti olivine that are similar to those of deep carbonatite melts. Our calculations indicate that the variations in the ?18O of the olivine relative the “mantle range” (toward both higher and lower values) can be fairly significant: from 4 to 7‰ depending on the composition of the carbonate fluid. These variations were formed at interaction with carbonate fluid, whose ?18O values do not extend outside the range typical of mantle carbonates. The geochemical parameters of high-Ti olivine macrocrysts from the Grib pipe suggest that their origin was controlled by the silicate (water-silicate) component. This olivine is characterized by a zoned Ti distribution, with the configuration of this distribution between the cores of the crystals and their outer zones showing that the zoning of the cores and outer zones is independent and was produced during two episodes of reaction interaction between the olivine and melt/fluid. The younger episode (when the outer zone was formed) likely involved interaction with kimberlite melt. The transformation of the composition of the cores during the older episode may have been of metasomatic nature, as follows from the fact that the composition varies from grain to grain. The metasomatic episode most likely occurred shortly before the kimberlite melt was emplaced and was related to the partial melting of pyroxenite source material.
DS201705-0881
2017
Tabassum, N., Kohn, S., Smith, C., Bulanova, G.The water concentations and OH in corporation mechanism of silicate inclusions in diamonds. What information do they provide?European Geosciences Union General Assembly 2017, Vienna April 23-28, 1p. 16735 AbstractAustralia, Canada, Russia, IndiaDiamond inclusions
DS201705-0891
2017
Zartman, R.E., Kogarko, L.N.Lead isotopic evidence for interaction between plume and lower crust during emplacement of peralkine Lovozero rocks and related rare-metal deposits, East Fennoscandia, Kola Peninsula, Russia.Contributions to Mineralogy and Petrology, Vol. 172, 32p.Russia, Kola PeninsulaCarbonatite

Abstract: The Lovozero alkaline massif—an agpaitic nepheline syenite layered intrusion—is located in the central part of the Kola Peninsula, Russia, and belongs to the Kola ultramafic alkaline and carbonatitic province (KACP) of Devonian age. Associated loparite and eudialyte deposits, which contain immense resources of REE, Nb, Ta, and Zr, constitute a world class mineral district. Previous Sr, Nd, and Hf isotope investigations demonstrated that these rocks and mineral deposits were derived from a depleted mantle source. However, because the Sr, Nd, and Hf abundances in the Kola alkaline rocks are significantly elevated, their isotopic compositions were relatively insensitive to contamination by the underlying crustal rocks through which the intruding magmas passed. Pb occurring in relatively lower abundance in the KACP rocks, by contrast, would have been a more sensitive indicator of an acquired crustal component. Here, we investigate the lead isotopic signature of representative types of Lovozero rocks in order to further characterize their sources. The measured Pb isotopic composition was corrected using the determined U and Th concentrations to the age of the crystallization of the intrusion (376?±?28 Ma, based on a 206Pb/204Pb versus 238U/204Pb isochron and 373?±?9 Ma, from a 208Pb/204Pb versus 232Th/204Pb isochron). Unlike the previously investigated Sr, Nd, and Hf isotopes, the lead isotopic composition plot was well outside the FOZO field. The 206Pb/204Pb values fall within the depleted MORB field, with some rocks having lower 207Pb/204Pb but higher 208Pb/204Pb values. Together with other related carbonatites having both lower and higher 206Pb/204Pb values, the combined KACP rocks form an extended linear array defining either a?~2.5-Ga secondary isochron or a mixing line. The projection of this isotopic array toward the very unradiogenic composition of underlying 2.4-2.5-Ga basaltic rocks of the Matachewan superplume and associated Archean granulite facies country rock provides strong evidence that this old lower crust was the contaminant responsible for the deviation of the Lovozero rocks from a presumed original FOZO lead isotopic composition. Evaluating the presence of such a lower crustal component in the Lovozero rock samples suggests a 5-10% contamination by such rocks. Contamination by upper crustal rock is limited to only a negligible amount.
DS201706-1061
2017
Albekov, A.Yu., Chemyshov, N.M., Ryborak, M.V., Kuznetsov, V.S., Sainikova, E.B., Kholin, V.M.U-Pb isotopic age of apatite bearing carbonatites in the Kursk Block, Voronezh crystalline massif ( Central Russia).Doklady Earth Sciences, Vol. 473, 1, pp. 271-272.Russiacarbonatite

Abstract: In the central part of the European part of Russia in the southeastern part of the Kursk tectonic block, some deposits and occurrences of apatite genetically related to the alkaline-carbonatite complex have been revealed. The results of U-Pb analysis of titanite provided the first confident age estimate of silicate-carbonate (phoscorite) rocks in the Dubravin alkaline-ultramafic-carbonatite massif: they formed no later than 2080 ±13 Ma, which indicates their crystallization in the pre-Oskol time during the final stage of the Early Paleoproterozoic (post-Kursk time) stabilization phase of the Kursk block of Sarmatia (about 2.3-2.1 Ga).
DS201706-1075
2017
Gordadze, G.N., Kerimov, V.Yu., Gaiduk, A.V., Giruts, M.V., Lobusev, M.A., Serov, S.G., Kuznetsov, N.B., Romanyuk, T.V.Hydrocarbon biomarkers and diamondoid hydrocarbons from Late Precambrian and Lower Cambrian rocks of the Katanga Saddle ( Siberian Platform).Geochemistry International, Vol. 55, 4, pp. 360-366.Russia, Siberiadiamondoid

Abstract: A broad suite of geological materials were studied a using a handheld laser-induced breakdown spectroscopy (LIBS) instrument. Because LIBS is simultaneously sensitive to all elements, the full broadband emission spectrum recorded from a single laser shot provides a ‘chemical fingerprint’ of any material - solid, liquid or gas. The distinguishing chemical characteristics of the samples analysed were identified through principal component analysis (PCA), which demonstrates how this technique for statistical analysis can be used to identify spectral differences between similar sample types based on minor and trace constituents. Partial least squares discriminant analysis (PLSDA) was used to distinguish and classify the materials, with excellent discrimination achieved for all sample types. This study illustrates through four selected examples involving carbonate minerals and rocks, the oxide mineral pair columbite-tantalite, the silicate mineral garnet and native gold how portable, handheld LIBS analysers can be used as a tool for real-time chemical analysis under simulated field conditions for element or mineral identification plus such applications as stratigraphic correlation, provenance determination and natural resources exploration.
DS201706-1086
2017
Kolesnichenko, M.V., Zedgenizov, D.A., Litasov, K.D., Safonova, I.Y., Ragozin, A.L.Heterogeneous distribution of water in the mantle beneath the central Siberian craton: implications from the Udachachnaya kimberlite pipe.Gondwana Research, Vol. 47, pp. 249-266.Russiadeposit - Udachnaya

Abstract: The paper presents new petrographic, major element and Fourier transform infrared (FTIR) spectroscopy data and PT-estimates of whole-rock samples and minerals of a collection of 19 relatively fresh peridotite xenoliths from the Udachnaya kimberlite pipe, which were recovered from its deeper levels. The xenoliths are non-deformed (granular), medium-deformed and highly deformed (porphyroclastic, mosaic-porphyroclastic, mylonitic) lherzolites, harzburgite and dunite. The lherzolites yielded equilibration temperatures (T) and pressures (P) ranging from 913 to 1324 °C and from 4.6 to 6.3 GPa, respectively. The non-deformed and medium-deformed peridotites match the 35 mW/m2 conductive continental geotherm, whereas the highly deformed varieties match the 45 mW/m2 geotherm. The content of water spans 2 ± 1-95 ± 52 ppm in olivine, 1 ± 0.5-61 ± 9 ppm in orthopyroxene, and 7 ± 2-71 ± 30 ppm in clinopyroxene. The amount of water in garnets is negligible. Based on the modal proportions of mineral phases in the xenoliths, the water contents in peridotites were estimated to vary over a wide range from < 1 to 64 ppm. The amount of water in the mantle xenoliths is well correlated with the deformation degree: highly deformed peridotites show highest water contents (64 ppm) and those medium-deformed and non-deformed contain ca. 1 ppm of H2O. The high water contents in the deformed peridotites could be linked to metasomatism of relatively dry diamondiferous cratonic roots by hydrous and carbonatitic agents (fluids/melts), which may cause hydration and carbonation of peridotite and oxidation and dissolution of diamonds. The heterogeneous distribution of water in the cratonic mantle beneath the Udachnaya pipe is consistent with the models of mantle plume or veined mantle structures proposed based on a trace element study of similar xenolithic suits. Mantle metasomatism beneath the Siberian Craton and its triggered kimberlite magmatism could be induced by mantle enrichment in volatiles (H2O, CO2) supplied by numerous subduction zones which surrounded the Siberian continent in Neoproterozoic-Cambrian time.
DS201706-1100
2017
Pufahl, P.K., Groat, L.A.Sedimentary and igneous phosphate deposits: formation and exploration: an invited paper. ( carbonatite)Economic Geology, Vol. 112, pp. 483-516.Russia, Kola Peninsula, Europe, Finland, Canada, British Columbiadeposit - Khibina, Fir, Siilinjarvi

Abstract: Phosphorus is the central ingredient in fertilizer that allows modern agriculture to feed the world’s population. This element, also critical in a host of industrial applications, is a nonrenewable resource that is sourced primarily from the phosphatic mineral apatite, hosted in sedimentary and igneous ores. World phosphate resources are estimated by the U.S. Geological Survey at ca. 300,000 Mt, of which 95% are sedimentary and 5% are igneous. Current known USGS reserve estimates are sufficient for a maximum of 200 to 300 years; the exploration and discovery of new resources, enhanced mining technologies, and new technologies aimed at the recovery and recycling of P from sewage and agricultural runoff will all contribute to extending P production. Igneous ores are generally associated with Phanerozoic carbonatites and silica-deficient alkalic intrusions that typically average 5 to 15 wt % P2O5, which can be beneficiated to high-grade concentrates of at least 30 wt % P2O5 with few contaminants. Carbonatites are typically the smallest and youngest parts of a carbonatite-alkaline rock complex that formed during fractional crystallization of a calcic parental alkaline silicate melt, or from liquid immiscibility of a carbonate-rich nephelinite that underwent magmatic fractionation and differentiation during ascent from the mantle source. Fluorapatite generally crystallizes early, near the liquidus, and over a small temperature interval below the apatite saturation temperature that varies strongly with temperature, SiO2 and CaO concentrations, and the aluminosity of the melt. Carbonatite-alkaline rock complexes commonly possess a concentric, zonal structure thought to reflect caldera volcanism. Pathfinder elements in soils, sediments, tills, and vegetation include Nb, rare earth elements (REEs), P, Ba, Sr, F, U, and Th, and in water, F, Th, and U are indicators. Remote sensing techniques with the ability to identify minerals rich in CO3, REEs, and Fe2+ that are characteristic of carbonatites are also important exploration tools that may provide vectors to ore. Sedimentary phosphorite is a marine bioelemental sedimentary rock that contains >18 wt % P2O5. While small peritidal phosphorites formed in Precambrian coastal environments, economically significant upwelling-related phosphorite did not accumulate until the late Neoproterozoic and continued through the Phanerozoic. Coastal upwelling delivered deep, P-rich waters to continental shelves and in epeiric seas to drive phosphogenesis and form the largest phosphorites on Earth. High-grade deposits formed as a result of hydraulic concentration of phosphate grains to form granular beds with minimal gangue. The amalgamation of these beds into decameter-thick, stratiform ore zones is generally focused along the maximum flooding surface, which is a primary exploration target in upwelling-related phosphorite. In addition to P, other elements concentrated in igneous and sedimentary phosphorites are Se, Mo, Zn, Cu, and Cr, which are important agricultural micronutrients. Other saleable by-products include U and REEs. The U concentration in sedimentary phosphorite is generally between 50 and 200 ppm, but can be as high as 3,000 ppm, making it an increasingly important source of U for the nuclear industry. The concentration of REEs in some sedimentary phosphorites is comparable to the world’s richest igneous and Chinese clay-type REE deposits. The source of the dissolved P in upwelling ocean water is ultimately derived from the chemical weathering of continental rocks, the process that links igneous and sedimentary phosphorites through time and space. The covarying temporal relationship of igneous and sedimentary deposits suggests that plate tectonics and the concentration of apatite in a progressively more felsic crust underpins the feedback processes regulating the biogeochemical cycling of P. Critical to the generation of greenfield exploration targets is the recognition that large P deposits emerged in the late Neoproterozoic. The geological environments conducive for exploration can be constrained from an understanding of ore-forming processes by the use of complementary petrological techniques, including fieldwork, petrography, sedimentology, sequence stratigraphy, and geochemistry.
DS201706-1111
2017
Yuryeva, O.P., Rakhmanova, M.I., Zedgenizov, D.A.Nature of type 1aB diamonds from the Mir kimberlite pipe (Yakutia): evidence from spectroscopic observation.Physics and Chemistry of Minerals, in press available 13p.Russia, Yakutiadeposit - Mir
DS201706-1113
2017
Zaitsev, A.N., Zhitova, E.S., Spratt, J., Zolotarev, A.A., Krivovichev, S.V.Isolueshite, NaNb03, from the Kovdor carbonatite, Kola Peninsula, Russia: composition, crystal structure and possible formation scenarios.Neues Jahrbuch fur Mineralogie, Vol. 194, 2, pp. 165-173.Russia, Kola Peninsuladeposit - Kovdor

Abstract: Isolueshite, a cubic complex oxide with the formula NaNbO3, occurs as euhedral crystals 0.4 - 0.7 mm in size in calcite carbonatite, Kovdor ultrabasic-alkaline complex (Kola, Russia). Average composition of isolueshite, based on 40 analyses by wavelength-dispersive electron microprobe is (Na0.84Ca0.07Sr0.01La0.01Ce0.01)?0.95(Nb0.90Ti0.11)?1.01O3. Minor and trace elements are Ti (4.1- 6.8 wt.% TiO2), REEs (1.8 - 4.0 wt.% REE2O3), Ca (1.7- 3.3 wt.% CaO), Zr (0.1- 0.8 wt.% ZrO2), Sr (0.3 - 0.4 wt.% SrO), Th (0.1- 0.5 wt.% ThO2), Fe (0.1- 0.2 wt.% Fe2O3) and Ta (0.1 wt.% Ta2O5). The crystal structure of isolueshite was refined to an agreement index (R1) of 0.028 for 82 unique reflections with |F0| ? 4 ?(F). The mineral is cubic, Pm3-m, a = 3.9045(5) Å and V = 59.525(13) Å3. The diffraction pattern of the crystal contains only regular and strong Bragg reflections with no signs of diffuse scattering. There are two sites in the crystal structure: A is 12-coordinated (A-O = 2.556(3) Å) and located at the corners of the cubic primitive cell and B is situated in the center of the unit-cell and has an octahedral coordination. The crystal-chemical formula based on the structure refinement is (Na0.84(1)Ca0.16(1))(Nb0.88(1)Ti0.12(1))O3. We suggest that isolueshite is a quenched (kinetically favored) polymorph of lueshite that formed as a result of rapid crystallization due to the sudden drop in temperature and/or pressure.
DS201707-1311
2017
Buikin, A.I., Kogarko, L.N., Hopp, J., Trieloff, M.Light noble gas dat a in Guli massif carbonatites reveal the subcontinental lithospheric mantle as primary fluid source.Geochemistry International, Vol. 55, 5, pp. 457-464.Russiacarbonatite - Guli

Abstract: For better understanding of the fluid phase sources of carbonatites of Guli alkaline-ultrabasic intrusion (Maymecha-Kotuy complex) we have studied isotope composition of He and Ne in the carbonatites of different formation stages. The data definitely point to the subcontinental lithospheric mantle (SCLM) as a primary source of fluid phase of Guli carbonatites. The absence of plume signature in such a plume-like object (from petrological point of view) could be explained in terms that Guli carbonatites have been formed at the waning stage of plume magmatic activity with an essential input of SCLM components.
DS201707-1330
2017
Golovin, A.V., Sharygin, I.S., Korsakov, A.V.Origin of alkaline carbonates in kimberlites of the Siberian craton: evidence from melt inclusions in mantle olivine of the Udachnaya-East pipe.Chemical Geology, Vol. 455, pp. 357-375.Russiadeposit - Udachnaya East

Abstract: Alkaline carbonates hexagonal zemkorite (Na,K)2Ca(CO3)2 and orthorhombic shortite Na2Ca2(CO3)3 were found among groundmass minerals in kimberlites from some localities worldwide, including the unserpentinised units of the Udachnaya-East kimberlite. However, the source of alkalis and the origin of the unusual minerals in these kimberlites remain highly debatable. It is generally considered that they have hydrothermal or metasomatic origin while sodium may come from a crustal source. Orthorhombic nyerereite (Na,K)2Ca(CO3)2 and shortite were identified as daughter phases in secondary melt inclusions (MI) in olivine from the deepest mantle xenoliths (i.e., sheared peridotites) and in olivine xenocrysts derived from disintegrated mantle rocks from the Udachnaya-East pipe by Raman spectroscopy and SEM-EDS. The melt, hosted as the inclusions in olivine, was entrapped at a mantle depth. On the basis of similar mineralogy of MI to groundmass of the unserpentinised kimberlites, we suggest relation of MI to the Udachnaya kimberlite melts. The MI solidus temperature is as high as 500 °?. Generally, MI nyerereite is considered as a magmatic mineral but experiments show it to be stable at relatively low temperatures (LT) T ? 360 °?. Thus, strictly speaking, it is a subsolidus mineral formed from high-temperature (HT) (T < 800 °?) hexagonal (Na,K)2Ca(CO3)2 carbonate. Shortite is also a subsolidus mineral, which may form by several subsolidus reactions in multicomponent systems, such as kimberlites, while breakdown of the HT hexagonal phase (Na,K)2Ca(CO3,SO4)2 into Na2Ca2(CO3)3 (shortite) and K3Na(SO4)2 (aphthitalite) is the basic mechanism. The solidus temperature for the Udachnaya-East kimberlite is about 300 °? indicating that LT orthorhombic nyerereite may crystallise directly from the melt as well. Thus, (Na,K)2Ca(CO3)2 and Na2Ca2(CO3)3 carbonates in the groundmass of the unserpentinised Udachnaya-East kimberlites are of magmatic/subsolidus origin. This scenario for the origin of Na-K-Ca and Na-Ca carbonates in the Udachnaya-East kimberlites may have implications for other kimberlites elsewhere.
DS201707-1339
2017
Kitayama, Y., Thomassot, E., Galy, A., Golovin, A., Korsakov, A., d'Eyrames, E., Assayag, N., Bouden, N., Ionov, D.Co-magmatic sulfides and sulfates in the Udachnaya-East pipe ( Siberia): a record of the redox state and isotopic composition of sulfur in kimberlites and their mantle sources.Chemical Geology, Vol. 455, pp. 315-330.Russiadeposit - Udachnaya East

Abstract: Kimberlites of the Udachnaya-East pipe (Siberia) include a uniquely dry and serpentine-free rock type with anomalously high contents of chlorine (Cl ? 6.1 wt%), alkalies (Na2O + K2O ? 10 wt%) and sulfur (S ? 0.50 wt%), referred to as a “salty” kimberlite. The straightforward interpretation is that the Na-, K-, Cl- and S-rich components originate directly from a carbonate-chloride kimberlitic magma that is anhydrous and alkali-rich. However, because brines and evaporites are present on the Siberian craton, previous studies proposed that the kimberlitic magma was contaminated by the assimilation of salt-rich crustal rocks. To clarify the origin of high Cl, alkalies and S in this unusual kimberlite, here we determine its sulfur speciation and isotopic composition and compare it to that of non-salty kimberlites and kimberlitic breccia from the same pipe, as well as potential contamination sources (hydrothermal sulfides and sulfates, country-rock sediment and brine collected in the area). The average ?34S of sulfides is ? 1.4 ± 2.2‰ in the salty kimberlite, 2.1 ± 2.7‰ in the non-salty kimberlites and 14.2 ± 5.8‰ in the breccia. The average ?34S of sulfates in the salty kimberlites is 11.1 ± 1.8‰ and 27.3 ± 1.6‰ in the breccia. In contrast, the ?34S of potential contaminants range from 20 to 42‰ for hydrothermal sulfides, from 16 to 34‰ for hydrothermal sulfates, 34‰ for a country-rock sediment (Chukuck suite) and the regional brine aquifer. Our isotope analyses show that (1) in the salty kimberlites, neither sulfates nor sulfides can be simply explained by brine infiltration, hydrothermal alteration or the assimilation of known salt-rich country rocks and instead, we propose that they are late magmatic phases; (2) in the non-salty kimberlite and breccia, brine infiltration lead to sulfate reduction and the formation of secondary sulfides – this explains the removal of salts, alkali-carbonates and sulfates, as well as the minor olivine serpentinization; (3) hydrothermal sulfur was added to the kimberlitic breccia, but not to the massive kimberlites. In situ measurements of sulfides confirm this scenario, clearly showing the addition of two sulfide populations in the breccia (pyrite-pyrrhotites with average ?34S of 7.9 ± 3.4‰ and chalcopyrites with average ?34S of 38.0 ± 0.4‰) whereas the salty and non-salty kimberlites preserve a unique population of djerfisherites (Cl- and K-rich sulfides) with ?34S values within the mantle range. This study provides the first direct evidence of alkaline igneous rocks in which magmatic sulfate is more abundant than sulfide. Although sulfates have been rarely reported in mantle materials, sulfate-rich melts may be more common in the mantle than previously thought and could balance the sulfur isotope budget of Earth's mantle.
DS201707-1344
2016
Larionova, Y.O., Sazonova, L.V., Lebedeva, N.M., Nosova, A., Tretyachenko, V.V., Travin, A.V., Kargin, A.V., Yudin, D.S.Kimberlite age in the Arkhangelsk province, Russia: isotopic geochronologic Rb-Sr and 40Ar/39Ar and mineralogical dat a on phlogopite.Petrology, Vol. 24, 6, pp. 562-593.Russiageochronology

Abstract: The paper reports detailed data on phlogopite from kimberlite of three facies types in the Arkhangelsk Diamondiferous Province (ADP): (i) massive magmatic kimberlite (Ermakovskaya-7 Pipe), (ii) transitional type between massive volcaniclastic and magmatic kimberlite (Grib Pipe), and (iii) volcanic kimberlite (Karpinskii-1 and Karpinskii-2 pipes). Kimberlite from the Ermakovskaya-7 Pipe contains only groundmass phlogopite. Kimberlite from the Grib Pipe contains a number of phlogopite populations: megacrysts, macrocrysts, matrix phlogopite, and this mineral in xenoliths. Phlogopite macrocrysts and matrix phlogopite define a single compositional trend reflecting the evolution of the kimberlite melt. The composition points of phlogopite from the xenoliths lie on a single crystallization trend, i.e., the mineral also crystallized from kimberlite melt, which likely actively metasomatized the host rocks from which the xenoliths were captured. Phlogopite from volcaniclastic kimberlite from the Karpinskii-1 and Karpinskii-2 pipes does not show either any clearly distinct petrographic setting or compositional differentiation. The kimberlite was dated by the Rb–Sr technique on phlogopite and additionally by the 40Ar/39Ar method. Because it is highly probable that phlogopite from all pipes crystallized from kimberlite melt, the crystallization age of the kimberlite can be defined as 376 ± 3 Ma for the Grib Pipe, 380 ± 2 Ma for the Karpinskii-1 pipe, 375 ± 2 Ma for the Karpinskii-2 Pipe, and 377 ± 0.4 Ma for the Ermakovskaya-7 Pipe. The age of the pipes coincides within the error and suggests that the melts of the pipes were emplaced almost simultaneously. Our geochronologic data on kimberlite emplacement in ADP lie within the range of 380 ± 2 to 375 ± Ma and coincide with most age values for Devonian alkaline–ultramafic complexes in the Kola Province: 379 ± 5 Ma; Arzamastsev and Wu, 2014). These data indicate that the kimberlite was formed during the early evolution of the Kola Province, when alkaline–ultramafic complexes (including those with carbonatite) were emplaced.
DS201707-1353
2017
Nosova, A., Tretyachenko, V.V., Sazonova, L.V., Kargin, A.V., Lebedeva, N.M., Khovostikov, V.A., Burmii, Zh.P., Kondrorashov, I.A., Tretyachenko, V.V.Geochemistry and oxygen isotopic composition of olivine in kimberlites from the Arkhangelsk province: contribution of mantle metasomatism.Petrology, Vol. 25, 2, pp. 150-180.Russia, Archangel, Kola Peninsuladeposit - Grib, Pionerskaya

Abstract: The paper presents data on the composition of olivine macrocrysts from two Devonian kimberlite pipes in the Arkhangelsk diamond province: the Grib pipe (whose kimberlite belongs to type I) and Pionerskaya pipe (whose kimberlite is of type II, i.e., orangeite). The dominant olivine macrocrysts in kimberlites from the two pipes significantly differ in geochemical and isotopic parameters. Olivine macrocrysts in kimberlite from the Grib pipe are dominated by magnesian (Mg# = 0.92–0.93), Ti-poor (Ti < 70 ppm) olivine possessing low Ti/Na (0.05–0.23), Zr/Nb (0.28–0.80), and Zn/Cu (3–20) ratios and low Li concentrations (1.2–2.0 ppm), and the oxygen isotopic composition of this olivine ?18O = 5.64‰ is higher than that of olivine in mantle peridotites (?18O = 5.18 ± 0.28‰). Olivine macrocrysts in kimberlite from the Pionerskaya pipe are dominated by varieties with broadly varying Mg# = 0.90–0.93, high Ti concentrations (100–300 ppm), high ratios Ti/Na (0.90–2.39), Zr/Nb (0.31–1.96), and Zn/Cu (12–56), elevated Li concentrations (1.9–3.4 ppm), and oxygen isotopic composition ?18O = 5.34‰ corresponding to that of olivine in mantle peridotites. The geochemical and isotopic traits of low-Ti olivine macrocrysts from the Grib pipe are interpreted as evidence that the olivine interacted with carbonate-rich melts/fluids. This conclusion is consistent with the geochemical parameters of model melt in equilibrium with the low-Ti olivine that are similar to those of deep carbonatite melts. Our calculations indicate that the variations in the ?18O of the olivine relative the “mantle range” (toward both higher and lower values) can be fairly significant: from 4 to 7‰ depending on the composition of the carbonate fluid. These variations were formed at interaction with carbonate fluid, whose ?18O values do not extend outside the range typical of mantle carbonates. The geochemical parameters of high-Ti olivine macrocrysts from the Grib pipe suggest that their origin was controlled by the silicate (water–silicate) component. This olivine is characterized by a zoned Ti distribution, with the configuration of this distribution between the cores of the crystals and their outer zones showing that the zoning of the cores and outer zones is independent and was produced during two episodes of reaction interaction between the olivine and melt/fluid. The younger episode (when the outer zone was formed) likely involved interaction with kimberlite melt. The transformation of the composition of the cores during the older episode may have been of metasomatic nature, as follows from the fact that the composition varies from grain to grain. The metasomatic episode most likely occurred shortly before the kimberlite melt was emplaced and was related to the partial melting of pyroxenite source material.
DS201707-1366
2017
Shuzovatov, S.Y., Zedgenizov, D.A., Rakevich, A.L.Spectroscopic constraints on growth of Siberian mixed habit diamonds.Contributions to Mineralogy and Petrology, Vol. 172, pp. 46-64.Russiadeposit -Mir, Internationalnaya, Udachnaya, Nyurbinskaya

Abstract: Notable within-crystal variability of mineralogical and geochemical properties of single natural diamonds are commonly attributed to changing chemistry of parental fluids, sources of carbon and redox conditions of diamond precipitation. A distinct type of compositional heterogeneity (mixed-habit structure) is well-known to occur in diamonds as well as in many other minerals due to purely “structural” reasons that are unequal crystal chemistry of crystallographically different faces and selective absorption and fractionation of impurities between adjacent growth pyramids. Based on the combined cathodoluminescence, Fourier-transformed infrared spectroscopy and photoluminescence spectroscopy, study of nine diamond crystals with different growth histories and external morphology, but all showing mixed-habit patterns at different growth stages, we show that mixed-diamonds may grow in closed system conditions or with a slowly decreasing growth rate from a media with a much lower impurity content than previously thought. Intracrystal nitrogen distribution seems to be a function of growth rate even in the cases of unusual impurity partitioning between growth sectors. Generally poor with IR-active hydrogen at moderate nitrogen aggregation parameters, studied diamonds likely resemble the low hydrogen content from the growth medium that, for cubic diamonds, was typically suggested hydrogen-rich and a crucial factor for growth of cubic and mixed-habit diamonds. We also show that mixed-habit diamond growth may occur not only in peridotitic suite but also in an extended field of geochemical affinities from high-Ni to low-Ni or maybe even Ni-free environments, such as pyroxenitic or eclogitic.
DS201707-1371
2017
Spetius, Z.V., Cliff, J., Griffin, W.L., O'Reilly, S.Y.Carbon isotopes of eclogite hosted diamonds from the Nyurbinskaya kimberlite pipe, Yakutia: the metasomatic origin of diamonds.Chemical Geology, Vol. 455, pp. 131-147.Russia, Yakutiadeposit - Nyurbinskaya

Abstract: Carbon isotope compositions and the distribution of nitrogen and hydrogen in diamonds from 18 eclogites from Nurbinskaya kimberlites were studied in situ in polished plates. Cathodoluminescence images show that most of the diamonds have complex growth structures with distinctive core, intermediate and rim zones. In some diamonds the cores display dissolution features, and intermediate growth zones are separated from the cores by narrow rounded oscillatory zones. At least three crystals show interrupted multistage diamond growth; variations in ?13C of 2–3‰ occur across the contacts between distinct zones. Generally, ?13C within the diamond cores varies only by 1–2‰, in rare cases up to 3.3‰. ?13C values are usually lower in the intermediate zones and drop further towards the rims by up to 3‰. High-resolution SIMS profiles show that variations in ?13C across the diamond growth zones are sharp with no evidence of diffusive relaxation. Diamonds with predominantly tangential octahedral growth have a wide range in ?13C from ? 15.2‰ up to 9.0‰ (± 0.4‰), and their nitrogen (N) contents vary between 30 and 1500 at. ppm. Six diamonds show little internal variation along the isotopic profiles with changes in ?13C of only 0.3–0.9‰ around mean values ranging from ? 6‰ to ? 3‰. Five crystals are isotopically heavy, with relatively homogeneous ?13C up to 9‰. FTIR data show markedly different N concentrations and nitrogen aggregation states between major growth zones. This implies that the diamonds in eclogitic xenoliths from Nyurbinskaya pipe grew in multiple and interrupted growth events, probably from fluids enriched in K and H. The wide variations of ?13C in the studied eclogitic diamonds and identification of their anomalously positive ?13C values, combined with the wide range of high ?18O in garnets from the diamondiferous xenoliths of the Nyurbinskaya pipe, which are mostly outside of the mantle range, suggest a crustal contribution to the parental mantle-related fluids forming diamonds in these xenoliths and indicate the complex metasomatic evolution of the lithospheric mantle beneath the Nakynsky kimberlite field.
DS201707-1379
2017
Vasilev, Yu.R., Gora, M.P., Kuzmin, D.V.Petrology of foiditic and meymechitic volcanism in the Maimecha - Kotui province ( Polar Siberia).Russian Geology and Geophysics, Vol. 58, pp. 659-673.Russia, Siberiaalkaline - Maimecha

Abstract: Comparative analysis of ultramafic meymechites of the Maimecha Suite and alkaline volcanics of the Ary-Dzhang Suite (foidites (nephelinites, analcimites, limburgites, etc.) and melilitites) has shown their consanguinity, which indicates their relationship with the same magmatic system periodically producing large amounts of alkaline ultramafic melts. We have studied the petrogeochemical and mineralogical compositions of rocks and melt inclusions in the hosted olivines. The rocks of the Maimecha and Ary-Dzhang Suite differ considerably in MgO content, which is well explained by the accumulation of olivine. The inclusions in olivines from the meymechites and the rocks of the Ary-Dzhang Suite correspond in composition to foidites. The trace and rare-earth element patterns are similar both in the foidites and meymechites and in the melt inclusions: They show negative anomalies of Rb and K and positive anomalies of Nb and Ta. The ratios of indicator elements (Nb/Ta, Ba/La, Ta/La, etc.) in the rocks of the Maimecha and Ary-Dzhang Suite are constant and almost independent of their Mg# values. The La/Yb ratio in the foidites is significantly higher than that in the meymechites and in the melt inclusions from their olivines, which indicates that the rocks of the Ary-Dzhang Suite resulted from the fractionation of highly magnesian alkaline picritoid melt.
DS201708-1590
2017
Agashev, A.Geochemistry of eclogite xenoliths from kimberlite pipe Udachnaya: section of Archean oceanic crust sampled?11th. International Kimberlite Conference, OralRussia, Siberiadeposit - Udachnaya

Abstract: A suite of 17 unique big (1 to 20 kg) and fresh ecligite xenoliths from Udachnaya kimberlite pipe have been studied for their whole-rock and minerals major and trace elements composition.Whole rock major elements composition of the Udachnaya eclogite xenoliths suite have a great variability in their MgO contents (9-19Wt%). Based on major elements composition Udachnaya eclogites can be subdivided in two subsets, high magnesian (Mg# 68.8-81.9) and low magnesian (Mg# 56.8-59). High variations also shown by Al2O3 and Na2O concentrations and high Mg# samples tend to contain less of those oxides then low Mg# samples with some exceptions. Two eclogitic groups are clearly different in style of inter-elements correlations. FeO and CaO contents are positively correlate with MgO in low Mg# group of eclogites but negatively in high Mg# group. The same relations present between Al2O3 contents of eclogite group with their Mg#. Compared to present day MORB composition eclogite samples have similar contents of most of elements with some depletion in TiO2 and P2O5 and enrichment in MgO and K2O. The variability of these elements concentrations can be related to melt extraction while elevated K2O can indicate late metasomatic enrichment. In terms of trace elements composition Udachnaya eclogites are enriched over PM but comparable to that of MORB composition, except significant enrichment in LILE elements (Rb, Ba, K, Sr). The records of both subduction related processes and mantle metasomatism could be find in geochemical features of these rocks. Most of the eclogites show positive Eu anomaly which is direct evidence of plagioclase accumulation in eglogites protolith. Variation of La/Yb ratio (1-11), in majority of samples are the range 2-4 indicates different degrees of samples metasomatic enrichment in LREE. Udachnaya eclogites have range of Sm/Nd ratio from 0.25 to 0.5 (MORB is 0.32) which positive covariates with Nd content. This trend could not be a result of melt extraction nor metasomatic enrichment rather it could reflect heterogeneity of oceanic crust composition and/or mixing with peridotite component during subduction.
DS201708-1591
2017
Agashev, A.Geochemistry of Mirny field kimberlites, Siberia.11th. International Kimberlite Conference, PosterRussia, Siberiadeposit - Mirny
DS201708-1602
2017
Bovkun, A.Features of diamond and its indicator minerals of kimberlites of the M.V. Lomonov deposit, Arkangelsk region, Russia.11th. International Kimberlite Conference, OralRussia, Archangeldeposit - Lomonov
DS201708-1645
2017
Garanin, K.Zarya diamond deposit, Yakutian Province, Russia.11th. International Kimberlite Conference, PosterRussia, Yakutiadeposit - Zarya
DS201708-1646
2017
Garanin, V.The relationship among various morphological types of diamonds within diamond deposits in Russia: genesis, growth, dissolution and real diamond grade.11th. International Kimberlite Conference, PosterRussiadiamond morphology
DS201708-1691
2017
Kitayama, Y.Co-magmatic sulfides and sulfates in the Udachnaya-East pipe ( Siberia): sulfur speciation and isotopic composition in kimberlites and their mantle sources.11th. International Kimberlite Conference, PosterRussia, Siberiadeposit - Udachnaya-East

Abstract: Kimberlites of the Udachnaya-East pipe (Siberia) include a uniquely dry and serpentine-free rock type with anomalously high contents of chlorine (Cl ? 6.1 wt%), alkalies (Na2O + K2O ? 10 wt%) and sulfur (S ? 0.50 wt%), referred to as a “salty” kimberlite. The straightforward interpretation is that the Na-, K-, Cl- and S-rich components originate directly from a carbonate-chloride kimberlitic magma that is anhydrous and alkali-rich. However, because brines and evaporites are present on the Siberian craton, previous studies proposed that the kimberlitic magma was contaminated by the assimilation of salt-rich crustal rocks. To clarify the origin of high Cl, alkalies and S in this unusual kimberlite, here we determine its sulfur speciation and isotopic composition and compare it to that of non-salty kimberlites and kimberlitic breccia from the same pipe, as well as potential contamination sources (hydrothermal sulfides and sulfates, country-rock sediment and brine collected in the area). The average ?34S of sulfides is ? 1.4 ± 2.2‰ in the salty kimberlite, 2.1 ± 2.7‰ in the non-salty kimberlites and 14.2 ± 5.8‰ in the breccia. The average ?34S of sulfates in the salty kimberlites is 11.1 ± 1.8‰ and 27.3 ± 1.6‰ in the breccia. In contrast, the ?34S of potential contaminants range from 20 to 42‰ for hydrothermal sulfides, from 16 to 34‰ for hydrothermal sulfates, 34‰ for a country-rock sediment (Chukuck suite) and the regional brine aquifer. Our isotope analyses show that (1) in the salty kimberlites, neither sulfates nor sulfides can be simply explained by brine infiltration, hydrothermal alteration or the assimilation of known salt-rich country rocks and instead, we propose that they are late magmatic phases; (2) in the non-salty kimberlite and breccia, brine infiltration lead to sulfate reduction and the formation of secondary sulfides – this explains the removal of salts, alkali-carbonates and sulfates, as well as the minor olivine serpentinization; (3) hydrothermal sulfur was added to the kimberlitic breccia, but not to the massive kimberlites. In situ measurements of sulfides confirm this scenario, clearly showing the addition of two sulfide populations in the breccia (pyrite-pyrrhotites with average ?34S of 7.9 ± 3.4‰ and chalcopyrites with average ?34S of 38.0 ± 0.4‰) whereas the salty and non-salty kimberlites preserve a unique population of djerfisherites (Cl- and K-rich sulfides) with ?34S values within the mantle range. This study provides the first direct evidence of alkaline igneous rocks in which magmatic sulfate is more abundant than sulfide. Although sulfates have been rarely reported in mantle materials, sulfate-rich melts may be more common in the mantle than previously thought and could balance the sulfur isotope budget of Earth's mantle.
DS201708-1698
2017
Kriulina, G.Micro inclusions in diamonds from deposits of different genetic kimberlite types.11th. International Kimberlite Conference, PosterRussiadiamond inclusions
DS201708-1699
2017
Kriulina, G.Forecast diamond quality in the deposit.11th. International Kimberlite Conference, PosterRussiadiamond resource
DS201708-1738
2017
Potter, N.Inclusions in perovskite magnetite silicate rocks from Afrikanda, Russia: clues to the early history of carbonatites.11th. International Kimberlite Conference, PosterRussiacarbonatites
DS201708-1756
2017
Sharygin, I.Carbonate inclusions in Cr-pyropes derived from the mantle beneath central Aldan superterranes of Siberian craton.11th. International Kimberlite Conference, PosterRussiaPyropes

Abstract: Mantle-derived lherzolitic and harzburgitic Cr-pyropes from lamprophyres of the Chompolo field (Central Aldan superterrane, North Asian Craton) were studied using micro-Raman spectroscopy and electron microprobe microanalysis. These garnets enclose graphite coexisting with forsterite, diopside, Ba-Cl-phlogopite, tschermakite, rutile, magnesiochromite, Mg-ilmenite, apatite, chalcopyrite, dolomite, magnesite and lindsleyite inclusions. The PT conditions of residence of graphite-bearing assemblage in the mantle were estimated, using a combination of mineral thermometers and barometers, to be as high as 2.87–3.55 GPa and 710–770 °C. Generally, graphite within inclusions is well ordered; D1 and D2 disordered bands in its spectra are restricted to inclusion edges. The residual pressure up to 2.1 GPa was inferred for graphite assuming pressure dependence of the G-band upshift (1580 cm?1 at ambient conditions vs 1588.6 cm?1 at 2.1 GPa). Disordered graphite most likely appears due to the stress-induced distortion of the fully ordered graphite crystal structure. The distortion results from difference in the thermoelastic properties of graphite inclusions and their garnet hosts exposed to decompression during ascent to the surface with lamprophyre magma. The mineralogy of inclusions in the studied garnets strongly suggests an episode(s) of metasomatism by carbon-rich agent(s) (COH-fluid or carbonatitic melt) in the lithospheric mantle of the Central Aldan superterrane, which was coeval with the formation of graphite inclusions and the host pyropes. Copyright © 2017 John Wiley & Sons, Ltd.
DS201708-1757
2017
Sharygin, I.Interstitial mineral assemblages in sheared garnet peridotites from Udachnaya-East kimberlite pipe, Siberian craton.11th. International Kimberlite Conference, PosterRussiadeposit - Udachnaya-East

Abstract: Djerfisherite, a Cl-bearing potassium sulfide (K6Na(Fe,Ni,Cu)24S26Cl), is a widespread accessory mineral in kimberlite-hosted mantle xenoliths. Nevertheless, the origin of this sulfide in nodules remains disputable. It is usually attributed to the replacement of primary Fe–Ni–Cu sulfides when xenoliths interact with a K-and Cl-enriched hypothetical melt/fluid. The paper is devoted to a detailed study of the composition and morphology of djerfisherite from a representative collection (22 samples) of the deepest mantle xenoliths—sheared garnet peridotite, taken from the Udachnaya-East kimberlite pipe (Yakutia). Four types of djerfisherite were distinguished in the mantle rocks on the basis of morphology, spatial distribution, and relationships with the rock-forming and accessory minerals in the nodules. Type 1 was found in the rims of polysulfide inclusions in the rock-forming minerals of the xenoliths; there, it was younger than the primary sulfide assemblage pyrrhotite + pentlandite ± chalcopyrite. Type 2 formed rims around large polysulfide segregations (pyrrhotite+ pentlandite) in the xenolith interstices. Type 3 formed individual grains in the xenolith interstices together with other sulfides, silicates, oxides, phosphates, and carbonates. Type 4 was present as a daughter phase in the secondary melt inclusions which occurred in healed cracks in the rock-forming minerals of the xenoliths. Along with djerfisherite, the inclusions contained silicates, oxides, phosphates, carbonates, alkaline sulfates, chlorides, and sulfides. The results indicate that djerfisherite from the xenoliths is consanguine with kimberlite. Djerfisherite both in the sheared-peridotite xenoliths from the Udachnaya-East pipe and in different xenoliths from other kimberlite pipes worldwide formed owing to the interaction between the nodules and kimberlitic melts. Djerfisherite forming individual grains in the melt inclusions and xenolith interstices crystallized directly from the infiltrating kimberlitic melt. Djerfisherite bounding the primary Fe–Ni ± Cu sulfides formed by their replacement as a result of a reaction with the kimberlitic melt.
DS201708-1758
2017
Shchukin, V.Diamond bearing in the north of European Russia and the new diamond deposits discovery.11th. International Kimberlite Conference, PosterRussiadeposit -
DS201708-1759
2017
Shchukina, E.Origin of coarse granular and equigranular eclogites from V.Grib kimberlite pipe, Arkangelsk regiona, NW Russia.11th. International Kimberlite Conference, OralRussia, Archangeldeposit - Grib
DS201708-1779
2017
Tretiakova, L.Impact-metasomatic origin of mircodiamonds from Kundy-Kol deposit, north Kazakhstan.11th. International Kimberlite Conference, PosterRussia, Kazakhstanmicrodiamonds
DS201708-1781
2017
Tretyachenko, V.Main mineralogical petrological features of Early-hercynian volcanic complexs of Archangelsk kimberlite-picrite region, NW Russia.11th. International Kimberlite Conference, PosterRussia, Kola Peninsuladeposit - Archangel
DS201708-1795
2017
Zdislav, S.Petrogenetic evidence and FTIR dat a constraints on the origin of diamonds in xenoliths from Yubileynaya and Komsomolskaya pipes, Yakutia.11th. International Kimberlite Conference, PosterRussiadeposit - Jubileynaya, Komsomolskaya
DS201708-1796
2017
Zdislav, S.Oxygen isotopes of garnets in Diamondiferous eclogites from the Udachnaya pipe, Yakutia: evidence for their origin.11th. International Kimberlite Conference, PosterRussiadeposit - Udachnaya
DS201709-1950
2017
Alifirova, T.A., Pokhilenko, L.N., Taylor, L.A.Evolution of garnet clinopyroxenites from a margin of Siberian craton in major and rare element viewpoint.Goldschmidt Conference, abstract 1p.Russia, Siberiadeposit - Obnazhennaya

Abstract: Clinopyroxenite mantle xenoliths from Obnazhënnaya kimberlite pipe, NE part of Siberian craton (Russia), preserve porphyroclastic clinopyroxene with no less than two generations of garnet and orthopyroxene lamellae, sometimes together with rutile. Their crystallographic relationships are consistent with an origin by solid-state exsolution. According to reintegrated major-element chemistry and datasets for natural systems the homogeneous high-Al clinopyroxenes were previously in equilibrium within a T range of ~1400– 1500 ºC at a minimum P of 2 GPa. Ca and Al variations in a clinopyroxene assume exsolution to take place during a cooling accompanied by a compression. According to Al contents the growth of orthopyroxene lamellae in the rocks is continued down to ~850 ºC and 2.7 GPa. The xenoliths matrix assemblage of Cpx+Grt±Opx marks strain-induced recrystallization where the exsolution features in recrystallized minerals are absent. Later re-equilibration of the mineral assemblage occurred at 790–810 ºC and 3.0–3.2 GPa in the cratonic mantle prior to the removal of rocks by kimberlite melts; the reactions were controlled by the diffusion of Ca and Al in a pyroxene structure. It was noted that Sr in clinopyroxenes (284–556 ppm) increases from core to rim together with V (149–226 ppm) and Ca, opposite to Al content higher in the center of Cpx porphyroclasts. A positive Eu anomaly is significant both in clinopyroxenes and garnets (Eu/Eu* = 1.5–1.8 and 1.3–2.0, respectively). Substitution of Al for Si in the pyroxene tetrahedral sites has allowed charging balance for the substitution of additional trivalent REE into the pyroxene M2 site [1]. The process has affected to the Sr2+, Sm3+ and V3+ contents and Eu2+/Eu3+ relations responsible for the presence of Eu anomaly in a pyroxene. The work was supported by the grant of the President of the Russian Federation MK-2231.2017.5. The study with LAT was funded by NSF grant EAR-1144337.
DS201709-1963
2017
Broadley, M.W., et al.Noble gases in diamond hosted fluid inclusions: sorting the deep from the dregs.Goldschmidt Conference, abstract 1p.Russia, Siberiadeposit, Nyurbinskaya

Abstract: Fluid inclusions trapped during diamond formation provide pristine information into the nature of mantle volatile sources. The majority of diamonds are formed at the base of the lithosphere, which due to its non-convective nature is able to retain geochemical heterogeneities introduced through interactions with the upper and lower mantle, crustal, and subduction related sources. In order to evaluate the origin of diamond forming fluids in the lithosphere, we present noble gas isotopic data from a suite of cubic, coated and cloudy diamond from the Nyurbinskaya Kimberlite, Siberia. Noble gas signatures extracted from fluid inclusions by crushing show two distinct volatile components present within the Siberian lithosphere. Cubic diamonds have average 3 He/4 He of 10 RA, whilst the 3 He/4 He of the coated and cloudy diamonds is the 6 RA. The Ne isotopic data is also different between the diamonds with 20Ne/22Ne in the cubic diamonds (10.7) consistently higher that the coated and cloudy diamonds, which are dominated by an atmospheric component. The 3 He/4 He in fluids trapped in the coated and cloudy diamonds are typical of samples from the lithospheric mantle. Fluids trapped in the cubic diamonds have higher 3 He/4 He than lithospheric and MORB mantle sources, but are similar to values reported from the Siberian Flood Basalts (SFB), which are derived from a lower mantle source. Ne isotopic data from the cubic diamond also suggests these diamonds contain a lower mantle volatile component. Noble gases in diamond hosted fluid inclusions have shown the Siberian lithosphere contains both lihtospheric and lower mantle volatile compponents. The coexistence of lithospheric and lower mantle volatiles within diamonds originating from the same kimberlite indicates the Siberian lithosphere must have had at least two periods of diamond growth from two distinct diamond forming fluids.
DS201709-1964
2017
Broom-Fendley, S., O'Neill, M., Wall, F.Are carbonate-fluorapatite rocks in carbonatite complexes the result of hydrothermal processes or weathering? Sokli, KovdorGoldschmidt Conference, abstract 1p.Europe, Finland, Russiacarbonatites, Sokli, Kovdor

Abstract: Carbonate-fluorapatite (also known as staffelite and/or francolite) can become a rock-forming mineral in the upper levels of some carbonatite complexes, such as at Sokli, Finland, and Kovdor, Russia. Carbonate-fluorapatite rocks are recognised as an important phosphate resource, but there is little consensus on their genesis. Two principal models are favoured: (1) a hydrothermal origin, from a late-stage, carbonatite-derived fluid or, (2) formation through supergene dissolution of carbonate and re-precipitation of apatite. In this contribution, we have investigated the texture and composition of different carbonate-fluorapatite generations (using cathodoluminescence microsopy and LA ICP MS) in order to evaluate the aforementioned formation mechanisms. Four carbonate-fluorapatite growth generations were identified: (1) primary apatite grains, with a rounded/euhedral habit and luminescing purple; (2) strongly luminescent epitactic rims on primary grains; (3) ‘aggregate’ apatite, forming a fine-grained groundmass, typically luminescing blue; (4) botryoidal growth zones, commonly luminescing blue, but in places green or non-luminescent. REE contents in secondary carbonate-fluorapatite generations (2–4) are markedly low, with some analyses below detection limit (typically <1 ppm). Furthermore, many of these analyses exhibit both positive and negative Ce anomalies, indicative of an oxidising environment. The low REE contents of the different carbonatefluorapatite generations indicates that negligible REE transfer occurred between different growth events, contrasting with hydrothermal apatite in other carbonatite complexes. Furthermore, the lack of any significant fractionation between subsequent carbonate-fluorapatite generations is interpreted as circumstantial evidence that these rocks did not form through hydrothermal alteration. This is compounded by the presence of a Ce anomaly, which is commonly interpreted as a weathering feature. While hydrothermal formation under different conditions, causing complete removal of the REE, cannot be ruled out, we conclude that the locations were, most-likely, formed in a supergene environment. Continued investigation of weathered carbonate-fluorapatite material from other localities is underway to assess this conclusion.
DS201709-1972
2017
Chepurov, A.A., Kosolobov, S.S., Shcheglov, D.V., Sonin, V.M., Chepurov, A.I., Latyshev, A.V.Nanosculptures on round surfaces of natural diamonds.Geology of Ore Deposits, Vol. 59, 3, pp. 256-264.Russiadeposit - Udachnaya -East

Abstract: The results of a study using scanning electron microscopy and atomic force microscopy comprising the micromorphology of the ditrigonal and trigonal layers on surfaces near the edges of octahedral diamond crystals from the Udachnaya-Eastern kimberlite pipe in Yakutia are presented. The studied surface sculptures are elongated parallel to the direction ?111? and have similar morphological features, characterized by a wavy profile across the lamination, the absence of flat areas at the micro- and nanolevel. It is proposed that both sculpture types were formed as a result of dissolution under natural conditions. This suggestion is corroborated by the revelation of negative trigons on the octahedral facets of the studied diamonds.
DS201709-1981
2017
Egorova, E., Afanasev, V.Mineralogical features for determining age of kimberlites from Siberian craton by kimberlitic indicator minerals from placers. Mayat, Muna, Tychan, KenkemeGoldschmidt Conference, abstract 1p.Russia, Siberiageochemistry

Abstract: The history of kimberlite magmatism in the Siberian craton comprised the Middle Paleozoic (Late Devonian), Triassic, and Jurassic-Cretaceouse events. The Middle Paleozoic event produced greatest amounts of diamond-bearing kimberlites; diamond contents in the Triassic rocks are much lower, while the Jurassic-Cretaceous kimberlites are actually barren [1]. Minerals derived from kimberlites of different ages often coexist in placers and dispersion trains, which poses problems to the use of mineralogical methods for diamond exploration. The problem can be solved by knowing the morphological features of kimberlite indicator minerals typical of each magmatic event [2]. Garnets from Middle Paleozoic kimberlites have the following features: a) chemistry corresponding to diverse parageneses, including those of diamond assemblage; b) weak to strong wear; predominant medium and high wear degrees; c)signatures of dissolution in Late Devonian laterite weathering profiles. Garnets from Triassic kimberlites differ in a) lower paragenetic diversity; few or absent garnets of diamond assemblage; b) only low wear degree; strong wear restricted to garnets from Triassic kimberlites hosted by coastal sediments; c) no dissolution signatures. Jurassic-Cretaceous ages of kimberlites can be inferred from a) changes in paragenetic diversity as a result of deep metasomatism and predominance of shallow lherzolite varieties; no diamond assemblage garnets; b) weak wear; c) no dissolution signatures. The approach was used to estimate the ages of kimberlites in some kimberlite provinces. As a result, we inferred the existence of Middle Paleozoic kimberlites in the Kyutyungde graben, in the catchments of the Mayat, Billakh (Anabar area), and Muna rivers, in the MarkhaMorkoka interfluve, and in the Tychan diamond province (Krasnoyarsk region); Triassic kimberlites in the northern slope of the Olenek uplift and within the Bulkur uplift; and Late Jurassic-Early Cretaceous kimberlites in the Kenkeme catchment north of Yakutsk city.
DS201709-2000
2017
Ilyina, O.V., Pokhilenko, L.N., Agashev, A.M.Characteristics of platinum group elements ( PGE) distribution in mantle xenoliths from kimberlite Udachnaya pipe ( Yakutia).Goldschmidt Conference, abstract 1p.Russia, Yakutiadeposit - Udachnaya

Abstract: We report PGE data in xenoliths of the deformed and granular peridotites. The deformed peridotites are the most deep-seated rocks and represent a narrow range of depth (180-220 km) while granular peridotites are located throughout the section of the lithospheric mantle. PGE distribution in the deformed peridotites [1] generally corresponds to that in our granular peridotites and xenoliths from Lesotho [2]. But in contrast with broad range of PGE concentrations in granular peridotites, the deformed peridotites show nearly flat pattern from Os to Pt, except of Pd (Fig.1). Granular peridotites show good positive correlation between PGE and Fe2O3. We suppose that they enriched in PGE by iron phase during its evolution. As for deformed peridotites we propose that they were depleted in Ir and Os followed by the increase of Ga and Cpx on the first stage of mantle metasomatism. On the last stage the enrichment of Pt, Pd and Re was probably a result of submicron sulphide phase’s presipitation in the interstices of mantle rocks.
DS201709-2008
2017
Kalasnikova, T.V., Solovea, L.V., Kostrovitsky, S.I.Metasomatic features in the mantle xenoliths from Obnajennaya kimberlite pipe - the mineral composition evidence.Goldschmidt Conference, abstract 1p.Russiadeposit - Obnajennaya

Abstract: The modal metasomatic alteration for lithosphere mantle may be investigated using mantle xenoliths from kimberlite pipes. The mantle xenoliths from upper-Jurassic Obnajennaya kimberlite pipe (Kuoika field, Yakutia) were studied. Three main xenoliths groups in Obnajennaya pipe were distinguished based on the petrographic and geochemical features: 1. Sp, Sp-Grt, Grt harzburgites - lherzolites, Sp, Sp-Grt, Grt olivine websterites and Sp, Sp-Grt, Grt websterite (so-called magnesium group - about 80 % from xenoliths). The high magnesium mineral composition, high estimated temperature (1250 - 1500°?) for exsolution pyroxene megacrystals, presence of sulphide globules and distribution curves for rare earth elements in garnets (La-Yb increasing) are to assume the crystallisation from melt. The 10% magnesium mantle xenoliths are observed the secondary metasomatic phlogopite and amphibole (pargasite). The clinopyroxene distribution curves demonstrate the wide range of values and altered samples show higher content HFSE group elements that primary clinopyroxene. The increasing of HFSE and rare earth element concentrations can also be traced by the amphibole chemical composition. The 40Ar/39Ar dating of phlogopite from was result 1639 ± 5 Ma nearly corresponding to the time of Siberian craton accretion Thus during Siberian craton accretion (about 1.7 Ga) the melts-fluids enriching Nb + Ta and REE impacted on lithosphere mantle under Kuoika field. 2. Eclogites and Grt clinopyroxenites with similar mineral composition (about 10-15% xenoliths). The high ?O18 for garnet and clinopyroxene (5.7–5.8‰) allows to assume subduction genesis. 3. Phl-Ilm rocks characterizing ferrous mineral composition (~ 10 % xenoliths). This group are charactetrized are ferrous mineral composition. The 40Ar/39Ar phlogopite dating resulted to 800-500 Ma, signed the potassium and titanium metasomatic fluide – melt influenced
DS201709-2012
2017
Kargin, A.V., Sazonova, L.V., Nosova, A.A., Lebedeva, N.M.The mantle metasomatism associated with kimberlite magmatism, the Grib kimberlite pipe, Arkhangelsk diamond province, Russia.Goldschmidt Conference, abstract 1p.Russia, Archangeldeposit - Grib

Abstract: Here we present major (EMPA) and trace element (SIMS, LA-ICP-MS) data for garnet and clinopyroxene from mantlederived xenoliths of coarse and sheared garnet peridotite [1, 2] and clinopyroxene-phlogopite metasomatic rocks from the Grib kimberlite, the Arkhangelsk diamond province, Russia, and provide new insights into the metasomatic processes that occur within the subcontinental lithospheric mantle (SCLM) during the kimberlite melts generation and ascent. The obtained data allowed us to reconstruct the following sequence of metasomatic events associated with the generation of the Grib kimberlite: 1. Ascent of high-temperature asthenospheric or mantle plume material resulted in a partial melting of a carbonated peridotite and led to the generation of high-temperature REEenriched proto-kimberlite melts containing significant amounts of carbonate, Fe-Ti and K-H2O. These protokimberlite melts started to interact with the surrounding mantle rocks during its evolution and ascent, and caused metasomatic modification of both coarse and sheared peridotites at the base of SCLM (T and P estimates are 1220°C and 70 kbar). 2. Further evolution of proto-kimberlite melts during the ascent and the interaction with the surrounding mantle (e.g. mantle-rock assimilation and/or percolative fractional crystallization) led to changes in the kimberlite composition from REE-enriched carbonate-dominated to carbonate-rich ultramafic silicate magmas with lower REE contents. 3. During the ascent, carbonate-rich ultramafic silicate kimberlite melts progressively metasomatised sorrounding SCLM from garnet-phlogopite peridotite through garnetphlogopite peridotite to clinopyroxene-phlogopite rocks under T and P estimated as 830°C and 40 kbar. At this stage, the fractionated of Fe-Ti-bearing megacrysts occurred.
DS201709-2015
2017
Kitayama, Y., et al.Origin of salt nodules in the Udachnaya- East kimberlites? Insights from Sr-Nd and S isotopes.Goldschmidt Conference, abstract 1p.Russiadeposit, Udachnaya

Abstract: Salty fluids are stable in the lithospheric mantle [1] and thus we may expect to find them in extrusive volcanic rocks as well. In Siberia, the Udachnaya-East kimberlite hosts extremely well preserved ‘nodules’ of molten salts that do not present any relicts sedimentary textures [2]. It is still debated, however, whether these nodules are genetically linked to the kimberlitic magma. Here we used a combination of radiogenic (Rb-Sr, SmNd) and stable (S) isotopes analyses to investigate the origin of these nodules Salt-rich nodules, including chloride (95% chloride; n=2) and chloride-carbonate nodules (70% chloride + 30% alkali-carbonate; n=2) were studied, as well as host kimberlites (n=4), country-rock sediment and regional brine for comparison. On an evolution diagram, water and acetic acid leachates of chloride nodules define a linear array that, if interpreted as an isochron, yields an apparent age of 355 Ma, within error of the emplacement age of the kimberlite and an initial 87Sr/86Srt=355Ma of 0.710 ± 0.003. Bulk and carbonate fractions of chloride-carbonate nodules define an initial 87Sr/86Srt=355Ma (0.706 ±0.002) and 143Nd/144Ndt=355Ma (0.5123 ±0.0002) that overlap with those of the kimberlite (initial 87Sr/86Srt=355Ma =0.705 ±0.001 and 143Nd/144Ndt=355Ma =0.5124 ±0.0001). 87Sr/86Srt=355Ma of the brine and host sediment (0.7088) cannot explain the Sr isotopic composition of the chloride nodules. A dual origin for the nodules is thus possible, depending on their carbonate contents. In terms of sulfur isotopes, sulfates of the chloridecarbonate nodules and the salty kimberlite are undistinguishable (?34S=11‰). Sulfates of a chloride nodule have distinctly heavier isotopic compositions (?34S=18‰) but their Sr isotopes imply they cannot be explained by the assimilation of known sedimentary components or post magmatic fluid circulation (?34S=34‰ for host sediment and brine). In this contribution, we will discuss the robustness of both approches and propose some explanation(s) for the occurence of these salt nodules.
DS201709-2036
2017
Moyen, J-F., Paquette, J-L., Ionov, D.A., Korsakova, A.V., Golovina, A.V., Moine, B.N.Archean lithosphere: evidence from U-Pb zircon dating in crustal xenoliths at Udachanay, Siberian craton.Goldschmidt Conference, abstract 1p.Russiadeposit, Udachnaya

Abstract: Cratons represent the oldest preserved lithospheric domains. Their lithosphere (lithospheric mantle welded to overlying Precambrian crystalline basement) is considered to be particularly robust and long living due to the protecting presence of buoyant and rigid “keels” made up of residual harzburgites. In this study, we report new U—Pb zircon ages on crustal xenoliths from the Udachnaya kimberlite in the Siberian craton; this dataset includes samples from both the upper and lower portions of the crust. The zircon ages agree well with model melt-extraction Re-Os ages on refractory peridotite xenoliths from the same pipe; taken together they allow an integrated view of lithosphere formation. Our data reveal that the present day upper crust is Archaean, whereas both the lower crust and the lithospheric mantle yield Palaeoproterozoic ages. Consequently, the deep lithosphere beneath the Siberian craton was not formed in a single time, but grew in two distinct events, one in the late Archean and the other in the Palaeoproterozoic. We propose a two-stage scenario for the formation of the Siberian craton involving delamination and rejuvenation of the Archean lower lithosphere (lower crust and lithospheric mantle) in the Palaeoproterozoic. This demonstrates that craton formation can be a protracted, multi-stage process, and that the present day crust and mantle do not represent complementary reservoirs formed through the same episode.
DS201709-2037
2017
Moyen, J-F., Paquette, J-L., Ionov, D.A., Korsakova, A.V., Golovina, A.V., Moine, B.N.Paleoproterozoic rejuvenation of an Archean lithosphere: evidence from U-Pb zircon dating in crustal xenoliths at Udachanaya, Siberian craton.Goldschmidt Conference, abstract 1p.Russia, Siberiadeposit, Udachnaya

Abstract: Cratons represent the oldest preserved lithospheric domains. Their lithosphere (lithospheric mantle welded to overlying Precambrian crystalline basement) is considered to be particularly robust and long-lived due to the protecting presence of buoyant and rigid “keels” made up of residual harzburgites. Although the cratons are mostly assumed to form in the Archaean, the timing of their formation remains poorly constrained. In particular, there are very few datasets describing concurrently the age of both the crustal and mantle portions of the lithosphere. In this study, we report new U–Pb ages and Hf isotope compositions for zircons in crustal xenoliths from the Udachnaya kimberlite in the central Siberian craton; this dataset includes samples from both the upper and lower portions of the crust. The zircon ages agree well with model melt-extraction Re–Os ages on refractory peridotite xenoliths from the same pipe; taken together they allow an integrated view of lithosphere formation. Our data reveal that the present day upper crust is Archaean, whereas both the lower crust and the lithospheric mantle yield Paleoproterozoic ages. We infer that the deep lithosphere beneath the Siberian craton was not formed in a single Archaean event, but grew in at least two distinct events, one in the late Archaean and the other in the Paleoproterozoic. Importantly, a complete or large-scale delamination and rejuvenation of the Archaean lower lithosphere (lower crust and lithospheric mantle) took place in the Paleoproterozoic. This further demonstrates that craton formation can be a protracted, multi-stage process, and that the present day crust and mantle may not represent complementary reservoirs formed through the same tectono-magmatic event. Further, deep cratonic lithosphere may be less robust and long living than often assumed, with rejuvenation and replacement events throughout its history.
DS201709-2044
2017
Pokhilenko, L.N.Exotic olivine glimmerites of Yakutia - the related polymict breccias.Goldschmidt Conference, abstract 1p.Russiaglimmerite

Abstract: The rocks, which are totally comprised of olivine and mica, have been found among the xenoliths of the Udachnaya-East pipe (Yakutia). The essential amount (first percents) of ilmenite of different morphology has been found in two rocks. These exotic olivine glimmerites appeared to be similar to the polymict breccia in the wide variations of olivine (LUV709/11 and LUV659/11 - Mg#(%): 86-93 and 83-91, respectively), phlogopite ((wt.%), LUV659/11: SiO2 38.5-40.6, TiO2 2.5-6, Al2O3 11.3-14, Cr2O3 0.4-1, MgO 19.8-23.1, FeO 6.1-7.9, Na2O 0.5-1.3, K2O 8.6-9.9), ilmenite (LUV709/11: Mg#(%) 23.6-47.8; Cr2O3 (wt.%): 0.63-1.01) compositions and also in the abundance of accessory minerals (chromite, rutile, sulphides, calcite, dolomite, siderite, barite). The compositions of rock-forming minerals of the glimmerites do not fall within the compositional fields of similar minerals from the peridotites of kimberlite xenoliths but strongly overlap with that from the polymict breccias. Moreover, the compositions of phlogopite from the glimmerites have demonstrated similar in Al, Fe and Ti composition kimberlite trend typical of phlogopites from the polymict breccia of the South Africa. Unusual olivine glimmerites LUV659/11 and LUV709/11 were probably formed from the ancient protokimberlite melts like polymict breccias. Initially they have been strongly depleted and hence olivine is the main rock-forming mineral. Therefore, two main stages of metasomatic retreatment before the capture by kimberlite can be recognized. One is related with Ti and Fe introduction (ilmenite formation), another, more strong, with abundant introduction of Al and alkalis (mainly K) with a consequent formation of abundant phlogopite. These stages probably had several phases as evidenced by the compositional variations of the formed minerals.
DS201709-2049
2017
Rodionov, N.V. , Lepekhina, E.N., Antonov, A.V., Petrov, O.V., Belyatsky, B.V., Shevchenko, S.S., Sergeev, S.A.Pyrochlore and baddeleyite from carbonatites of the Paleozoic polyphase Kovdor Massif ( N. Karelia).Goldschmidt Conference, abstract 1p.Russia, Kareliacarbonatite. Kovdor

Abstract: Pyrochlore is the main host of rare-metal elements of carbonatite rocks, including phoscorites, typical for prolonged history of alkaline magma crystallization at the mafic-ultramafic polyphase Kovdor massif. Pyrochlore associated with baddeleyite, zircon, zirkelite, zirkonolite and forms octahedral and cube-octahedral poikilitic crystals up to 2-5 cm, and represented by U, Ba-Sr and REE species of pyrochlore subgroup. The studied Kovdor pyrochlores are characterized by increased up to 6.5% U and an extremely high Th – up to 40%, with Th/U up to 500. Pyrochlore U-Pb SHRIMP ages of 290-364 Ma correlate with variations in U of different samples, whereas the Th and common Pb have a minor effect on this value. Obtained ages are significantly underestimated and may reflect the influence of the matrix effect or later low-temperature closing of the U-Pb pyrochlore system, as well as the actual transformations of pyrochlore crystal matrix due to the interaction with the late carbonate fluids. Thus the early pyrochlores and U-pyrochlores crystallized at 364 Ma within phoscorites and early calcite carbonatites, whereas Sr-Ba pyrochlores of late calcitedolomite carbonatite formed at 340 Ma, and Th-pyrochlore rims occured at the later stages of the interaction with metasomatizing fluids 290 m.y. ago. Kovdor baddeleyite is also charecterized by high composition heterogeneity determined by the difference in its origin from olivinites to ore-bearing foscorites and postmagmatic syenites. But baddeleyite from calcitemagnetite mineral association have uniform U: 184 ±40, Th: 6.4 ±1.7, ¦REE: 34 ±6, Hf: 7629 ± 599, Nb: 3595 ±840, Ti: 56 ±14, Y: 22 ±4 ppm, and HHf: +6.5 ±1.7 at the age of 379 ±6 Ma. The U-Pb SHRIMP age data demonstrate the concordance of all studied baddeleyite samples and the absence of a significant age difference between baddeleyites of the carbonatite phase: 379 ±3 and foscorites: 379 ±4 Ma. The weighted average age for all the studied baddeleyite samples (n = 8) is 379 ±2.4 Ma at MSWD of 0.6. This can also indicate a relatively short time-interval of magmatism in the formation of Kovdor polyphase massif which did not exceed 5 m.y. and could be related to the Devonian mantleplume activity.
DS201709-2050
2017
Salnikova, E.B., Chakhmouradian, A.R., Stifeeva, M.V., Reguir, E.P., Nikiforov, A.V.Calcic garnets as a promising U-Pb geochronometers. Kola PeninsulaGoldschmidt Conference, abstract 1p.Russiacarbonatite, Belyaya Zima

Abstract: Calcic garnets are an important – although somewhat neglected – member of the garnet group. Typically, these mineral are members of complex solid solutions involving largely substitutions in the Fe3+/Al and Si sites and at least eight different end-members. The absolute majority of garnets in this family are Ti-Mg-Fe2+(± Al ± Zr)-bearing andradite transitional to morimotoite and schorlomite. Importantly, these garnets occur as common accessory minerals in a wide range of igneous and rocks, including nepheline syenites, alkali feldspar syenites, melteigite-urtites, nephelinites, melilitolites, melilitites, calcite carbonatites, ultramafic lamprophyres, orangeites, contaminated kimberlites, skarns and rodingites. Calcic garnets have a great capacity for atomic substitutions involving high-field-strength elements and, even more importantly, rare earths (up to 4000 ppm, including Y), Th and U (both up to 100 ppm) at low levels of common Pb. Their (La/Yb)cn ratio varies over two orders of magnitude (from < 0.01 to ~1), making these minerals a sensitive indicator of crystal fractionation, degassing and other magma-evolution processes. Given these unique compositional characteristics and surprising lack of interest in these minerals in the previous literature, we explored the possibility of using calcic garnets as a U-Pb geochronometer. For this purpose, we selected samples of well-crystallized igneous garnet from four very different rock types of different age, including: carbonatite (Afrikanda) from the Devonian Kola Alkaline Province, carbonatite from the Neoproterozoic Belaya Zima complex (Central-Asian mobile belt), ijolite from the Chick Ordovician igneous complex (Central-Asian mobile belt), granitic pegmatite from the Eden Lake complex in the Paleoproterozoic Trans-Hudson orogen, and feldspathoid syenite from the Cinder Lake alkaline complex in the Archean Knee Lake greenstone belt. U-Pb TIMS ages of the studied garnets are mostly concordant and reveal perfect correspondence with reported U-Pb zircon or perovskite ages as well as Sm-Nd isochrone age for these complexes. Therefore we can advertise calcic garnets as a promising tool for U-Pb geochronological studies.
DS201709-2055
2017
Smit, K.V., Shor, R.Geology and development of the Lomonosov deposit, northwestern Russia.Gems & Gemology, Vol. 53, 2, summer, pp. 144-167.Russiadeposit - Lomonovsov

Abstract: The Siberian craton in Russia hosts many of the country's famous diamond mines. The Lomonosov mine, however, occurs within the boundaries of a different craton-the Baltic shield, most of which lies in Europe. Unlike many diamond mines in South Africa, Canada, and Siberia, the Lomonosov deposit is not in a stable Archean geologic setting. Similar to the Argyle diamond mine in Australia, Lomonosov is in a younger Proterozoic orogenic (or mountain-building) region. Fancy pink diamonds at both these localities likely relate to these Proterozoic tectonic processes. Along with other diamond mines in Proterozoic geologic regions, the Lomonosov deposit (and its fancy-color diamond inventory) demonstrates that the diamond potential of these regions should not be overlooked.
DS201709-2061
2017
Sun, J., Liu, C-Z., Kostrovisky, S.I., Wu, F-Y., Yang, J-H., Chu, Z., Yang, Y-H.Constraints from peridotites in the Obnazhennaya kimberlite.Goldschmidt Conference, abstract 1p.Russiadeposit - Obnazhennaya

Abstract: The characteristics of the sub-continental lithospheric mantle (SCLM) post-date the Siberian plume event (250 Ma) is still unclear; nearly all published data for mantle xenoliths are from a single kimberlite erupt before he Siberian plume (Udachnaya). We report major elements of the whole rock, trace elements data of clinopyroxene and Re-Os isotope and PGE concentration of mantle xenoliths from the Obnazhennaya kimberlite pipe (160 Ma). The Obnazhennaya mantle xenoliths, including spinel harzburgites, spinel dunites, spinel lherzolites, spinel-garnet lherzolite. The spinel harzburgites and dunites have refractory compositions, with 0.23-1.35 wt.% Al2O3, 0.41-3.11 wt.% CaO and 0.00-0.09 wt.% TiO2. Clinopyroxenes in harzburgites and dunites have lower Na2O but higher Cr2O3 contents. Modeling of the Y and Yb contents in clinopyroxenes indicates that the spinel harzburgites and dunites have been subjected to ca. 12-17% degrees of partial melting. The spinel harzburgites and dunites have 187Os/188Os of 0.11227-0.11637, giving a TRD age of 1.6-2.2 Ga. This suggests that old cratonic mantle still existed beneath the Obnazhennaya. In contrast, the lherzolites (both spinel- and spinel-garnet-) have more fertile compositions, containing 2.16-6.55 wt.% Al2O3, 2.91-7.55 wt.% CaO and 0.04-0.15 wt.% TiO2. Both spinel and spinelgarnet lherzolites have more radiogenic 187Os/188Os ratios (0.11931-0.17627), enriched P-PGEs. The higher Al2O3 and Os content and depleted IPGE character of these lherzolites suggest that they were not juvenile mantle accreted by Siberian mantle plume but the refertilized ancient mantle. Therefore, our result suggest that the cratonic mantle beneath the Obnazhennaya has not been replaced by juvenile mantle during the Siberian mantle plume.
DS201709-2062
2017
Sun, J., Liu, C-Z., Kostrovisky, S.I., Wu, F-Y., Yang, J-H., Chu, Z., Yang, Y-H.Composition of the lithospheric mantle in the northern Siberian craton: constraints from the peridotites in the Obnazhennaya kimberlite.Goldschmidt Conference, abstract 1p.Russia, Siberiadeposit - Obnazhennaya

Abstract: The characteristics of the sub-continental lithospheric mantle (SCLM) post-date the Siberian plume event (250 Ma) is still unclear; nearly all published data for mantle xenoliths are from a single kimberlite erupt before he Siberian plume (Udachnaya). We report major elements of the whole rock, trace elements data of clinopyroxene and Re-Os isotope and PGE concentration of mantle xenoliths from the Obnazhennaya kimberlite pipe (160 Ma). The Obnazhennaya mantle xenoliths, including spinel harzburgites, spinel dunites, spinel lherzolites, spinel-garnet lherzolite. The spinel harzburgites and dunites have refractory compositions, with 0.23-1.35 wt.% Al2O3, 0.41-3.11 wt.% CaO and 0.00-0.09 wt.% TiO2. Clinopyroxenes in harzburgites and dunites have lower Na2O but higher Cr2O3 contents. Modeling of the Y and Yb contents in clinopyroxenes indicates that the spinel harzburgites and dunites have been subjected to ca. 12-17% degrees of partial melting. The spinel harzburgites and dunites have 187Os/188Os of 0.11227-0.11637, giving a TRD age of 1.6-2.2 Ga. This suggests that old cratonic mantle still existed beneath the Obnazhennaya. In contrast, the lherzolites (both spinel- and spinel-garnet-) have more fertile compositions, containing 2.16-6.55 wt.% Al2O3, 2.91-7.55 wt.% CaO and 0.04-0.15 wt.% TiO2. Both spinel and spinelgarnet lherzolites have more radiogenic 187Os/188Os ratios (0.11931-0.17627), enriched P-PGEs. The higher Al2O3 and Os content and depleted IPGE character of these lherzolites suggest that they were not juvenile mantle accreted by Siberian mantle plume but the refertilized ancient mantle. Therefore, our result suggest that the cratonic mantle beneath the Obnazhennaya has not been replaced by juvenile mantle during the Siberian mantle plume.
DS201709-2063
2017
Thomassot, E., Pearson, D.G., Kitayama, Y., Deloule, E.Sulfur isotope signature 33S/34S and 36S of sea water altered Archean oceanic crust in Siberia eclogite.Goldschmidt Conference, abstract 1p.Russia, Siberiaeclogites

Abstract: Eclogite xenoliths brought to the surface by kimberlites are high pressure mafic rocks whose origin (magmatic vs crustal) remains debated. In addition to disagreement on how to interpret eclogite compositions, mantle metasomatism overprints the mineralogy and geochemistry of some of these rocks, making the question of their protolith undoubtedly more complex. In this contribution we aim to test the robustness of multiple S-isotope signatures in highly metasomatized eclogitic sulfides. We selected 12 interstitial sulfides from Mir (n=4) and Udachnaya (n=8) eclogites, intergrown with garnet and omphacite. We analysed their lead (including Pb204) and S-isotope (32S, 33S, 34S and 36S) compositions, insitu, using a Cameca ims 1280. The samples consist of complex assemblages of pyrrhotite pentlandite intergrowth with K- and Cl-rich sulfides (djerfisherite) invaded by veinlets of alteration minerals (mainly chlorite). All our samples display internal zoning in Pb concentration (118 ppm to 4.2 wt%) but are homogeneous in isotopic compositions (e.g. 208Pb/204Pb = 38.09 ± 0.35‰). Pb-Pb ages of eclogitic sulfides are modern and undoubtedly reflect the metasomatic overprint by a Cl- and K-rich kimberlitic melt (consistent with the presence of djerfisherite). Sulfur isotope signatures of these sulfide (G34S = -1.3‰ ±2‰) fall within the canonical mantle range and cannot be distinguished from the composition of sulfides in the kimberlite (-1.4 ±2.2‰, Kitayama et al., 2016). Furthermore, Mir and Udachanaya eclogitic sulfides carry the largest mass independant fractionation (MIF) ever reported in mantle rocks. The overall trend reveals negative ?33S (down to - 1.1‰) associated to positive ?36S (up to 3‰). This observed correlation between ?33S and ?36S is consistent with the composition of sulfate aerosols formed in the Archean by photolysis reactions and likely dissolved in the ocean [4]. Our results indicate that multiple sulfur isotopes survive intense metasomatism (because isotope fractionation does not create S-MIF), and provide further evidence that the protoliths of Siberian eclogites were mafic rocks altered by seawater in the Archean.
DS201709-2064
2017
Tomilenko, A.A., Dublansky, Yu.V., Kuzmin, D.V., Sobolev, N.V.Isotope compositions of C and O of magmatic calcites from the Udachnaya-East pipe kimberlite, Yakutia.Doklady Earth Sciences, Vol. 475, 1, pp. 828-831.Russia, Yakutiadeposit - Udachnaya-East

Abstract: It has been demonstrated for the first time that the isotopic compositions of carbon (?13C) in magmatic calcites from the Udachnaya–East pipe kimberlite groundmass varies from–2.5 to–1.0‰ (V-PDB), while those of oxygen (?18O) range from 15.0 to 18.2‰ (V-SMOW). The obtained results imply that during the terminal late magmatic and postmagmatic stages of the kimberlite pipe formation, the carbonates in the kimberlite groundmass became successively heavier isotopically, which indicates the hybrid nature of the carbonate component of the kimberlite: it was formed with contributions from mantle and sedimentary marine sources.
DS201710-2223
2017
Danelian, T., Jolivet, M., Ionov, D.Insights into the geology and paleontology of Siberia from French-Siberian collaboration in the Earth Sciences.Bulletin de la Societe Geologique de France *eng, Vol. 188, 1-2, 7p.Russia, Siberiadeposit - Udachnaya
DS201710-2224
2017
d'Eyrames, E., Thomassot, E., Kitayama, Y., Golovin, A., Korsakov, A., Ionov, D.A mantle origin for sulfates in the unusual "salty" Udachnaya-East kimberlite from sulfur abundances, speciation and their relationship with groundmass carbonates.Bulletin de la Societe Geologique de France *eng, Vol. 188, 1-2, 8p.Russia, Siberiadeposit - Udachnaya-East

Abstract: The Udachnaya-East pipe in Yakutia in Siberia hosts a unique dry (serpentine-free) body of hypabyssal kimberlite (<0.64wt% H2O), associated with a less dry type of kimberlite and a serpentinized kimberlitic breccia. The dry kimberlite is anomalously rich in salts (Na2O and Cl both up to 6wt%) whereas the slightly less dry and the breccia kimberlite are salt free. Yet the Udachnaya kimberlite is a group-I kimberlite, as is the archetypical kimberlite from Kimberley, South Africa. Samples were studied from the three different types of kimberlite (dry-salty, n=8, non-salty, n=5 and breccia, n=3) regarding their mineralogy, geochemistry, and more specifically their sulfur content. Our results show the salty kimberlite is unprecedentedly rich in sulfur (0.13-0.57wt%) compared to the non-salty kimberlite (0.04-0.12wt%) and the breccia (0.29-0.33wt%). In the salty kimberlite, most of the sulfur is present as sulfates (up to 97% of Stotal) and is disseminated throughout the groundmass in close association with Na-K-bearing carbonates. Sulfates occur within the crystal structure of these Na-K-bearing carbonates as the replacement of (CO3) by (SO3) groups, or as Na- and K-rich sulfates (e.g. aphtitalite, (K,Na)3Na(SO4)2). The associated sulfides are djerfisherite; also Na- and K-rich species. The close association of sulfates and carbonates in these S-rich alkaline rocks suggests that the sulfates crystallized from a mantle-derived magma, a case that has strong implication for the oxygen fugacity of kimberlite magmatism and more generally for the global S budget of the mantle.
DS201710-2237
2017
Kulrenya, M.V., Chernyshov, G.S., Serdyukov, A.S., Duchkov, A.A.Procedure and results of seismic investigations into causes of landslides in permafrost rocks.Journal of Mining Science, Vol. 52, 5, pp. 835-841.Russiadeposit - Yubilieny

Abstract: The article focuses on seismic monitoring of causes of landslides. Such studies are of great importance in open pit mining in permafrost rocks. Extensive mining-induced impact in combination with natural thawing of permafrost as a consequence of the planet warming may end in catastrophe. The authors describe a procedure for plotting velocity profiles of seismic waves along slopes in the presence of extremely contrast discontinuities conditioned by permafrost rocks. The presented approach enables studying slip surfaces of landslides and detecting potential failure zones where wave velocities are lower due to extensive jointing. The processed field data obtained in the area near Chagan-Uzun settlement in Kosh-Agach district of the Republic of Altai are reported.
DS201710-2258
2017
Prokopyev, I.R., Doroshkevich, A.G., Redina, A.A.Magnetite apatite dolomitic rocks of Ust-Chulman ( Aldan Shield, Russia): Seligdar type carbonatites?Mineralogy and Petrology, in press available 10p.Russiacarbonatite

Abstract: The Ust-Chulman apatite ore body is situated within the Nimnyrskaya apatite zone at the Aldan shield in Russia. The latest data confirm the carbonatitic origin of the Seligdar apatite deposit (Prokopyev et al. in Ore Geol Rev 81:296-308, 2017). The results of our investigations demonstrate that the magnetite-apatite-dolomitic rocks of the Ust-Chulman are highly similar to Seligdar-type dolomitic carbonatites in terms of the mineralogy and the fluid regime of formation. The ilmenite and spinel mineral phases occur as solid solutions with magnetite, and support the magmatic origin of the Ust-Chulman ores. The chemical composition of REE- and SO3-bearing apatite crystals and, specifically, monazite-(Ce) mineralisation and the formation of Nb-rutile, late hydrothermal sulphate minerals (barite, anhydrite) and haematite are typical for carbonatite complexes. The fluid inclusions study revealed similarities to the evolutionary trend of the Seligdar carbonatites that included changes of the hydrothermal solutions from highly concentrated chloride to medium-low concentrated chloride-sulphate and oxidized carbonate-ferrous.
DS201710-2259
2017
Radu, I-B., Moine, B., Ionov, D., Korsakov, A., Golovin, A., Mikhailenko, D., Cottin, J-Y.Kyanite-bearing eclogite xenoliths from the Udachnaya kimberlite, Siberian craton, Russia.Bulletin de la Societe Geologique de France *eng, Vol. 188, 1-2, 14p.Russia, Siberiadeposit - Udachnaya

Abstract: Xenoliths brought up by kimberlite magmas are rare samples of otherwise inaccessible lithospheric mantle. Eclogite xenoliths are found in most cratons and commonly show a range of mineral and chemical compositions that can be used to better understand craton formation. This study focuses on five new kyanite-bearing eclogites from the Udachnaya kimberlite pipe (367±5 Ma). They are fine-to coarse-grained and consist mainly of “cloudy” clinopyroxene (cpx) and garnet (grt). The clinopyroxene is Al,Na-rich omphacite while the garnet is Ca-rich, by contrast to typical bi-mineral (cpx+grt) eclogites that contain Fe- and Mg-rich garnets. The Udachnaya kyanite eclogites are similar in modal and major element composition to those from other cratons (Dharwar, Kaapvaal, Slave, West African). The kyanite eclogites have lower REE concentrations than bi-mineral eclogites and typically contain omphacites with positive Eu and Sr anomalies, i.e. a “ghost plagioclase signature”. Because such a signature can only be preserved in non-metasomatised samples, we infer that they were present in the protoliths of the eclogites. It follows that subducted oceanic crust is present at the base of the Siberian craton. Similar compositions and textures are also seen in kyanite eclogites from other cratons, which we view as evidence for an Archean, subduction-like formation mechanism related to craton accretion. Thus, contrary to previous work that classifies all kyanite eclogites as type I (IK), metasomatized by carbonatite/kimberlitic fluids, we argue that some of them, both from this work and those from other cratons, belong to the non-metasomatized type II (IIB). The pristine type IIB is the nearest in composition to protoliths of mantle eclogites because it contains no metasomatic enrichments.
DS201710-2260
2017
Rebetsky, Yu.L., Sim, L.A., Kozyrev, A.A.Possible mechanism of horizontal overpressure generation of the Khibiny, Lovozero, and Kovdor ore clusters on the Kola Peninsula.Geology of Ore Deposits, Vol. 59, 4, pp. 265-280.Russia, Kola Peninsuladeposit - Khibiny, Lovozero, Kovdor

Abstract: The paper discusses questions related to the generation of increasing crustal horizontal compressive stresses compared to the idea of the standard gravitational state at the elastic stage or even from the prevalence of horizontal compression over vertical stress equal to the lithostatic pressure. We consider a variant of superfluous horizontal compression related to internal lithospheric processes occurrin in the crust of orogens, shields, and plates. The vertical ascending movements caused by these motions at the sole of the crust or the lithosphere pertain to these and the concomitant exogenic processes giving rise to denudation and, in particular, to erosion of the surfaces of forming rises. The residual stresses of the gravitational stressed state at the upper crust of the Kola Peninsula have been estimated for the first time. These calculations are based on the volume of sediments that have been deposited in Arctic seas beginning from the Mesozoic. The data speak to the possible level of residual horizontal compressive stresses up to 90 MPa in near-surface crustal units. This estimate is consistent with the results of in situ measurements that have been carried out at the Mining Institute of the Kola Science Center, Russian Academy of Sciences (RAS), for over 40 years. It is possible to forecast the horizontal stress gradient based on depth using our concept on the genesis of horizontal overpressure, and this forecasting is important for studying the formation of endogenic deposits.
DS201710-2266
2017
Sobolev, N.V., Schertle, H-P., Neuser, R.D., Tomilenko, A.A., Kuzmin, D.V., Loginova, A.M., Tolstov, A.V., Kostrovitsky, S.I., Yakovlev, D.A., Oleinikov, O.B.Formation and evolution of hypabyssal kimberlites from the Siberian craton: part 1 - new insights from cathodluminescence of the carbonates. Anabar and Olenek areaJournal of Asian Earth Sciences, Vol. 145, pt. B, pp. 670-678.Russia, Siberiadeposit - Kuranakh, Kharamay
DS201710-2269
2017
Tomilenko, A.A., Kuzmin, D.V., Bulbak, T.A., Sobolev, N.V.Primary melt and fluid inclusions in regenerated crystals and phenocrysts of olivine from kimberlites of the Udachnaya-East pipe, Yakutia: the problem of the kimberlite melt.Doklady Earth Sciences, Vol. 475, 2, pp. 949-952.Russiadeposit - Udachnaya-East

Abstract: The primary melt and fluid inclusions in regenerated zonal crystals of olivine and homogeneous phenocrysts of olivine from kimberlites of the Udachnaya-East pipe, were first studied by means of microthermometry, optic and scanning electron microscopy, electron and ion microprobe analysis (SIMS), inductively coupled plasma mass-spectrometry (ICP MSC), and Raman spectroscopy. It was established that olivine crystals were regenerated from silicate-carbonate melts at a temperature of ~1100°C.
DS201711-2522
2017
Kargin, A.V., Sazonova, L.V., Nosova, A.A., Lebedeva, N.M., Tretyachenko, V.V., Abersteiner, A.Cr-rich clinopyroxene megacrysts from the Grib kimberlite, Arkangelsk province, Russia: relation to clinopyroxene-phlogopite xenoliths and evidence for mantle metasomatism by kimberlite melts.Lithos, in press available, 52p.Russia, Archangeldeposit - Grib

Abstract: To provide new insights into the origin of megacrysts and metasomatism of the subcontinental lithospheric mantle (SCLM), we present a detailed petrographic and geochemical investigation of clinopyroxene-phlogopite xenoliths and clinopyroxene megacrysts from the Grib kimberlite (Arkhangelsk diamond province, Russia). Clinopyroxene megacrysts and clinopyroxene from clinopyroxene-phlogopite xenoliths have similar petrography, major and trace element compositions, and are therefore classified as Cr-rich megacrysts. Geothermobarometry suggests that Cr-rich clinopyroxenes originate from within the SCLM (3.6-4.7 GPa and 764-922 °C). Phlogopite from clinopyroxene-phlogopite xenoliths have low-Ti and -Cr compositions that overlaps with phlogopite megacrysts from the Grib kimberlite. The clinopyroxene-phlogopite rocks within the SCLM are the main source for Cr-rich clinopyroxene and low-Ti phlogopite megacrysts in the Grib kimberlite matrix. Trace element compositions of studied Cr-rich clinopyroxenes have similar geochemical features to clinopyroxenes megacrysts occurrences worldwide and overlap with clinopyroxenes from phlogopite-garnet peridotite xenoliths from the Grib kimberlite. The strong depletion in Ti, Nb, Ta and to a lesser extent in Zr and Hf in clinopyroxene reflects equilibrium with Ti-oxides, such as ilmenite. The clinopyroxene-phlogopite xenoliths could be the final product of metasomatism of garnet peridotites within the SCLM beneath the Grib kimberlite. The calculated equilibrium of clinopyroxene melt compositions suggests that the metasomatic agents were derived from silicate-bearing kimberlite melts. The presence of veinlets infilled with kimberlitic mineral assemblages in clinopyroxene grains suggests that the clinopyroxene-phlogopite rocks experienced intense interactions with kimberlite melt after their formation, but before their entrainment into the host kimberlite magma. This interaction resulted in the formation of high-Ti and -Cr phlogopite and high-Ti clinopyroxene rims, zones and grains with spongy textures. Finally, we propose the sequence of metasomatic events that occurred in the SCLM and the subsequent formation of the Grib kimberlite.
DS201711-2536
2017
Yuryeva, O.P., Rakhmanova, M.I., Zedgenizov, D.A.Nature of type IaB diamonds from the Mir kimberlite pipe ( Yakutia): evidence from spectroscopic observation.Physics and Chemistry of Minerals, Vol. 44, 9, pp. 655-667.Russia, Yakutiadeposit - Mir

Abstract: In this study, the specific features of structural defects of type IaB diamonds from the Mir kimberlite pipe (Yakutian diamondiferous province) have been characterized using FTIR and photoluminescence spectroscopy. Mineral inclusions in these diamonds [olivine (Ol), orthopyroxene (OPx), chromite (Chr), sulphide (Sf)] correspond to associations of peridotite rocks at the base of the lithosphere. Nitrogen content in type IaB diamonds shows significant variations, suggesting different growth media and/or several growth stages. A specific feature of these diamonds is the absence or very small amount of platelets, which may be related to annealing during their long-term residence at the temperatures of the base of the lithosphere. All studied diamonds show the presence of hydrogen defects that are active in IR spectra with an intense line at 3107 cm?1, and additional weaker lines at 3085 and 3237 cm?1, which correlated with high nitrogen content. Type IaB diamonds are also characterized by the presence of nitrogen-nickel luminescence centres S2, S3 and 523.2 nm. This feature distinguishes them from superdeep diamonds with extreme nitrogen aggregation states, which clearly attest to different growth conditions and crystallization media of type IaB diamonds from the Mir kimberlite pipe.
DS201712-2668
2017
Agrosi, G., Tempesta, G., Mele, D., Allegretta, I., Terzano, R., Shirery, S.B., Pearson, G.D., Nestola, F.Non-destructive, multi-method, internal analysis of multiple inclusions in a single diamond: first occurrence of mackinawite ( Fe,Ni)1+xSAmerican Mineralogist, Vol. 102, pp. 2235-2243.Russia, Siberiadeposit - Udachnaya

Abstract: A single gem lithospheric diamond with five sulfide inclusions from the Udachnaya kimberlite (Siberia, Russia) has been analyzed non-destructively to track the growth conditions of the diamond. Sulfides are the most abundant mineral inclusions in many lithospheric diamond crystals and are the most favorable minerals to date diamond crystals by Re-Os isotope systematics. Our investigation used non-destructive, micro-techniques, combining X-ray tomography, X-ray fluorescence, X-ray powder diffraction, and Raman spectroscopy. This approach allowed us to determine the spatial distribution of the inclusions, their chemical and mineralogical composition on the microscale, and, finally, the paragenetic association, leaving the diamond host completely unaffected. The sample was also studied by X-ray diffraction topography to characterize the structural defects of the diamond and to obtain genetic information about its growth history. The X-ray topographic images show that the sample investigated exhibits plastic deformation. One set of {111} slip lamellae, corresponding to polysynthetic twinning, affects the entire sample. Chemical data on the inclusions still trapped within the diamond show they are monosulfide solid solutions of Fe, Ni and indicate a peridotitic paragenesis. Micro-X-ray diffraction reveals that the inclusions mainly consist of a polycrystalline aggregate of pentlandite and pyrrothite. A thorough analysis of the Raman data suggests the presence of a further Fe, Ni sulfide, never reported so far in diamonds: mackinawite. The total absence of any oxides in the sulfide assemblage clearly indicates that mackinawite is not simply a “late” alteration of pyrrhotite and pentlandite due to secondary oxidizing fluids entering diamond fractures after the diamond transport to the surface. Instead, it is likely formed as a low-temperature phase that grew in a closed system within the diamond host. It is possible that mackinawite is a more common phase in sulfide assemblages within diamond crystals than has previously been presumed, and that the percentage of mackinawite within a given sulfide assemblage could vary from diamond to diamond and from locality to locality.
DS201712-2678
2017
Chebotarev, D.A., Doroshkevich, A.G., Sharygin, V.V., Yudin, D.S., Ponomarchuk, A.V., Sergeev, S.A.Geochronology of the Chuktukon carbonatite massif, Chadobets uplift ( Krasnoyarsk Territory).Russian Geology and Geophysics, Vol. 58, pp. 1222-1231.Russiacarbonatite

Abstract: We present results of U-Pb (SHRIMP II) and Ar-Ar geochronological study of the rocks of the Chuktukon massif, which is part of the Chadobets alkaline-carbonatite complex, and of the weathering crust developed after them. Perovskite from picrites and monazite from the weathering crust were dated by the U-Pb (SHRIMP II) method, and rippite from carbonatites, by the Ar-Ar method. Rippite has first been used as a geochronometer. The estimated ages (252 ± 12 and 231 ± 2.7 Ma) testify to two magmatism pulses close in time (within the estimation error) to the stages of alkaline magmatism in the Siberian Platform (250-245 and 238-234 Ma). These pulses characterize, most likely, the processes accompanying and completing the activity of the mantle superplume that formed the Siberian Igneous Province at 250-248 Ma. The monazite-estimated age (102.6 ± 2.9 Ma) reflects the time of formation of the ore-bearing weathering crust on the massif rocks.
DS201712-2686
2017
Gladkochub, D.P., Donskaya, T.V., Sklyarov, E.V., Kotov, A.B., Vladykin, N.V., Pisarevsky, S.A., Larin, A.M., Salnikova, E.B., Saveleva, V.B., Sharygin, V.V., Starikova, A.E., Tolmacheva, E.V., Velikoslavinsky, S.D., Mazukabzov, A.M., Bazarova, E.P., KovaThe unique Katugin rare metal deposit ( southern Siberia): constraints on age and genesis.Ore Geology Reviews, in press available, 18p.Russia, Siberiadeposit - Katugin

Abstract: We report new geological, mineralogical, geochemical and geochronological data about the Katugin Ta-Nb-Y-Zr (REE) deposit, which is located in the Kalar Ridge of Eastern Siberia (the southern part of the Siberian Craton). All these data support a magmatic origin of the Katugin rare-metal deposit rather than the previously proposed metasomatic fault-related origin. Our research has proved the genetic relation between ores of the Katugin deposit and granites of the Katugin complex. We have studied granites of the eastern segment of the Eastern Katugin massif, including arfvedsonite, aegirine-arfvedsonite and aegirine granites. These granites belong to the peralkaline type. They are characterized by high alkali content (up to 11.8?wt% Na2O?+?K2O), extremely high iron content (FeO?/(FeO??+?MgO)?=?0.96-1.00), very high content of most incompatible elements - Rb, Y, Zr, Hf, Ta, Nb, Th, U, REEs (except for Eu) and F, and low concentrations of CaO, MgO, P2O5, Ba, and Sr. They demonstrate negative and CHUR-close ?Nd(t) values of 0.0…?1.9. We suggest that basaltic magmas of OIB type (possibly with some the crustal contamination) represent a dominant part of the granitic source. Moreover, the fluorine-enriched fluid phases could provide an additional source of the fluorine. We conclude that most of the mineralization of the Katugin ore deposit occurred during the magmatic stage of the alkaline granitic source melt. The results of detailed mineralogical studies suggest three major types of ores in the Katugin deposit: Zr mineralization, Ta-Nb-REE mineralization and aluminum fluoride mineralization. Most of the ore minerals crystallized from the silicate melt during the magmatic stage. The accessory cryolites in granites crystallized from the magmatic silicate melt enriched in fluorine. However, cryolites in large veins and lens-like bodies crystallized in the latest stage from the fluorine enriched melt. The zircons from the ores in the aegirine-arfvedsonite granite have been dated at 2055?±?7?Ma. This age is close to the previously published 2066?±?6?Ma zircon age of the aegirine-arfvedsonite granites, suggesting that the formation of the Katugin rare-metal deposit is genetically related to the formation of peralkaline granites. We conclude that Katugin rare-metal granites are anorogenic. They can be related to a Paleoproterozoic (?2.05?Ga) mantle plume. As there is no evidence of the 2.05?Ga mantle plume in other areas of southern Siberia, we suggest that the Katugin mineralization occurred on the distant allochtonous terrane, which has been accreted to Siberian Craton later.
DS201712-2693
2017
Ionov, D.A., Doucet, L.S., Pogge von Strandmann, A.E., Golovin, A.V., Korsakov, A.V.Links between deformation, chemical enrichment and Li isotope compositions in the lithospheric mantle of the central Siberian craton.Chemical Geology, Vol. 475, pp. 105-121.Russia, Siberiacraton, geochronology

Abstract: We report the concentrations ([Li]) and isotopic compositions of Li in mineral separates and bulk rocks obtained by MC-ICPMS for 14 previously studied garnet and spinel peridotite xenoliths from the Udachnaya kimberlite in the central Siberian craton as well as major and trace element compositions for a new suite of 13 deformed garnet peridotites. The deformed Udachnaya peridotites occur at > 5 GPa; they are metasomatized residues of melt extraction, which as a group experienced greater modal and chemical enrichments than coarse peridotites. We identify two sub-groups of the deformed peridotites: (a) mainly cryptically metasomatized (similar to coarse peridotites) with relatively low modal cpx (< 6%) and garnet (< 7%), low Ca and high Mg#, sinusoidal REE patterns in garnet, and chemically unequilibrated garnet and cpx; (b) modally metasomatized with more cpx and garnet, higher Ca, Fe and Ti, and equilibrated garnet and cpx. The chemical enrichments are not proportional to deformation degrees. The deformation in the lower lithosphere is caused by a combination of localized stress, heating and fluid ingress from the pathways of ascending proto-kimberlite melts, with metasomatic media evolving due to reactions with wall rocks. Mg-rich olivine in spinel and coarse garnet Udachnaya peridotites has 1.2-1.9 ppm Li and ?7Li of 1.2-5.0‰, i.e. close to olivine in equilibrated fertile to depleted off-craton mantle peridotites from literature data, whereas olivine from the deformed peridotites has higher [Li] (2.4-7.5 ppm) and a broader range of ?7Li (1.8-11.6‰), which we attribute to pre-eruption metasomatism. [Li] in opx is higher than in coexisting olivine while ?7LiOl-Opx (?7LiOl ? ?7LiOpx) ranges from ? 6.6 to 7.8‰, indicating disequilibrium inter-mineral [Li] and Li-isotope partitioning. We relate these Li systematics to interaction of lithospheric peridotites with fluids or melts that are either precursors of kimberlite magmatism or products of their fractionation and/or reaction with host mantle. The melts rich in Na and carbonates infiltrated, heated and weakened wall-rock peridotites to facilitate their deformation as well as produce high [Li] and variable, but mainly high, ?7Li in olivine. The carbonate-rich melts preferentially reacted with the opx without achieving inter-mineral equilibrium because opx is consumed by such melts, and because of small volumes and uneven distribution of the metasomatic media, as well as short time spans between the melt infiltration and the capture of the wall-rock fragments by incoming portions of ascending kimberlite magma as xenoliths. Trapped interstitial liquid solidified as cryptic components responsible for high [Li] and the lack of ?7Li balance between olivine and opx, and bulk rocks. Unaltered ?26Mg values (0.20-0.26‰) measured in several olivine separates show no effects of the metasomatism on Mg-isotopes, apparently due to high Mg in the peridotites.
DS201712-2706
2017
Mikhno, A.O., Musiyachenko, K.A., Shcheptova, O.V., Koraskov, A.V., Rashchenko, S.V.CO2 bearing fluid inclusions associated with diamonds in zircon from the UHP Kokchetav gneisses.Journal of Raman Spectroscopy, Vol. 48, 11, pp. 1566-1573.RussiaUHP - Kokchetav

Abstract: CO2-bearing fluid inclusions coexisting with diamonds were identified in zircons from diamondiferous gneiss in the Kokchetav Massif. This discovery provides evidence for the presence of CO2 in UHP fluids and diamond formation in moderately oxidized conditions in the Kokchetav gneiss. Fluid and multiphase solid inclusions coexisting in zircons represent immiscible melt and fluid captured close to the peak metamorphic conditions for the Kokchetav UHP gneiss. Most of CO2-bearing inclusions are CO2+H2O mixtures except for some cases when they also contain daughter phases (e.g. muscovite, calcite and quartz) tracing the presence of aqueous and solute-rich fluids at different phases of UHP metamorphism. Decrease of pressure and temperature may have been responsible for the reduction of solutes in the CO2-bearing fluid. The lack of CO2-bearing inclusions in garnet porphyroblasts from diamond-bearing gneiss, as well as the common coexistence of aqueous CO2-bearing inclusions with calcite, testify that most likely all CO2 in fluid was consumed by the calcite-forming reaction and hydrous melt was the only remaining growth medium during retrograde metamorphism of the Kokchetav UHPM gneisses. Neither K-cymrite nor kokchetavite was identified among daughter phases in the hydrous melt inclusions in garnet, which indicates that they hardly could originate in a metapelitic system.
DS201712-2715
2017
Panina, L.I., Rokosova, E.Yu., Isakova, A.T., Tolstov, A.V.Mineral composition of alkaline lamprophyres of the Tomto massif as reflection of their genesis.Russian Geology and Geophysics, Vol. 58, pp. 887-902.Russiamonchiquites
DS201712-2728
2017
Seryotkin, Yu.V., Skvortsova, V.L., Logvinova, A.M., Sobolev, N.V.Results of study of crystallographic orientation of olivine and diamond from Udachnaya kimberlite pipe, Yakutia.Doklady Earth Sciences, Vol. 476, 2, pp. 1155-1158.Russia, Yakutiadeposit - Udachnaya

Abstract: The crystallographic orientation of three diamonds and 19 olivine inclusions from Udachnaya kimberlite pipe was studied using monocrystal X-ray diffractometry. No epitaxial olivine inclusions were found.
DS201801-0006
2017
Borovikov, A.A., Vladykin, N.V., Tretiakova, I.G., Dokuchits, E.Yu.Physicochemical conditions of formation of hydrothermal titanium mineralization on the Murunskiy alkaline massif, western Alden ( Russia).Ore Geology Reviews, in press available, 10p.Russiaalkaline rocks
DS201801-0024
2017
Ionov, D.A., Doucet, L.S., Pogge von Strandmann, P.A.E., Golovin, A.V., Korsakov, A.V.Links between deformation, chemical enrichments and Li-isotope compositions in the lithospheric mantle of the central Siberian craton.Chemical Geology, Vol. 475, pp. 105-121.Russiadeposit - Udachnaya

Abstract: We report the concentrations ([Li]) and isotopic compositions of Li in mineral separates and bulk rocks obtained by MC-ICPMS for 14 previously studied garnet and spinel peridotite xenoliths from the Udachnaya kimberlite in the central Siberian craton as well as major and trace element compositions for a new suite of 13 deformed garnet peridotites. The deformed Udachnaya peridotites occur at > 5 GPa; they are metasomatized residues of melt extraction, which as a group experienced greater modal and chemical enrichments than coarse peridotites. We identify two sub-groups of the deformed peridotites: (a) mainly cryptically metasomatized (similar to coarse peridotites) with relatively low modal cpx (< 6%) and garnet (< 7%), low Ca and high Mg#, sinusoidal REE patterns in garnet, and chemically unequilibrated garnet and cpx; (b) modally metasomatized with more cpx and garnet, higher Ca, Fe and Ti, and equilibrated garnet and cpx. The chemical enrichments are not proportional to deformation degrees. The deformation in the lower lithosphere is caused by a combination of localized stress, heating and fluid ingress from the pathways of ascending proto-kimberlite melts, with metasomatic media evolving due to reactions with wall rocks. Mg-rich olivine in spinel and coarse garnet Udachnaya peridotites has 1.2-1.9 ppm Li and ?7Li of 1.2-5.0‰, i.e. close to olivine in equilibrated fertile to depleted off-craton mantle peridotites from literature data, whereas olivine from the deformed peridotites has higher [Li] (2.4-7.5 ppm) and a broader range of ?7Li (1.8-11.6‰), which we attribute to pre-eruption metasomatism. [Li] in opx is higher than in coexisting olivine while ?7LiOl-Opx (?7LiOl ? ?7LiOpx) ranges from ? 6.6 to 7.8‰, indicating disequilibrium inter-mineral [Li] and Li-isotope partitioning. We relate these Li systematics to interaction of lithospheric peridotites with fluids or melts that are either precursors of kimberlite magmatism or products of their fractionation and/or reaction with host mantle. The melts rich in Na and carbonates infiltrated, heated and weakened wall-rock peridotites to facilitate their deformation as well as produce high [Li] and variable, but mainly high, ?7Li in olivine. The carbonate-rich melts preferentially reacted with the opx without achieving inter-mineral equilibrium because opx is consumed by such melts, and because of small volumes and uneven distribution of the metasomatic media, as well as short time spans between the melt infiltration and the capture of the wall-rock fragments by incoming portions of ascending kimberlite magma as xenoliths. Trapped interstitial liquid solidified as cryptic components responsible for high [Li] and the lack of ?7Li balance between olivine and opx, and bulk rocks. Unaltered ?26Mg values (0.20-0.26‰) measured in several olivine separates show no effects of the metasomatism on Mg-isotopes, apparently due to high Mg in the peridotites.
DS201801-0025
2018
Ivanov, A.V., Demonterova, E.I., Savatenkov, V.M., Perepelov, A.B., Ryabov, V.V., Shevko, A.Y.Late Triassic (Carnian) lamproites from Norilsk, polar Siberia: evidence for melting of the recycled Archean crust and the question of lamproite source for some placer diamond deposits of the Siberian craton.Lithos, Vol. 296-299, pp. 67-78.Russia, Siberialamproites

Abstract: Two typical lamproitic dykes were found in Noril'sk region of the north-western Siberian Craton, which according to mineralogical, geochemical and isotopic criteria belong to anorogenic, non-diamondiferous type of lamproites. According to the geologic relationships, they cut through the Noril'sk-1 intrusion of the Siberian flood basalt province and thus are younger than ~251 Ma. 40Ar/39Ar dating of the two dykes yielded ages of 235.24 ± 0.19 Ma and 233.96 ± 0.19 Ma, showing that they were emplaced in Carnian of the Late Triassic, about 16 Ma after the flood basalt event. There are some indications that there were multiple lamproitic dyke emplacements, including probably emplacement of diamondiferous lamproites, which produced Carnian-age diamond-rich placer deposits in other parts of the Siberian Craton and in adjacent regions. Lead isotope modelling shows that the source of the studied lamproites was formed with participation of recycled crust, which underwent modification of its U/Pb ratio as early as 2.5 Ga. However, the exactmechanismof the recycling cannot be deciphered now. It could be either through delamination of the cratonic crust or subduction of amix of ancient terrigenous sediments into the mantle transition zone.
DS201801-0027
2017
Kargin, A.V., Golubeva, Yu.Yu.Geochemical typification of kimberlite and related rocks of the North Anabar region, Yakutia.Doklady Earth Sciences, Vol. 477, 1, pp. 1291-1294.Russiakimberlite, alnoite, carbonatite

Abstract: The results of geochemical typification of kimberlites and related rocks (alneites and carbonatites) of the North Anabar region are presented with consideration of the geochemical specification of their source and estimation of their potential for diamonds. The content of representative trace elements indicates the predominant contribution of an asthenospheric component (kimberlites and carbonatites) in their source, with a subordinate contribution of vein metasomatic formations containing Cr-diopside and ilmenite. A significant contribution of water-bearing potassium metasomatic parageneses is not recognized. According to the complex of geochemical data, the studied rocks are not industrially diamondiferous.
DS201801-0028
2017
Khachatryan, G.K.Organic matter in diamonds from kimberlite sources: genetic information content.Rudi I Metalli IN RUSSIAN, No. 4, pp. 77-84.Russiadiamond inclusions
DS201801-0029
2017
Khachatryan, G.K.Significance of geological models of Diamondiferous system development for evaluation of diamond absolute age.Rudi I Metalli IN: RUSSIAN, no. 4, pp. 111-117.Russia, Yakutiageochronology
DS201801-0030
2017
Koreshkova, M., Downes, H., Millar, I., Levsky, L., Larionov, A., Sergeev, S.Geochronology of metamorphic events in the lower crust beneath NW Russia: a xenolith Hf isotope study.Journal of Petrology, Vol. 58, 8, pp. 1567-1589.Russia, Kola Peninsulageochronology

Abstract: Hf isotope data for zircons and whole-rocks from lower crustal mafic granulite and pyroxenite xenoliths from NW Russia are presented together with the results of U-Pb zircon dating, Sm-Nd and Rb-Sr isotopic compositions of bulk-rocks and minerals, and trace element compositions of minerals. Most zircons preserve a record of only the youngest metamorphic events, but a few Grt-granulite xenoliths retain Archean magmatic zircons from their protolith. Metamorphic zircons have highly variable ?Hf(t) values from -25 to -4. The least radiogenic zircons were formed by recrystallization of primary magmatic Archean zircons. Zircons with the most radiogenic ?Hf grew before garnet or were contemporaneous with its formation. Zircons with ?Hf(t) from -15 to -9 formed by various mechanisms, including recrystallization of pre-existing metamorphic zircons, subsolidus growth in the presence of garnet and exsolution from rutile. They inherited their Hf isotopic composition from clinopyroxene, pargasite, rutile and earlier-formed zircon that had equilibrated with garnet. Subsolidus zircons were formed in response to a major change in mineral association (i.e. garnet- and zircon-producing reactions including partial melting). Recrystallized zircons date the onset of high-temperature conditions without a major change in mineral association. Age data for metamorphic zircons fall into five groups: >1•91 Ga, 1•81-1•86 Ga, 1•74-1•77 Ga, 1•64-1•67 Ga and <1•6 Ga. Most ages correlate with metamorphic events in the regional upper crust superimposed onto rocks of the Belomorian belt during formation of the Lapland Granulite Belt. Zircon formation and resetting at 1•64-1•67 Ga significantly postdates Lapland-Kola orogenic events and may relate to the onset of Mesoproterozoic rifting. The youngest ages (1•6-1•3 Ga) correspond to an event that affected only a few grains in some samples and can be explained by interaction with a localized fluid. The observed garnet-granulite associations were formed at 1•83 Ga in Arkhangelsk xenoliths and 1•74-1•76 Ga in most Kola xenoliths. By the end of the Lapland-Kola orogeny, the rocks were already assembled in the lower crust. However, no addition of juvenile material has been detected and preservation of pre-Lapland-Kola metamorphic zircon indicates that some xenoliths represent an older lower crust. Granulites, pyroxenites and Phl-rich rocks have a common metamorphic history since at least c. 1•75 Ga. At about 1•64 Ga metasomatic introduction of phlogopite took place; however, this was only one of several phlogopite-forming events in the lower crust.
DS201801-0039
2017
Moyen, J-F., Paquette, J.L., Ionov, D.A., Gannoun, A., Korsakov, A.V., Golovin, A.V., Moine, B.N.Paleoproterozoic rejuvenation and replacement of Archean lithosphere: evidence from zircon U-Pb dating and Hf isotopes in crustal xenoliths at Udachnaya, Siberian craton.Earth and Planetary Science Letters, Vol. 458, 1, pp. 149-159.Russiadeposit - Udachnaya

Abstract: Cratons represent the oldest preserved lithospheric domains. Their lithosphere (lithospheric mantle welded to overlying Precambrian crystalline basement) is considered to be particularly robust and long-lived due to the protecting presence of buoyant and rigid “keels” made up of residual harzburgites. Although the cratons are mostly assumed to form in the Archaean, the timing of their formation remains poorly constrained. In particular, there are very few datasets describing concurrently the age of both the crustal and mantle portions of the lithosphere. In this study, we report new U-Pb ages and Hf isotope compositions for zircons in crustal xenoliths from the Udachnaya kimberlite in the central Siberian craton; this dataset includes samples from both the upper and lower portions of the crust. The zircon ages agree well with model melt-extraction Re-Os ages on refractory peridotite xenoliths from the same pipe; taken together they allow an integrated view of lithosphere formation. Our data reveal that the present day upper crust is Archaean, whereas both the lower crust and the lithospheric mantle yield Paleoproterozoic ages. We infer that the deep lithosphere beneath the Siberian craton was not formed in a single Archaean event, but grew in at least two distinct events, one in the late Archaean and the other in the Paleoproterozoic. Importantly, a complete or large-scale delamination and rejuvenation of the Archaean lower lithosphere (lower crust and lithospheric mantle) took place in the Paleoproterozoic. This further demonstrates that craton formation can be a protracted, multi-stage process, and that the present day crust and mantle may not represent complementary reservoirs formed through the same tectono-magmatic event. Further, deep cratonic lithosphere may be less robust and long living than often assumed, with rejuvenation and replacement events throughout its history.
DS201801-0049
2017
Popova, E.A., Lushnikov, S.G., Yakovenchuk, V.N., Krivovichev, S.V.The crystal structure of loparite: a new acentric variety.Mineralogy and Petrology, Vol. 111, pp. 827-832.Russia, Kola Peninsuladeposit - Khibiny

Abstract: The crystal structure of a new structural variety of loparite (Na0.56Ce0.21La0.14Ca0.06Sr0.03Nd0.02Pr0.01)?=1.03(Ti0.83Nb0.15)?=0.98O3 from the Khibiny alkaline massif, Kola peninsula, Russia, was solved by direct methods and refined to R1 = 0.029 for 492 unique observed reflections with I > 2?(I). The mineral is orthorhombic, Ima2, a = 5.5129(2), b = 5.5129(2) and c = 7.7874(5) Å. Similarly to other perovskite-group minerals with the general formula ABO3, the crystal structure of loparite is based upon a three-dimensional framework of distorted corner-sharing BO6. The A cations are coordinated by 12 oxygen atoms and are situated in distorted cuboctahedral cavities. In contrast to the ideal perovskite-type structure (Pm3?m), the unit cell is doubled along the c axis and the a and b axes are rotated in the ab plane at 45o. The BO6 octahedron displays distortion characteristic for the d0 transition metal cations with the out-of-center shift of the B site. The symmetry reduction is also attributable to the distortion of the BO6 octahedra which are tilted and rotated with respect to the c axis. The occurrence of a new acentric variety of loparite can be explained by the pecularities of its chemical composition characterized by the increased content of Ti compared to the previously studied samples.
DS201801-0054
2017
Reutsky, V.N., Shiryaev, A.A., Titkov, S.V., Wiedenbeck, M., Zudina, N.N.Evidence for large scale fractionation of carbon isotopes and of nitrogen impurity during crystallization of gem quality cubic diamonds from placers of North Yakutia.Geochemistry International, Vol. 55, 11, pp. 988-999.Russia, Yakutiaalluvials

Abstract: The spatial distribution of carbon and nitrogen isotopes and of nitrogen concentrations is studied in detail in three gem quality cubic diamonds of variety II according to Orlov’s classification. Combined with the data on composition of fluid inclusions our results point to the crystallization of the diamonds from a presumably oxidized carbonate fluid. It is shown that in the growth direction ?13C of the diamond becomes systematically lighter by 2-3‰ (from -13.7 to -15.6‰ for one profile and from -11.7 to -14.1‰ for a second profile). Simultaneously, we observe substantial decrease in the nitrogen concentration (from 400-1000 to 10-30 at ppm) and a previously unrecognized enrichment of nitrogen in light isotope, exceeding 30‰. The systematic and substantial changes of the chemical and isotopic composition can be explained using the Burton-Prim-Slichter model, which relates partition coefficients of an impurity with the crystal growth rate. It is shown that changes in effective partition coefficients due to a gradual decrease in crystal growth rate describes fairly well the observed scale of the chemical and isotopic variations if the diamond-fluid partition coefficient for nitrogen is significantly smaller than unity. This model shows that nitrogen isotopic composition in diamond may result from isotopic fractionation during growth and not reflect isotopic composition of the mantle fluid. Furthermore, it is shown that the infra-red absorption at 1332 ?m-1 is an integral part of the Y-defect spectrum. In the studied natural diamonds the 1290 ?m-1 IR absorption band does not correlate with boron concentration.
DS201801-0059
2017
Sharygin, V.V., Doroshkevich, A.G.Mineralogy of secondary olivine hosted inclusions in calcite carbonatiites of the Belaya Zima alkaline complex, eastern Sayan Russia: evidence for late magmatic Na-Ca-rich carbonate composition.Journal of the Geological Society of India, Vol. 90, 5, pp. 524-530.Russiacarbonatite

Abstract: Secondary multiphase inclusions were studied in olivine from olivine-pyrochlore varieties of calcite carbonatites of the Belaya Zima alkaline complex, Eastern Sayan, Siberia, Russia. The inclusions form trails cross-cutting the host olivine. Their composition varies from carbonate to silicate-carbonate species. Multiphase silicate-carbonate inclusions contain Na-Ca-carbonates (shortite, nyerereite), Na-Mg-carbonates (northupite, eitelite, bradleyite), common carbonates (calcite, dolomite), Ba-Sr-rich carbonates (olekminskite, burbankite, strontianite), tetraferriphlogopite, magnetite, humite-clinohumite and other mineral phases. Na-Ca-carbonates, tetraferriphlogopite, humiteclinohumite and magnetite are omnipresent and dominant phases within the inclusions. The phase composition of secondary olivinehosted inclusions seems to reflect evolutionary features for the Belaya Zima carbonatites at their late stages of formation. During crystallization calciocarbonatite melt gradually evolved toward enrichment in alkalis (mainly, in sodium) and volatile components (Cl, F and H2O).
DS201801-0060
2018
Shatsky, V.S., Malkovets, V.G., Belousova, E.A., Tretiakova, I.G., Griffin, W.L., Ragozin, A.L., Wang, Q., Gibsher, A.A., O'Reilly, S.Y.Multi-stage modification of Paleoarchean crust beneath the Anabar tectonic province ( Siberian craton).Precambrian Research, Vol. 305, pp. 125-144.Russiacraton - Siberian

Abstract: According to present views, the crustal terranes of the Anabar province of the Siberian craton were initially independent blocks, separated from the convecting mantle at 3.1 (Daldyn terrane), 2.9 (Magan terrane) and 2.5?Ga (Markha terrane) (Rosen, 2003, 2004; Rosen et al., 1994, 2005, 2009). Previous studies of zircons in a suite of crustal xenoliths from kimberlite pipes of the Markha terrane concluded that the evolution of the crust of the Markha terrane is very similar to that of the Daldyn terrane. To test this conclusion we present results of U-Pb and Hf-isotope studies on zircons in crustal xenoliths from the Zapolyarnaya kimberlite pipe (Upper Muna kimberlite field), located within the Daldyn terrane, and the Botuobinskaya pipe (Nakyn kimberlite field) in the center of the Markha terrane. The data on xenoliths from the Botuobinskaya kimberlite pipe record tectonothermal events at 2.94, 2.8, 2.7 and 2?Ga. The event at 2?Ga caused Pb loss in zircons from a mafic granulite. U-Pb dating of zircons from the Zapolyarnaya pipe gives an age of 2.7?Ga. All zircons from the studied crustal xenoliths have Archean Hf model ages ranging from 3.65 to 3.11?Ga. This relatively narrow range suggests that reworking of the ancient crust beneath the Nakyn and Upper Muna kimberlite fields was minor, compared with the Daldyn and Alakit-Markha fields (Shatsky et al., 2016). This study, when combined with dating of detrital zircons, implies that tectonic-thermal events at 2.9-2.85, 2.75-2.7 and 2.0-1.95?Ga occurred everywhere on the Anabar tectonic province, and could reflect the upwelling of superplumes at 2.9, 2.7 and 2?Ga. The presence of the same tectonic-thermal events in the Daldyn and Markha terranes (Rosen et al., 2006a,b) supports the conclusion that the identification of the Markha terrane as a separate unit is not valid.
DS201801-0067
2017
Sorokhtina, N.V., Belyatsky, B.V., Kononkova, N.N., Rodionov, N.V., Lepkhina, E.N., Antonov, A.V., Sergeev, S.A.Pyrochlore group minerals from Paleozoic carbonatite massifs of the Kola Peninsula: composition and evolution.Carbonatite-alkaline rocks and associated mineral deposits , Dec. 8-11, abstract p. 20-21.Russia, Kola Peninsulacarbonatites

Abstract: Chemical composition and evolution of pyrochlore-group minerals (Nb?Ta?Ti) from the early phoscorites and calcite carbonatites, and late rare-earth dolomite carbonatites from Seblyavr and Vuorijarvi Paleozoic massifs have been studied. There are two trends in pyrochlore composition evolution: the change of U, Ti, and Ta enriched varieties by calcium high-Nb, and the change of early calcium varieties by barium-strontium pyrochlores. The substitutions are described by the typical reactions: 2Ti4+ + U4+ ? 2Nb5+ + Ca2+; Ta5+ ? Nb5+; U4+ + v (vacancy) ? 2Ca2+. The Ca ranges in pyrochlores are explained by isomorphic occupation of the cation position A with Ba, Sr, and REE, the total concentration of which increases as the carbonatite melt evolved and reaches a maximum in rare-earth dolomite carbonatites. The formation of barium pyrochlore is mainly due to successive crystallization from the Ba and Sr enriched melt (oscillatory zoning crystals), or with the secondary replacement of grain margins of the calcium pyrochlore, as an additional mechanism of formation. High enrichments in LREE2O3 (up to 6 wt.%) are identified. The fluorine content in pyrochlore group minerals varies widely. A high concentration (up to 8 wt.%) is found in central and marginal zones of crystals from calcite carbonatites, while it decreases in the pyrochlore from dolomite carbonatites. Fluorine in the crystal lattice has sufficient stability during cation-exchange processes and it is not lost in the case of developing of late carbonatites over the earlier ones. In the late mineral populations the relics enriched by this component are observed. There is a positive correlation of fluorine with sodium. The marginal and fractured zones of pyrochlore crystals from all rock types are represented by phases with a cation deficiency in position A and an increased Si. The evolution of mineral composition depends on the alkaline-ultramafic melt crystallization differentiation, enrichment of the late melts by alkalis and alkaline earth metals at the high fluorine activity. It is determined that the fluorine sharply increases from the early pyroxenites to the carbonatite rocks of the massif. The foscorites and carbonatites of the early stages of crystallization are the most enriched in fluorine, while the late dolomite carbonatites are depleted by this component and enriched in chlorine and water. The fluorine saturation of the early stages of carbonatite melting leads to the formation of fluorapatite and pyrochlore minerals which are the main mineralsconcentrators of fluorine. Pyrochlore group minerals from the Paleozoic carbonatite complexes of the Kola Peninsula are characterized by decreasing Pb, Th and U, and Th/U ratios in the transition from the early foscorites to later calcite carbonatites and hydrothermal dolomite carbonatites. The pyrochlore age varies within the 420-320 m.y. interval (U-Pb SHRIMPII data), while the rocks of the earliest magmatic stages has an individual grain age of 423 ± 15 Ma, but pyrochlore ages for calcite and dolomite carbonatites are younger: 351 ± 8.0 Ma and 324 ± 6.1 Ma, respectively. Such a dispersion of the age data is apparently associated with a disturbed Th/U ratio due to high ability for cation-exchange processes of pyrochlore crystalline matrix including secondary transformations. The research was done within the framework of the scientific program of Russian Academy of Sciences and state contract K41.2014.014 with Sevzapnedra.
DS201801-0082
2017
Zaitsev, V.A.Preservation model for Kola alkaline province for Paleozoic and Paleoproterozoic alkaline magmatism volume comparing.Carbonatite-alkaline rocks and associated mineral deposits , Dec. 8-11, abstract p. 13.Russia, Kola Peninsulacarbonatites

Abstract: Northern part of the Fennoscandian Shield in Kola Peninsula and Northern Karelia was intruded by alkaline magmatic complexes during the two main episodes. Paleoproterozoic alkaline province consisting from five alkaline massifs and Paleozoic alkaline province, consisting from twenty alkaline-ultramafic rock complexes, together with two giant nepheline syenite complexes are practically overlap. Based on the data about morphology and internal structure of the Paleozoic alkaline and ultramaficcarbonatite intrusions and their average denudation rates, the model of alkaline province destruction was developed. This model allows forecasting, how many intrusions of Kola Paleozoic alkaline province will remain and calculate preservation ratio for any moment of future. The dependence of preservation ratio on the age of province allow to compare the initial numbers of massifs in alkaline provinces and conclude that Paleoproterozoic event of alkaline magmatism in Kola peninsula was even more powerful than Paleozoic one.
DS201802-0237
2017
Garanin, K.V., Serov, I.V., Nikiforova, A.Yu., Grakhanov, O.S.The ALROSA geological prospecting complex and the analysis of the base for the diamond mining in Russian Federation to 2030. *** IN RUSStarosin, V.I. (ed) Problems of the mineralogy, economic geology and mineral resources. MAKS Press, Moscow *** IN RUS, pp. 22-40.Russiatechnology
DS201802-0242
2018
Ionov, D.A., Doucet, L.S., Xu, Y., Golovin, A.V., Oleinikov, O.B.Reworking of Archean mantle in the NE Siberian craton by carbonatite and silicate melt metasomatism: evidence from a carbonate bearing, dunite to web sterite xenolith suite from the Obnazhennaya kimberlite.Geochimica et Cosmochimica Acta, in press available, 46p.Russia, Siberiadeposit - Obnazhennaya

Abstract: The Obnazhennaya kimberlite in the NE Siberian craton hosts a most unusual cratonic xenolith suite, with common rocks rich in pyroxenes and garnet, and no sheared peridotites. We report petrographic and chemical data for whole rocks (WR) and minerals of 20 spinel and garnet peridotites from Obnazhennaya with Re-depletion Os isotope ages of 1.8-2.9 Ga (Ionov et al., 2015a) as well as 2 pyroxenites. The garnet-bearing rocks equilibrated at 1.6-2.8 GPa and 710-1050°C. Some xenoliths contain vermicular spinel-pyroxene aggregates with REE patterns in clinopyroxene mimicking those of garnet. The peridotites show significant scatter of Mg# (0.888-0.924), Cr2O3 (0.2-1.4 wt.%) and high NiO (0.3-0.4 wt.%). None are pristine melting residues. Low-CaO-Al2O3 (?0.9 wt.%) dunites and harzburgites are melt-channel materials. Peridotites with low to moderate Al2O3 (0.4-1.8 wt.%) usually have CaO > Al2O3, and some have pockets of calcite texturally equilibrated with olivine and garnet. Such carbonates, exceptional in mantle xenoliths and reported here for the first time for the Siberian mantle, provide direct evidence for modal makeover and Ca and LREE enrichments by ephemeral carbonate-rich melts. Peridotites rich in CaO and Al2O3 (2.7-8.0 wt.%) formed by reaction with silicate melts. We infer that the mantle lithosphere beneath Obnazhennaya, initially formed in the Mesoarchean, has been profoundly modified. Pervasive inter-granular percolation of highly mobile and reactive carbonate-rich liquids may have reduced the strength of the mantle lithosphere leading the way for reworking by silicate melts. The latest events before the kimberlite eruption were the formation of the carbonate-phlogopite pockets, fine-grained pyroxenite veins and spinel-pyroxene symplectites. The reworked lithospheric sections are preserved at Obnazhennaya, but similar processes could erode lithospheric roots in the SE Siberian craton (Tok) and the North China craton, where ancient melting residues and reworked garnet-bearing peridotites are absent.The modal, chemical and Os-isotope compositions of the Obnazhennaya xenoliths produced by reaction of refractory peridotites with melts are very particular (high Ca/Al, no Mg#-Al correlations, highly variable Cr, low 187Os/188Os, continuous modal range from olivine-rich to low-olivine peridotites, wehrlites and websterites) and distinct from those of fertile lherzolites in off-craton xenoliths and peridotite massifs. These features argue against the concept of ‘refertilization’ of cratonic and other refractory peridotites by mantle-derived melts as a major mechanism to form fertile to moderately depleted lherzolites in continental lithosphere. The Obnazhennaya xenoliths represent a natural rock series produced by ‘refertilization’, but include no rocks equivalent in modal, major and trace element to the fertile lherzolites. This study shows that ‘refertilization’ yields broad, continuous ranges of modal and chemical compositions with common wehrlites and websterites that are rare among off-craton xenoliths.
DS201802-0244
2017
Kargin, A.V., Golubeva, Yu.Yu., Demonterova, E.I., Kovalchuk, E.V.Petrographical geochemical types of Triassic alkaline ultramafic rocks in the Northern Anabar Province, Yakutia, Russia.Petrology, Vol. 25, 6, pp. 535-565.Russia, Yakutiaorangeite

Abstract: A classification suggested for alkaline ultramafic rocks of the Ary-Mastakh and Staraya Rechka fields, Northern Anabar Shield, is based on the modal mineralogical composition of the rocks and the chemical compositions of their rock-forming and accessory minerals. Within the framework of this classification, the rocks are indentified as orangeite and alkaline ultramafic lamprophyres: aillikite and damtjernite. To estimate how much contamination with the host rocks has modified their composition when the diatremes were formed, the pyroclastic rocks were studied that abound in xenogenic material (which is rich in SiO2, Al2O3, K2O, Rb, Pb, and occasionally also Ba) at relatively low (La/Yb)PM, (La/Sm)PM, and not as much also (Sm/Zr)PM and (La/Nb)PM ratios. The isotopic composition of the rocks suggests that the very first melt portions were of asthenospheric nature. The distribution of trace elements and REE indicates that one of the leading factors that controlled the diversity of the mineralogical composition of the rocks and the broad variations in their isotopic-geochemical and geochemical characteristics was asthenosphere-lithosphere interaction when the melts of the alkaline ultramafic rocks were derived. The melting processes involved metasomatic vein-hosted assemblages of carbonate and potassic hydrous composition (of the MARID type). The alkaline ultramafic rocks whose geochemistry reflects the contributions of enriched vein assemblages to the lithospheric source material, occur in the northern Anabar Shield closer to the boundary between the Khapchan and Daldyn terranes. The evolution of the aillikite melts during their ascent through the lithospheric mantle could give rise to damtjernite generation and was associated with the separation of a C-H-O fluid phase. Our data allowed us to distinguish the evolutionary episodes of the magma-generating zone during the origin of the Triassic alkaline ultramafic rocks in the northern Anabar Shield.
DS201802-0245
2017
Kiselev, G.P., Yakovlev, E.Yu., Druzhinin, S.V., Galkin, A.S.Distribution of radioactive isotopes in rock and ore of Arkhanelskava pipe from the Arkhanelsk diamond province.Geology of Ore Deposits, Vol. 59, pp. 391-406.Russia, Archangeldeposit - Arkhangelskaya

Abstract: The contents of radioactive elements and the uranium isotopic composition of kimberlite in the Arkhangelskaya pipe at the M.V. Lomonosov deposit and of nearby country rocks have been studied. A surplus of 234U isotope has been established in rocks from the near-pipe space. The high ? = 234U/238U ratio is controlled by the geological structure of the near-pipe space. A nonequilibrium uranium halo reaches two pipe diameters in size and can be regarded as a local ore guide for kimberlite discovery. The rocks in the nearpipe space are also characterized by elevated or anomalous U, Th, and K contents with respect to the background.
DS201802-0247
2017
Koreshkova, M., Downes, H., Millar, I., Levsky, L., Larianov, A.Geochronology of metamorphic events in the lower crust of NW Russia: a xenolith Hf isotope study.Journal of Petrology, Vol. 58, 8, pp. 1567-1589.Russia, Kola Peninsulageochronology

Abstract: Hf isotope data for zircons and whole-rocks from lower crustal mafic granulite and pyroxenite xenoliths from NW Russia are presented together with the results of U-Pb zircon dating, Sm-Nd and Rb-Sr isotopic compositions of bulk-rocks and minerals, and trace element compositions of minerals. Most zircons preserve a record of only the youngest metamorphic events, but a few Grt-granulite xenoliths retain Archean magmatic zircons from their protolith. Metamorphic zircons have highly variable ?Hf(t) values from -25 to -4. The least radiogenic zircons were formed by recrystallization of primary magmatic Archean zircons. Zircons with the most radiogenic ?Hf grew before garnet or were contemporaneous with its formation. Zircons with ?Hf(t) from -15 to -9 formed by various mechanisms, including recrystallization of pre-existing metamorphic zircons, subsolidus growth in the presence of garnet and exsolution from rutile. They inherited their Hf isotopic composition from clinopyroxene, pargasite, rutile and earlier-formed zircon that had equilibrated with garnet. Subsolidus zircons were formed in response to a major change in mineral association (i.e. garnet- and zircon-producing reactions including partial melting). Recrystallized zircons date the onset of high-temperature conditions without a major change in mineral association. Age data for metamorphic zircons fall into five groups: >1•91 Ga, 1•81-1•86 Ga, 1•74-1•77 Ga, 1•64-1•67 Ga and <1•6 Ga. Most ages correlate with metamorphic events in the regional upper crust superimposed onto rocks of the Belomorian belt during formation of the Lapland Granulite Belt. Zircon formation and resetting at 1•64-1•67 Ga significantly postdates Lapland-Kola orogenic events and may relate to the onset of Mesoproterozoic rifting. The youngest ages (1•6-1•3 Ga) correspond to an event that affected only a few grains in some samples and can be explained by interaction with a localized fluid. The observed garnet-granulite associations were formed at 1•83 Ga in Arkhangelsk xenoliths and 1•74-1•76 Ga in most Kola xenoliths. By the end of the Lapland-Kola orogeny, the rocks were already assembled in the lower crust. However, no addition of juvenile material has been detected and preservation of pre-Lapland-Kola metamorphic zircon indicates that some xenoliths represent an older lower crust. Granulites, pyroxenites and Phl-rich rocks have a common metamorphic history since at least c. 1•75 Ga. At about 1•64 Ga metasomatic introduction of phlogopite took place; however, this was only one of several phlogopite-forming events in the lower crust.
DS201802-0248
2017
Letnikov, F.A., Los, V.L., Narseev, V.F.Technical diamond deposit Kumdy-Kul ( northern Kazakhstan). ***IN RUSStarosin, V.I. (ed) Problems of the mineralogy, economic geology and mineral resources. MAKS Press, Moscow *** IN RUS, pp. 197-206.Russia, Kazakhstandeposit - Kumdy-Kul
DS201802-0251
2017
Malov, A.I., Sidkina, E.S., Ryzhenko, B.N.Model of the Lomonosov diamond deposit as a water rock system: migration species, groundwater saturation with rock forming and ore minerals, and ecological assessment of water quality.Geochemistry International, Vol. 55, 12, pp. 1118-1130.Russiadeposit - Lomonosov

Abstract: Thermodynamic numerical simulations were carried out to determine the principal simple and complex migration species of Ca, Mg, Na, K, Al, B, Mn, Mo, Sr, and U with Cl-, OH-, SO4?2, HCO3?, and CO32? in waters at the Lomonosov diamond deposit and to estimate the saturation indexes with respect to kaolinite, Na- and Mg-montmorillonite, Mg- and Na-saponite, muscovite and paragonite, biotite, phlogopite, chromite, pyrite, plagioclase (anorthite, labradorite, and andesine), olivine (forsterite and fayalite), diopside, pyrope, gypsum, anhydrite, barite, magnesite, calcite, dolomite, talc, chrysotile, chlorite, goethite, quartz, microcline, and albite. The waters are proved not to be saturated with respect to the primary (hydrothermal) minerals. The saturation of certain water samples with uranophane suggests that this mineral is of secondary genesis. The ascent of highly mineralized deep waters shall result in the dissolution of minerals whose concentrations are near the saturation ones. To maintain the ecological standards of the discharged waters, they should be diluted and/or purified by adsorbing dissolved U on a reducing reactive barrier.
DS201802-0257
2017
Pavlushin, A.D., Zedgenizov, D.A., Pirogovskaya, K.L.Crystal morphological evolution of growth and dissolution of curve faced cubic diamonds from placers of the Anabar Diamondiferous region.Geochemistry International, Vol. 55, 12, pp. 1193-1203.Russiadiamond - crystallography

Abstract: In this paper, we consider an ontogenic model for the formation of morphological types of growth and dissolution of cubic diamonds of variety II by Yu.L. Orlov from placers of the Anabar diamondiferous region. The following ontogenic domains of crystals and corresponding evolutionary stages of growth accompanying a general decrease in supersaturation in the crystallization medium were distinguished: microblock mosaic cuboids with defects produced by the mechanism of rotational plastic deformation-cuboids with linear translation deformations-cuboids and antiskeletal growth forms of cuboids composed of octahedral growth layers-pseudocubic growth forms of a flat-faced octahedron. The crystal morphological evolution of cuboids during the bulk dissolution of individuals in fluid-bearing melt transporting them to the surface was traced. The investigation of transitional forms of cuboid diamond dissolution showed that the final form of diamond dissolution is a rounded tetrahexahedroid independent of the combination of cuboid faces with subordinate faces of octahedron, rhombododecahedron, and tetrahexahedron observed on resorbed crystals of cubic habit. It was found that the final stages of cuboid dissolution produced disk-shaped microrelief features on the diamond surface in the form of randomly distributed ideal rounded etch pits resulting from interaction with microscopic cavitation gas bubbles released during the decompression of ascending kimberlite melt.
DS201802-0260
2018
Prokopyev, I.R., Doroshkevich, A.G., Redina, A.A., Obukhov, A.V.Magnetite apatite dolomitic rocks of Ust Chulman ( Aldan Shield, Russia): Seligdar type carbonatites?Mineralogy and Petrology, in press available, 10p.Russia, Aldan shieldcarbonatites

Abstract: The Ust-Chulman apatite ore body is situated within the Nimnyrskaya apatite zone at the Aldan shield in Russia. The latest data confirm the carbonatitic origin of the Seligdar apatite deposit (Prokopyev et al. in Ore Geol Rev 81:296-308, 2017). The results of our investigations demonstrate that the magnetite-apatite-dolomitic rocks of the Ust-Chulman are highly similar to Seligdar-type dolomitic carbonatites in terms of the mineralogy and the fluid regime of formation. The ilmenite and spinel mineral phases occur as solid solutions with magnetite, and support the magmatic origin of the Ust-Chulman ores. The chemical composition of REE- and SO3-bearing apatite crystals and, specifically, monazite-(Ce) mineralisation and the formation of Nb-rutile, late hydrothermal sulphate minerals (barite, anhydrite) and haematite are typical for carbonatite complexes. The fluid inclusions study revealed similarities to the evolutionary trend of the Seligdar carbonatites that included changes of the hydrothermal solutions from highly concentrated chloride to medium-low concentrated chloride-sulphate and oxidized carbonate-ferrous.
DS201802-0267
2018
Sun, J., Tappe, S., Kostrovitsky, S.I., Liu, C-Z., Shuzovatv, S.Yu., Wu, F-Y.Mantle sources of kimberlites through time: a U Pb and Lu Hf isotope study of zircon megacrysts from the Siberian diamond fields.Chemical Geology, in press available, 39p. PdfRussia, Siberiadeposit - Mir, Udachnaya, Anabar alluvials, Ebelyakh placers

Abstract: A comprehensive, internally consistent U-Pb and Lu-Hf isotope data set for 93 mantle-derived zircons from the Yakutian kimberlite province confirms and further refines the four major episodes of kimberlite magmatism on the Siberian craton: 421-409?Ma (Late Silurian-Early Devonian), 358-353?Ma (Late Devonian-Early Carboniferous), 226-218?Ma (Late Triassic), and 161-144?Ma (Middle-Late Jurassic). The relatively narrow, constant range of ?Hf values between +2 and +10 for both the Paleozoic and Mesozoic mantle-derived zircons (and by inference kimberlites) suggests that the volatile-rich magmas were repeatedly sourced from the convecting upper mantle beneath the Siberian craton. This finding is in keeping with the narrow and constant range of ?Nd values for groundmass perovskites from the Yakutian kimberlite province between +1.8 and +5.5 between 420 and 150?Ma. Our preferred model implies that the convecting upper mantle beneath the Yakutian kimberlite province ‘recovered’ rapidly back to ambient conditions shortly after the giant plume-related flood volcanic event that produced the Siberian Traps at 250?Ma. Although close spatial relationships exist between kimberlites and flood basalts on the Siberian craton during both the Paleozoic and Mesozoic, exact timing of the igneous events and the isotopic compositions of the diverse deep-sourced melting products rule out any direct genetic links.Besides the highly economic kimberlite-hosted diamond deposits of Late Devonian age (e.g., Mir and Udachnaya), the Siberian craton also contains significant Mesozoic placer diamond deposits (e.g., along the Anabar river), for which lamproite sources have been suggested recently. Our study shows that mantle-derived zircon megacryst fragments from the Ebelyakh placer deposit have Late Triassic ages of ca. 224?Ma. Their long-term depleted Hf isotopic compositions (+8.5 ?Hf) suggest that the alluvial diamonds were sourced from asthenosphere-derived Triassic kimberlites rather than from lithospheric mantle derived isotopically enriched lamproites.
DS201802-0269
2017
Tomshin, M.D., Pokhilenko, N.P., Tarskikh, E.V.Morphology of the Nyurba kimberlite pipe and its relationship with the dolerite dike.Doklady Earth Sciences, Vol. 477, 2, pp. 1458-1460.Russiadeposit - Nyturba

Abstract: Study of the magmatics in the Nakyn kimberlite field, with consideration of the isotope dating results, allowed us to establish a sequence of their formation. First, 368.5-374.4 Ma ago intrusions of the Vilyui-Markha dike belt formed. Then (363-364 Ma) intrusion of kimberlites took place. In the Early Carboniferous (338.2-345.6 Ma), alkaline basaltic magma intruded through faults controlling the kimberlites. The magmatic activity finished 331-324.9 Ma ago with the formation of explosive breccias. It has been found that the Nyurba kimberlite pipe consists of two bodies: their kimberlite melts have successively intruded through independent channels.
DS201802-0270
2017
Tretiachenko, V.V.General aspects of mineralogical area discrimination within the Archangelsk kimberlite-picrite region. ***IN RUSStarosin, V.I. (ed) Problems of the mineralogy, economic geology and mineral resources. MAKS Press, Moscow *** IN RUS, pp. 288-321.Russia, Archangelkimberlite
DS201802-0276
2017
Ustinov, V.N., Lobkova, L.P., Kukuy, I.M., Antashchuk, G., Nikolaeva, E.V.The Karelian Kola megacraton zoning on types of diamond primary sources. IN RUSGeology and Mineral Resources of Siberia *** IN RUS, No. 7, pp. 51-61.Russia, Kola Peninsulakimberlite - indicator minerals
DS201803-0431
2017
Afanasyev, A.A., Belyaeva, E.A.The stability of serpentization due to water flow in kimberlite.Journal of Appled Mathematics and Mechanics, Vol. 81, pp. 206-213.Russiadeposit - Mir

Abstract: A linear analysis of the stability of the course of serpentization, that is, of the exothermic hydration reaction, due to the flow of water in a kimberlite pipe is carried out, taking both the heat conduction and the convective heat transfer by the fluid saturating the pipe rocks into account. It is shown that two different serpentization processes exist: a homogeneous process and an inhomogeneous process associated with a loss of stability by the homogeneous process and a non-uniform reaction rate distribution. Dimensionless similarity parameters that determine the course of the reaction are proposed. It is shown that convective heat transfer promotes a stabilization of the flow and the formation of a homogeneous serpentinite distribution. Other conditions being equal, an increase in the convective heat flux leads to an increase in the wavelengths of the unstable perturbations and to a decrease in their amplitude. A critical value of the flow rate exists, and, when this is exceeded, instability does not develop and serpentinization takes place under homogeneous conditions.
DS201803-0443
2018
Doroshkevich< A.G., Prokopyev, I.R., Izokh, A.E., Klemd, R., Ponomarchuk, A.V., Nikolaeva, I.V., Vladykin, N.V.Isotopic and trace element geochemistry of the Seligdar magnesiocarbonatites ( South Yakutia, Russia): insights regarding the mantle evolution beneath the Aldan Stanovoy shield.Journal of Asian Earth Sciences, Vol. 154, pp. 354-368.Russia, Yakutiacarbonatite -Seligdar

Abstract: The Paleoproterozoic Seligdar magnesiocarbonatite intrusion of the Aldan-Stanovoy shield in Russia underwent extensive postmagmatic hydrothermal alteration and metamorphic events. This study comprises new isotopic (Sr, Nd, C and O) data, whole-rock major and trace element compositions and trace element characteristics of the major minerals to gain a better understanding of the source and the formation process of the carbonatites. The Seligdar carbonatites have high concentrations of P2O5 (up to 18?wt%) and low concentrations of Na, K, Sr and Ba. The chondrite-normalized REE patterns of these carbonatites display significant enrichments of LREE relative to HREE with an average La/Ybcn ratio of 95. Hydrothermal and metamorphic overprints changed the trace element characteristics of the carbonatites and their minerals. These alteration processes were responsible for Sr loss and the shifting of the Sr isotopic compositions towards more radiogenic values. The altered carbonatites are further characterized by distinct 18O- and 13C-enrichments compared to the primary igneous carbonatites. The alteration most likely resulted from both the percolation of crustal-derived hydrothermal fluids and subsequent metamorphic processes accompanied by interaction with limestone-derived CO2. The narrow range of negative ?Nd(T) values indicates that the Seligdar carbonatites are dominated by a homogenous enriched mantle source component that was separated from the depleted mantle during the Archean.
DS201803-0480
2018
Sun, J., Tappe, S., Kostrovitsky, S.I., liu, C-Z., Skuzovatov, S.Y., Wu, F-Y.Mantle sources of kimberlites through time: A U-Pb and Lu-HF isotope study of zircon megacrysts from the Siberian diamond Fields.Chemical Geology, Vol. 479, pp. 228-240.Russia, Siberiageochronology

Abstract: A comprehensive, internally consistent U-Pb and Lu-Hf isotope data set for 93 mantle-derived zircons from the Yakutian kimberlite province confirms and further refines the four major episodes of kimberlite magmatism on the Siberian craton: 421-409?Ma (Late Silurian-Early Devonian), 358-353?Ma (Late Devonian-Early Carboniferous), 226-218?Ma (Late Triassic), and 161-144?Ma (Middle-Late Jurassic). The relatively narrow, constant range of ?Hf values between +2 and +10 for both the Paleozoic and Mesozoic mantle-derived zircons (and by inference kimberlites) suggests that the volatile-rich magmas were repeatedly sourced from the convecting upper mantle beneath the Siberian craton. This finding is in keeping with the narrow and constant range of ?Nd values for groundmass perovskites from the Yakutian kimberlite province between +1.8 and +5.5 between 420 and 150?Ma. Our preferred model implies that the convecting upper mantle beneath the Yakutian kimberlite province ‘recovered’ rapidly back to ambient conditions shortly after the giant plume-related flood volcanic event that produced the Siberian Traps at 250?Ma. Although close spatial relationships exist between kimberlites and flood basalts on the Siberian craton during both the Paleozoic and Mesozoic, exact timing of the igneous events and the isotopic compositions of the diverse deep-sourced melting products rule out any direct genetic links. Besides the highly economic kimberlite-hosted diamond deposits of Late Devonian age (e.g., Mir and Udachnaya), the Siberian craton also contains significant Mesozoic placer diamond deposits (e.g., along the Anabar river), for which lamproite sources have been suggested recently. Our study shows that mantle-derived zircon megacryst fragments from the Ebelyakh placer deposit have Late Triassic ages of ca. 224?Ma. Their long-term depleted Hf isotopic compositions (+8.5 ?Hf) suggest that the alluvial diamonds were sourced from asthenosphere-derived Triassic kimberlites rather than from lithospheric mantle derived isotopically enriched lamproites.
DS201803-0487
2018
Yakovenchuk, V.N., Yu, G., Pakhomovsky, Y.A., Panikorovskii, T.L., Britvin, S.N., Krivivichev, S.V., Shilovskikh, V.V., Bocharov, V.N.Kampelite, Ba3Mg1.5,Sc4(PO4)6(OH)3.4H2O, a new very complex Ba-Sc phosphate mineral from the Kovdor phoscorite-carbonatite complex ( Kola Peninsula) Russia.Mineralogy and Petrology, Vol. 112, pp. 111-121.Russia, Kola Peninsulacarbonatite - Kovdor
DS201803-0488
2018
Yang, Y-H., Wu, F-Y., Yang, J-H., Mitchell, R.H., Zhao, Z-F., Xie, L-W., Huang, C., Ma, Q., Yang, M., Zhao, H.U-Pb age determination of schorlomite garnet by laser ablation inductively coupled plasma mass spectrometry. Magnet Cove, Fanshan, Ozernaya, Alno, Prairie LakeJournal of Analytical At. Spectrometry, Vol. 33, pp. 231-239.United States, Arkansas, China, Hebei, Russia, Kola Peninsula, Europe, Sweden, Canada, Ontariogeochronology

Abstract: We report the first U-Pb geochronological investigation of schorlomite garnet from carbonatite and alkaline complexes and demonstrate its applicability for U-Pb age determination using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) due to its relatively high U and Th abundances and negligible common Pb content. The comparative matrix effects of laser ablation of zircon and schorlomite are investigated and demonstrate the necessity of a suitable matrix-matched reference material for schorlomite geochronology. Laser-induced elemental fractional and instrumental mass discrimination were externally-corrected using an in house schorlomite reference material (WS20) for U-Pb geochronology. In order to validate the effectiveness and robustness of our analytical protocol, we demonstrate the veracity of U-Pb age determination for five schorlomite samples from: the Magnet Cove complex, Arkansas (USA); the Fanshan ultrapotassic complex, Hebei (China); the Ozernaya alkaline ultramafic complex, Kola Peninsula (Russia); the Alnö alkaline-rock carbonatite complex (Sweden); and the Prairie Lake carbonatite complex, Ontario (Canada). The schorlomite U-Pb ages range from 96 Ma to 1160 Ma, and are almost identical to ages determined from other accessory minerals in these complexes and support the reliability of our analytical protocol. Schorlomite garnet U-Pb geochronology is considered to be a promising new technique for understanding the genesis of carbonatites, alkaline rocks, and related rare-metal deposits.
DS201804-0667
2017
Akishev, A.N., Zyryanov, I.V., Kornilkov, S.V., Kantemirov, V.D.Improving evaluation methods for production capacity and life of open pit diamond mines.Journal of Mining Science, Vol. 53, 1, pp. 71-76.Russiadeposit - Yubileinaya

Abstract: The article reports basic design parameters of open pit mines of ALROSA, as well as criteria and factors that govern the choice of production capacity of an open pit diamond mine under conditions of permafrost. The analytical relations and tables to calculate open pit mine life are presented, and the influence of the rate of the downward advance of an open pit mine on its capacity is demonstrated. The authors formulate key provisions for a paragraph of the national standard of RF enabling systematization of approaches to optimization of open diamond mining parameters.
DS201804-0672
2017
Baryshnikov, V.D., Fedyanin, A.S., Pul, E.K., Baryshnikov, D.V.Geomechanical monitoring of open pit bottom reserves in Mir mine, Alrosa: results.Journal of Mining Science, Vol. 53, 1, pp. 34-42.Russiadeposit - Mir

Abstract: The authors propose methods and means to monitor deformation and subsidence of ore crown under mining of open-pit bottom reserves by room-and-pillar system with cemented backfill in Mir Mine, ALROSA. The article describes layout and data of geomechanical monitoring. The mechanism of ore subsidence at the lower boundary of the safety pillar is determined.
DS201804-0673
2018
Biller, A.Ya., Logvinova, A.M., Babushkina, S.A., Oleynikov, O.B., Sobolev, N.V.Shrilankite inclusions in garnets from kimberlite bodies and Diamondiferous volcanic-sedimentary rocks of the Yakutian kimberlite province, Russia.Doklady Earth Sciences, Vol. 478, 1, pp. 15-19.Russia, Yakutiadeposit - Yubileinaya

Abstract: Pyrope-almandine garnets (Mg# = 28.3-44.9, Ca# = 15.5-21.3) from a heavy mineral concentrate of diamondiferous kimberlites of the largest diamond deposit, the Yubileinaya pipe, along with kimberlite- like rocks and diamondiferous volcano-sediments of the Laptev Sea coast, have been found to contain polymineral, predominantly acicular inclusions, composed of aggregates of shrilankite (Ti2ZrO6), rutile, ilmenite, clinopyroxene, and apatite. The presence of shrilankite as an inclusion in garnets from assumed garnet-pyroxene rocks of the lower crust, lifted up by diamond-bearing kimberlite, allows it to be considered as an indicator mineral of kimberlite, which expands the possibilities when searching for kimberlite in the Arctic.
DS201804-0679
2017
Chanturia, V.A., Ryazantseva, M.V., Dvoichenkova, G.P., Minenko, V.G., Koporulina, E.V.Surface modification of rock forming minerals of diamond bearing kimberlites under interaction with wastewater and electrochemically treated water.Journal of Mining Science, Vol. 53, 1, pp. 126-132.Russiadeposit - Mir

Abstract: The structural and chemical surface transformation of basic kimberlite-forming minerals (calcite, olivine, serpentine) under the contact with natural and waste mineralized water and products of electrochemical treatment of the water are studied using X-ray photoelectronic spectroscopy, scanning electron microscopy and X-ray spectral micro-analysis, and atomic force microscopy. It is found that contact with kimberlite extract and recycling water induces chemical modification of calcite surface, which consists in adsorption of hydrocarbon impurities, and chlorine- and silica-bearing compounds, majority of which are removed during interaction with the product of electrochemical treatment of recycling water. The change in the structural and chemical surface properties of rock-forming silicates, aside from adsorption-desorption of organic compound, is also connected with the distortion of nano-size layer structure after leaching of Mg, Fe and Si, and with the carbonatization of the surface.
DS201804-0736
2018
Simakov, S.K., Melnik, N.N., Vyalov, V.I.Nanodiamond formation at the lithogenesis and low-stages of regional metamorphism. DonbassDoklady Earth Sciences, Vol. 478, 2, pp. 214-218.Russiaspectroscopy

Abstract: Samples of gilsonite from Adzharia, anthraxolite and graphite of coal from Taimyr, shungite from Karelia, and anthracite from Donbass are studied using Raman spectroscopy. Peaks at 1600 cm?1, indicating the presence of nanographite, are recorded in all samples. The anthracite sample from Donbass, 1330 cm?1, corresponds to the sp3-line of carbon hybridization conforming to a nanodiamond. It is concluded that in nature diamonds can be formed at late stages of lithogenesis (catagensis, metagenesis), and for coals, it can occur at the zeolite stage of regional metamorphism of rocks, before the green schist stage.
DS201804-0737
2017
Simonov, V.A., Prikhodko, V.S., Vasiliev, Yu.R., Kotlyarov, A.V.Physicochemical conditions of the crystallization of rocks from ultrabasic massifs of the Siberian platform. Konder, Inagli, Chad) Cr-spinelsRussian Journal of Pacific Geology, Vol. 11, 6, pp. 447-468.Russiapicrites

Abstract: A great volume of original information on the formation of the ultrabasic rocks of the Siberian Platform has been accumulated owing to the study of melt inclusions in Cr-spinels. The inclusions show the general tendencies in the behavior of the magmatic systems during the formation of the ultrabasic massifs of the Siberian Platform, tracing the main evolution trend of decreasing Mg number with SiO2 increase in the melts with subsequent transition from picrites through picrobasalts to basalts. The compositions of the melt inclusions indicate that the crystallization conditions of the rocks of the concentrically zoned massifs (Konder, Inagli, Chad) sharply differ from those of the Guli massif. Numerical modeling using the PETROLOG and PLUTON softwares and data on the composition of inclusions in Cr-spinels yielded maximum crystallization temperatures of the olivines from the dunites of the Konder (1545-1430°C), Inagli (1530-1430°C), Chad (1460-1420°C), and Guli (1520-1420°C) massifs, and those of Cr-spinels from the Konder (1420-1380°C), Inagli (up to 1430°C), Chad (1430-1330°C), and Guli (1410-1370°C) massifs. Modeling of the Guli massif with the PLUTON software using the compositions of the melt inclusions revealed the possible formation of the alkaline rocks at the final reverse stage of the evolution of the picritic magmas (with decrease of SiO2 and alkali accumulation) after termination of olivine crystallization with temperature decrease from 1240-1230°C to 1200-1090°C. Modeling with the PLUTON software showed that the dunites of the Guli massif coexisted with Fe-rich (with moderate TiO2 contents) melts, the crystallization of which led (beginning from 1210°C) to the formation of pyroxenes between cumulate olivine. Further temperature decrease (from 1125°C) with decreasing FeO and TiO2 contents provided the formation of clinopyroxenes of pyroxenites. For the Konder massif, modeling with the PLUTON software indicates the possible formation of kosvites from picrobasaltic magmas beginning from 1350°C and the formation of clinopyroxenites and olivine-diopside rocks from olivine basaltic melts from 1250°C.
DS201804-0739
2018
Sobolev, N.V.Inclusions in Siberian diamonds and their polycrystalline aggregates and specific features of orogenic diamonds from Kazkhstan.4th International Diamond School: Diamonds, Geology, Gemology and Exploration Bressanone Italy Jan. 29-Feb. 2nd., pp. 41-42. abstractRussiadiamond inclusions
DS201804-0742
2018
Spetsius, Z.V., Bogush, I.N., Ivanov, A.S.Xenolith of eclogites with diamonds from the Yubileinaya kimberlite pipe.Doklady Earth Sciences, Vol. 478, 1, pp. 88-91.Russia, Yakutiadeposit - Yubilienaya

Abstract: The first results of study of minerals and diamonds of diamond-bearing eclogites from kimberlites of the Yubileinaya pipe with a variable percent amount of clinopyroxene and garnet are presented. Samples with a garnet content from 30 to 90% of the xenolith volume are dominant among the round to oval xenoliths with diamonds. Five eclogite samples contain grains of accessory rutile, as well as corundum and kyanite. Some samples host two or more diamond crystals.
DS201804-0750
2018
Vasilev, Yu.R., Gora, M.P., Kuzmin, D.V.Foidite and meimechite lavas of Polar Siberia ( some questions of petrogenesis.Doklady Earth Sciences, Vol. 478, 1, pp. 103-107.Russia, Siberiapicrites

Abstract: For the Permian-Triassic foidite and meimechite lavas of Polar Siberia, both the whole-rock petrochemistry and geochemistry and that of melt inclusions in olivine phenocrysts from the same rocks have been demonstrated to be similar. In addition, their isotope characteristics imply the possibility of their generation from an abyssal parental melt compositionally resembling a high-Mg alkaline picrite.
DS201805-0946
2018
Golovin, A.V., Sharygin, I.S., Kamenetsky, V.S., Korsakov, A.V., Yaxley, G.M.Alkali-carbonate melts from the base of cratonic lithospheric mantle: links to kimberlites.Chemical Geology, Vol. 483, pp. 261-274.Russiadeposit - Udachnaya

Abstract: Identification of the primary compositions of mantle-derived melts is crucial for understanding mantle compositions and physical conditions of mantle melting. However, these melts rarely reach the Earth's surface unmodified because of contamination, crystal fractionation and degassing, processes that occur almost ubiquitously after melt generation. Here we report snapshots of the melts preserved in sheared peridotite xenoliths from the Udachnaya-East kimberlite pipe, in the central part of the Siberian craton. These xenoliths are among the deepest mantle samples and were delivered by kimberlite magma from 180-230?km depth interval, i.e. from the base of the cratonic lithosphere. The olivine grains of the sheared peridotites contain secondary inclusions of the crystallized melt with bulk molar (Na?+?K)/Ca?~?3.4. Various Na-K-Ca-, Na-Ca-, Na-Mg-, Ca-Mg- and Ca-carbonates, Na-Mg-carbonates with additional anions, alkali sulphates and halides are predominant among the daughter minerals in secondary melt inclusions, whereas silicates, oxides, sulphides and phosphates are subordinate. These inclusions can be considered as Cl-S-bearing alkali-carbonate melts. The presence of aragonite, a high-pressure polymorph of CaCO3, among the daughter minerals suggests a mantle origin for these melt inclusions. The secondary melt inclusions in olivine from the sheared peridotite xenoliths and the melt inclusions in phenocrystic olivines from the host kimberlites demonstrate similarities, in daughter minerals assemblages and trace-element compositions. Moreover, alkali-rich minerals (carbonates, halides, sulphates and sulphides) identified in the studied melt inclusions are also present in the groundmass of the host kimberlites. These data suggests a genetic link between melt enclosed in olivine from the sheared peridotites and melt parental to the Udachnaya-East kimberlites. We suggest that the melt inclusions in olivine from mantle xenoliths may represent near primary, kimberlite melts. These results are new evidence in support of the alkali?carbonate composition of kimberlite melts in their source regions, prior to the kimberlite emplacement into the crust, and are in stark contrast to the generally accepted ultramafic silicate nature of parental kimberlite liquids.
DS201805-0953
2018
Ivanov, A.V., Mukasa, S.B., Kamenetsky, V.S., Ackerman, M., Demonterova, E.I., Pokrovsky, B.G., Vladykin, N.V., Kolesnichenko, M.V., Litasov, K.D., Zedgenizov, D.A.Origin of high-Mg melts by volatile fluxing without significant excess of temperature.Chemical Geology, https://doi.org/ 10.1016/j .chemgeo. 2018.03.11Russiameimechites
DS201805-0985
2018
Ustinov, V.N., Antaschuk, M.G., Zagainy, A.K., Kukui, I.M., Lobkova, L.P., Antonov, S.A.Prospects of diamond deposits discovery in the North of the East European platform. Karelian - KolaOres and Metals ***RUS, Vol. 1, pp. 11-26. ***RusRussiakimberlite, lamproite, dispersion haloes
DS201805-0987
2017
Vasiliev, E.A., Petrovsky, V.A., Kozlov, A.V., Antonov, A.V.Infrared spectroscope and internal structure of diamonds from the Ichhetju placer ( Middle Timan, Russia).*** IN RUSProceedings of the Russian Mineralogical Society *** IN RUS, Vol. 146, 2, pp. 58-72.Russiadeposit - Ichhetju
DS201806-1210
2018
Babushkina, M.S., Ugolkov, V.L., Marin, Yu.B., Nikitina, L.P., Goncharov, A.G.Hydrogen and carbon groups in the structures of rock forming minerals of rocks of the lithospheric mantle: FTIR and STA + QMS data. Lherzolites, peridotitesDoklady Earth Sciences, Vol. 479, 2, pp. 456-459.Russia, Siberiadeposit - Udachnaya

Abstract: Using IR-Fourier spectrometry (FTIR) and simultaneous thermal analysis combined with quadrupole mass spectrometry of thermal decomposition products (STA + QMS), olivines and clinopyroxene from xenolites of spinel and garnet lherzolites contained in kimberlites and alkaline basalts were studied to confirm the occurrence of hydrogen and carbon within the structure of the minerals, as well as to specify the forms of H and C. The presence of hydroxyl ions (OH-) and molecules of crystal hydrate water (H2Ocryst) along with CO2, CH, CH2, and CH3 groups was detected, which remained within the structures of mantle minerals up to 1300°C (by the data of both techniques). The total water (OH-and H2Ocryst) was the prevailing component of the C-O-H system.
DS201806-1241
2018
Ragozin, A.L., Zedgenizov, D.A., Shatsky, V.S., Kuper, K.E.Formation of mosaic diamonds from the Zarnitsa kimberlite.Russian Geology and Geophysics, Vol. 59, pp. 486-498.Russiadeposit - Zarnitsa

Abstract: Mosaic diamonds from the Zarnitsa kimberlite (Daldyn field, Yakutian diamondiferous province) are morphologicaly and structurally similar to dark gray mosaic diamonds of varieties V and VII found frequently in placers of the northeastern Siberian craton. However, although being similar in microstructure, the two groups of diamonds differ in formation mechanism: splitting of crystals in the case of placer diamonds (V and VII) and growth by geometric selection in the Zarnitsa kimberlite diamonds. Selective growth on originally polycrystalline substrates in the latter has produced radial micro structures with grains coarsening rimward from distinctly polycrystalline cores. Besides the formation mechanisms, diamonds of the two groups differ in origin of mineral inclusions, distribution of defects and nitrogen impurity, and carbon isotope composition. Unlike the placer diamonds of varieties V and VII, the analyzed crystals from the Zarnitsa kimberlite enclose peridotitic minerals (olivines and subcalcic Cr-bearing pyropes) and have total nitrogen contents common to natural kimberlitic diamonds (0 to 1761 ppm) and typical mantle carbon isotope compositions (-1.9 to -6.2%c 513C; -4.2%c on average). The distribution of defect centers in the Zarnitsa diamond samples fits the annealing model implying that nitrogen aggregation decreases from core to rim.
DS201806-1243
2018
Rezvukhin, D.I., Malkovets, V.G., Sharygin, I.S., Tretiakova, I.G., Griffin, W.L., O'Reilly, S.Y.Inclusions of crichtonite group minerals in Cr-pyropes from the Internationalnaya kimberlite pipe, Siberian craton: crystal chemistry, parageneses and relationships to mantle metasomatism.Lithos, Vol. 308, 1, pp. 181-195.Russiadeposit - International

Abstract: Cr-pyrope xenocrysts and associated inclusions of crichtonite-group minerals from the Internatsionalnaya kimberlite pipe were studied to provide new insights into processes in the lithospheric mantle beneath the Mirny kimberlite field, Siberian craton. Pyropes are predominantly of lherzolitic paragenesis (Cr2O3 2-6?wt%) and have trace-element spectra typical for garnets from fertile mantle (gradual increase in chondrite-normalized values from LREE to MREE-HREE). Crichtonite-group minerals commonly occur as monomineralic elongated inclusions, mostly in association with rutile, Mg-ilmenite and Cr-spinel within individual grains of pyrope. Sample INT-266 hosts intergrowth of crichtonite-group mineral and Cl-apatite, while sample INT-324 contains polymineralic apatite- and dolomite-bearing assemblages. Crichtonite-group minerals are Al-rich (1.1-4.5?wt% Al2O3), moderately Zr-enriched (1.3-4.3?wt% ZrO2), and are Ca-, Sr-, and occasionally Ba-dominant in terms of A-site occupancy; they also contain significant amounts of Na and LREE. T-estimates and chemical composition of Cr-pyropes imply that samples represent relatively low-T peridotite assemblages with ambient T ranging from 720 to 820°?. Projected onto the 35?mW/m2 cratonic paleogeotherm for the Mirny kimberlite field (Griffin et al., 1999b. Tectonophysics 310, 1-35), temperature estimates yield a P range of ~34-42?kbar (~110-130?km), which corresponds to a mantle domain in the uppermost part of the diamond stability field. The presence of crichtonite-group minerals in Cr-pyropes has petrological and geochemical implications as evidence for metasomatic enrichment of some incompatible elements in the lithospheric mantle beneath the Mirny kimberlite field. The genesis of Cr-pyropes with inclusions of crichtonite-group minerals is attributed to the percolation of Ca-Sr-Na-LREE-Zr-bearing carbonate-silicate metasomatic agents through Mg- and Cr-rich depleted peridotite protoliths. The findings of several potentially new members of the crichtonite group as inclusions in garnet extend existing knowledge on the compositions and occurrences of exotic titanates stable in the lithospheric mantle.
DS201806-1249
2018
Shchukina, E.V., Shchukin, V.S.Diamond potential of the northern East European platform. KIMSMinerals *** in ENG, Vol. 8, 17p. Pdf ***ENGRussia, Arkangelskgeochemistry, exploration

Abstract: In this study, we assess the diamond exploration potential of the northern East European Platform based on aeromagnetic survey results and the morphologic and geochemical analysis of 1513 grains of kimberlite indicator minerals (KIMs), such as purple pyrope garnet, olivine, and Cr-diopside. These minerals were recovered from samples collected from modern river and stream sediments in four areas located in the north-eastern (within the Arkhangelsk Diamondiferous Province) and south-western (hundreds of kilometers outside of the Arkhangelsk Diamondiferous Province) parts of the Arkhangelsk region in the European part of Russia. All the studied areas are located within ancient cratons, including the Kola, Karelian, and Shenkursk cratons. Based on the major element compositions of the KIMs and thermobarometric calculations, this study confirms that the lithospheric mantle beneath the studied areas is suitable for the formation and preservation of diamonds. The high percentage of KIMs with primary magmatic grain surface morphologies is evidence of the presence of local kimberlite sources within all of the studied areas. The significant amount of diamond-associated KIMs indicates that the potential sources are diamondiferous. Hence, the results suggest that the studied areas can be recommended for further diamond prospecting activity with a high probability of discovering new diamondiferous kimberlites.
DS201806-1251
2018
Shunilova, T.G., Isaenko, S.I., Ulyashev, V.V., Kazakov, V.A., Makeev, B.A.After coal diamonds: an enigmatic type of impact diamonds. Kara astrobleme ( Pay-Khoy)European Journal of Mineralogy, Vol. 30, 1, pp. 61-76.Russiameteorites

Abstract: Impact diamonds were discovered in the 70s and are usually accepted as being paramorphs after graphite, resulting in grains of extremely high mechanical quality. A diffusion-less mechanism for the graphite-to-diamond transition under huge pressure has been experimentally realized and theoretically explained. Besides, another type of impact product has received much less attention, namely diamonds formed after coal as a result of the impact. Here we describe after-coal impact diamonds from the giant Kara astrobleme (Pay-Khoy, Russia), which resulted from a large asteroid impact about 70?Ma ago. The impact created a large number of unusual impact diamonds, which are described here for the first time using high-resolution techniques including visible and UV Raman spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM) and transmission electron microscopy (TEM). Two main varieties of after-coal diamonds occur: micrograined (sugar-like, subdivided into coherent and friable) and, as a new type, paramorphs after organic relics. After-coal diamonds differ from after-graphite impact diamonds by the texture, the absence of lonsdaleite, a micro- and nanoporous structure. The sugar-like variety consists of tightly aggregated, well-shaped single nanocrystals. The after-organic diamond paramorphs are characterized by a well-preserved relict organic morphology, sub-nanocrystalline-amorphous sp3-carbon (ta-C) nanocomposites and other specific properties (optical transparence, brown color, very high luminescence, spectral features). Based on the description of after-coal diamonds, we propose a new, polystage formation mechanism: high-velocity coal pyrolysis with hetero-elements removal followed by diffusion-limited crystallization of pure carbon. The similarity of the after-coal diamonds features with carbonado is a strong piece of evidence in support of the impact hypothesis for the origin of carbonado.
DS201806-1254
2018
Smolkin, V.F., Lokhov, K.I., Skublov, S.G., Sergeeva, L.Yu., Lokhov, D.K., Sergeev, S.A.Paleoproterozoic Keulik Kenirim ore bearing gabbro-peridotite complex, Kola region: a new occurrence of ferropicritic magmatism.Geology of Ore Deposits, Vol. 60, 2, pp. 142-171.Russia, Kola Peninsulazircon - picrite

Abstract: Comprehensive research of ore-bearing differentiated intrusions of the Keulik-Kenirim structural unit, which represents a fragment of the Paleoproterozoic Pechenga-Varzuga Belt, has been carried out for the first time. The intrusions are subvolcanic by type and lenticular in shape, nearly conformable and steeply dipping. They are made up of peridotite, olivine and plagioclase pyroxenites, and gabbro metamorphosed under amphibolite facies conditions along with host basic volcanics. All intrusive rocks are enriched in TiO2 and FeO. Sulfide Cu-Ni mineralization is represented by disseminated, pocket, and stringer-disseminated types, which are clustered in the peridotitic zone as hanging units and bottom lodes. The Ni content in disseminated ore is estimated at 0.45-0.55 wt % and 1.15-3.32 wt % in ore pockets; the Cu grades are 0.17-0.20 and 0.46-5.65 wt %, respectively. To determine the age of intrusions and metamorphism of intrusive and volcanic rocks, various isotopic systems have been used: Sm-Nd (TIMS) in rock and U-Pb (SIMS SHRIMP) and Lu-Hf (LA-ICP-MS) in zircon. Conclusions on the origin of zircons are based on concentrations of trace elements including REE therein and Hf-Nd correlation in zircons and rocks. The U-Pb system of zircons reflects episodes of igneous rock formation (1982 ± 12 Ma) and their postmagmatic transformation (1938 ± 20 Ma). The last disturbance of the U-Pb isotopic system occurred 700 and 425 Ma. Xenogenic zircons dated from 3.17 to 2.65 Ga have been revealed in the studied samples. These zircons were captured by magma from the Archean basement during its ascent. The intrusions were emplaced synchronously with economic ore formation in the Pechenga ore field (1985 ± 10 Ma). The peak metamorphism of intrusive rocks under amphibolite facies conditions is recorded at 40 Ma later. The differentiated intrusions of the Keulik-Kenirim structural unit are close in their internal structure, mineralogy, and geochemistry, as well as in age and features of related Cu-Ni mineralization to ore-bearing intrusions of the Pechenga ore field, which are derivatives of ferropicritic (ferriferous) magmatism.
DS201807-1477
2018
Agashev, A.M., Pokhilenko, L.N., Pokhilenko, N.P., Shchukina, E.V.Geochemistry of eclogite xenoliths from the Udachnaya kimberlite pipe: section of ancient oceanic crust sampled.Lithos, DOI:10.1016 /j.lithos.2018 .05.027 available 52p.Russiadeposit - Udachnaya

Abstract: A suite of seventeen unique, large, and fresh eclogite xenoliths from the Udachnaya pipe have been studied for their whole-rock and mineral major- and trace-element compositions. Based on their major-element compositions, the Udachnaya eclogites can be subdivided in two groups: high magnesian (Mg# 68.8-81.9) and low magnesian (Mg# 56.8-59). The two eclogite groups are clearly different in the style of correlation between major elements. Positive correlations of FeO and CaO with MgO are observed in the low-magnesian group, whereas these correlations are negative in the high-magnesian group. In terms of trace element composition, the Udachnaya eclogites are enriched over Primitive Mantle, but comparable to mid-ocean-ridge basalt composition, except for significant enrichment in large-ion lithophile elements (LILE; Rb, Ba, K, Sr). Most of the samples show a positive Eu anomaly, irrespective of group. Reconstructed whole-rock composition from clinopyroxene and garnet modal abundances contains much less incompatible elements (LILE, light rare earth elements, high field strength elements) than measured composition. Approximately 60 to 100% of the middle rare earth elements, Zr, and Hf, and nearly 100% of the heavy rare earth elements, Co, V, and Sc of the whole-rock budget are concentrated in Gar and Cpx. Variations in major element compositions cover a full section of the modern and Archaean oceanic crust, from troctolite, through gabbroic rocks, to basalts. The low-Mg# eclogites could have formed from upper oceanic crust protoliths, being a mixture of basalts and gabbro, whereas the high-Mg# eclogites are originated from gabbro-troctolite section of the lower oceanic crust. Concordant variations of Eu anomaly with the Lu/Sr ratio and the V and Ni contents in the eclogite compositions are in agreement with the fractionation of plagioclase, clinopyroxene, and olivine in their low-pressure precursor rocks. Negative correlations of SiO2 and MgO, and a low Nd/YbNMORB ratio, in the low-Mg# eclogites are in agreement with partial melt loss, but the presence of accessory quartz limits the degree of melting to 13%. Major and trace element compositions suggest that the high-Mg# eclogites, and, consequently, the lower oceanic crust, could not have experienced significant melt loss, and subduction in the Archaean may have been essentially dry, compared to the present day.
DS201807-1493
2013
Gorkovets, V.Ya., Rudashevskii, N.S., Rudashevsky, V.N., Popov, M.G., Antonov, A.A.Indicator minerals in the lamproitic diatreme, Kostomuksha region, Karelia. Doklady Earth Sciences , Vol. 450, 1, pp. 79-90.Russialamproite

Abstract: The mineralogy of a new lamproitic diatreme 200-250 m in diameter and 3 ga in area is studied in detail. The chemical and 3-D mineralogical analysis identify the diatreme rocks as strongly altered olivine lamproites with a large volume (50-60%) of xenoliths of strongly altered spinel (garnet) lherzolites and harzburgites-dunites. Numerous grains-xenocrysts of indicator minerals of diamond have been extracted from the heavy concentrates (the weight of the initial product is 742 g and the size is 100-500 ?m) as a result of hydroseparation: (1) subcalcium (CaOav. 2.6 wt %) high-Cr (Cr2O3 av. 5.3 wt %) pyrope (50 grains); (2) chrome diopside (7 and 8 mol % of kosmochlor and jadeite components, respectively, >40 grains); (3) high-Cr chromite (Cr2O3 > 62 wt %); and (4) picroilmenite (MgO 12-13.8 wt %) and Cr-rutile (Cr2O3 1.1 wt %). Xenocrysts prove the mantle endogene (the level of garnet lherzolites) source of the magmatic center of lamproites and forecast the diamond potential of the new diatreme in the Kostomuksha ore district.
DS201807-1501
2018
Kaminsky, F.V., Wirth, R., Anikin, L.P., Morales, L., Schreiber, A.Carbonado like diamond from the Avacha active volcano in Kamchatka, Russia.Lithos, in press available, 57p.Russiacarbonado

Abstract: In addition to a series of finds of diamond in mafic volcanic and ultramafic massive rocks in Kamchatka, Russia, a carbonado-like diamond aggregate was identified in recent lavas of the active Avacha volcano. This aggregate differs from 'classic carbonado' by its location within an active volcanic arc, well-formed diamond crystallites, and cementing by Si-containing aggregates rather than sintering. The carbonado-like aggregate contains inclusions of Mn-Ni-Si-Fe alloys, native ?-Mn, tungsten and boron carbides, which are uncommon for both carbonado and monocrystalline diamonds. Mn-Ni-Si-Fe alloys, trigonal W2C and trigonal B4C are new mineral species that were not previously found in the natural environment. The formation of the carbonado-like diamond aggregate started with formation at 850-1000 °C of tungsten and boron carbides, Mn-Ni-Si-Fe alloys and native ?-Mn, which were used as seeds for the subsequent crystallization of micro-sized diamond aggregate. In the final stage, the diamond aggregate was cemented by amorphous silica, tridymite, ?-SiC, and native silicon. The carbonado-like aggregate was most likely formed at near-atmospheric pressure conditions via the CVD mechanism during the course or shortly after one of the volcanic eruption pulses of the Avacha volcano. Volcanic gases played a great role in the formation of the carbonado-like aggregate.
DS201807-1520
2018
Nosova, A.A., Sazonova, L.V., Kargin, A.V., Smirnova, M.D., Lapin, A.V., Shcherbakov, V.D.Olivine in ultramafic lamprophyres: chemistry, crystallisation, and melt sources of Siberian pre and post trap aillikites. IlbokichContributions to Mineralogy and Petrology, 10.1007/ s00410-018- 1480-3, 27p.Russia, Siberiakimberlite

Abstract: We studied olivines from the Devonian pre-trap (the Ilbokich occurrence) and the Triassic post-trap (the Chadobets occurrence) carbonate-rich ultramafic lamprophyres (UMLs) in the southwestern portion of the Siberian craton. On the basis of detailed investigations of major, minor, and trace-element distributions, we have reconstructed the main processes that control the origins of these olivines. These include fractional crystallisation from melt, assimilation, and fractional crystallisation processes with orthopyroxene assimilation, melt-reaction diffusive re-equilibration, alkali enrichment, and CO2 degassing of the melt. Furthermore, we inferred the composition of the sources of the primary UML melt and their possible correlations with proto-kimberlitic melts, as well as the influence of the Triassic Siberian plume on the composition of the lithospheric mantle. The main differences between olivines from the Ilbokich and the Chadobets aillikites were that the olivines from the former had more magnesium-rich cores (Mg# = 89.2 ± 0.2), had Mg- and Cr-rich transition zones (Mg# = 89.7 ± 0.2 and 300-500 ppm Cr), had lower Ni (up to 3100 ppm) and Li (1.4-1.5 ppm), and had higher B (0.8-2.6 ppm) contents, all at higher Fo values (90-86), relative to the olivines from the latter (Mg# = 88-75; 200-300 ppm Cr; up to 3400 ppm Ni; 1.4-2.4 ppm Li; 0.4-2.2 ppm B). The Siberian aillikite sources contained a significant amount of metasomatic material. Phlogopite-rich MARID-type veins provided the likely metasomatic component in the pre-trap Devonian Ilbokich aillikite source, whereas the Triassic Chadobets aillikitic post-trap melts were derived from a source with a significant carbonate component. A comparison of UML olivines with olivines from the pre-trap and post-trap Siberian kimberlites shows a striking similarity. This suggests that the carbonate component in the aillikitic source could have been produced by evolved kimberlite melts. The differences in the lithospheric metasomatic component that contributed to pre-trap and post-trap aillikitic melts can be interpreted as reflections of the thermal impact of the Siberian Traps, which reduced phlogopite-bearing metasomes within the southwestern Siberian sub-continental lithospheric mantle.
DS201807-1538
2015
Yang, J., Robinson, P.T., Dilek, Y.Diamond bearing ophiolites and their geological occurrence. ** note dateEpisodes, Vol. 38, 4, pp. 344-364.China, Tibet, Russiaophiolites

Abstract: We document in this study the geological occurrence of diamonds and other ultrahigh-pressure (UHP) minerals in ophiolitic mantle peridotites and podiform chromitites from different orogenic belts. These minerals exist in both high-Cr and high-Al chromitites. Most ophiolite-hosted diamonds are small (? 200-500 ?m across), and some contain distinctive inclusions (i.e., coesite, Ni-Mn-Co alloys, spessartite, tephroite). All of the analyzed diamonds have extremely light carbon isotope compositions (?13C = -28.7 to -18.3‰) and variable trace element contents that distinguish them from most kimberlitic and UHP metamorphic varieties. A wide range of highly reduced minerals, such as native elements, Ni-Mn-Co alloys, Fe-Si and Fe-C phases and moissanite (SiC) also occuras accompanying mineral separates confirming the super-reducing conditions of their environment of formation. The presence of exsolution lamellae of diopside and coesite in some chromite grains suggests chromite crystallization depths around >380 km, near the mantle transition zone. Carbon and other recycled crustal materials at these depths are likely to have been derived from previously subducted material. The peridotites encapsulating the podiform chromitites and diamonds were transported to shallow mantle by convection cells beneath oceanic spreading centers. The chromitites may have formed in the deep mantle or in shallow suprasubduction zone environments. Our observations suggest that diamonds, UHP minerals and recycled crustal material are likely to be ubiquitous in the oceanic mantle.
DS201808-1722
2018
Agashev, A.M., Nakai, S., Serov, I.V., Tolstov, A.V., Garanin, K.V., Kovalchuk, O.E.Geochemistry and origin of the Mirny field kimberlites, Siberia.Mineralogy and Petrology, doi.org/10.1007/s00710-018-06174 12p.Russia, Siberiadeposit - Mirny

Abstract: Here we present new data from a systematic Sr, Nd, O, C isotope and geochemical study of kimberlites of Devonian age Mirny field that are located in the southernmost part of the Siberian diamondiferous province. Major and trace element compositions of the Mirny field kimberlites show a significant compositional variability both between pipes and within one diatreme. They are enriched in incompatible trace elements with La/Yb ratios in the range of (65-00). Initial Nd isotope ratios calculated back to the time of the Mirny field kimberlite emplacement (t?=?360 ma) are depleted relative to the chondritic uniform reservoir (CHUR) model being 4 up to 6 ?Nd(t) units, suggesting an asthenospheric source for incompatible elements in kimberlites. Initial Sr isotope ratios are significantly variable, being in the range 0.70387-0.70845, indicating a complex source history and a strong influence of post-magmatic alteration. Four samples have almost identical initial Nd and Sr isotope compositions that are similar to the prevalent mantle (PREMA) reservoir. We propose that the source of the proto-kimberlite melt of the Mirny field kimberlites is the same as that for the majority of ocean island basalts (OIB). The source of the Mirny field kimberlites must possess three main features: It should be enriched with incompatible elements, be depleted in the major elements (Si, Al, Fe and Ti) and heavy rare earth elements (REE) and it should retain the asthenospheric Nd isotope composition. A two-stage model of kimberlite melt formation can fulfil those requirements. The intrusion of small bodies of this proto-kimberlite melt into lithospheric mantle forms a veined heterogeneously enriched source through fractional crystallization and metasomatism of adjacent peridotites. Re-melting of this source shortly after it was metasomatically enriched produced the kimberlite melt. The chemistry, mineralogy and diamond grade of each particular kimberlite are strongly dependent on the character of the heterogeneous source part from which they melted and ascended.
DS201808-1739
2018
Diamond Buyers InternationalCompletely new types of diamonds found in Kamchatka lava. Tolbachikdiamondbuyers intl.com, July 5, 1p.Russia, Kamchatkadeposit - Tolbachik

Abstract: discovered a unique type of diamond in the Tolbachik volcano frozen lava- in the Kamchatka Peninsula of far East Russia. Scientists from all over the world are quite impressed with these findings and they now classify the gemstones as completely new & unique types of diamonds. The new types of diamonds are named after the place they were found- Tolbachik Diamonds. According to geologists, the Tolbachik diamonds were born under a very peculiar natural formation where the gemstones crystalized under the direct influence of the electric discharge of lightning and the pressure from the volcanic gases. Geologists also agree that several decades ago experts wanted to create a synthetic type of diamond where the result would have been exactly the one now created naturally in the Tolbachik diamonds. In the early 60s the French wanted to create a synthetic diamond where they would use gas as primary substance and then using electric discharge for the crystallization of the gemstone. At a closer look, the Tolbachik diamonds are similar to the synthetic diamonds found on today’s market. However, the main mineralogical and geological structure of the diamond is unlike any other type of precious stone discovered until now. These diamonds are particularly large in size (200 and up to 700 microns!). According to scientists, this is actually the first time when they discovered lava rocks that show such very dense diamond content. This discovery actually gave way to very intense disputes among specialists regarding if the Lab Grown diamonds should be regarded as ‘synthetic’ any longer. The Tolbachik diamonds resemble almost in every aspect the structure of the lab grown diamonds and they are naturally formed in lava. Therefore, the Lab Grown diamonds should be more highly regarded just as the naturally mined diamonds are. Another important fact to keep in mind is that only a true expert is actually able to tell the difference between the Tolbachik diamonds created naturally and the lab grown diamonds. Someone who is not an expert would simply regard the Tolbachik diamonds as synthetic diamonds, given their different structure from the regular diamonds formed in magmatic melt. Experts found an extremely high quantity of diamonds (several hundreds of pieces) in only a small sample of frozen lava in the Kamchatka Lava in Russia. When or how these gemstones will enter the fascinating diamond industry, and if the price of jewelry featuring Tolbachik diamonds will be more budget friendly is yet to be settled…
DS201808-1775
2017
Paquette, J.L., Ionov, D.A., Agashev, A.M., Gannoun, A., Nikolenko, E.I.Age, provenance and Precambrian evolution of the Anabar shield from U Pb and Lu Hf isotope dat a on detrital zircons, and the history of the northern and central Siberian craton.Precambrian Research, Vol. 301, pp. 134-144.Russiacraton

Abstract: The Anabar shield in northern Siberia is one of the world’s least studied Precambrian areas, and provides a ‘window’ into the crustal basement of the central and northern Siberian craton. We report U-Pb and Hf isotope data for detrital zircons sampled in a profile across its major structural units. They define a U-Pb age range from 1.8 to 3.4 Ga with three main periods: 1.8-2.0 Ga, 2.4-2.8 Ga and 3.0-3.4 Ga. The oldest zircons yield super-chondritic ?Hf(t) implying that the parental magmas of their source rocks were juvenile, i.e. formed from depleted mantle (DM). Thus, the crustal basement of the Anabar shield, and probably the whole central and northern Siberian craton, started to form in the mid-Paleoarchean, and included no recycled crust. Zircons with 2.5-2.7 Ga ages define two ?Hf(t) intervals. One is super-chondritic (+2 to +7) implying juvenile sources, the other is sub-chondritic (?3 to ?12) indicative of recycled crust, probably formed at 3.2-3.4 Ga, in magma sources. Nearly all 1.8-2.0 Ga zircons have sub-chondritic ?Hf(t) (?2 to ?29) implying derivation from sources dominated by recycled crust formed at ?2.6 Ga and ?3.4 Ga and little or no juvenile addition. These events accompanied amalgamation of the entire craton by welding of Archean domains. The Bekelekh unit of the Daldyn series has the highest proportion of ?2.6 Ga zircons and may be the oldest ‘nucleus’ of the Anabar shield, whereas the Kilegur unit of the same series is essentially Proterozoic (1.95 Ga). The largest amount of 3.1-3.4 Ga zircons, as well as common 2.6-2.7 Ga zircons, occur in the Ambardakh unit of the Upper Anabar series. Our data suggest alternation of areas with dominant ages of 1.95 Ga and ?2.6 Ga, with the younger zircons coming from granites and granulites, and the older ones from gneisses. They show no evidence for significant ages differences for the Anabar and Olenek provinces. The final amalgamation of the entire Siberian craton by welding of Archean blocks, may have taken place at around 1954 ± 6 Ma.
DS201808-1781
2017
Ragozin, A., Zedgenizov, D., Kuper, K., Palyanov, Y.Specific internal structure of diamonds from Zarnitsa kimberlite pipe.Crystals, Vol. 7, 5, pp. 133-Russiadeposit - Zarnitsa

Abstract: The Zarnitsa kimberlite pipe is one of the largest pipes of the Yakutian diamondiferous province. Currently, some limited published data exists on the diamonds from this deposit. Among the diamond population of this pipe there is a specific series of dark gray to black diamonds with transition morphologies between octahedron and rounded rhombic dodecahedron. These diamonds have specific zonal and sectorial mosaic-block internal structures. The inner parts of these crystals have polycrystalline structure with significant misorientations between sub-individuals. The high consistency of the mechanical admixtures (inclusions) in the diamonds cores can cause a high grid stress of the crystal structure and promote the block (polycrystalline) structure of the core components. These diamond crystals have subsequently been formed due to crystallization of bigger sub-individuals on the polycrystalline cores according to the geometric selection law.
DS201808-1787
2018
SEG NewsletterSonic drilling ( brief mention of useage in Siberia on alluvial diamonds.SEG Newsletter, No. 114, July, p. 10-11.Russia, Siberiaalluvials
DS201808-1788
2018
Shatsky, V.S., Malkovets, V.G., Belousova, E.A., Tretiakova, I.G., Griffin, W.L., Ragozin, A.L., Wang, Q., Gibsher, A.A., O'Reilly, S.Y.Multi stage modification of Paleoarchean crust beneath the Anabar tectonic provnce ( Siberian craton).Precambrian Research, Vol. 305, pp. 125-144.Russiatectonics

Abstract: According to present views, the crustal terranes of the Anabar province of the Siberian craton were initially independent blocks, separated from the convecting mantle at 3.1 (Daldyn terrane), 2.9 (Magan terrane) and 2.5?Ga (Markha terrane) (Rosen, 2003, 2004; Rosen et al., 1994, 2005, 2009). Previous studies of zircons in a suite of crustal xenoliths from kimberlite pipes of the Markha terrane concluded that the evolution of the crust of the Markha terrane is very similar to that of the Daldyn terrane. To test this conclusion we present results of U-Pb and Hf-isotope studies on zircons in crustal xenoliths from the Zapolyarnaya kimberlite pipe (Upper Muna kimberlite field), located within the Daldyn terrane, and the Botuobinskaya pipe (Nakyn kimberlite field) in the center of the Markha terrane. The data on xenoliths from the Botuobinskaya kimberlite pipe record tectonothermal events at 2.94, 2.8, 2.7 and 2?Ga. The event at 2?Ga caused Pb loss in zircons from a mafic granulite. U-Pb dating of zircons from the Zapolyarnaya pipe gives an age of 2.7?Ga. All zircons from the studied crustal xenoliths have Archean Hf model ages ranging from 3.65 to 3.11?Ga. This relatively narrow range suggests that reworking of the ancient crust beneath the Nakyn and Upper Muna kimberlite fields was minor, compared with the Daldyn and Alakit-Markha fields (Shatsky et al., 2016). This study, when combined with dating of detrital zircons, implies that tectonic-thermal events at 2.9 -2.85, 2.75 -2.7 and 2.0 -1.95?Ga occurred everywhere on the Anabar tectonic province, and could reflect the upwelling of superplumes at 2.9, 2.7 and 2?Ga. The presence of the same tectonic-thermal events in the Daldyn and Markha terranes (Rosen et al., 2006a,b) supports the conclusion that the identification of the Markha terrane as a separate unit is not valid.
DS201808-1799
2018
Zhitova, E.S., Krivocichev, S.V., Yakovenchuk, V.N., Ivanyuk, G.Y., Pakhomovsky, Y.A., Mikhailova, J.A.Crystal chemistry of natural layered double hydroxides: 4. Crystal structures and evolution of structural complexity of quintinite polytypes from the Kovdor alkaline ultrabasic massif, Kola Peninsula, Russia.Mineralogical Magazine, Vol. 82, no. 2, pp. 329-346.Russia, Kola Peninsuladeposit - Kovdor

Abstract: Two quintinite polytypes, 3R and 2T, which are new for the Kovdor alkaline-ultrabasic complex, have been structurally characterized. The crystal structure of quintinite-2T was solved by direct methods and refined to R1 = 0.048 on the basis of 330 unique reflections. The structure is trigonal, P c1, a = 5.2720(6), c = 15.113(3) Å and V = 363.76(8) Å3. The crystal structure consists of [Mg2Al(OH)6]+ brucite-type layers with an ordered distribution of Mg2+ and Al3+ cations according to the × superstructure with the layers stacked according to a hexagonal type. The complete layer stacking sequence can be described as …=Ab1C = Cb1A=…. The crystal structure of quintinite-3R was solved by direct methods and refined to R1 = 0.022 on the basis of 140 unique reflections. It is trigonal, R m, a = 3.063(1), c = 22.674(9) Å and V = 184.2(1) Å3. The crystal structure is based upon double hydroxide layers [M2+,3+(OH)2] with disordered distribution of Mg, Al and Fe and with the layers stacked according to a rhombohedral type. The stacking sequence of layers can be expressed as …=?B = BC = CA=… The study of morphologically different quintinite generations grown on one another detected the following natural sequence of polytype formation: 2H ? 2T ? 1M that can be attributed to a decrease of temperature during crystallization. According to the information-based approach to structural complexity, this sequence corresponds to the increasing structural information per atom (IG): 1.522 ? 1.706 ? 2.440 bits, respectively. As the IG value contributes negatively to the configurational entropy of crystalline solids, the evolution of polytypic modifications during crystallization corresponds to the decreasing configurational entropy. This is in agreement with the general principle that decreasing temperature corresponds to the appearance of more complex structures.
DS201809-2011
2018
Chepurov, A.A., Sonin, V.M., Chepurov, A.I., Tomilenko, A.A.The effects of the concentration of olivine xenocrysts on the viscosity of kimberlite melts: experimental evidence.Journal of Volcanology and Seismology, Vol. 12, 2, pp. 140-149.Russiadeposit- Nyurbinskaya

Abstract: The study of viscosity in sub-liquidus heterogeneous media, which includes kimberlite magma at the pressures and temperatures that prevail in the mantle, is an urgent task. We have conducted experiments in the serpentine-olivine, serpentine-CaCO3?olivine, and native kimberlite-olivine systems at a pressure of 4 GPa and temperatures of 1400?1600°? in a BARS high-pressure device using the technique of a falling Pt pellet. The samples were examined after experiments to find fine-grained chilled mass of crystals where the Pt pellet was observed at the time of chilling. The concentration of the solid phase was varied in the experiments between 10 and 50 wt %. We showed that when 50 wt % of olivine grains has been introduced, it was not possible to detect the motion of the Pt pellet, while when the concentration of olivine xenocrysts reached 10 wt %, the Pt pellet very rapidly descended to the bottom of the reaction volume. Viscosity was calculated using the Stokes method. We found that the viscosity of a homogeneous kimberlite melt at 4 GPa and 1600°? is below 2 Pa s, with the viscosity of a melt that contained up to 10 wt % of the solid phase being approximately constant. A kimberlite melt that contained 30 wt % of the solid phase had a viscosity on the order of 100 Pa s, while with 50 wt % of the solid phase the relative viscosity of an ultrabasic system increased to reach values over 1000 Pa s.
DS201809-2022
2018
Frigo, C., Stalder, R., Ludwig, T.OH defects in coesite and stishovite during ultrahigh-pressure metamorphism of continental crust. Dora Maira, Kochetav massifsPhysics and Chemistry of Minerals, dor.org/10.1007/ d00269-018-0987-5 13p.Russia, Kazakhstan, Alpscoesite, UHP

Abstract: The high-pressure silica polymorphs coesite and stishovite were synthesized under water-saturated conditions from a natural granitic composition doped with Li and B. Experiments were performed in a Multi-Anvil apparatus between 4 and 9.1 GPa and 900 and 950 °C, based on the conditions of a subducting continental crust as realistic for the ultrahigh-pressure metamorphic units Dora Maira and Kochetav massifs. Run products consisted of coesite/stishovite?+?kyanite?±?phengite?±?omphacite, and quench material. The synthesized silica polymorphs were successively analyzed by infrared spectroscopy, electron microprobe, and Secondary-Ion Mass Spectrometry (SIMS). No hydrous defects were observed in coesite synthesized at 4 GPa and 900 °C, whereas coesite grown at higher pressures revealed a triplet of infrared absorptions bands at 3575, 3523, and 3459 cm??1, two minor bands at 3535 and 3502 cm??1, and a small band at 3300 cm??1 that was only visible at 7.7 GPa. The total amount of Al was charge-balanced by H and the other monovalent cations. However, the band triplet could not be associated with AlOH defects, while the band doublet was inferred to BOH defects and the small band probably corresponded to interstitial H. Stishovite displayed one dominant band at 3116 cm??1 with a shoulder at 3170 cm??1, and a minor band at 2665 cm??1, probably all associated with AlOH defects. BOH defects were not observed in stishovite, and LiOH defects were neither observed in coesite nor stishovite, probably because of preferentially partition of Li in other phases such as omphacite. The total amount of defect protons increased with pressure and with metal impurity concentrations. The general increase in OH defects in silica polymorphs with increasing pressure (this study) contrasted the negative pressure trend of OH in quartz observed previously from the same starting material, and revealed an incorporation minimum of OH in silica polymorphs around the quartz/coesite phase transition.
DS201809-2038
2018
Howell, D., Stachel, T., Pearson, D.G., Stern, R.A., Nestola, F., Shirey, S.B., Harris, J.W.Deep carbon through time: the diamond record.Goldschmidt Conference, 1p. AbstractAfrica, Australia, Russia, Canadadeposit - Argyle, De Beers Pool, Jwaneng, Orapa, Udachnaya, Venetia, Wawa, Diavik

Abstract: Earth’s mantle is by far the largest silicate-hosted reservoir of carbon. Diamonds are unrivalled in their ability to record the cycle of mantle carbon and other volatiles over a vast portion of the Earth’s history. They are the product of ascending, cooling, carbon-saturated, metasomatic fluidsmelts and/or redox reactions, predominantly within peridotitic and eclogitic domains in the mantle lithosphere. This paper reports the results of a major secondary ion mass spectrometry (SIMS) carbon isotope study, carried out on 127 diamond samples, spanning a large range of geological time. Detailed transects across the incremental growth zones within each diamond were measured for C isotopes, N abundances and, for samples with N >~200 at.ppm, N isotopes. Given that all of the samples are fragments, recovered when the original crystals were broken to liberate their inclusions, 81 of the analytical traverses have confirmed growth direction context. 98 samples are from studies that have confirmed the dates of the individual diamonds through analysis of their silicate or sulphide inclusions, from source localities including Argyle, De Beers Pool, Jwaneng, Orapa, Udachnaya & Venetia. Additional samples come from Wawa (a minimum age) and Diavik where the samples are tied via inclusion paragenesis to published ages. The peridotitic dataset covers the age range of ~3.3 - 2.0 Ga, with the eclogitic data from 2.9 - 1.0 Ga. In total, 751 carbon isotope and nitrogen concentration measurements have been obtained (425 on peridotitic diamonds, and 326 on eclogitic diamonds) with 470 nitrogen isotope measurements (190 P, 280 E). We attempt to constrain the diamond carbon isotope record through time and its implications for (i) the mantle carbon reservoir, (ii) its oxygen fugacity, (iii) the fluid / melt growth environment of diamonds, (iv) fractionation trends recorded in individual diamonds, and (v) diamond population studies using bulk combustion carbon isotope analysis.
DS201809-2040
2018
Ignatov, P.A., Novikov, K.V., Shmonov, A.M., Zaripov, N.R., Khodnya, M.S., Razumov, A.N., Kilishekov, O.K., Kryazhev, S.G., Kovalchuk, O.E.Zoning of faults and secondary mineralization of host rocks of kimberlites of the Maiscoe diamond deposit, Nakyn field, Yakutia.Geology of Ore Deposits, Vol. 60, 3, pp. 201-209.Russiadeposit - Maiscoe
DS201809-2041
2018
Iskrina, A.V., Bobrov, A.V., Kriulina, G.Y., Zedgenizov, D.A., Garanin, V.K.Melt/fluid inclusions in diamonds from the Lomonosov deposit ( Arkangelsk kimberlite province).Goldschmidt Conference, 1p. AbstractRussia, Kola Peninsuladeposit - Lomonosov

Abstract: Melt/fluid inclusions in diamonds provide important evidence for mantle diamond-forming fluids or melts. By now, the major characteristics of the composition of microinclusions have been analyzed in diamonds from several kimberlite provinces and pipes worldwide [1-4]. Here we report the first data on the composition of parent diamondforming melts for diamonds from the Arkhangelsk kimberlite province. After the study of morphology, specialty of the internal structure, and distribution of microinclusions in diamonds, 10 single crystals were selected from the 31 diamonds of the representative collection. The studied crystals may be divided into two groups: cuboids and coated diamonds. The crystals have grayish yellow or dark gray colors and are almost nontransparent due to the high content of microinclusions. Polished slices of these diamonds were studied by IR-spectroscopy, which allowed us to calculate the content of nitrogen defects, as well as the content of water and carbonates in microinclusions. X-ray spectral analyses allowed to study the composition of fluid/melt microinclusions and showed that they were essentially carbonate-silicate with significant variations between these two end-members. All inclusions contain water, with the highest H2O/CO2 in highly siliceous inclusions. Unlike diamonds from Canada and South Africa [1, 2], the studied inclusions in diamionds from the Arkhangelsk province are almost free of chlorides. Comparison of the data obtained with the database on fliud/melt inclusions in diamonds worldwide shows similar of Arkhangelsk diamonds to some diamonds from Yakutia [3, 4], and the data obtained are the most similar to the composition of microinclusions in diamonds from the Internatsionalnaya pipe (Yakutia).
DS201809-2064
2018
Logvinova, A.M., Babushkina, S.A., Oleynikov, O.B., Sobolev, N.V.Shrilankite inclusions in garnets from kimberlite bodies and Diamondiferous volcanic sedimentary rocks of the Yakutian kimberlite province.Doklady Earth Sciences, Vol. 478, 1, pp. 15-19.Russiadiamond inclusions

Abstract: Pyrope-almandine garnets (Mg# = 28.3-44.9, Ca# = 15.5-21.3) from a heavy mineral concentrate of diamondiferous kimberlites of the largest diamond deposit, the Yubileinaya pipe, along with kimberlite- like rocks and diamondiferous volcano-sediments of the Laptev Sea coast, have been found to contain polymineral, predominantly acicular inclusions, composed of aggregates of shrilankite (Ti2ZrO6), rutile, ilmenite, clinopyroxene, and apatite. The presence of shrilankite as an inclusion in garnets from assumed garnet-pyroxene rocks of the lower crust, lifted up by diamond-bearing kimberlite, allows it to be considered as an indicator mineral of kimberlite, which expands the possibilities when searching for kimberlite in the Arctic.
DS201809-2087
2018
Shumilova, T.G., Ulyashev, V.V., Isaenko, S.I.A new type of impact diamonds: diamond paramorphs after wood relics. Kara astrobleme ( Pay-Khoy)81st Annual Meeting of the Meteoritical Society 2018, LPI contribution No. 2067, 1p. AbstractRussiadiamond - impact

Abstract: Impact diamonds are known as high quality technical material [1]. Usually they are formed by graphite-to-diamond solid-phase diffuse-less transition at shock pressures > 30 GPa. The diffuse-less mechanism had been proven by numerous experimental studies [2]. But impact diamond formation is possible from non-graphitic precur-sor too, from amorphous carbons and bitumenes, while the process is rare known and slightly studied. In the nature not only graphite of metamorphic rocks but sedimentary organic matter containing rocks can be treated by impact processes resulting by high pressure phases up to after-coal diamond formation [3]. The only two astroblemes with after-coal diamonds have been found by present - the giant Kara and Ust`-Kara astroblemes with 65 and 25 km in diameters correspondently [1, 3]. The novel data on impact diamonds and impact objects are very actual since the practical interest to impact diamonds last time is rising [4, 5]. Here we present the after-coal diamonds features including a new impact diamond variety (Fig. 1) presented by after-organics diamond paramorphs first time found at the Kara astrobleme (Pay-Khoy, Russia) [6]. The paramorphs are characterized with perfectly preserved micromorphology of the wood relics being composed of pure carbon content with polynanocrystalline structure has been proven with Raman spectroscopy, transmission electron microscopy, atomic force microscopy and other modern methods. The received data on after-coal diamonds point to their formation by low-distance diffuse mechanism described for low ordered carbons by Borimchuk et al. [7]. The received data allow to present a new impact diamond variety widely spread through the Kara astrobleme counting huge concentrations - up to several thousand carat per ton [6]. The proposed novel mechanism of impact diamonds formation is characterized with several stages including high pressure high temperature fast pyrolysis with the precursor carbonization co-followed with diamond crystallization through low-distance diffuse mechanism [6]. The provided study allow suppose possibility of wide distribution of impact diamonds formed after noncrystalline carbons and organics of sedimentary objects at large impact craters around the world.
DS201809-2095
2018
Spetsius, Z.V., Bogush, I.N.Pecularities of diamonds in eclogitic xenoliths from the Komsomolskaya pipe, Yakutia.Doklady Earth Sciences, Vol. 480, 1, pp. 666-670.Russiadeposit - Komsomolskaya

Abstract: The first studies of diamonds in eclogitic xenoliths from the Komsomolskaya kimberlite pipe are described. Among round and oval-shaped xenoliths with diamond ingrowths, samples with a garnet content of 40-90% of the xenolith volume dominate. Two eclogite samples contain grains of accessory rutile; a kyanite sample is also revealed. Certain samples contain two or more crystals of diamonds. Diamonds with an octahedral habit and crystals with transitional habits, which belong to an octahedral-rhombic dodecahedral row, dominate in eclogites; there are many variety VIII aggregates. A high concentration of structural nitrogen, commonly in the A form, was registered in most of the crystals. Diamonds with a small content of nitrogen impurities, 40-67% in the B1 form, are present in a number of xenoliths. The calculated temperatures of the formation of eclogitic xenoliths is 1100-1300°C. Diversity in the impurity compositions of diamonds in the same xenolith shows that these diamonds were formed at various times and in different settings. The diamond position in xenoliths, the various level of nitrogen aggregation in the diamonds, and a number of other factors point to the later formation of the diamonds, as compared to minerals of eclogites, from fluid or fluid-melts in the process of metasomatosis.
DS201809-2101
2018
Thomassot, E.S isotope study of Archean shallow crust recycling in the Earth's mantle.Goldschmidt Conference, 1p. AbstractAfrica, Botswana, Russiadeposit - Jwaneng. Kimberley Pool, Mir, Udachnaya

Abstract: Archean supracrustal rocks (i.e. chemical sediments and metavolcanics) preserve sulfur Mass Independent Fractionations (MIF) that originate from photochemical reactions occurring in atmosphere before the great oxygenation event, 2.45 Ga. Reduced and oxidized aerosols were produced by photochemistry and respectively carry 33S enrichment (?33S > 0‰) and depletion (?33S < 0‰). The relative abundance of the minor isotope of sulfur (36S) was also affected by MIF in such a way that compact negative correlation exists between ?33S and ?36S. For much of Archean sediments, ?36S /?33S? -1, while slight variation of this slope have been attributed to minor change in the chemical composition of the atmosphere affecting global MIF source mechanism. On another hand, 36S abundance is also affected by microbial cycling and in this specific case, ?36S /?33S? -7. Accordingly, ?33S-?36S co-variations can be used to discriminate distinct sedimentary pool. This contribution aims to test the robustness of MIF array of specific exospheric sulfur pools along their journey from the surface to the mantle. We examine the ?36S in addition to ?34S and ?33S signatures measured in-situ with secondary ion mass spectrometer, in sub lithospheric peridotitic and eclogitic sulfides from Kaapvaal (Jwaneng and Kimberley Pool) and Siberian craton (Mir and Udachnaya). Unlike peridotitic sulfides, eclogitic sulfides from both localities display significant MIF attesting from the presence of surficial sulfur in their source. More interestingly, the magnitude of the anomalies as well as ?36S/?33S ratio, differ from one locality to the other. Siberian eclogites match the composition of Eoarchean sulfate (?36S/?33S=-3 and ?33S<0‰). Sample from Jwaneng follow the MIF array previously reported in Archean chemical sediment (?36S/?33S=-1) while sulfide from Kimberley pool match the composition of some meso-Archean sediments in good agreement with isochron age reported in the literature for the sulfide from this locality. This study confirms that surficial sulfur has been efficiently transferred to the lithospheric mantle. More interestingly, it shows that peculiar sedimentary pools are still preserved in the cratonic keels.
DS201809-2118
2018
Zaitsev, A.M., Moe, K., Wang, W.Defect transformations in nitrogen doped CVD diamond during irradiation and annealing.Diamond and Related Materials, doi:101016/j.diamond.2018.07.017Russiasynthetics

Abstract: Nitrogen-doped CVD diamond treated with electron irradiation and subsequent annealing at temperatures from 860 to 1900?°C was studied using fluorescence imaging, optical absorption and photoluminescence. It was found that nitrogen impurity produces many optical centers active throughout the infrared and visible spectral ranges. The most prominent of them active in IR spectral range are the centers related to nitrogen-hydrogen complexes. They produce absorption lines at 2827, 2874, 2906, 2949, 2990, 3031, 3107, 3123 and 3310?cm?1. Two characteristic absorptions at wavenumbers 1293?cm?1 and 1341?cm?1 were tentatively ascribed to a modified form of nitrogen A-aggregates. In the visible and near IR spectral ranges, characteristic nitrogen-related centers have zero-phonon lines (ZPLs) at 457, 462, 489, 498, 722.5, 852.5, 865.5, 868.5, 908, 921.5 and 924.5?nm. Some of them, e.g. 457, 462 and 498?nm centers, are unique of CVD diamond. It has been confirmed that the brightest pink color of electron-irradiated nitrogen-doped CVD diamond is produced by annealing at temperatures about 1000?°C. Annealing at temperatures over 1600?°C destroys the irradiation-induced pink color. It was found that the center 489?nm is a major absorption feature in the visible spectral range of electron-irradiated, nitrogen-doped CVD diamond. Green color of electron-irradiated, nitrogen-doped CVD diamond is caused by combined absorption of GR1 center and 489?nm center. It has been confirmed that NV defects produced in CVD diamond during growth are very temperature stable. They survive heating at temperatures at least 2000?°C. In contrast, NV defects produced by irradiation may anneal out at temperatures as low as 1600?°C. This much lower thermal stability of the radiation-induced NV defects is the result of their interaction with other radiation defects produced in their vicinity. A conclusion has been made that in nitrogen-doped CVD diamonds nitrogen atoms may form clusters. These clusters are probably the origin of the broad band luminescence at wavelengths 360, 390, 535 and 720?nm and a strong broadening of ZPLs of many optical centers.
DS201810-2299
2018
Broadley, M.W., Barry, P.H., Ballentine, C.J., Taylor, L.A., Burgess, R.End-Permian extinction amplified by plume-induced release of recycled lithospheric volatiles.Nature Geoscience, 10.1038/s41561-018-0215-4 pp. 682-687.Russia, Siberiasubduction

Abstract: Magmatic volatile release to the atmosphere can lead to climatic changes and substantial environmental degradation including the production of acid rain, ocean acidification and ozone depletion, potentially resulting in the collapse of the biosphere. The largest recorded mass extinction in Earth’s history occurred at the end of the Permian, coinciding with the emplacement of the Siberian large igneous province, suggesting that large-scale magmatism is a key driver of global environmental change. However, the source and nature of volatiles in the Siberian large igneous province remain contentious. Here we present halogen compositions of sub-continental lithospheric mantle xenoliths emplaced before and after the eruption of the Siberian flood basalts. We show that the Siberian lithosphere is massively enriched in halogens from the infiltration of subducted seawater-derived volatiles and that a considerable amount (up to 70%) of lithospheric halogens are assimilated into the plume and released to the atmosphere during emplacement. Plume-lithosphere interaction is therefore a key process controlling the volatile content of large igneous provinces and thus the extent of environmental crises, leading to mass extinctions during their emplacement.
DS201810-2301
2018
Chayka, I.F., Izokh, A.E., Sobolev, A.V., Batanova, V.G.Low titanium lamproites of the Ryabinoviy Massif ( Aldan shield): crystallization conditions and lithospheric source.Doklady Earth Sciences, Vol. 481, 2, pp. 1008-1012.Russia, Aldan shieldlamproite

Abstract: Obtained data shows that high-potassic dyke rocks of the Ryabinoviy massif (Central Aldan) belong to low-titanium lamproite series (Mediterranean type) and are distinct with “classic” high-titanium lamproites. Based on Al-in-olivine thermometer, temperature of olivine-chrome-spinel pair crystallization varies in range between 1100 and 1250°C. This suggests lithospheric mantle source for the parental melt and makes role of mantle plume insignificant. High-precision data on olivine composition and bulk rock traceelement composition imply mixed source for the parental melt, consisted of depleted peridotite and enriched domains, originated during ancient subduction.
DS201810-2305
2018
Chukanov, N.V., Rastsvetaeva, R.K., Kruszewski, L., Akensov, S.M., Rusakov, V., Britvin, S.N., Vozchikova, S.A.Siudaite, Na8(Mn2+2Na) Ca6Fe3+3Zr3NbSi25O74(OH)2Cl.5H20: a new eudialyte group mineral from the Khibiny alkaline massif, Kola Peninsula.Physics and Chemistry of Minerals, Vol. 45, pp. 745-758.Russia, Kola Peninsulaalkaline

Abstract: The new eudialyte-group mineral siudaite, ideally Na8(Mn2+2Na)Ca6Fe3+3Zr3NbSi25O74(OH)2Cl•5H2O, was discovered in a peralkaline pegmatite situated at the Eveslogchorr Mt., Khibiny alkaline massif, Kola Peninsula, Russia. The associated minerals are aegirine, albite, microcline, nepheline, astrophyllite, and loparite-(Ce). Siudaite forms yellow to brownish-yellow equant anhedral grains up to 1.5 cm across. Its lustre is vitreous, and the streak is white. Cleavage is none observed. The Mohs’ hardness is 4½. Density measured by hydrostatic weighing is 2.96(1) g/cm3. Density calculated using the empirical formula is equal to 2.973 g/cm3. Siudaite is nonpleochroic, optically uniaxial, negative, with ??=?1.635(1) and ??=?1.626(1) (??=?589 nm). The IR spectrum is given. The chemical composition of siudaite is (wt%; electron microprobe, H2O determined by HCN analysis): Na2O 8.40, K2O 0.62, CaO 9.81, La2O3 1.03, Ce2O3 1.62, Pr2O3 0.21, Nd2O3 0.29, MnO 6.45, Fe2O3 4.51. TiO2 0.54, ZrO2 11.67, HfO2 0.29, Nb2O5 2.76, SiO2 47.20, Cl 0.54, H2O 3.5, -O?=?Cl ??0.12, total 99.32. According to Mössbauer spectroscopy data, all iron is trivalent. The empirical formula (based on 24.5 Si atoms pfu, in accordance with structural data) is [Na7.57(H2O)1.43]?9(Mn1.11Na0.88Ce0.31La0.20Nd0.05Pr0.04K0.41)?3(H2O)1.8(C a5.46Mn0.54)?6(Fe3+1.76Mn2+1.19)?2.95Nb0.65(T i0.20Si0.50)?0.71(Zr2.95Hf0.04Ti0.01)?3Si24.00Cl0.47O70(OH)2Cl0.47•1.2H2O. The crystal structure was determined using single-crystal X-ray diffraction data. The new mineral is trigonal, space group R3m, with a?=?14.1885(26) Å, c?=?29.831(7) Å, V?=?5200.8(23) Å3 and Z?=?3. Siudaite is chemically related to georgbarsanovite and is its analogue with Fe3+-dominant M2 site. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 6.38 (60) (-114), 4.29 (55) (-225), 3.389 (47) (131), 3.191 (63) (-228). 2.963 (100) (4-15), 2.843 (99) (-444), 2.577 (49) (3-39). Siudaite is named after the Polish mineralogist and geochemist Rafa? Siuda (b. 1975).
DS201810-2321
2018
Ghobadi, M., Gerdes, A., Kogarko, L., Hoefer, H., Brey, G.In situ LA-ICPMS isotopic and geochronological studies on carbonatites and phoscorites from the Guli Massif, Maymecha-Kotuy, polar Siberia.Geochemistry International, Vol. 56, 8, pp. 766-783.Russia, Siberiacarbonatite

Abstract: In this study we present a fresh isotopic data, as well as U-Pb ages from different REE-minerals in carbonatites and phoscorites of Guli massif using in situ LA-ICPMS technique. The analyses were conducted on apatites and perovskites from calcio-carbonatite and phoscorite units, as well as on pyrochlores and baddeleyites from the carbonatites. The 87Sr/86Sr ratios obtained from apatites and perovskites from the phoscorites are 0.70308-0.70314 and 0.70306-0.70313, respectively; and 0.70310-0.70325 and 0.70314-0.70327, for the pyrochlores and apatites from the carbonatites, respectively. Furthermore, the in situ laser ablation analyses of apatites and perovskites from the phoscorite yield ?Nd from 3.6 (±1) to 5.1 (±0.5) and from 3.8 (±0.5) to 4.9 (±0.5), respectively; ?Nd of apatites, perovskites and pyrochlores from carbonatite ranges from 3.2 (±0.7) to 4.9 (±0.9), 3.9 (±0.6) to 4.5 (±0.8) and 3.2 (±0.4) to 4.4 (±0.8), respectively. Laser ablation analyses of baddeleyites yielded an eHf(t)d of +8.5 (± 0.18); prior to this study Hf isotopic characteristic of Guli massif was not known. Our new in situ ?Nd, 87Sr/86Sr and eHf data on minerals in the Guli carbonatites imply a depleted source with a long time integrated high Lu/Hf, Sm/Nd, Sr/Rb ratios. In situ U-Pb age determination was performed on perovskites from the carbonatites and phoscorites and also on pyrochlores and baddeleyites from carbonatites. The co-existing pyrochlores, perovskites and baddeleyites in carbonatites yielded ages of 252.3 ± 1.9, 252.5 ± 1.5 and 250.8 ± 1.4 Ma, respectively. The perovskites from the phoscorites yielded an age of 253.8 ± 1.9 Ma. The obtained age for Guli carbonatites and phoscorites lies within the range of ages previously reported for the Siberian Flood Basalts and suggest essentially synchronous emplacement with the Permian-Triassic boundary.
DS201810-2325
2018
Gromilov, S.A., Afanasiev, V.P., Poikhilenko. N.P.Moissanites of the Popigai astrobleme.Doklady Earth Sciences, Vol. 481, 2, pp. 997-999.Russiamoissanite

Abstract: Moissanites were found in tagamites of the Popigai meteorite crater along with impact diamonds. We have studied 55 samples including 49 individual polytypes and six intergrowths. The numbers of 6H, 15R, 4H, 6H/15R, and 6H/4H polytypes are 82, 7, 5, 4, and 2%, respectively. By the assemblage of polytypes, the moissanites of the Popigai astrobleme are distinct from kimberlite moissanites, as well as from synthetic SiC, which is characterized by the absence of the 4H polytype and the presence of more diverse inclusions (including Fe-bearing). The Popigai astrobleme is one of few objects with reliable natural moissanite. Technogenic contamination is excluded, since any researcher can find this mineral in tagamites.
DS201810-2335
2018
Kaminsky, F., Wirth, R., Schrieber, A.Unusual phosphide, carbide and carbonate from the Morasko 1AB-MG iron meteorite.81st Annual Meeting of the Meteoritical Society 2018 LPI Contribution no. 2067, 2p. Abstract pdfRussiameteorite
DS201810-2339
2018
Kolesnichenko, M.V., Zedgenizov, D.A., Ragozin, A.L., Litasov, K.D., Shatsky, V.S.The role of eclogites in the redistribution of water in the subcontinental mantle of the Siberian craton: results of determination of the water content in minerals from the Udachnaya pipe eclogites.Russian Geology and Geophysics, Vol. 59, 7, pp. 763-779.Russia, Siberiadeposit - Udachnaya

Abstract: A comprehensive study of 26 mafic mantle xenoliths from the Udachnaya kimberlite pipe was carried out. The contents of major and trace elements, equilibrium temperature parameters, and water content in the rock-forming minerals were determined. The temperatures of formation of the studied rocks are estimated at 800-1300 °C. According to IR spectroscopy data, the water content in clinopyroxenes from the studied eclogites varies from values below the detection limit to 99 ppm. The IR spectra of garnets lack bands of water. The water content in clinopyroxene and orthopyroxene from garnet websterite is 72 and 8 ppm, respectively. The water content in the average rock, calculated from the ratio of the rock-forming minerals, varies from a few to 55 ppm. No relationship among the water content, equilibrium temperatures, and rock composition is established. The low water contents in the eclogites are close to the earlier determined water contents in peridotites from the same pipe and are, most likely, due to the re-equilibration of the eclogites with the rocks of the peridotitic lithospheric mantle. The dehydration of the protolith during its subduction and the partial melting of eclogites before their removal by kimberlitic magma to the surface might be an additional cause of the low water contents in the mantle eclogite xenoliths.
DS201810-2346
2018
Litvin, Yu.A., Kuzyura, A.V., Varlamov, D.A., Bovkun, A.V., Spival, A.V., Garanin, V.K.Interaction of kimberlite magma with diamonds upon uplift from the upper mantle to the Earth's crust.Geochemistry International, Vol. 56, 9, pp. 881-900.Russiadeposit - Nyurbinskaya

Abstract: Interaction between a melt of kimberlite from the Nyurbinskaya pipe (Yakutia) and natural monocrystalline diamonds was studied experimentally at 0.15 GPa and 1200-1250°C in high-pressure and high-temperature Ar gas “bombs.” The loss of diamond weight with slight surface dissolution of diamonds in a Ca carbonate-bearing kimberlite melt over the course of 2 h (the period of kimberlite transport from upper-mantle diamond-forming chambers to the crustal cumulative centers) is 3-4.5%. In 4 and 7-8 days (under the conditions of crustal cumulative centers), the weight of diamond decreases with remarkable bulk dissolution by 13.5 and 24.5-27.5%, respectively. In the run at 0.15 GPa and 1200°C kimberlite and ilmenite (added) melts interact to produce perovskite melt. Both of the melts, rich in titanium minerals, are immiscible with kimberlite melt and therefore cannot influence the diamond dissolution kinetics in the kimberlite melt. The experimental results suggest that precisely the dissolution processes for thermodynamically metastable diamonds in silicate-carbonate kimberlitic magmas are responsible for the effective decrease in the diamond potential of kimberlite deposits. The paper discusses the physicochemical reasons for the decrease in the kimberlite diamond potential during the chemically active history of diamond genesis: from upper-mantle chambers to the explosive release of diamonds and kimberlite material from cumulative centers to the Earth’s surface. The data on experimental physicochemical studies of the origin, analytical mineralogy of inclusions, and isotope geochemistry of diamonds are correlated.
DS201810-2369
2018
Pokhilenko, L.N.Exotic olivine mica rocks from the Udachnaya -East pipe ( Yakutia): features of the chemical composition and origin.Doklady Earth Sciences, Vol. 481, 2, pp. 1050-1055.Russia, Yakutiadeposit - Udachnaya -East
DS201811-2552
2018
Abersteiner, A., Kamenetsky, V.S., Golovin, A.V., Kamenetsky, M., Goemann, K.Was crustal contamination involved in the formation of the serpentine-free Udachnaya-East kimberlite? New insights into parental melts, liquids, liquidus assemblage and effects of alteration.Journal of Petrology, Vol. 59, 8, pp. 1467-1492.Russiadeposit - Udachnaya-East

Abstract: The petrologically unique Udachnaya-East kimberlite (Siberia, Russia) is characterised by unserpentinised and H2O-poor volcaniclastic and coherent units that contain fresh olivine, along with abundant alkali-rich carbonates, chlorides, sulphides and sulphates in the groundmass. These mineralogical and geochemical characteristics have led to two divergent models that advocate different origins. It has been suggested that the unserpentinised units from Udachnaya-East are representative of pristine unaltered kimberlite. Conversely, the alkali-chlorine-sulphur enrichment has been attributed to interactions with crustal materials and/or post-emplacement contamination by brines. The mineralogical and geochemical features and the compositions of melt inclusions in unserpentinised and serpentinised Udachnaya-East kimberlite varieties are compared in this study. Both varieties of kimberlite have similar major, compatible and incompatible trace element concentrations and primitive mantle normalised trace element patterns, groundmass textures and silicate, oxide and sulphide mineral compositions. However, these two kimberlite varieties are distinguished by: (i) the presence of unaltered olivine, abundant Na-K-Cl-S-rich minerals (i.e. chlorides, S-bearing alkali-carbonates, sodalite) and the absence of H2O-rich phases (i.e. serpentine, iowaite (Mg4Fe3+(OH)8OCl•3(H2O)) in unserpentinised samples, and (ii) the absence of alkali- and chlorine-enriched phases in the groundmass and characteristic olivine alteration (i.e. replacement by serpentine and/or iowaite) in serpentinised samples. In addition, melt inclusions hosted in olivine, monticellite, spinel and perovskite from unserpentinised and serpentinised kimberlite contain identical daughter phase assemblages that are dominated by alkali-carbonates, chlorides and sulphates/sulphides. This enrichment in alkalis, chlorine and sulphur in melt inclusions demonstrates that these elements were an intrinsic part of the parental magma. The paucity of alkali-carbonates and chlorides in the groundmass of serpentinised Udachnaya-East kimberlite is attributed to their instability and removal during post-emplacement alteration. All evidence previously used in support of crustal and brine contamination of the Udachnaya-East kimberlite is thoroughly evaluated. We demonstrate that ‘contamination models’ are inconsistent with petrographic, geochemical and melt inclusion data. Our combined data suggest that the Udachnaya-East kimberlite crystallised from an essentially H2O-poor, Si-Na-K-Cl-S-bearing carbonate-rich melt.
DS201811-2553
2018
Badredinov, Z.G., Markovsky, B.A., Tararin, I.A., Ekimova, N.I., Chubarov, V.M.Fluid silicate seperation of an ultrabasic melt into high potassium and low potassium fractions: evidence from picrites of the Late Cretaceous ultrabasic volcanic complex, eastern Kamchatka.Russian Journal of Pacific Geology, Vol. 12, 5, pp. 408-418.Russia, Kamchatkapicrites

Abstract: The mineral and chemical compositions of the layered subvolcanic ultrabasic rocks formed through fluid-silicate (liquid) separation of the ultrabasic magma into high-potassium and low-potassium fractions are characterized by the example of the layered picritic sill from the Late Cretaceous ultrabasic volcanic complex of Eastern Kamchatka. It is determined that the main potassium concentrator in the picrites from the high-potassium layers is a residual volcanic glass containing up to 8-9 wt % K2O, which is unique for ultrabasic melts.
DS201811-2554
2018
Bogatikov, O.A., Dokuchaev, A.Ya., Kargin, E.V., Yutkina, E.V., Kondrashov, I.A.Paleoproterozic kimberlites of the Lake Kimozero area, Karelian craton: ore mineralization in kimberlites and fault zones.Doklady Earth Sciences, Vol. 482, 1, pp. 1130-1133.Russiadeposit - Lake Kimozero

Abstract: Syngenetic and epigenetic ore mineralization was studied in Paleoproterozoic metakimberlites in the area of Kimozero Lake. In the Kimozero structure, redeposited ore mineralization is constrained to fracture and shear zones and consists of Fe-vaesite, Fe-Co-polydymite, millerite, Ni-pyrrhotite, pentlandite, chalcopyrite, Zn-bearing copper, galena, and Ni-pyrite. The composition of this mineralization is analogous to that of syngenetic mineralization in pyroclastic and coherent kimberlite, and its likely source was the kimberlite itself.
DS201811-2557
2015
Boyd, W.F., Alferova, M.S.Emeralds in Russia: the geological and gemology of the Malyshev mine.InColor, December pp. 78-87.Russiaemeralds
DS201811-2570
2018
Ernst, R.E., Davies, D.R., Jowitt, S.M., Campbell, I.H.When do mantle plumes destroy diamonds? ( review )Earth and Planetary Science Letters, Vol. 502, pp. 244-252.Russia, Canada, Ontario, Attawapiskatkimberlite, core boundary

Abstract: Mantle plumes are hot buoyant upwellings that rise from Earth's core-mantle-boundary to its surface where they can produce large igneous provinces (LIPs) and volcanic tracks, such as the Siberian Traps and the Hawaiian Emperor chain, respectively. We show that flattened mantle plume heads, which can have radii of >1200 km in the uppermost mantle, can heat the overlying lithospheric mantle to temperatures above the diamond stability field. As a consequence, they can destroy diamonds within the roots of Archean cratons, the principal source of diamonds in kimberlites. We quantitatively demonstrate that there is a ‘sour spot’ for this effect that occurs when lithospheric thicknesses are 165-185 km and the plume has a temperature of >150?°C above background mantle. Our model explains why the kimberlites associated with the 370 Ma Yakutsk-Vilyui plume in the Siberian craton are diamondiferous whilst those associated with the younger 250 Ma Siberian Traps plume are barren. We also show that the time required to restore the pre-plume thermal structure of the lithosphere is ca. 75-120 Myr, and that destroyed diamonds may regrow once the plume's thermal effect dissipates. The 1100 Ma Kyle Lake and adjacent 180-150 Ma Attawapiskat kimberlites in the southern Superior craton exemplify this, where the older kimberlites are associated with a narrower diamond window (<30 km) in comparison with the ca. 85 km diamond window of the younger Attawapiskat field.
DS201811-2574
2018
Gu, T., Wang, W.Optical defects in milky type I aB diamonds.Diamond & Related Materials, Vol. 89, pp. 322-329.Russia, Indiadeposit - Mir, Panna

Abstract: The optical features of milky type IaB diamonds were studied systematically by non-destructive approaches including FTIR, photoluminescence (PL), and cathodoluminescence (CL) spectroscopy. From 97 type IaB diamonds ranging from 0.2?ct to ~100?ct submitted to GIA's New York laboratory for screening, we found that all the milky type IaB diamonds consistently displayed the hydrogen-related defect with an absorption line at 3107?cm?1, and ~96% of them were accompanied by a weaker line at 3085.4?cm?1, which is undetectable in most non-milky diamonds. Most of the diamond samples display no platelet defect or a very tiny residual platelet peak with a position at larger wavenumber in milky diamonds than in non-milky counterparts. “Amber center” with a weak but sharp absorption line at 4168.8?cm?1 has been observed in ~73% of the milky diamonds and ~24% of the non-milky ones. Photoluminescence (PL) results reveal that several defects with ZPLs at 490.7, 536, 575.9 and 612.4?nm are more common in milky type IaB diamonds than non-milky ones. A zero-phonon line (ZPL) at 536?nm has been confirmed by PL mapping and CL spectra as a product of plastic deformation, and it might be linked with the H4 center (N4V2 defect). A ZPL at 490.7?nm could be related to a nitrogen-vacancy complex. The defects present more often in milky IaB diamonds are generally associated with plastic deformation. The presence of a hydrogen-related peak at 3085.4?cm?1 and a 536?nm center would help effectively distinguish IaB diamonds with subtle milky areas from their non-milky counterparts.
DS201811-2585
2018
Kostrovitsky, S., Yakolev, D.Deciphering kimberlite field structure using ilmenite composition: example of Daldyn field ( Yakutia).European Journal of Mineralogy, doi.org./ 101127/ejm/2018/0030-2783 cost $ 30.00 USRussiadeposit - Daldyn

Abstract: The spatial distribution patterns of Mg-bearing ilmenite (Ilm) composition were studied on 54 kimberlite bodies of the Daldyn field in the Yakutian kimberlite province. The representativity of the ilmenites sampled in this study is ensured by analysing ca. 100 grains from each kimberlite body. The major conclusions are as follows: (1) ilmenites from neighbouring pipes within the same linear cluster have similar average compositions and compositional fields on the MgO-Cr2O3 plots; (2) ilmenites from different clusters of pipes show different average compositions and compositional fields on the MgO-Cr2O3 plots. (3) regardless of belonging to different clusters, low-Mg Ilm across the whole Daldyn field is characterized by a direct correlation between Al2O3 and MgO; (4) significant changes of MgO content are observed in high-Mg Ilm, while Al2O3 content remains at the same level. The similarity of Ilm compositions across the kimberlite field, as shown by the MgO-Al2O3 plots, is due to a common asthenospheric source. The similar Ilm compositions in different bodies within cluster of pipes is accounted for by a single supply of magma via a lithospheric mantle channel for all pipes of the cluster. The composition of the kimberlite melts can be altered owing to the incorporation and assimilation of lithospheric mantle rocks rich in Mg and Cr. These changes of the melt cause corresponding changes in the Ilm macrocryst composition, both during and after crystallization of Ilm. Thus, the Ilm macrocryst composition follows a trend from low-Mg/low-Cr for Ilm crystallizing in the asthenosphere, to high-Mg/high-Cr at higher levels in the lithosphere. The key conclusion of this study is that Ilm can be used to decipher the structure of kimberlite fields. This can provide a reliable geological criterion for grouping an association of pipes together in clusters, which were previously identified only through subjective considerations of the spatial proximity of kimberlite bodies.
DS201811-2611
2018
Sun, J., Tappe, S., Kostrovitsky, S.I., Liu, C-Z., Skuzovatov, S.Y., Wu, F-Y.Mantle sources of kimberlites through time: A U-Pb and Lu-Hf isotope study of zircon megacrysts from the Siberian diamond fields.Chemical Geology, Vol. 479, 1, pp. 228-240.Russia, Siberiageochronology

Abstract: A comprehensive, internally consistent U-Pb and Lu-Hf isotope data set for 93 mantle-derived zircons from the Yakutian kimberlite province confirms and further refines the four major episodes of kimberlite magmatism on the Siberian craton: 421-409?Ma (Late Silurian-Early Devonian), 358-353?Ma (Late Devonian-Early Carboniferous), 226-218?Ma (Late Triassic), and 161-144?Ma (Middle-Late Jurassic). The relatively narrow, constant range of ?Hf values between +2 and +10 for both the Paleozoic and Mesozoic mantle-derived zircons (and by inference kimberlites) suggests that the volatile-rich magmas were repeatedly sourced from the convecting upper mantle beneath the Siberian craton. This finding is in keeping with the narrow and constant range of ?Nd values for groundmass perovskites from the Yakutian kimberlite province between +1.8 and +5.5 between 420 and 150?Ma. Our preferred model implies that the convecting upper mantle beneath the Yakutian kimberlite province ‘recovered’ rapidly back to ambient conditions shortly after the giant plume-related flood volcanic event that produced the Siberian Traps at 250?Ma. Although close spatial relationships exist between kimberlites and flood basalts on the Siberian craton during both the Paleozoic and Mesozoic, exact timing of the igneous events and the isotopic compositions of the diverse deep-sourced melting products rule out any direct genetic links. Besides the highly economic kimberlite-hosted diamond deposits of Late Devonian age (e.g., Mir and Udachnaya), the Siberian craton also contains significant Mesozoic placer diamond deposits (e.g., along the Anabar river), for which lamproite sources have been suggested recently. Our study shows that mantle-derived zircon megacryst fragments from the Ebelyakh placer deposit have Late Triassic ages of ca. 224?Ma. Their long-term depleted Hf isotopic compositions (+8.5 ?Hf) suggest that the alluvial diamonds were sourced from asthenosphere-derived Triassic kimberlites rather than from lithospheric mantle derived isotopically enriched lamproites.
DS201811-2613
2018
Tomilenko, A.A., Zhimulev, E.I., Bulbak, T.A., Sonin, V.M., Chepurov, A.I., Pokhilenko, N.P.Peculiarities of the composition of volatiles of diamonds synthesized in the Fe-S-C system: data on gas chromatography - mass spectrometry.Doklady Earth Sciences, Vol. 482, 1, pp. 1207-1211.Russiaspectrometry

Abstract: The first chromatography-mass spectroscopy data on volatiles in diamonds synthesized in the Fe-S-C system with 5 wt % S at 1400-1450°C and 5.0-5.5 GPa indicate the evolution of volatile composition during the diamond growth and, correspondingly, the variation in redox conditions of the reaction cell. A significant role is played by various hydrocarbons (HCs) and their derivatives, the content of which can reach 87%. Our data on possible abiogenic synthesis of HCs (components of natural gas and oil) can result in global recalculations (including climate) related to the global C cycle.
DS201811-2622
2018
Zedgenizov, D.A., Ragozin, A.L., Shatsky, V.S., Griffin, W.L.Diamond formation during metasomatism of mantle eclogite by chloride-carbonate melt.Contributions to Mineralogy and Petrology, Vol. 173, 16p. Doi.org/10.1007/s00410-018-1513-yRussiadeposit - Udachnaya

Abstract: A xenolith of bimineralic eclogite from the Udachnaya kimberlite pipe provides a snapshot of interaction between mantle rocks and diamond-forming fluids/melts. The major-element composition of the eclogite is similar to that of N-MORB and/or oceanic gabbros, but its trace-element pattern shows the effects of mantle metasomatism, which resulted in diamond formation. The diamonds are clustered in alteration veins that crosscut primary garnet and clinopyroxene. The diamonds contain microinclusions of a fluid/melt dominated by carbonate and KCl. Compared to the worldwide dataset, the microinclusions in these diamonds fall in middle of the range between saline fluids and low-Mg carbonatitic melts. The fluid/melt acted as a metasomatic agent that percolated through ancient eclogitic rocks stored in the mantle. This interaction is consistent with calculated partition coefficients between the rock-forming minerals and diamond-forming fluid/melt, which are similar to experimentally-determined values. Some differences between the calculated and experimental values may be due to the low contents of water and silicates in the chloride-carbonate melt observed in this study, and in particular its high contents of K and LILE. The lack of nitrogen aggregation in the diamonds implies that the diamond-forming metasomatism took place shortly before the eruption of the kimberlite, and that the microinclusions thus represent saline carbonate-rich fluids circulating in the basement of lithospheric mantle (150-170 km depth).
DS201812-2814
2018
Gu, T., Wang, W.Optical defects in milky type IaB diamonds.Diamond & Related Materials, Vol. 89, pp. 322-329.Russia, India, South America, Brazilphotoluminesence spectroscopy
DS201812-2819
2018
Hwang, S.L., Shen, P., Yui, T.F., Chu, H.T., Logvinova, A.M., Sobolev, N.V.Low energy phase boundary pairs and preferred crystallographic orientations of olivines in nanometer-sized ultrapotassic fluid inclusions of Aykhal diamond.Lithos, Vol. 322, pp. 392-404.Russiadeposit - Aykhal

Abstract: The healed internal conjugated cleavages at the core of Aykhal octahedral diamond sample AH2 were decorated with {111}dia-facetted ultrapotassic fluid/melt inclusion pockets containing nanosized graphite, phlogopite and olivine (Fo92) inclusions. These olivines are either rounded in pockets with ample fluid, or facetted by the {111}dia mold in the pockets with a fluid film. Transmission electron microscopy revealed two distinct crystallographic characteristics of olivine inclusions: (1) pronounced crystallographic texture of olivines grouped in specific diamond domain, and (2) frequent parallelism or sub-parallelism of specific low-energy faces of the two phases, mainly (010)ol, {120}ol, (001)ol and {111}dia, {110}dia, {100}dia in the order of decreasing preference, forming prominent (010)ol/{111}dia, (010)ol/{110}dia, (001)ol/{110}dia, {120}ol/{111}dia, and {120}ol/{110}dia low-energy phase boundaries with thin liquid film of 1-2?nm in between. These findings not only testify to the extremely low adhesion energies of olivine-diamond boundary pairs, but also imply that, in the presence of a fluid phase, the interfacial energetics and the energetically favored crystallographic orientations of olivine inclusions in diamond can be controlled simply by the settlement/attachment of low-energy facets of olivine crystals precipitating from the parental fluid upon the low-energy {111}dia or {110}dia surfaces of diamond. Such interfacial energetics control and the resultant low-energy boundary pairs are characteristically distinct from the common topotaxy or epitaxy between oxide/silicate mineral pairs, but are in a sense like the Van der Waals heteroepitaxy in artificial systems.
DS201812-2829
2018
Kazuchits, N.M., Rusetsky, M.S., Kazuchits, V.N., Korolovic, O.V., Kumar, V., Moe, K.S., Wang, W., Zaitsev, A.M. Comparison of HPHT and LPHT annealing of Ib synthetic diamond.Diamond & Related Materials, doi.1016/j.diamond.2018.11.018 30p. Russiasynthetics

Abstract: Defect transformations in type Ib synthetic diamond annealed at a temperature of 1870?°C under stabilizing pressure (HPHT annealing) and in hydrogen atmosphere at normal pressure (LPHT annealing) are compared. Spectroscopic data obtained on the samples before and after annealing prove that the processes of nitrogen aggregation and formation of nitrogen?nickel complexes are similar in both cases. Essential differences between HPHT and LPHT annealing are stronger graphitization at macroscopic imperfections and enhanced lattice distortions around point defects in the latter case. The lattice distortion around point defects is revealed as a considerable broadening of zero-phonon lines of “soft” (vacancy-related) optical centers. It was found that LPHT annealing may enhance overall intensity of luminescence of HPHT-grown synthetic diamonds.
DS201812-2853
2018
Murri, M., Mazzucchelli, M.L., Campomenosi, N., Korsakov, A.V., Prencipe, M., Mihailova, B.D., Scambelluri, M., Angel, R.J., Alvaro, M.Raman elastic geobarometry for anisotropic mineral inclusions. MirAmerican Mineralogist, Vol. 103, pp. 1869-1872.Russiamineral inclusions

Abstract: Elastic geobarometry for host-inclusion systems can provide new constraints to assess the pressure and temperature conditions attained during metamorphism. Current experimental approaches and theory are developed only for crystals immersed in a hydrostatic stress field, whereas inclusions experience deviatoric stress. We have developed a method to determine the strains in quartz inclusions from Raman spectroscopy using the concept of the phonon-mode Grüneisen tensor. We used ab initio Hartree-Fock/Density Functional Theory to calculate the wavenumbers of the Raman-active modes as a function of different strain conditions. Least-squares fits of the phonon-wavenumber shifts against strains have been used to obtain the components of the mode Grüneisen tensor of quartz (??m1 and ?m3?) that can be used to calculate the strains in inclusions directly from the measured Raman shifts. The concept is demonstrated with the example of a natural quartz inclusion in eclogitic garnet from Mir kimberlite and has been validated against direct X-ray diffraction measurement of the strains in the same inclusion.
DS201812-2858
2018
Ovsyuk, N.N., Goryainov, S.V., Likhacheva, A.Y.Raman scattering of impact diamonds. PopagaiDiamond & Related Materials, doi.1016/j.diamond .2018.11.017 24p. Russialonsdaleite
DS201812-2901
2018
Yelisseyev, A.P., Afanasyev, V.P., Gromilov, S.A.Yakutites from the Popigai meteorite crater.Diamond & Related Materials, Vol. 89, pp. 10-17.Russiameteorite

Abstract: For the first time, 60 large diamond aggregates were found inside the Popigai meteorite crater during washing of alluvial deposits along the Dogoi river crossing the crater. These aggregates are similar in appearance to yakutites from the placers of Northern Yakutia (YPY), and we regard them as yakutites from the Popigai crater (YPC). The structure and optical properties of Popigai impact diamonds from the impact melt rocks (tagamites) in the crater (PIDT) and yakutites YPC/YPY were compared in detail. In all these cases, a polycrystalline structure consisting of nanoscale grains of cubic and twinned cubic diamond (lonsdaleite) was found. This is the result of a solid-phase graphite-diamond transition due to an impact event 35?million?years ago. The diamond aggregates show the following features: a red shift of the short-wave edge of the transmission, broadening of the diamond Raman peaks, signals from other diamond polytypes and numerous inclusions of other minerals in the Raman spectra, and a dominant broadband photoluminescence (PL). PL in the N3 system associated with N3V centers in PIDT diamonds indicates a high-temperature annealing of these aggregates with resulting aggregation of impurities during the prolonged cooling of large impact melt pockets and pools. It is assumed that some of the impact diamonds were ejected from the crater during the impact event and experienced rapid cooling. Some of these diamonds fell back into the crater (YPC yakutites), others have been deposited outside the crater and displaced during erosion (YPY yakutites). Difference in size and shape between the PIDTs and yakutites YPC/YPY is due to the difference in size of original graphite flakes or aggregates and/or due to the fundamentally different technologies of diamond extraction.
DS201901-0003
2018
Aremieva, I.M., Thybo, H., Cherepanova, Y.Isopycnicity of cratonic mantle restricted to kimberlite provinces.Earth and Planetary Science Letters, Vol. 505, pp. 162-172.Russia, Siberiacraton

Abstract: The isopycnicity hypothesis states that the lithospheric mantle of ancient platforms has a unique composition such that high density due to low lithosphere temperature is nearly compensated by low-density composition of old cratonic mantle. This hypothesis is supported by petrological studies of mantle xenoliths hosted in kimberlite magmas. However, the representativeness of the kimberlite sampling may be questioned, given that any type of magmatism is atypical for stable regions. We use EGM2008 gravity data to examine the density structure of the Siberian lithospheric mantle, which we compare with independent constraints based on free-board analysis. We find that in the Siberian craton, geochemically studied kimberlite-hosted xenoliths sample exclusively those parts of the mantle where the isopycnic condition is satisfied, while the pristine lithospheric mantle, which has not been affected by magmatism, has a significantly lower density than required by isopycnicity. This discovery allows us to conclude that our knowledge on the composition of cratonic mantle is incomplete and that it is biased by kimberlite sampling which provides a deceptive basis for the isopycnicity hypothesis.
DS201901-0004
2018
Artyushkov, E.V., Korikovsky, S.P., Massonne, H-J., Checkhovich, P.A.Recent crustal uplift of Precambrian cratons: key patterns and possible mechanisms.Russian Geology and Geophysics, Vol. 59, 11, pp. 1389-1409.Russiacraton

Abstract: Precambrian cratons cover about 70% of the total continental area. According to a large volume of geomorphological, geological, paleontological, and other data for the Pliocene and Pleistocene, these cratons have experienced a crustal uplift from 100-200 m to 1000-1500 m, commonly called the recent or Neotectonic uplift. Shortening of the Precambrian crust terminated half a billion years ago or earlier, and its uplift could not have been produced by this mechanism. According to the main models of dynamic topography in the mantle, the distribution of displacements at the surface is quite different from that of the Neotectonic movements. According to seismic data, there is no magmatic underplating beneath most of the Precambrian cratons. In most of cratonic areas, the mantle lithosphere is very thick, which makes its recent delamination unlikely. Asthenospheric replacement of the lower part of the mantle lithosphere beneath the Precambrian cratons might have produced only a minor part of their Neotectonic uplifts. Since the above mechanisms cannot explain this phenomenon, the rock expansion in the crustal layer is supposed to be the main cause of the recent uplift of Precambrian cratons. This is supported by the strong lateral nonuniformity of the uplift, which indicates that expansion of rocks took place at a shallow depth. Expansion might have occurred in crustal rocks that emerged from the lower crust into the middle crust with lower pressure and temperature after the denudation of a thick layer of surface rocks. In the dry state, these rocks can remain metastable for a long time. However, rapid metamorphism accompanied by expansion of rocks can be caused by infiltration of hydrous fluids from the mantle. Analysis of phase diagrams for common crustal rocks demonstrates that this mechanism can explain the recent crustal uplift of Precambrian cratons.
DS201901-0008
2018
Blank, V.D., Churkin, V.D., Kulnitsky, B.A., Perezhogin, I.A., Kirichenko, A.N., Erohin, S.V., Sorokin, P.B., Popov, M.Y.Pressure induced transformation of graphite and diamond to onions.Crystals MDPI, Vol. 8, 2, 8p. Doi.org/10.3390/cryst8020068Russiacarbon nanotubes

Abstract: In this study, we present a number of experiments on the transformation of graphite, diamond, and multiwalled carbon nanotubes under high pressure conditions. The analysis of our results testifies to the instability of diamond in the 55-115 GPa pressure range, at which onion-like structures are formed. The formation of interlayer sp3-bonds in carbon nanostructures with a decrease in their volume has been studied theoretically. It has been found that depending on the structure, the bonds between the layers can be preserved or broken during unloading.
DS201901-0015
2018
Chaika, I.F., Izokh, A.E.Dunites of Inagli massif ( Central Aldan), cumulates of lamproitic magma.Russian Geology and Geophysics, Vol. 59, 11, pp. 1450-1460.Russia, Aldanlamproite

Abstract: We consider a hypothesis for the origin of PGE-bearing ultramafic rocks of the Inagli massif (Central Aldan) through fractional crystallization from ultrabasic high-potassium magma. We studied dunites and wehrlites of the Inagli massif and olivine lamproites of the Ryabinovy massif, which is also included into the Central Aldan high-potassium magmatic area. The research is focused on the chemistry of Cr-spinels and the phase composition of Cr-spinel-hosted crystallized melt inclusions and their daughter phases. Mainly two methods were used: SEM-EDS (Tescan Mira-3), to establish different phases and their relationships, and EPMA, to obtain precise chemical data on small (2-100 ?m) phases. The obtained results show similarity in chromite composition and its evolutionary trends for the Inagli massif ultramafites and Ryabinovy massif lamproites. The same has been established for phlogopite and diopside from crystallized melt inclusions from the rocks of both objects. Based on the results of the study, the conclusion is drawn that the ultramafic core of the Inagli massif resulted from fractional crystallization of high-potassium melt with corresponding in composition to low-titanium lamproite. This conclusion is consistent with the previous hypotheses suggesting an ultrabasic high-potassium composition of primary melt for the Inagli ultramafites.
DS201901-0045
2018
Kostrovitsky, S.Deciphering kimberlite field structure using ilmenite composition: example of Dalydyn field ( Yakutia).European Journal of Mineralogy, Vol. 30, 6, pp. 1083-1094.Russia, Yakutiadeposit - Dalydyn

Abstract: The spatial distribution patterns of Mg-bearing ilmenite (Ilm) composition were studied on 54 kimberlite bodies of the Daldyn field in the Yakutian kimberlite province. The representativity of the ilmenites sampled in this study is ensured by analysing ca. 100 grains from each kimberlite body. The major conclusions are as follows: (1) ilmenites from neighbouring pipes within the same linear cluster have similar average compositions and compositional fields on the MgO-Cr2O3 plots; (2) ilmenites from different clusters of pipes show different average compositions and compositional fields on the MgO-Cr2O3 plots. (3) regardless of belonging to different clusters, low-Mg Ilm across the whole Daldyn field is characterized by a direct correlation between Al2O3 and MgO; (4) significant changes of MgO content are observed in high-Mg Ilm, while Al2O3 content remains at the same level. The similarity of Ilm compositions across the kimberlite field, as shown by the MgO-Al2O3 plots, is due to a common asthenospheric source. The similar Ilm compositions in different bodies within cluster of pipes is accounted for by a single supply of magma via a lithospheric mantle channel for all pipes of the cluster. The composition of the kimberlite melts can be altered owing to the incorporation and assimilation of lithospheric mantle rocks rich in Mg and Cr. These changes of the melt cause corresponding changes in the Ilm macrocryst composition, both during and after crystallization of Ilm. Thus, the Ilm macrocryst composition follows a trend from low-Mg/low-Cr for Ilm crystallizing in the asthenosphere, to high-Mg/high-Cr at higher levels in the lithosphere. The key conclusion of this study is that Ilm can be used to decipher the structure of kimberlite fields. This can provide a reliable geological criterion for grouping an association of pipes together in clusters, which were previously identified only through subjective considerations of the spatial proximity of kimberlite bodies.
DS201901-0051
2019
Ovsyuk, N.N., Goryainov, S.V., Likhacheva, A.Y.Raman scattering of impact diamonds. LonsdaleiteDiamond & Related Materials, Vol. 91, pp. 207-212.Russia, SiberiaPopigai

Abstract: We report the results of a study of the polycrystalline powder of the diamond-lonsdaleite from the Popigai crater (Siberia) using UV micro-Raman spectroscopy and high-resolution synchrotron X-ray diffraction. By subtracting two experimental Raman spectra of diamond-lonsdaleite samples with close amounts of diamond and lonsdaleite, we were able to identify the polytypic composition of impact diamonds in contrast to the method of X-ray diffraction. We have managed to get for the first time the spectrum of “pure” lonsdaleite. Its deconvolution has allowed us to identify all the three Raman - active vibrational modes E2g, A1g, and E1g whose positions agree well with the results of ab initio calculations.
DS201901-0052
2018
Palyanov, Y.N.The many facets of diamond crystals.Crystals MDPI, Vol. 8, 2, 9p. Doi.org/10. 3390/cryst8020072Russiasynthetics

Abstract: This special issue is intended to serve as a multidisciplinary forum covering broad aspects of the science, technology, and application of synthetic and natural diamonds. This special issue contains 12 papers, which highlight recent investigations and developments in diamond research related to the diverse problems of natural diamond genesis, diamond synthesis and growth using CVD and HPHT techniques, and the use of diamond in both traditional applications, such as mechanical machining of materials, and the new recently emerged areas, such as quantum technologies. The results presented in the contributions collected in this special issue clearly demonstrate that diamond occupies a very special place in modern science and technology. After decades of research, this structurally very simple material still poses many intriguing scientific questions and technological challenges. It seems undoubted that diamond will remain the center of attraction for many researchers for many years to come.
DS201901-0057
2018
Potter, N.J., Ferguson, M.R.M., Kamenetsky, V.S., Chakhmouradian, A.R., Sharygin, V.V., Thompson, J.M., Goemann, K.Textural evolution of perovskite in the Afrikanda alkaline-ultramafic complex, Kola Peninsula.Contributions to Mineralogy and Petrology, Vol. 173, 12, pp. 106-Russia, Kola Peninsuladeposit - Afrikanda

Abstract: Perovskite is a common accessory mineral in a variety of mafic and ultramafic rocks, but perovskite deposits are rare and studies of perovskite ore deposits are correspondingly scarce. Perovskite is a key rock-forming mineral and reaches exceptionally high concentrations in olivinites, diverse clinopyroxenites and silicocarbonatites in the Afrikanda alkaline-ultramafic complex (Kola Peninsula, NW Russia). Across these lithologies, we classify perovskite into three types (T1-T3) based on crystal morphology, inclusion abundance, composition, and zonation. Perovskite in olivinites and some clinopyroxenites is represented by fine-grained, equigranular, monomineralic clusters and networks (T1). In contrast, perovskite in other clinopyroxenites and some silicocarbonatites has fine- to coarse-grained interlocked (T2) and massive (T3) textures. Electron backscatter diffraction reveals that some T1 and T2 perovskite grains in the olivinites and clinopyroxenites are composed of multiple subgrains and may represent stages of crystal rotation, coalescence and amalgamation. We propose that in the olivinites and clinopyroxenites, these processes result in the transformation of clusters and networks of fine-grained perovskite crystals (T1) to mosaics of more coarse-grained (T2) and massive perovskite (T3). This interpretation suggests that sub-solidus processes can lead to the development of coarse-grained and massive perovskite. A combination of characteristic features identified in the Afrikanda perovskite (equigranular crystal mosaics, interlocked irregular-shaped grains, and massive zones) is observed in other oxide ore deposits, particularly in layered intrusions of chromitites and intrusion-hosted magnetite deposits and suggests that the same amalgamation processes may be responsible for some of the coarse-grained and massive textures observed in oxide deposits worldwide.
DS201901-0059
2017
Ragozin, A., Zedgenizov, D., Kuper, K., Kalimina, V., Zemnukhov, A.The internal structure of yellow cuboid diamonds from alluvial placers of the northeastern Siberian platform.Crystals MDPI, Vol. 7, 8, 13p. Doi.org/10. 3390/cryst7080238Russiadiamond morphology

Abstract: Yellow cuboid diamonds are commonly found in diamondiferous alluvial placers of the Northeastern Siberian platform. The internal structure of these diamonds have been studied by optical microscopy, X-Ray topography (XRT) and electron backscatter diffraction (EBSD) techniques. Most of these crystals have typical resorption features and do not preserve primary growth morphology. The resorption leads to an evolution from an originally cubic shape to a rounded tetrahexahedroid. Specific fibrous or columnar internal structure of yellow cuboid diamonds has been revealed. Most of them are strongly deformed. Misorientations of the crystal lattice, found in the samples, may be caused by strains from their fibrous growth or/and post-growth plastic deformation.
DS201901-0069
2017
Reutsky, V.N., Kowalski, P.M., Palyanov, Y.N., EIMF, Weidenbeck, M.Experimental and theoretical evidence for surface induced carbon and nitrogen fractionation during diamond crystallization at high temperatures and high pressures.Crystals MDPI, Vol. 7, 7, 14p. Doi.org/ 10.3390/cryst7070190Russiadiamond morphology

Abstract: Isotopic and trace element variations within single diamond crystals are widely known from both natural stones and synthetic crystals. A number of processes can produce variations in carbon isotope composition and nitrogen abundance in the course of diamond crystallization. Here, we present evidence of carbon and nitrogen fractionation related to the growing surfaces of a diamond. We document that difference in the carbon isotope composition between cubic and octahedral growth sectors is solvent-dependent and varies from 0.7‰ in a carbonate system to 0.4‰ in a metal-carbon system. Ab initio calculations suggest up to 4‰ instantaneous 13C depletion of cubic faces in comparison to octahedral faces when grown simultaneously. Cubic growth sectors always have lower nitrogen abundance in comparison to octahedral sectors within synthetic diamond crystals in both carbonate and metal-carbon systems. The stability of any particular growth faces of a diamond crystal depends upon the degree of carbon association in the solution. Octahedron is the dominant form in a high-associated solution while the cube is the dominant form in a low-associated solution. Fine-scale data from natural crystals potentially can provide information on the form of carbon, which was present in the growth media.
DS201902-0255
2019
Abersteiner, A., Kamenetsky, V.S., Goemann, K., Golovin, A.V., Sharygin, I.S., Giuliani, A., Rodemann, T., Spetsius, Z.V., Kamenetsky, M.Djerfisherite in kimberlites and their xenoliths: implications for kimberlite melt evolution.Contributions to Mineralogy and Petrology, Vol. 174, 8 22p. Africa, South Africa, Russia, Canada, Northwest Territoriesdeposit - Bultfontein, Roberts Victor, Udachnaya-East, Obnazhennaya, Vtorogodnitsa, Koala, Leslie

Abstract: Djerfisherite (K6(Fe,Ni,Cu)25S26Cl) occurs as an accessory phase in the groundmass of many kimberlites, kimberlite-hosted mantle xenoliths, and as a daughter inclusion phase in diamonds and kimberlitic minerals. Djerfisherite typically occurs as replacement of pre-existing Fe-Ni-Cu sulphides (i.e. pyrrhotite, pentlandite and chalcopyrite), but can also occur as individual grains, or as poikilitic phase in the groundmass of kimberlites. In this study, we present new constraints on the origin and genesis of djerfisherite in kimberlites and their entrained xenoliths. Djerfisherite has extremely heterogeneous compositions in terms of Fe, Ni and Cu ratios. However, there appears to be no distinct compositional range of djerfisherite indicative of a particular setting (i.e. kimberlites, xenoliths or diamonds), rather this compositional diversity reflects the composition of the host kimberlite melt and/or interacting metasomatic medium. In addition, djerfisherite may contain K and Cl contents less than the ideal formula unit. Raman spectroscopy and electron backscatter diffraction (EBSD) revealed that these K-Cl poor sulphides still maintain the same djerfisherite crystal structure. Two potential mechanisms for djerfisherite formation are considered: (1) replacement of pre-existing Fe-Ni-Cu sulphides by djerfisherite, which is attributed to precursor sulphides reacting with metasomatic K-Cl bearing melts/fluids in the mantle or the transporting kimberlite melt; (2) direct crystallisation of djerfisherite from the kimberlite melt in groundmass or due to kimberlite melt infiltration into xenoliths. The occurrence of djerfisherite in kimberlites and its mantle cargo from localities worldwide provides strong evidence that the metasomatising/infiltrating kimberlite melt/fluid was enriched in K and Cl. We suggest that kimberlites originated from melts that were more enriched in alkalis and halogens relative to their whole-rock compositions.
DS201902-0279
2018
Ionov, D.A., Doucet, L.S., Xu, Y., Golovin, A.V., Oleinikov, O.B.Reworking of Archean mantle in the NE Siberian craton by carbonatite and silicate melt metasomatism: evidence from a carbonate bearing, dunite to websterite xenolith suite from the Obnazhennaya kimberlite.Geochimica et Cosmochimica Acta, Vol. 224, pp. 132-153.Russia, Siberiadeposit - Obnazhennaya

Abstract: The Obnazhennaya kimberlite in the NE Siberian craton hosts a most unusual cratonic xenolith suite, with common rocks rich in pyroxenes and garnet, and no sheared peridotites. We report petrographic and chemical data for whole rocks (WR) and minerals of 20 spinel and garnet peridotites from Obnazhennaya with Re-depletion Os isotope ages of 1.8-2.9?Ga (Ionov et al., 2015a) as well as 2 pyroxenites. The garnet-bearing rocks equilibrated at 1.6-2.8?GPa and 710-1050?°C. Some xenoliths contain vermicular spinel-pyroxene aggregates with REE patterns in clinopyroxene mimicking those of garnet. The peridotites show significant scatter of Mg# (0.888-0.924), Cr2O3 (0.2-1.4?wt.%) and high NiO (0.3-0.4?wt.%). None are pristine melting residues. Low-CaO-Al2O3 (?0.9?wt.%) dunites and harzburgites are melt-channel materials. Peridotites with low to moderate Al2O3 (0.4-1.8?wt.%) usually have CaO?>?Al2O3, and some have pockets of calcite texturally equilibrated with olivine and garnet. Such carbonates, exceptional in mantle xenoliths and reported here for the first time for the Siberian mantle, provide direct evidence for modal makeover and Ca and LREE enrichments by ephemeral carbonate-rich melts. Peridotites rich in CaO and Al2O3 (2.7-8.0?wt.%) formed by reaction with silicate melts. We infer that the mantle lithosphere beneath Obnazhennaya, initially formed in the Mesoarchean, has been profoundly modified. Pervasive inter-granular percolation of highly mobile and reactive carbonate-rich liquids may have reduced the strength of the mantle lithosphere leading the way for reworking by silicate melts. The latest events before the kimberlite eruption were the formation of the carbonate-phlogopite pockets, fine-grained pyroxenite veins and spinel-pyroxene symplectites. The reworked lithospheric sections are preserved at Obnazhennaya, but similar processes could erode lithospheric roots in the SE Siberian craton (Tok) and the North China craton, where ancient melting residues and reworked garnet-bearing peridotites are absent. The modal, chemical and Os-isotope compositions of the Obnazhennaya xenoliths produced by reaction of refractory peridotites with melts are very particular (high Ca/Al, no Mg#-Al correlations, highly variable Cr, low 187Os/188Os, continuous modal range from olivine-rich to low-olivine peridotites, wehrlites and websterites) and distinct from those of fertile lherzolites in off-craton xenoliths and peridotite massifs. These features argue against the concept of ‘refertilization’ of cratonic and other refractory peridotites by mantle-derived melts as a major mechanism to form fertile to moderately depleted lherzolites in continental lithosphere. The Obnazhennaya xenoliths represent a natural rock series produced by ‘refertilization’, but include no rocks equivalent in modal, major and trace element to the fertile lherzolites. This study shows that ‘refertilization’ yields broad, continuous ranges of modal and chemical compositions with common wehrlites and websterites that are rare among off-craton xenoliths.
DS201902-0280
2019
Ionov, D.A., Qi, Y-H., Kang, J-T., Golovin, A.V., Oleinikov, O.B., Zheng, W., Anbar, A.D., Zhang, Z-F., Huang, F.Calcium isotopic signatures of carbonatite and silicate metasomatism, melt percolation and crustal recycling in the lithospheric mantle.Geochimica et Cosmochimica Acta, Vol. 248, pp. 1-13.Russia, Siberiacarbonatite

Abstract: Ca isotopes can be strongly fractionated at the Earth’s surface and thus may be tracers of subducted carbonates and other Ca-rich surface materials in mantle rocks, magmas and fluids. However, the ?44/40Ca range in the mantle and the scope of intra-mantle isotope fractionation are poorly constrained. We report Ca isotope analyses for 22 mantle xenoliths: four basalt-hosted refractory peridotites from Tariat in Mongolia and 18 samples from the Obnazhennaya (Obn) kimberlite on the NE Siberian craton. Obn peridotites are Paleoproterozoic to Archean melting residues metasomatised by carbonate-rich and/or silicate melts including unique xenoliths that contain texturally equilibrated carbonates. ?44/40Ca in 15 Obn xenoliths shows limited variation (0.74-0.97‰) that overlaps the value (0.94?±?0.05‰) inferred for the bulk silicate Earth from data on fertile lherzolites, but is lower than ?44/40Ca for non-metasomatised refractory peridotites from Mongolia (1.10?±?0.03‰). Bulk ?44/40Ca in four Obn peridotites containing metasomatic carbonates ranges from 0.81?±?0.08‰ to 0.83?±?0.06‰, with similar values in acid-leachates and leaching residues, indicating isotopic equilibration of the carbonates with host rocks. We infer that (a) metasomatism tends to decrease ?44/40Ca values of the mantle, but its effects are usually limited (?0.3‰); (b) Ca isotopes cannot distinguish "carbonatite" and "silicate" types of mantle metasomatism. The lowest ?44/40Ca value (0.56‰) was obtained for a phlogopite-bearing Obn peridotite with a very high Ca/Al of 8 suggesting that the greatest metasomatism-induced Ca isotope shifts may be seen in rocks initially low in Ca that experienced significant Ca input leading to high Ca/Al. Two Obn peridotites, a dunite (melt channel material) and a veined spinel wehrlite, have high ?44/40Ca values (1.22‰ and 1.38‰), which may be due to isotope fractionation by diffusion during silicate melt intrusion and percolation in the host mantle. Overall, we find no evidence that recycling of crustal carbonates may greatly affect Ca isotope values in the global mantle or on a regional scale.
DS201902-0282
2019
Kaminsky, F., Wirth, R., Anikin, L.P., Schreiber, A.Kamchatite diamond aggregate from northern Kamchatka, Russia: new find of diamond formed by gas phase condensation or chemical vapor deposition.American Mineralogist, Vol. 104, pp. 140-149.Russia, Kamchatkamineralogy

Abstract: A series of polycrystalline diamond grains were found within the Valizhgen Peninsula in Koryakia, northern Kamchatka, Russia. A grain from the Aynyn River area is studied in detail with TEM. Diamond crystallites, 2-40 ?m in size are twinned and have high dislocation density. They are cemented with tilleyite Ca5(Si2O7)(CO3)2, SiC, Fe-Ni-Mn-Cr silicides, native silicon, graphite, calcite, and amorphous material. Among SiC grains, three polymorphs were discriminated: hexagonal 4H and 6H and cubic C3 (?-SiC). Silicides have variable stoichiometry with (Fe,Ni,Mn,Cr)/Si = 0.505-1.925. Native silicon is an open-framework allotrope of silicon S24, which has been observed, to date, as a synthetic phase only; this is a new natural mineral phase. Three types of amorphous material were distinguished: a Ca-Si-C-O material, similar in composition to tilleyite; amorphous carbon in contact with diamond, which includes particles of crystalline graphite; and amorphous SiO2. No regularity in the distribution of the amorphous material was observed. In the studied aggregate, diamond crystallites and moissanite are intensively twinned, which is characteristic for these minerals formed by gas phase condensation or chemical vapor deposition (CVD) processes. The synthetic analogs of all other cementing compounds (?-SiC, silicides, and native silicon) are typical products of CVD processes. This confirms the earlier suggested CVD mechanism for the formation of Avacha diamond aggregates. Both Avacha and Aynyn diamond aggregates are related not to "classic" diamond locations within stable cratons, but to areas of active and Holocene volcanic belts. The studied diamond aggregates from Aynyn and Avacha, by their mineralogical features and by their origin during the course of volcanic eruptions via a gas phase condensation or CVD mechanism, may be considered a new variety of polycrystalline diamond and may be called "kamchatite". Kamchatite extends the number of unusual diamond localities. It increases the potential sources of diamond and indicates the polygenetic character of diamond.
DS201902-0294
2018
Malyeshev, S.V., Pasenko, A.M., Ivanov, A.V., Gladkochub, D.P., Savatenkov, V.M., Meffre, S., Abersteiner, A., Kamenetsky, V.S., Shcherbakov, V.D.Geodynamic significance of the Mesoproterozoic magmatism of the Udzha paleo-rift ( Northern Siberian craton) based in U-Pb geochronology and paleomagnetic data.Minerals ( mdpi.com), Vol. 8, 12, 11p. PdfRussia, Siberiacraton

Abstract: The emplacement age of the Great Udzha Dyke (northern Siberian Craton) was determined by the U-Pb dating of apatite using laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). This produced an age of 1386 ± 30 Ma. This dyke along with two other adjacent intrusions, which cross-cut the sedimentary units of the Udzha paleo-rift, were subjected to paleomagnetic investigation. The paleomagnetic poles for the Udzha paleo-rift intrusions are consistent with previous results published for the Chieress dyke in the Anabar shield of the Siberian Craton (1384 ± 2 Ma). Our results suggest that there was a period of intense volcanism in the northern Siberian Craton, as well as allow us to reconstruct the apparent migration of the Siberian Craton during the Mesoproterozoic.
DS201902-0321
2019
Spengler, D., Alifirova, T.A.Formation of Siberian cratonic mantle websterites from high Mg magmas.Lithos, Vol. 326-327, pp. 384-396.Russiawebsterites

Abstract: Garnet-(olivine) websterite xenoliths from the lithospheric mantle of the central and northeastern parts of the Siberian Craton contain exsolution microstructures after Si- and Ti-rich precursor garnets. We petrographically, geochemically, and thermobarometrically investigated 13 such xenoliths from the Mir, Obnazhennaya, and Udachnaya kimberlite pipes. All samples contain garnet grains with needle- to lamellae-shaped precipitates (up to 3.0?vol%), including Ti-oxide and/or pyroxene. Orthopyroxene and clinopyroxene grains host oriented lamellae of complementary Ca-rich and Ca-poor pyroxene, respectively, in addition to lamellae of garnet and Ti- and/or Cr-oxides. The common exsolution lamellae assemblages in garnet and pyroxene imply that exsolution occurred during cooling from high-temperature precursors. Exsolution is unlikely to have resulted from variations in pressure, given experimental and thermodynamic constraints. Host mineral partitioning of transition metal and lanthanide elements with different diffusivities record temperatures that range between those of local geotherms and a dry pyroxenite solidus. Inferred magmatic minimum temperatures of 1500-1700?°C satisfy the physical conditions predicted from experimental studies of the solubility of excess Si and Ti in garnet. Granular inclusions of all major minerals within each other imply an overlapping crystallisation history. The reconstructed compositions of the websterite whole-rocks have high MgO contents (15.7-35.7?wt%). A plot of MgO/SiO2 versus SiO2 forms an array, apart from the compositions of natural websterites that formed by interaction of peridotite with basaltic or siliceous melts. The array overlaps the compositional range of komatiite flows from Commondale and Barberton, South Africa, including spinifex, massive, and cumulate subtypes of komatiites. Other major and minor element abundances and ratios of the Siberian websterite suite resemble those of South African Al-enriched komatiites and are distinct from melt-rock reaction websterites. Therefore, the mineral microstructures and geochemistry of the Siberian websterites are suggestive of the former presence of a thermal anomaly. We propose that mantle plume activity or a similar form of lower-mantle ascent played a major role in stabilising cratonic nuclei before amalgamation of the present-day Siberian Craton.
DS201902-0329
2019
Vasilev, E.A., Kozlov, A.V.Hydrogen in diamond and a thermal history of diamond crystals.Researchgate, doi:10.30695/zrmo/2018.1476.05 1p. Abs Eng. 11p. RUSRussiaspectroscopy
DS201903-0510
2019
Frigo, C., Stalder, R., Ludwig, T.OH defects in coesite and stishovite during ultrahigh-pressure metamorphism of continental crust. Dora Massif, KochetavPhysics and Chemistry of Minerals, Vol. 46, pp. 77-89.Russia, Europe, AlpsUHP

Abstract: The high-pressure silica polymorphs coesite and stishovite were synthesized under water-saturated conditions from a natural granitic composition doped with Li and B. Experiments were performed in a Multi-Anvil apparatus between 4 and 9.1 GPa and 900 and 950 °C, based on the conditions of a subducting continental crust as realistic for the ultrahigh-pressure metamorphic units Dora Maira and Kochetav massifs. Run products consisted of coesite/stishovite?+?kyanite?±?phengite?±?omphacite, and quench material. The synthesized silica polymorphs were successively analyzed by infrared spectroscopy, electron microprobe, and Secondary-Ion Mass Spectrometry (SIMS). No hydrous defects were observed in coesite synthesized at 4 GPa and 900 °C, whereas coesite grown at higher pressures revealed a triplet of infrared absorptions bands at 3575, 3523, and 3459 cm??1, two minor bands at 3535 and 3502 cm??1, and a small band at 3300 cm??1 that was only visible at 7.7 GPa. The total amount of Al was charge-balanced by H and the other monovalent cations. However, the band triplet could not be associated with AlOH defects, while the band doublet was inferred to BOH defects and the small band probably corresponded to interstitial H. Stishovite displayed one dominant band at 3116 cm??1 with a shoulder at 3170 cm??1, and a minor band at 2665 cm??1, probably all associated with AlOH defects. BOH defects were not observed in stishovite, and LiOH defects were neither observed in coesite nor stishovite, probably because of preferentially partition of Li in other phases such as omphacite. The total amount of defect protons increased with pressure and with metal impurity concentrations. The general increase in OH defects in silica polymorphs with increasing pressure (this study) contrasted the negative pressure trend of OH in quartz observed previously from the same starting material, and revealed an incorporation minimum of OH in silica polymorphs around the quartz/coesite phase transition.
DS201903-0511
2018
Garanin, K.Alrosa - world top diamond producer.7th Symposio Brasleiro de geologia do diamante, 54p ppts AvailableRussiaoverview
DS201903-0512
2018
Gibsher, A.Mineral inclusions in Siberian diamonds: mineralogy, geochemistry and application to diamond exploration.7th Symposio Brasleiro de geologia do diamante, 22 ppts. Pdf availableRussia, Siberiadiamond inclusions
DS201903-0520
2019
Ivanov, A.V., Levitskii, I.V., Levitskii, V.I., Corfu, F., Demonterova, E.I., Reznitskii, L.Z., Pavlova, L.A., Kamenetsky, V.S., Savatenkov, V.M., Powerman, V.I.Shoshonitic magmatism in the Paleoproterozoic of the south-western Siberian Craton: an analogue of the modern post-collisiion setting.Lithos, Vol. 328-329, pp. 88-100.Russiadeposit - Sharyzhalgay

Abstract: The Siberian Craton was assembled in a Paleoproterozoic episode at about 1.88?Ga by the collision of older blocks, followed at about 1.86?Ga by post-collisional felsic magmatism. We have found a set of extremely fresh mica-bearing lamprophyre-looking rocks within the Sharyzhalgay metamorphic complex of the south-western Siberian Craton. Zircon from these rocks yields a UPb TIMS age of 1864.7?±?1.8?Ma, which coincides perfectly with the peak of the post-collisional granite ages and postdates by ~15?Ma the peak of ages obtained for metamorphism. The same ages were reported earlier for a mafic dyke with ocean island basalt (OIB) geochemical signatures and a Pt-bearing mafic-ultramafic intrusion found in the same region. Mineralogy, major and trace element geochemistry and Sr-Nd-Pb isotopes show that the studied rocks (1) have shoshonitic affinity, (2) are hybrid rocks with mineral assemblages which could not be in equilibrium, (3) where derived by recycling of an Archean crustal source and (4) resemble post-collision Tibetan shoshonitic series. The genesis of these rocks is considered to be due to melting of crustal lithologies and metasomatized lithospheric mantle within a subducted slab. Some of the resulting melts ascended through the lithospheric column and fractionated to low-Mg absarokites, whereas other melts were contaminated by orthopyroxenitic mantle material and attained unusual high-Mg mafic compositions. According to our model, the post-collisional magmatism (shoshonite- and OIB-type) occurred due to upwelling of hot asthenosphere through a slab window, when the active collision ceased as a result of the slab break off and loss of the slab pull force. Overall, our study shows that in the Paleoproterozoic shoshonitic melts were emplaced within a similar tectonic setting as seen today in modern orogenic systems.
DS201903-0533
2019
Mironov, V.P.Pyramids 001 and 011 in natural diamonds. *** In ENGXVI Internationa conference on luminescence and Laser Physics devoted to the 100th. Anniversary of Irkusk State University, AIP Conf. doi.org/10.163/ 1.5089849 9p. PdfRussiadiamond morphology

Abstract: The octahedron, the cube and combinations of <111> and <001> facets are considered as growth shapes of diamond. Genesis of <011> pyramids is discussed in the literature. As shown in diamonds with the tangential growth process of <111> pyramids, the <001> and <011> pyramids are the pseudo-forms formed by accretion of adjoining pyramids <111> at their anti-skeletal growth. Accretion of layers is not always coherent; as a result, this surface becomes rough and "goffered". The normal to this "goffered" surface corresponds to C2, however this surface is not a <011> facet as it is a geometrical place of accretion of two adjoining <111> pyramids. A place of accretion is enriched with dislocations and other structural defects in comparison with the <111> pyramids, as it is visualized in a luminescence. The luminescence of these pseudo-pyramids gives the pattern known as "the Maltese cross" in (001) plate. Similarly <001> surface is a place of accretion of four adjacent <111> pyramids and is enriched with defects. In this case, the surface of "cube" will consist of a set of small heads of an octahedron. Essentially <011> pyramids occur more often than <001> pyramids.
DS201903-0535
2019
Nikiforov, A.V., Yarmolyuk, V.V.Late Mesozoic carbonatite provinces in Central Asia: their compositions, sources and genetic settings.Gondwana Research, Vol. 69, pp. 56-72.Asia, China, Russia, Siberiacarbonatite

Abstract: Identification of the Late Mesozoic carbonatite province in Central Asia is herein discussed. Its regional extent and distribution is investigated, and the areas with manifestations of carbonatite magmatism are described. It is shown that they were developed in terranes with heterogeneous and heterochronous basements: Siberian (Aldan Shield) and North China cratons; Early Paleozoic (Caledonian) and Middle-Late Paleozoic (Hercynian) structures of the Central Asian fold belt (Transbaikal and Tuva zones in Russia; Mongolia). Irrespective of the structural position, the carbonatites were generated within a relatively narrow time interval (150-118?Ma). The geochemical (Sr, LREE, Ba, F and P) specialization of carbonatites of the province is reflected in their mineral composition. Some rocks of the carbonatite complexes always include one or more distinctive minerals: fluorite, Ba-Sr sulfates, Ba-Sr-Ca carbonates, LREE fluorocarbonates, or apatite. Compared to counterparts from other age groups (for example, Maimecha-Kotui group in North Asia), these carbonatites are depleted in Ti, Nb, Ta, Zr and Hf. It is shown that the Sr and Nd isotope composition of carbonatites correlates with the geological age of the host crust. Rocks of carbonatite complexes associated with cratons are characterized by the lowest ?Nd(T) and highest ISr(T) values, indicating that their formation involved an ancient lithospheric material. Carbonatite magmatism occurred simultaneously with the largest plateau basalts 130-120?Ma ago in rift zones in the Late Mesozoic intraplate volcanic province of Central Asia. This interval corresponds to timing of global activation of intraplate magmatism processes, suggesting a link of the carbonatite province with these processes. It is shown that fields with the carbonatite magmatism were controlled by small mantle plumes (“hot fingers”) responsible for the Central Asian mantle plume events.
DS201904-0749
2019
Ionov, D.A., Qi, YpH., Kang, J-T., Golovin, A.V., Oleinkov, O.B., Zheng, W., Anbar, A.D., Zhang, Z-F., Huang, F.Calcium isotopic signatures of carbonatite and silicate metasomatism, melt percolation and crustal recycling in the lithospheric mantle.Geochimica et Cosmochimica Acta, Vol. 248, pp. 1-13.Mantle, Asia, Mongolia, Russia, Siberiametasomatism

Abstract: Ca isotopes can be strongly fractionated at the Earth’s surface and thus may be tracers of subducted carbonates and other Ca-rich surface materials in mantle rocks, magmas and fluids. However, the ?44/40Ca range in the mantle and the scope of intra-mantle isotope fractionation are poorly constrained. We report Ca isotope analyses for 22 mantle xenoliths: four basalt-hosted refractory peridotites from Tariat in Mongolia and 18 samples from the Obnazhennaya (Obn) kimberlite on the NE Siberian craton. Obn peridotites are Paleoproterozoic to Archean melting residues metasomatised by carbonate-rich and/or silicate melts including unique xenoliths that contain texturally equilibrated carbonates. ?44/40Ca in 15 Obn xenoliths shows limited variation (0.74-0.97‰) that overlaps the value (0.94?±?0.05‰) inferred for the bulk silicate Earth from data on fertile lherzolites, but is lower than ?44/40Ca for non-metasomatised refractory peridotites from Mongolia (1.10?±?0.03‰). Bulk ?44/40Ca in four Obn peridotites containing metasomatic carbonates ranges from 0.81?±?0.08‰ to 0.83?±?0.06‰, with similar values in acid-leachates and leaching residues, indicating isotopic equilibration of the carbonates with host rocks. We infer that (a) metasomatism tends to decrease ?44/40Ca values of the mantle, but its effects are usually limited (?0.3‰); (b) Ca isotopes cannot distinguish “carbonatite” and “silicate” types of mantle metasomatism. The lowest ?44/40Ca value (0.56‰) was obtained for a phlogopite-bearing Obn peridotite with a very high Ca/Al of 8 suggesting that the greatest metasomatism-induced Ca isotope shifts may be seen in rocks initially low in Ca that experienced significant Ca input leading to high Ca/Al. Two Obn peridotites, a dunite (melt channel material) and a veined spinel wehrlite, have high ?44/40Ca values (1.22‰ and 1.38‰), which may be due to isotope fractionation by diffusion during silicate melt intrusion and percolation in the host mantle. Overall, we find no evidence that recycling of crustal carbonates may greatly affect Ca isotope values in the global mantle or on a regional scale.
DS201904-0765
2018
Pakhomova, V.A., Fedoseev, D.G., Kultenko, S.Y., Karabtsov, A.A., Tishkina, V.B., Solyanik, V.A., Kamynin, V.A.Synthetic moissanite coated with diamond film imitating rough diamond.Gems & Gemology, Vol. 54, 4, 4p.Russiamoissanite
DS201904-0766
2018
Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Lykova, I.S., Chukanov, N.V., Belakovskiy, D.I., Britvin, S.N., Turchkova, A.G., Pushcharovsky, D.Y.Alexhomyakovite, K6(Ca2Na) (CO3)5CI.6h2O, a new mineral from the Khibiny alkaline complex, Kola Peninsula, Russia.European Journal of Mineralogy, Vol. 31, pp. 13-143.Russia, Kola Peninsuladeposit - Khibiny

Abstract: The new mineral alexkhomyakovite K6(Ca2Na)(CO3)5Cl?6H2O (IMA2015-013) occurs in a peralkaline pegmatite at Mt. Koashva, Khibiny alkaline complex, Kola peninsula, Russia. It is a hydrothermal mineral associated with villiaumite, natrite, potassic feldspar, pectolite, sodalite, biotite, lamprophyllite, titanite, fluorapatite, wadeite, burbankite, rasvumite, djerfisherite, molybdenite and an incompletely characterized Na-Ca silicate. Alexkhomyakovite occurs as equant grains up to 0.2 mm, veinlets up to 3 cm long and up to 1 mm thick and fine-grained aggregates replacing delhayelite. Alexkhomyakovite is transparent to translucent, colourless, white or grey, with vitreous to greasy lustre. It is brittle, the Mohs hardness is ca. 3. No cleavage was observed, the fracture is uneven. D meas = 2.25(1), D calc = 2.196 g cm?3. Alexkhomyakovite is optically uniaxial (-), ? = 1.543(2), ? = 1.476(2). The infrared spectrum is reported. The chemical composition [wt%, electron microprobe data, CO2 and H2O contents calculated for 5 (CO3) and 6 (H2O) per formula unit (pfu), respectively] is: Na2O 4.09, K2O 35.72, CaO 14.92, MnO 0.01, FeO 0.02, SO3 0.11, Cl 4.32, CO2 28.28, H2O 13.90, -O=Cl -0.98, total 100.39. The empirical formula calculated on the basis of 9 metal cations pfu is K5.90Ca2.07Na1.03(CO3)5(SO4)0.01O0.05Cl0.95?6H2O. The numbers of CO3 groups and H2O molecules are based on structure data. Alexkhomyakovite is hexagonal, P63/mcm, a = 9.2691(2), c = 15.8419(4) Å, V = 1178.72(5) Å3 and Z = 2. The strongest reflections of the powder X-ray diffraction pattern [d Å(I)(hkl)] are: 7.96(27)(002), 3.486(35)(113), 3.011(100)(114), 2.977(32)(211), 2.676(36)(300), 2.626(42)(213, 115), 2.206(26)(311) and 1.982(17)(008). The crystal structure (solved from single-crystal X-ray diffraction data, R = 0.0578) is unique. It is based on (001) heteropolyhedral layers of pentagonal bipyramids (Ca,Na)O5(H2O)2 interconnected via carbonate groups of two types, edge-sharing ones and vertex-sharing ones. Ca and Na are disordered. Ten-fold coordinated K cations centre KO6Cl(H2O)3 polyhedra on either side of the heteropolyhedral layer. A third type of carbonate group and Cl occupy the interlayer. The mineral is named in honour of the outstanding Russian mineralogist Alexander Petrovich Khomyakov (1933-2012).
DS201904-0768
2018
Putintseva, E.V., Spiridonov, E.M.Ilmenite Group minerals in the Russia's oldest diamondiferous kimberlites of Kimozero, Karelia.Geology of Ore Deposits, Vol. 60, 7, pp. 625-635.Russiadeposit - Kimozero

Abstract: The paper discusses the morphology and compositional variations of ilmenite group minerals from kimberlites of two phases at the Kimozero locality, the oldest in Russia. Phenocrysts of Mn-rich picroilmenite and Fe-rich geikielite in kimberlites of both phases are similar in morphology and composition. Ilmenite from cement in the second-phase kimberlites enriched in Mg and rimming small regularly shaped chrome spinel phenocrysts is not present in the first-phase kimberlites. Ilmenite, manganilmenite, and Fe-bearing pyrophanite (22-24 wt % MnO) abundant in the cement of the second-phase kimberlites are twice as rich in Nb and substantially richer in Mn than ilmenite up to manganilmenite from the cement of the first-phase kimberlites. Ilmenite and manganilmenite of the first-phase kimberlites is enriched in Zn (up to 1.5 wt % ZnO). Ilmenite from the second-phase kimberlites contains up to 3 wt % Cr2O3. In Nb concentration, kimberlitic rocks of the Kimozero are similar to those found in other parts of the world (up to 3.5 wt % Nb2O5). Significant Mn-enrichment of the ilmenite group minerals is a common feature of Kimozero kimberlitic rocks. It is suggested that kimberlites in which all ilmenite group minerals—from megacrysts and phenocrysts to small segregations in the cement—are enriched in Me, formed with the participation of carbonatite melts with increased alkalinity.
DS201904-0774
2017
Reutsky, V.N., Palyanov, Yu.N., Wiedenbeck, M.Evidence for large scale fractionation of carbon isotopes and of nitrogen impurity during crystallization of gem quality cubic diamonds from placers of North Yakutia.Geochemistry International, Vol. 55, 11, pp. 988-999.Russia, Yakutiadiamond morphology

Abstract: The spatial distribution of carbon and nitrogen isotopes and of nitrogen concentrations is studied in detail in three gem quality cubic diamonds of variety II according to Orlov’s classification. Combined with the data on composition of fluid inclusions our results point to the crystallization of the diamonds from a presumably oxidized carbonate fluid. It is shown that in the growth direction ?13C of the diamond becomes systematically lighter by 2-3‰ (from -13.7 to -15.6‰ for one profile and from -11.7 to -14.1‰ for a second profile). Simultaneously, we observe substantial decrease in the nitrogen concentration (from 400-1000 to 10-30 at ppm) and a previously unrecognized enrichment of nitrogen in light isotope, exceeding 30‰. The systematic and substantial changes of the chemical and isotopic composition can be explained using the Burton-Prim-Slichter model, which relates partition coefficients of an impurity with the crystal growth rate. It is shown that changes in effective partition coefficients due to a gradual decrease in crystal growth rate describes fairly well the observed scale of the chemical and isotopic variations if the diamond-fluid partition coefficient for nitrogen is significantly smaller than unity. This model shows that nitrogen isotopic composition in diamond may result from isotopic fractionation during growth and not reflect isotopic composition of the mantle fluid. Furthermore, it is shown that the infra-red absorption at 1332 ?m-1 is an integral part of the Y-defect spectrum. In the studied natural diamonds the 1290 ?m-1 IR absorption band does not correlate with boron concentration.
DS201904-0775
2017
Reutsky, V.N.,Kowalski, P.M., Palyanov, Yu.N., Wiedenbeck, M.Experimental and theoretical evidence for surface induced carbon and nitrogen fractionation during diamond crystallization at high temperatures and high pressures.MDPI Crystals, 14p. Russiadiamond morphology

Abstract: Isotopic and trace element variations within single diamond crystals are widely known from both natural stones and synthetic crystals. A number of processes can produce variations in carbon isotope composition and nitrogen abundance in the course of diamond crystallization. Here, we present evidence of carbon and nitrogen fractionation related to the growing surfaces of a diamond. We document that difference in the carbon isotope composition between cubic and octahedral growth sectors is solvent-dependent and varies from 0.7h in a carbonate system to 0.4h in a metal-carbon system. Ab initio calculations suggest up to 4h instantaneous 13C depletion of cubic faces in comparison to octahedral faces when grown simultaneously. Cubic growth sectors always have lower nitrogen abundance in comparison to octahedral sectors within synthetic diamond crystals in both carbonate and metal-carbon systems. The stability of any particular growth faces of a diamond crystal depends upon the degree of carbon association in the solution. Octahedron is the dominant form in a high-associated solution while the cube is the dominant form in a low-associated solution. Fine-scale data from natural crystals potentially can provide information on the form of carbon, which was present in the growth media.
DS201904-0792
2019
Vasiliev, E.Hydrogen in diamond and a thermal history of diamond crystals.researchgate.net, https://www.researchgate.net/ publication/330360071Russiadiamond morphology

Abstract: We have performed an analysis of the cases of synchronism in th egrowth temperature in local zones of diamond crystals and the concentration of hydrogen in them.The considered cases were observed by the authors and fined out in the iterature. Possible causes of the simbatic change in the crystal growth temperature and the concentration of hydrogen in it are considered.The determination of the temperature change over the zones was carried out on the basis of local FTIR spectroscopy from the ratio of the nitrogen concentration in the form of defects in the crystal structure of A and B1, and size the B2 defects.The change in the hydrogen concentration in various zones of diamond crystals was estimated from the 3107cm-1 band of the hydrogen-containing defect. It is shown that in the analyzed cases the concentration of hydrogen in diamond is determined mainly by its content in the growth medium.We accept the obtained results as evidence of the participation of hydrogen in the heat transfer in mantle mineral-forming systems.
DS201904-0793
2019
Vasiliev, E., Klepikov, I., Antonov, A.V.Rounded diamond crystals with mixed growth mechanism from alluvial placers of the Krasnovishersky district.researchgate.net, https://www.researchgate.net/ publication/328305567Russiadiamond morphology
DS201904-0794
2018
Vasiliev, E.A., Petrovsky, V.A., Kozlov, A.V., Antonov, A.V.Infrared spectroscopy and internal structure of diamonds from the Ichetyu placer, central Timan, Russia.Geology of Ore Deposits, Vol. 60, 7, pp. 616-624.Russia, Uralsdiamond morphology

Abstract: A wide range of model temperature, which is typical for dodecahedroids from placer deposits in the Urals, Brazil, and the northern Yakutia diamond province has been identified in diamond crystals of the Ichetyu Ural-type diamonds deposit, Central Urals. Plates were cut from six crystals; it have been studied with cathodoluminescence and infrared and photoluminescence spectroscopy. Octahedral zoning predominates in the internal structure of rounded dodecahedroids, and growth layers are cut by the surface. Surface pigmentation spots are exhibited in the cathodoluminescent images of all plates. The nitrogen concentration in Ichetyu diamonds ranges from 100 to 2200 ppm and its proportion as B1 defects varies from 0 to 100%. The maximum absorption coefficient of hydrogen band is 56 cm-1 with an average value of 0.8 cm-1.
DS201904-0795
2018
Vetrin, V.R., Belousova, E.A., Kremenetsky, A.A.Lu-Hf isotopic systematics of zircon from lower crustal xenoliths in the Belomorian mobile belt.Geology of Ore Deposits, Vol. 60, 7, pp. 568-577.Russia, Kola Peninsulageochronology

Abstract: The structure, geochemistry, and U-Pb and Lu-Hf isotopic composition of zircon crystals from garnet granulite xenoliths of the lower crust in the Belomorian mobile belt have been studied. It has been established that Early Paleoproterozoic zircon, 2.47 Ga in age, is primary magmatic and formed during crystallization of mafic rocks in the lower crust. Meso- and Neoarchean zircons are xenogenic crystals trapped by mafic melt during its contamination with older crustal sialic rocks. Metamorphic zircon grains have yielded a Late Paleoproterozoic age (1.75 Ga). A Paleozoic age has been established for a magmatic crystal formed due to interaction of xenoliths with an alkaline ultramafic melt, which delivered xenoliths to surface. The U-Pb datings and Lu-Hf systematics of crystals have been used to delineate the stages of formation and transformation of the lower crust in this region.
DS201904-0802
2017
Zedgenizov, D., Reutsky, V., Wiedenbeck, M.The carbon and nitrogen isotope characteristics of Type Ib-IaA cuboid diamonds from alluvial placers in the northeastern Siberian platform. MDPI Minerals, 14p. PdfRussiadiamond morphology

Abstract: Cuboid diamonds are particularly common in the placers of the northeastern Siberian platform, but their origin remains unclear. These crystals usually range in color from dark yellow to orange and, more interestingly, are characterized by unusual low aggregated nitrogen impurities (non-aggregated C-center), suggesting a short residence time and/or low temperatures at which they have been stored in the mantle. In order to track possible isotopic signature that could help deciphering cuboid diamond’s crystallization processes, ?¹³C values, ?¹?N values, and nitrogen concentrations have been determined in situ in three samples using secondary ion mass spectrometry (SIMS), whereas nitrogen aggregation states have been determined by FTIR spectroscopy. The samples fall out of the ?¹³C vs. ?¹?N field of canonical mantle composition. Different scales of carbon and nitrogen fractionation may produce the observed variations. Alternatively, mixing mantle and crustal material would obscure initial co-variations of ?¹³C values with ?¹?N or nitrogen content.
DS201905-1014
2019
Abersteiner, A., Kamenetsky, V.S., Goemann, K., Golovin, A.V., Gornova, M.A.Polymineralic inclusions in kimberlite hosted megacrysts: implications for kimberlite melt evolution.Lithos, doi.101016/j.lithos .2019.04.004 42p.Canada, Northwest Territories, Russiadeposit - Diavik, Jericho, Leslie, Udachnaya East

Abstract: Megacrysts are large (cm to >20?cm in size) mantle-derived crystals, which are commonly entrained by kimberlite magmas, comprising of olivine, orthopyroxene, clinopyroxene, phlogopite, garnet, ilmenite and zircon as common phases. Numerous studies have shown megacrysts to contain polymineralic inclusions, which have been interpreted to represent entrapped kimberlite melt. To constrain the origin of these inclusions in megacrysts and their relationship to kimberlite magmatism, we present a detailed petrographic and geochemical study of clinopyroxene and olivine megacrysts and their hosted inclusions from the Diavik, Jericho, Leslie (Slave Craton, Canada) and Udachnaya-East (Siberian Craton, Russia) kimberlites. The studied megacrysts are between 1 and 3?cm in size and representative of both the Cr-rich and Cr-poor suites. Megacrysts contain two types of inclusions: i. Large (<0.5-5?mm in size) round-to-irregular shaped polymineralic inclusions, which are composed of minerals similar to the host kimberlite groundmass, and consist of olivine, calcite, spinel, perovskite, phlogopite and apatite (± serpentine, alkali-carbonates, alkali-chlorides, barite). ii. Swarms/trails of ‘micro melt inclusions’ (MMI; <1-5??m in size), which surround polymineralic inclusions, veins and fractures, thereby forming a ‘spongy’ texture. MMIs generally contain multiphase assemblages similar to polymineralic inclusions as well as various additional phases, such as alkali-carbonates or alkali-chlorides, which are typically absent in polymineralic inclusions and the surrounding kimberlite groundmass. Textural and geochemical evidence suggests that polymineralic inclusions in megacrysts crystallised from kimberlite melt, which infiltrated along fracture/vein networks. The polymineralic inclusion assemblages resulted from disequilibria reactions between the host megacryst and infiltrating kimberlite melt, which was likely enhanced by rapidly changing conditions during magmatic ascent. The connectivity of polymineralic inclusions to the kimberlite groundmass via network veins/fractures suggests that they are susceptible to infiltrating post-emplacement fluids. Therefore, the vast majority of polymineralic inclusions are unlikely to represent ‘pristine’ entrapped kimberlite melt. In contrast, MMIs are isolated within megacrysts (i.e. not connected to fractures/veins and therefore shielded from post-magmatic fluids) and probably represent entrapped remnants of the variably differentiated kimberlite melt, which was more enriched in alkalis-Cl-S-CO2 than serpentinised polymineralic inclusions and the host rocks exposed at Earth's surface as kimberlites.
DS201905-1024
2019
Doroshkevich, A.G., Chebotarev, D.A., Sharygin, V.V.. Prokopyev, I.R., Nikolenko, A.M.Petrology of alkaline silicate rocks and carbonatites of the Chuktukon massif, Chadobets upland, Russia: sources, evolution and relation to the Triassic Siberian LIP.Lithos, Vol. 332-333, pp. 245-260.Russiacarbonatite

Abstract: The petrogenesis of temporally and spatially associated carbonatitic and deeply derived carbonated alkaline silicate magmas provides an opportunity to gain insights into the nature of the deepest lithospheric mantle. The Chuktukon massif, which is part of the Chadobets alkaline ultramafic carbonatite complex (Chadobets upland, Siberian craton) is a carbonatite-melilitite-damtjernite intrusion, whose emplacement was coeval with the Siberian Traps large igneous province (LIP). In this study, the sources of the primary melts are examined, the petrogenetic evolution of the complex is reconstructed and the relationship with the Siberian LIP is also discussed. Isotopic and geochemical information indicate that the source for the Chuktukon primary melts was isotopically moderately depleted and the primarymelts were formed by lowdegree partial melting of garnet carbonated peridotite. Hydrothermal processes caused 18O- and 13C- enrichment. The weathering process was accompanied by trace element re-distribution and enrichment of the weathering crust in Zn, Th, U, Nb, Pb and REE, relative to the Chuktukon rocks and a change in radiogenic (Sr, Nd) isotope compositions.
DS201905-1034
2019
Golovin, A.V., Sharygin, I.S., Kamenetsky, V.S., Korsakov, A.V., Yaxley, G.M.Alkali-carbonate melts from the base of cratonic lithospheric mantle: links to kimberlites.Chemical Geology, Vol. 483, pp. 261-274.Russia, Yakutiadeposit - Udachnaya -East

Abstract: Identification of the primary compositions of mantle-derived melts is crucial for understanding mantle compositions and physical conditions of mantle melting. However, these melts rarely reach the Earth's surface unmodified because of contamination, crystal fractionation and degassing, processes that occur almost ubiquitously after melt generation. Here we report snapshots of the melts preserved in sheared peridotite xenoliths from the Udachnaya-East kimberlite pipe, in the central part of the Siberian craton. These xenoliths are among the deepest mantle samples and were delivered by kimberlite magma from 180-230?km depth interval, i.e. from the base of the cratonic lithosphere. The olivine grains of the sheared peridotites contain secondary inclusions of the crystallized melt with bulk molar (Na?+?K)/Ca?~?3.4. Various Na-K-Ca-, Na-Ca-, Na-Mg-, Ca-Mg- and Ca-carbonates, Na-Mg-carbonates with additional anions, alkali sulphates and halides are predominant among the daughter minerals in secondary melt inclusions, whereas silicates, oxides, sulphides and phosphates are subordinate. These inclusions can be considered as Cl-S-bearing alkali-carbonate melts. The presence of aragonite, a high-pressure polymorph of CaCO3, among the daughter minerals suggests a mantle origin for these melt inclusions. The secondary melt inclusions in olivine from the sheared peridotite xenoliths and the melt inclusions in phenocrystic olivines from the host kimberlites demonstrate similarities, in daughter minerals assemblages and trace-element compositions. Moreover, alkali-rich minerals (carbonates, halides, sulphates and sulphides) identified in the studied melt inclusions are also present in the groundmass of the host kimberlites. These data suggests a genetic link between melt enclosed in olivine from the sheared peridotites and melt parental to the Udachnaya-East kimberlites. We suggest that the melt inclusions in olivine from mantle xenoliths may represent near primary, kimberlite melts. These results are new evidence in support of the alkali?carbonate composition of kimberlite melts in their source regions, prior to the kimberlite emplacement into the crust, and are in stark contrast to the generally accepted ultramafic silicate nature of parental kimberlite liquids.
DS201905-1045
2019
Ivanov, A.V., Mukasa, S.B., Kamenetsky, V.S., Ackerson, M., Zedgenizov, D.A.Volatile concentrations in olivine hosted melt inclusions from meimechite and melanephenelinite lavas of the Siberian Trap Large Igneous Province: evidence for flux related high Ti, high Mg magmatism.Chemical Geology, Vol. 483, pp. 442-462.Russiameimechite
DS201905-1046
2019
Ivanyuk, G.Y., Yakovenchuk, V.N., Panikorovskii, T.L., Konoplyova, N., Pakhomovsky, Y.A., Bazai, A.V., Bocharov, V.N., Krivovichev, S.V.Hydroxynatropyrochlore, ( Na, Ca, Ce)2 Nb2O6(OH), a new member of the pyrochlore group from the Kovdor phoscorite-carbonatite pipe, Kola Peninsula, Russia.Mineralogical Magazine, Vol. 83, pp. 107-113.Russia, Kola Peninsulacarbonatite

Abstract: Hydroxynatropyrochlore, (Na,?a,Ce)2Nb2O6(OH), is a new Na-Nb-OH-dominant member of the pyrochlore supergroup from the Kovdor phoscorite-carbonatite pipe (Kola Peninsula, Russia). It is cubic, Fd-3m, a = 10.3211(3) Å, V = 1099.46 (8) Å3, Z = 8 (from powder diffraction data) or a = 10.3276(5) Å, V = 1101.5(2) Å3, Z = 8 (from single-crystal diffraction data). Hydroxynatropyrochlore is a characteristic accessory mineral of low-carbonate phoscorite of the contact zone of the phoscorite-carbonatite pipe with host foidolite as well as of carbonate-rich phoscorite and carbonatite of the pipe axial zone. It usually forms zonal cubic or cubooctahedral crystals (up to 0.5 mm in diameter) with irregularly shaped relics of amorphous U-Ta-rich hydroxykenopyrochlore inside. Characteristic associated minerals include rockforming calcite, dolomite, forsterite, hydroxylapatite, magnetite,and phlogopite, accessory baddeleyite, baryte, barytocalcite, chalcopyrite, chamosite-clinochlore, galena, gladiusite, juonniite, ilmenite, magnesite, pyrite, pyrrhotite, quintinite, spinel, strontianite, valleriite, and zirconolite. Hydroxynatropyrochlore is pale-brown, with an adamantine to greasy lustre and a white streak. The cleavage is average on {111}, the fracture is conchoidal. Mohs hardness is about 5. In transmitted light, the mineral is light brown, isotropic, n = 2.10(5) (??= 589 nm). The calculated and measured densities are 4.77 and 4.60(5) g•cm-3, respectively. The mean chemical composition determined by electron microprobe is: F 0.05, Na2O 7.97, CaO 10.38, TiO2 4.71, FeO 0.42, Nb2O5 56.44, Ce2O3 3.56, Ta2O5 4.73, ThO2 5.73, UO2 3.66, total 97.65 wt. %. The empirical formula calculated on the basis of Nb+Ta+Ti = 2 apfu is (Na1.02Ca0.73Ce0.09Th0.09 U0.05Fe2+0.02)?2.00 (Nb1.68Ti0.23Ta0.09)?2.00O6.03(OH1.04F0.01)?1.05. The simplified formula is (Na, Ca,Ce)2Nb2O6(OH). The mineral slowly dissolves in hot HCl. The strongest X-ray powderdiffraction lines [listed as (d in Å)(I)(hkl)] are as follows: 5.96(47)(111), 3.110(30)(311), 2.580(100)(222), 2.368(19)(400), 1.9875(6)(333), 1.8257(25)(440) and 1.5561(14)(622). The crystal structure of hydroxynatropyrochlore was refined to R1 = 0.026 on the basis of 1819 unique observed reflections. The mineral belongs to the pyrochlore structure type A2B2O6Y1 with octahedral framework of corner-sharing BO6 octahedra with A cations and OH groups in the interstices. The Raman spectrum of hydroxynatropyrochlore contains characteristic bands of the lattice, BO6, B-O and O-H vibrations and no characteristic bands of the H2O vibrations. Within the Kovdor phoscorite-carbonatite pipe, hydroxynatropyrochlore is the latest hydrothermal mineral of the pyrochlore supergroup, which forms external rims around grains of earlier U-rich hydroxykenopyrochlore and separated crystals in voids of dolomite carbonatite veins. The mineral is named in accordance with the pyrochlore supergroup nomenclature.
DS201905-1050
2019
Kogarko, L., Veselovsky, R.V.Geodynamic regimes of carbonatite formation according to the Paleo-reconstruction method.Doklady Earth Sciences, Vol. 484, 1, pp. 25-27.Russiacarbonatite

Abstract: Three models of geodynamic regimes of carbonatite formation are now actively being developed because of the high trace metal potential of this rock type: carbonatite melt generation within the lithosphere mantle; carbonatite relation to orogenic zones; the formation of carbonatite complexes as a result of the ascent of deep mantle plumes. The application for the first time of a modern model of “absolute” paleotectonic reconstructions combined with databases (both our own and published) demonstrates the general relationship of occurrences of the Phanerozoic carbonatite magmatism to Large Low S-wave Velocity Provinces: those are allocated in the lower mantle and are zones of generation of deep mantle plumes.
DS201905-1053
2019
Kovalev, S.G., Puchkov, V.N., Kovalev, S.S., Vysotsky, S.I.Rare Th-Sc minerals in picrites of the southern Urals and their genetic value.Doklady Earth Sciences, Vol. 484, 2, pp. 138-141.Russia, Uralspicrites

Abstract: The first data on the discovery of Th-Sc mineralization in the pyritic complexes of the Southern Urals are presented. The minerals of Th (thorite) and Sc-containing thorium minerals are described. The conclusion is made that the Th-Sc mineralization formed due to crystallization of a residual melt in the local volume.
DS201905-1063
2019
Nimis, P., Angel, R.J., Alvaro, M., Nestola, F., Harris, J.W., Casati, N., Marone, F.Crystallographic orientations of magnesiochromite inclusions in diamonds: what do they tell us?Contributions to Mineralogy and Petrology, Vol. 174, p. 29- 13p.Russia, Siberiadeposit - Udachnaya

Abstract: We have studied by X-ray diffractometry the crystallographic orientation relationships (CORs) between magnesiochromite (mchr) inclusions and their diamond hosts in gem-quality stones from the mines Udachnaya (Siberian Russia), Damtshaa (Botswana) and Panda (Canada); in total 36 inclusions in 23 diamonds. In nearly half of the cases (n?=?17), [111]mchr is parallel within error to [111]diamond, but the angular misorientation for other crystallographic directions is generally significant. This relationship can be described as a case of rotational statistical COR, in which inclusion and host share a single axis (1 df). The remaining mchr-diamond pairs (n?=?19) have a random COR (2 df). The presence of a rotational statistical COR indicates that the inclusions have physically interacted with the diamond before their final incorporation. Of all possible physical processes that may have influenced mchr orientation, those driven by surface interactions are not considered likely because of the presence of fluid films around the inclusions. Mechanical interaction between euhedral crystals in a fluid-rich environment is therefore proposed as the most likely mechanism to produce the observed rotational COR. In this scenario, neither a rotational nor a random COR can provide information on the relative timing of growth of mchr and diamond. Some multiple, iso-oriented inclusions within single diamonds, however, indicate that mchr was partially dissolved during diamond growth, suggesting a protogenetic origin of these inclusions.
DS201905-1068
2019
Prokopyev, I.R., Doroshkevich, A.G., Sergeev, S.A., Ernst, R.E., Ponomarev, J.D., Redina, A.A., Chebotarev, D.A., Nikolenko, A.M., Dultsev, V.F., Moroz, T.N., Minakov, A.V.Petrography, mineralogy and SIMS U-Pb geochronology of 1.0 - 1.8 Ga carbonatites and associated alkaline rocks of the Central Aldan magnesiocarbonatite province ( South Yakutia, Russia).Mineralogy and Petrology, Doi.org/a0.1007/ s00710-019-00661-3 24p.Russiacarbonatites
DS201905-1075
2019
Shchepetova, O.V., Korsakov, A.V., Zelemovskiy, P.S., Mikhailenko, D.S.The mechanism of disordered graphite formation in UHP diamond bearing complexes.Doklady Earth Sciences, Vol. 484, 1, pp. 84-88.RussiaUHP

Abstract: Kyanite gneiss from the “New Barchinsky” locality (Kokchetav Massif) was studied in detail. This rock is characterized by zonal distribution of the C and SiO2 polymorphs in kyanite porphyroblasts: (1) cores with graphite and quartz inclusions; (2) clean overgrowth zone with inclusions of cuboctahedral diamond crystals. The Raman mapping of SiO2 polymorphs originally showed the presence of an association of disordered graphite + coesite “prohibited” in HT diamond-bearing rocks. Graphitization of diamond is the only likely mechanism of the disordered graphite formation in HT diamond-bearing rocks. However, the absence of disordered graphite in association with diamond in kyanite porphyroblasts from kyanite gneiss from the “New Barchinsky” locality eliminates the process of diamond graphitization at the retrograde stage. Most likely, crystallization of disordered graphite occurred at the retrograde stage from the UHP C-O-H fluid.
DS201905-1076
2019
Skuzovatov, S.Yu., Zedgenizov, D.A.Protracted fluid-metasomatism of the Siberian diamondiferous subcontinental lithospheric mantle as recorded in coated, cloudy and monocrystalline diamonds.Mineralogy and Petrology, 10.1007/s0710-019-00661-3 Russiadiamond morphology

Abstract: Five typical coated diamonds (from Udachnaya, Yubileynaya, and Aikhal kimberlite pipes) with untypically low microinclusion abundances and four monocrystalline diamonds (Udachnaya, Mir, Nyurbinskaya pipes) that exhibit thin intermediate microinclusion-bearing zones were examined in details for growth structures, characteristic infrared absorption and photoluminescence, and composition of microinclusions. The internal structures of diamonds of both types imply that fluid inclusions entrapment in diamonds does not necessarily relate to the terminal stage of rapid fibrous growth. Instead, nitrogen aggregation state in some diamonds showed that both fibrous coats and inclusion-bearing layers might experience an annealing during mantle residence long enough to pre-date the ultimate kimberlite eruption, whereas the diamonds with internal inclusion-bearing zones also experienced later protracted history of monocrystalline growth. The presence of chloride-carbonate-silicate fluids/melts in monocrystalline diamonds indicate their generation from media generally similar to that observed in some fibrous diamonds. However, the composition of these metasomatizing fluids is different for the mantle beneath Udachnaya (mostly carbonatitic) and other pipes (Aikhal, Yubileynaya, Mir; variable abundance of silicic high-density fluids). The abundance of silica-rich fluids record either a heterogeneous distribution of eclogites in the subcontinental lithospheric mantle, or the operation of silica-rich slab-derived fluids. The inclusion abundance as well as the type of growth (fibrous or monocrystalline) is considered to be controlled by the volume of fluid fluxes; in this case, fluid consumption leads to decreasing growth rates, diminishing inclusion entrainment and stability of layered octahedrons. The detected minor compositional variations of high-density fluids in these diamonds may be due to local scale thermal perturbation in the host source and/or limited chemical heterogeneity of the parental fluid. The high amount of chlorides in high-density fluids from monocrystalline diamonds provide a new evidence for compositions of fluids/melts acting as primary metasomatic agent in the deep mantle of Siberian craton.
DS201906-1283
2018
Chanturia, V.A., Dvoichenkova, G.P., Morozov, V.V., Kovalchuk, O.E., Podkamenny, Y.A., Yakolev, V.N.Experimental justification of luminophore composition for indication of diamonds in x-ray luminescence separation of kimberlite ore.Journal of Mineral Science, Vol. 54, 3, pp. 458-465.Russialuminescence

Abstract: Organic and inorganic luminophores of similar luminescence parameters as diamonds are selected. Indicators, based on the selected luminophores, are synthesized. Spectral and kinetic characteristics of luminophores are experimentally determined for making a decision on optimal compositions to ensure maximum extraction of diamonds in X-ray luminescence separation owing to extra recovery of non-luminescent diamond crystals. As the components of luminophore-bearing indicators, anthracene and K-35 luminophores are selected as their parameters conform luminescence parameters of diamonds detected using X-ray luminescence separator with standard settings.
DS201906-1289
2019
Doroshkevich, A.G., Chebotarev, D.A., Sharygin, V.V., Prokopyev, I.R., Nikolenko, A.M.Petrology of alkaline silicate rocks and carbonatites of the Chuktukon massif, Chadobets upland, Russia: sources, evolution and relation to the Triassic Siberian LIP.Lithos, Vol. 332-333, pp. 245-260.Russiacarbonatites

Abstract: The petrogenesis of temporally and spatially associated carbonatitic and deeply derived carbonated alkaline silicate magmas provides an opportunity to gain insights into the nature of the deepest lithospheric mantle. The Chuktukon massif, which is part of the Chadobets alkaline ultramafic carbonatite complex (Chadobets upland, Siberian craton) is a carbonatite-melilitite-damtjernite intrusion, whose emplacement was coeval with the Siberian Traps large igneous province (LIP). In this study, the sources of the primary melts are examined, the petrogenetic evolution of the complex is reconstructed and the relationship with the Siberian LIP is also discussed. Isotopic and geochemical information indicate that the source for the Chuktukon primary melts was isotopically moderately depleted and the primary melts were formed by low degree partial melting of garnet carbonated peridotite. Hydrothermal processes caused 18 O- and 13 C- enrichment. The weathering process was accompanied by trace element re-distribution and enrichment of the weathering crust in Zn, Th, U, Nb, Pb and REE, relative to the Chuktukon rocks and a change in radiogenic (Sr, Nd) isotope compositions.
DS201906-1304
2019
Kogarko, L.N., Veselovskiy, R.V.Geodynamic origin of carbonatites from the absolute paleotectonic reconstructions. Maymecha-KotuyJournal of Geodynamics, Vol. 125, pp. 13-21.Russia, Siberiacarbonatites

Abstract: Geodynamic origin of carbonatites is debated for several decades. One of hypotheses links their origin to large-volume mantle plumes rising from the core-mantle boundary (CMB). Some evidence exists for temporal and spatial relationships between the occurrences of carbonatites and large igneous provinces (LIPs), and both carbonatites and LIPs can be related to mantle plumes. A good example is the carbonatites of the Maymecha-Kotuy Province in the Polar Siberia, which were formed at the same time as the Siberian superplume event at ca. 250 Ma. In this study we use a recently published absolute plate kinematic modelling to reconstruct the position of 155 Phanerozoic carbonatites at the time of their emplacement. We demonstrate that 69% of carbonatites may be projected onto the central or peripheral parts of the large low shear-wave velocity provinces (LLSVPs) in the lowermost mantle. This correlation provides a strong evidence for the link between the carbonatite genesis and the locations of deep-mantle plumes. A large group of carbonatites (31%) has no obvious links to LLSVPs and, on the contrary, they plot above the "faster-than-average S-wave" zones in the deep mantle, currently located beneath North and Central America and China. We propose that their origin may be associated with remnants of subducted slabs in the mantle.
DS201906-1311
2019
Lahtinen, R., Huhma, H.A revised geodynamic model for the Lapland - Kola Orogen.Precambrian Research, Vol. 330, pp. 1-19.Europe, Fennoscandia, Russia, Kola Peninsulatectonics

Abstract: The Paleoproterozoic Lapland-Kola Orogen in Fennoscandia has been studied for decades and several plate tectonic models have been proposed including one-sided subduction zone, either towards SW or NW, or two opposite-verging subduction zones before the collision. Based on new structural and isotope data from Finland and recently published data from Russia, we propose a revised tectonic model for the Paleoproterozoic Lapland-Kola Orogen. The main components are foreland in the NE followed by cryptic suture, Inari arc, retro-arc basin and retro-arc foreland in the SW. The latter three constitute the Inari Orocline. Subduction towards present SW and subsequent arc magmatism (Inari arc) started at ca. 1.98?Ga followed by voluminous sedimentation in the deepening retro-arc basin. Underplating of a mid-ocean ridge caused flat subduction and magmatic flare at 1.92?Ga over a broad distance in the retro-arc basin. Rapid heating led to melting of the retro-arc basin sediments and voluminous amounts of granulite-facies diatexites formed. During collision (D1) at 1915-1910?Ma, large thrust nappes formed on the foreland. Deformation in the retro-arc basin is seen as recumbent folding and shearing of diatexites in the lower parts of the basin and thrusting of metatextite-diatexite packages in the upper parts. A post-collisional stage is seen as 1904?Ma appinites and decompression derived granites at 1.90-1.89?Ga. Renewed shortening (D2), due to far-field effects in SW at 1.88-1.87?Ga, led to thick-skin shortening of the Archean middle crust, large-scale crustal duplexing of already cooled granulites towards the retro-arc foreland and inclined upright folding of granulites in the opposite direction towards the Inari arc. A switch in the stress field from NE-SW to NW-SE led to orogen-parallel contraction and buckling started along a dextral strike-slip fault zone to form the Inari Orocline. Buckling is seen in the bending of pre-orocline fabrics and formation of syn-orocline fabrics: radial conical folds (D3), radial fractures, a strike-slip fault zone and thrusting at the hinge zone. The end-result is a mega-scale parallel multi-layer fold composed of the Inari arc, retro-arc basin and possibly also the heated retro-arc foreland.
DS201906-1315
2019
Litasov, K.D., Kagi, H., Voropaev, S.A., Hirata, T., Ohfuji, H., Ishibashi., Makino, Y., Bekker, T.B., Sevastyanov, V.S., Afanasiev,V.P., Pokhilenko, N.P.Comparison of enigmatic diamonds from the Tolbachik arc volcano ( Kamchatka) and Tibetan ophiolites: assessing the role of contamination by synthetic materials. Gondwana Research, in press available 38p.Russia, Asia, Tibetdeposit - Tolbachik

Abstract: The enigmatic appearance of cuboctahedral diamonds in ophiolitic and arc volcanic rocks with morphology and infrared characteristics similar to synthetic diamonds that were grown from metal solvent requires a critical reappraisal. We have studied 15 diamond crystals and fragments from Tolbachik volcano lava flows, using Fourier transform infrared spectrometry (FTIR), transmission electron microscopy (TEM), synchrotron X-ray fluorescence (SRXRF) and laser ablation inductively coupled plasma mass-spectrometry (LA-ICP-MS). FTIR spectra of Tolbachik diamonds correspond to typical type Ib patterns of synthetic diamonds. In TEM films prepared using focused ion beam technique, we find Mn-Ni and Mn-Si inclusions in Tolbachik diamonds. SRXRF spectra indicate the presence of Fe-Ni and Fe-Ni-Mn inclusions with Cr, Ti, Cu, and Zn impurities. LA-ICP-MS data show variable but significantly elevated concentrations of Mn, Fe, Ni, and Cu reaching up to 70?ppm. These transition metal concentration levels are comparable with those determined by LA-ICP-MS for similar diamonds from Tibetan ophiolites. Mn-Ni (+Fe) solvent was widely used to produce industrial synthetic diamonds in the former USSR and Russia with very similar proportions of these metals. Hence, it appears highly probable that the cuboctahedral diamonds recovered from Kamchatka arc volcanic rocks represent contamination and are likely derived from drilling tools or other hard instruments. Kinetic data on diamond dissolution in basaltic magma or in fluid phase demonstrate that diamond does not form under the pressures and temperature conditions prevalent within the magmatic system beneath the modern-day Klyuchevskoy group of arc volcanoes. We also considered reference data for inclusions in ophiolitic diamonds and compared them with the composition of solvent used in industrial diamond synthesis in China. The similar inclusion chemistry close to Ni70Mn25Co5 for ophiolitic and synthetic Chinese diamonds scrutinized here suggests that most diamonds recovered from Tibetan and other ophiolites are not natural but instead have a synthetic origin. In order to mitigate further dubious reports of diamonds from unconventional tectonic settings and source rocks, we propose a set of discrimination criteria to better distinguish natural cuboctahedral diamonds from those produced synthetically in industrial environments and found as contaminants in mantle- and crust-derived rocks.
DS201906-1336
2019
Podborodnikov, I.V., Shatskiy, A., Arefiev, A.V., Bekhtenova, A.New data on the system Na2CO3-CaCO3-MgCO3 at 6 Gpa with implications to the composition and stability of carbonatite melts at the base of continental lithosphere.Chemical Geology, Vol. 515, pp. 50-60.Russiadeposit - Udachnaya-East

Abstract: Subsolidus and melting phase relationships in the system Na2CO3-CaCO3-MgCO3 have been studied at 6?GPa and 900-1250?°C using a Kawai-type multianvil press. At 900 and 1000?°C, the system has four intermediate compounds: Na2Ca4(CO3)5 burbankite, Na2Ca3(CO3)4, Na4Ca(CO3)3, and Na2Mg(CO3)2 eitelite. The Na-Ca compounds dissolve noticeable amounts of Mg component, whereas eitelite dissolves a few percents of Ca component: Na2(Ca?0.91Mg?0.09)4(CO3)5, Na2(Ca?0.94Mg?0.06)3(CO3)4, Na4(Ca?0.67Mg?0.33)(CO3)3, and Na2(Mg?.93Ca?0.07)(CO3)2. At 1050?°C, the system is complicated by an appearance of dolomite. Na-Ca burbankite decomposes at 1075?±?25?°C to aragonite plus Na2Ca3(CO3)4. Na4Ca(CO3)3 and eitelite disappear via congruent melting between 1200 and 1250?°C. Na2Ca3(CO3)4 remains stable through the whole studied temperature range. The liquidus projection of the studied ternary system has eight primary solidification phase regions for magnesite, dolomite, calcite-dolomite solid solutions, aragonite, Na2Ca3(CO3)4, Na4Ca(CO3)3, and Na2CO3 solid solutions. The system has five ternary peritectic reaction points and one minimum on the liquidus at 1050?°C and 48Na2CO3•52(Ca0.75Mg0.25)CO3. The minimum point resembles a eutectic controlled by a four-phase reaction, by which a liquid transforms into three solid phases upon cooling: Na2(Ca0.94Mg0.06)3(CO3)4, Na4(Ca0.67Mg0.33)(CO3)3, and Na2(Mg0.93Ca0.07)(CO3)2 eitelite. Since at 6?GPa, the system has a single eutectic, there is no thermal barrier preventing continuous liquid fractionation from alkali-poor toward Na-rich dolomitic compositions. Cooling of the Na-Ca-Mg carbonatite melt from 1400 to 1100?°C within the lherzolite substrate will be accompanied by magnesite crystallization and wehrlitization keeping calcium number of the melt at 40 and shifting the Na2CO3 content to ?40?mol%. In the case of the eclogitic wall rock, the cooling will be accompanied by dolomite crystallization keeping calcium number of the melt at 60-65 and shifting the Na2CO3 content to ?30?mol%.
DS201906-1339
2019
Prokopyev, I.R., Doroshkevich, A.G., Sergeev, S.A., Ernst, R.E., Ponomarev, J.D., Redina, A.A., Chebotarev, D.A., Nikolenko, A.M., Dultsev, V.F., Moroz, T.N., Minakov, A.V.Petrography, mineralogy and SIMS U-Pb geochronology of 1.9-1.8 Ha carbonatites and associated alkaline rocks of the Central-Aldan magnesiocarbonatite province ( South Yakutia, Russia).Mineralogy and Petrology, Vol. 113, pp. 329-352.Russia, Yakutiacarbonatites
DS201906-1341
2019
Rezvukhin, D.I., Alifirova, T.A., Korsakov, A.V., Golovin, A.V. A new occurrence pf yimengite-hawthorneite and crichtonite-group minerals on an orthopyroxenite from kimberlite: implications for mantle metasomatism.American Mineralogist, Vol. 104, pp. 761-774.Russiadeposit - Udachnaya-East

Abstract: Large-ion lithophile elements (LILE)-enriched chromium titanates of the magnetoplumbite (AM12O19) and crichtonite (ABC18T2O38) groups have been recognized as abundant inclusions in orthopyroxene grains in a mantle-derived xenolith from the Udachnaya-East kimberlite pipe, Daldyn field, Siberian craton. The studied xenolith consists of three parts: an orthopyroxenite, a garnet clinopyroxenite, and a garnet-orthopyroxene intermediate domain between the two. Within the host enstatite (Mg# 92.6) in the orthopyroxenitic part of the sample titanate inclusions are associated with Cr-spinel, diopside, rutile, Mg-Cr-ilmenite, and pentlandite. Crichtonite-group minerals also occur as acicular inclusions in pyrope grains of the intermediate domain adjacent to the orthopyroxenite, as well as in interstitial to enstatite oxide intergrowths together with Cr-spinel, rutile, and ilmenite. Yimengite-hawthorneite inclusions in enstatite contain (wt%) 3.72-8.04 BaO, 2.05-3.43 K2O, and 0.06-0.48 CaO. Their composition is transitional between yimengite and hawthorneite end-members with most grains exhibiting K-dominant chemistry. A distinct feature of the studied yimengitehawthorneite minerals is a high content of Al2O3 (5.74-7.69 wt%). Crichtonite-group minerals vary in compositions depending on the occurrence in the xenolith: inclusions in enstatite are moderate-high in TiO2 (62.9-67.1 wt%), moderately Cr-rich (12.6-14.0 wt% Cr2O3), Ba- or K-specific in the A site, and contain low ZrO2 (0.05-1.72 wt%), whereas inclusions in pyrope are moderate in TiO2 (61.7-63.3 wt% TiO2), relatively low in Cr (8.98-9.62 wt% Cr2O3), K-dominant in the A site, and are Zr-enriched (4.64-4.71 wt% ZrO2). Crichtonite-group minerals in polymineralic oxide intergrowths show highly diverse compositions even within individual aggregates, where they are chemically dominated by Ba, Ca, and Sr. P-T estimates indicate the orthopyroxenite to have equilibrated at ~800 °C and 35 kbar. Preferentially oriented lamellae of enstatite-hosted Cr-spinel and diopside, as well as pyrope, diopside, and Cr-spinel grains developed around enstatite crystals, are interpreted to have been exsolved from the high-T Ca-Al-Cr-enriched orthopyroxene precursor. The exotic titanate compositions and observed textural relationships between inclusions in enstatite imply that the studied orthopyroxenite has undergone metasomatic processing by a mobile percolating agent afterward; this highly evolved melt/fluid was enriched in Ba, K, HFSE, and other incompatible elements. The infiltration of the metasomatizing liquid occurred through interstices and vulnerable zones of enstatite grains and manifested in the crystallization of titanate inclusions. It is assumed that Cr-spinel lamellae served as seeds for their nucleation and growth. The prominent textural and chemical inhomogeneity of the interstitial oxide intergrowths is either a consequence of the metasomatic oxide crystallization shortly prior to the kimberlite magma eruption or arose from the intensive modification of preexisting oxide clusters by the kimberlite melt during the Udachnaya emplacement. Our new data provide implications for the metasomatic treatment of orthopyroxenites in the subcontinental lithospheric mantle from the view of exotic titanate occurrences.
DS201906-1348
2019
Skublov, S.G., Tolstov, A.V., Baranov, L.N., Melnik, A.E., Levashova, E.V.First data on the geochemistry and U-Pb age of zircons from the kamaphorites of the Tomtor alkaline ultrabasic massif, Arctic Yakutia. ( carbonatite)Geochemistry, in press available 11p.Russia, Yakutiadeposit - Tomtor

Abstract: Zircon from Tomtor syenites and kamaphorites was dated following the U-Pb method (SHRIMP-II), and the distribution of trace and rare-earth elements (REE) was studied at the same zircon point using an ion microprobe. The main zircon population from syenites was dated at 402?±?7 Ma, while the age range of single zircon grains was 700-660 M?. Different-aged zircon groups from syenites exhibited the characteristics of magmatic zircon, but their concentrations of REE and other trace elements differed markedly. The REE distribution in 700-660-M? zircon is consistent with that of the typical zircon from syenites (Belousova et al., 2002), while the heavy rare-earth elements (HREE), P, Ti, and Y concentrations of ca. 400-Ma zircon differ from those of older zircon. This is the first isotope-geochemical study of zircon from kamaphorites, and the U-Pb age of ca. 400 M? is within the error limits with of the main zircon population from syenites. The considerable enrichment of REE, C?, Ti, Sr, Y, Nb, and Ba in zircon from kamaphorites may be partly due to the presence of burbankite microinclusions. The trace-element distribution pattern of zircon from kamaphorites is very similar to the geochemical characteristics of zircon from Tiksheozero carbonatites (Tichomirowa et al., 2013). The new age dates for Tomtor syenites and kamaphorites, consistent with 700-660 M? and ca. 400 M? events, support the zircon (Vladykin et al., 2014) and pyrochlore (Antonov et al., 2017) age dates determined following the U-Pb method and those of biotite obtained following the 40Ar-39Ar method (Vladykin et al., 2014).
DS201906-1349
2019
Skuzovatov, S.Y., Zedgenizov, D.A.Protracted fluid metasomatism of the Siberian diamondiferous subcontinental lithospheric mantle as recorded in coated, cloudy and monocrystalline diamonds.Mineralogy and Petrology, Vol. 113, pp. 285-306.Russia, Siberiadeposit - Udachnaya, Yubileynaya, Aikhal, Mir, Nyurbinskaya

Abstract: Five typical coated diamonds (from Udachnaya, Yubileynaya, and Aikhal kimberlite pipes) with untypically low microinclusion abundances and four monocrystalline diamonds (Udachnaya, Mir, Nyurbinskaya pipes) that exhibit thin intermediate microinclusion-bearing zones were examined in details for growth structures, characteristic infrared absorption and photoluminescence, and composition of microinclusions. The internal structures of diamonds of both types imply that fluid inclusions entrapment in diamonds does not necessarily relate to the terminal stage of rapid fibrous growth. Instead, nitrogen aggregation state in some diamonds showed that both fibrous coats and inclusion-bearing layers might experience an annealing during mantle residence long enough to pre-date the ultimate kimberlite eruption, whereas the diamonds with internal inclusion-bearing zones also experienced later protracted history of monocrystalline growth. The presence of chloride-carbonate-silicate fluids/melts in monocrystalline diamonds indicate their generation from media generally similar to that observed in some fibrous diamonds. However, the composition of these metasomatizing fluids is different for the mantle beneath Udachnaya (mostly carbonatitic) and other pipes (Aikhal, Yubileynaya, Mir; variable abundance of silicic high-density fluids). The abundance of silica-rich fluids record either a heterogeneous distribution of eclogites in the subcontinental lithospheric mantle, or the operation of silica-rich slab-derived fluids. The inclusion abundance as well as the type of growth (fibrous or monocrystalline) is considered to be controlled by the volume of fluid fluxes; in this case, fluid consumption leads to decreasing growth rates, diminishing inclusion entrainment and stability of layered octahedrons. The detected minor compositional variations of high-density fluids in these diamonds may be due to local scale thermal perturbation in the host source and/or limited chemical heterogeneity of the parental fluid. The high amount of chlorides in high-density fluids from monocrystalline diamonds provide a new evidence for compositions of fluids/melts acting as primary metasomatic agent in the deep mantle of Siberian craton.
DS201906-1356
2019
Vasilev, E., Petrovsky, V., Kozlov, A., Antonov, A., Kudryatsev, A., Orekhova, K.The story of one diamond: the heterogeneous distribution of the optical centres within a diamond crystal from the Ichetju placer, northern Urals.Mineralogical Magazine, in press availableRussia, Uralsdiamond crystallography

Abstract: We have investigated a diamond crystal that consists of several misorientated subgrains. The main feature of the crystal is the dark in the cathodoluminescence core that has “estuary-like” boundaries extending along the subgrain interfaces. The core has more than 3100 ppm of nitrogen, and the share of the B form is more than 95%; the absorbance of the centre N3VH at 3107 cm -1 reaches 75 cm-1. The N3 centre’s absorbance, as well as N3 luminescence, is absent in the core. In the outer part of the crystal, the bright blue luminescence of the N3 centre is registered, and the N3 absorbance reaches 5.3 cm-1. These observations may be explained by the conversion of N3 centres to N3VH after attaching a hydrogen atom. After the full conversion of the N3 centres, the diamond becomes darker under CL. We hypothesize the dark core has a specific shape due to the post-growth diffusion of the hydrogen.
DS201906-1357
2018
Vasiliev, E.A., Klepikov, I.V., Antonov, A.V.Rounded diamond crystals with mixed growth mechanism from alluvial placers of the Krasnovishersky district, the Urals. Abstract only in ENGProceedings of the Russian Mineralogical Society , Pt CXLVII no. 4, 14p.Russiadiamond morphology
DS201907-1533
2019
Cheskidov, V.I., Akishev, A.N., Sakantsev, G.G.Use of draglines in mining diamond ore deposits in Yakutia.Journal of Mining Science, Vol. 54, 4, pp. 628-637.Russia, Yakutiamining

Abstract: Potential ranges of use of draglines at steeply dipping diamond ore deposits in Yakutia are discussed. Technology of stripping with direct dumping and rehandling by draglines is substantiated for upper overburden layers. A variant of increasing height of stripping benches on haulage horizons through the use of draglines and crane lines is discussed. A resource saving technology is proposed for mining roundish and extended ore bodies with alternating advance of mining front and with internal dumping. The method of estimating efficient thickness of overburden in case of direct dumping is developed using the layer coefficient of overburden rehandling. Expediency of using blasting for displacement of broken overburden to internal dump is specified.
DS201907-1559
2019
Logvinova, A.M., Shatskiy, A., Wirth, R., Tomilenko, A.A., Ugapeva, S.S., Sobolev, N.V.Carbonatite melt in type Ia gem diamond.Lithos, in press available, 17p.Russiadeposit - Sytykanskaya

Abstract: Monocrystalline type Ia diamonds with octahedral growth morphology prevail among lithospheric diamonds, including precious stones. Unlike less common ‘fibrous’ diamonds that grew from alkali-rich carbonate-bearing melts and fluids, the growth medium of ‘monocrystalline’ type Ia diamonds remains debatable. Here we report the first finding of an optically visible (~30??m in size) carbonate inclusion in the center of a gem type Ia octahedral diamond from the Sytykanskaya kimberlite pipe, Yakutia. We found that the inclusion consists of submicron size carbonate phases represented by K2Ca(CO3)2 bütschliite (~15?vol%), Na2Mg(CO3)2 eitelite (~5?vol%), and dolomite (~80?vol%). Although neither bütschliite nor eitelite can coexist with dolomite under mantle P-T conditions, these phases readily appear all together in the quenched products of carbonatite melt under mantle pressures. Thus, at the moment of capture, the inclusion material was a carbonatite melt with the following composition 10(K0.75Na0.25)2CO3?90(Ca0.57Mg0.43)CO3. The content of alkali carbonates at the level of 10?mol% indicates that the melt was formed at a temperature of ?1300?°C. The high K/Na and Ca/(Ca?+?Mg) ratios in this melt indicate its derivation by partial melting of recycled marine sediments (pelites). Considering an age of the last subduction event beneath the Siberian craton, our new finding implies that subducting slabs drag carbonated material of the continental crust beneath ancient cratons, where it experiences partial melting to form a potassic dolomitic melt responsible for the formation of most diamonds, since the Late Archean.
DS201907-1572
2019
Shatsky, V., Jagoutz, E., Kozmenko, O., Ragozin, A., Skuzovatov, S., Sobolev, N.The protolith nature of diamondiferous metamorphic rocks of the Kokchetav Massif.Acta Geologica Sinica, Vol. 93, 1, p. 173-Russiadeposit - Kokchetav

Abstract: International Symposium on Deep Earth Exploration and Practices Beijing, China -October24-26, 2018The protolithnatureof diamondiferous metamorphic rocks of the Kokchetav MassifVladislav Shatsky1,2,3, Emil Jagoutz4, Olga Kozmenko1, Alexey Ragozin1,3, Sergei Skuzovatov2and Nikolai Sobolev1,31Sobolev Institute of Geology and Mineralogy SB RAS, Novosibirsk, 630090, Russia, [email protected] Institute of Geochemistry SB RAS, Irkutsk, Russia3Novosibirsk State University, Novosibirsk, Russia4Max Planck Institute for Chemistry, Mainz, GermanyUltra-high-pressure diamondiferous rocks (UHP) of the Kokchetav subduction-collision zone are considered as an idealobject for studying the mobility of elements insubduction zones of the continental type. The compositional diversity of metasedimentary rocks subjected to UHP metamorphism makes it difficult to establish the nature of their protoliths. This, in turn, complicates estimatesof the degree of depletionof the UHP metamorphic rocks relative to the protoliths.To clarify the nature of protholiths of the Kokchetav diamondiferous rocks we studied the geochemical features and Sm-Nd isotopic composition of diamondiferous calc-silicate, garnet-pyroxene rocks, high-alumina metapelitesand barren granite-gneisses.The nine samples of the Kumdy Kol mocrodiamond deposit (one granite-gneiss, 4-calc-silicate rocks, 3-garnet-pyroxenite) yielded aSm-Nd whole-rockisochronageof 1052±44 Ma. This age is close to the age of formation of the granitic gneiss basement of the Kokchetav massif (1.2-1.05 Ga) (Glorie et al., 2015). Therefore, we assume that the protoliths of these rocks were basementrocks. In this interpretation, their geochemical features may not be directly related to the processes of ultrahigh-pressure metamorphism.At the same time, the high-alumina rocks of the Barchinsky area are depleted todifferent degreeswithrespect to LREE and K yieldeda whole-rockisochron with an age of 509 ± 32 Ma, which suggests partial melting of these rocks duringthe exhumation stage.It was previously assumed that metasedimentary rocks of the Kokchetav microcontinent are the protoliths of diamondiferous rocks (Buslov et al., 2015). However, this contradicts with Sm-Nd isotopic data for metasedimentary rocks of quartzite-schist sequences of the Kokchetav microcontinent (Kovach et al., 2017). The metasedimentary rocks of the Sharyk Formation are characterized by variations in the ?Nd(t)from +4.1 to -3.3 and intNd(DM)from 1.9 to 1.25 Ga, whereasin the UHP metamorphic rocks ?Nd(t)varies from -7.6 to -13.2, and the model ages range from 2.7 to 2.3 Ga. These data clearly indicate that the metasedimentary rocks of the Kokchetav massif could not be the protolith of the ultrahigh-pressure rocks.
DS201907-1573
2019
Shumilova, T.G., Kovalchuk, N.S., Makeev, B.A.Geochemical features of the diamondiferous suevites of the Kara astrobleme ( Pay-Khoy).Doklady Earth Sciences, Vol. 486, 1, pp. 545-548.Russiamicrodiamonds

Abstract: The results of geochemical studies of the diamondiferous suevites of the Kara astrobleme (Pay-Khoy) using a new approach based on “area” microprobe analysis of suevite matrix and consolidated impact melt aggregates with subsequent data processing by multivariate statistic methods are described for the first time. At least three suevite varieties that differ essentially in geomorphology, mineralogy, petrography, and geochemical features have been recognized. The predominant protoliths of the rocks of the target are proposed for these suevite varieties on the basis of integrated data analysis.
DS201907-1574
2019
Skuzovatov, S., Shatsky, V., Wang, K-L.Continental subduction during arc-microcontinent collision in the southern Siberian craton: constraints on protoliths and metamorphic evolution of the North Muya complex eclogites ( eastern Siberia).Lithos, Vol. 342-343, pp. 76-96.Russia, Siberiaeclogites

Abstract: The eclogites of the North Muya complex (Eastern Siberia) are located within the Early Neoproterozoic metasedimentary and felsic rocks of the Baikal-Muya Fold Belt (BMFB). The eclogites show subduction-related affinity, with large-ion lithophile (LILE) and light rare-earth element (LREE) enrichment and high field-strength element (HFSE) depletion signatures, similar to the exposed plutonic and volcanic rocks of the Early Neoproterozoic (Early Baikalian) subduction setting in the BMFB. Coupled Nd (?Nd(T) of +6 to ?1.4) and Sr (87Sr/86Sr ratio of 0.705-0.708), along with key trace-element indicators, imply progressive crustal recycling (up to 5-10%) from the Early Precambrian continental rocks to a depleted mantle source or equivalent crustal contribution via intracrustal contamination. Mineral ?18O data (+3.9???+11.5) indicate that the contaminant or recycled crustal substrate might be represented by rocks altered at both low and high-temperature, or result from variable fluid-rock interaction in the subduction channel. Pseudosection modelling of eclogites, coupled with zircon UPb geochronology (~630?Ma) suggest that the Ediacarian high-pressure metamorphic event for different rocks shared a maximum depth corresponding to 2.5-2.7?GPa with variable temperature range (560-760?°C), reflecting their potential relation to distinct slices of the subducted crust. The estimated metamorphic conditions for both the burial and exhumation of rocks indicate a continental subduction setting, but with a relatively cold geotherm (~20-25?°C/kbar). These conditions resulted from the continental subduction of the Baikal-Muya composite structure beneath the relatively thin and immature overlying arc lithosphere of southern Siberia. Some carbonate-bearing eclogites and garnet-pyroxene rocks, metamorphosed under T below 700?°C and a minimum P up to 1.4?GPa, exhibit LREE-enriched patterns and low ?Nd(T) values of ?7 to ?16. These rocks have Paleoproterozoic to Archean model ages and may support the existence of a Paleoproterozoic or older lithosphere in the Baikal-Muya Fold Belt, but their subduction history and origin remain uncertain due to geochemical and isotopic signatures probably overprinted by carbonate metasomatism.
DS201907-1578
2019
Solovera, L., Kostrovitsky, S.I., Kalashnikova, T.V., Ivanov, A.V.The nature of phlogopite - ilmenite and ilmenite parageneses in deep seated xenoliths from Udachnaya kimberlite pipe.Doklady Earth Sciences, Vol. 486, 1, pp. 537-540.Russiadeposit - Udachnaya

Abstract: The article describes the petrography and mineralogy of xenoliths ilmenite-phlogopite containing deformed and granular peridotites from the Udachnaya-Eastern pipe. The age of pholopite porphyroclast from the studied deformed xenoliths matches with age of Phl megacryst and itself hosted kimberlites from Udachnaya pipe indicating the following processes closed in time: (1) crystallization of the low-Cr megacryst association; (2) deformation of rocks on the mantle lithosphere-asthenosphere border during the kimberlite-forming cycle; (3) formation of protokimberlite melts.
DS201907-1580
2018
Vasilev, E.A., Klepikov, I.V., Antonov, A.V.Rounded diamond crystals with mixed growth mechanism from alluvial placers of the Krasnovishersky district, the Urals.Proceedings of the Russian Mineralogical Society, pt. CXL VII no. 4, 1p. Abstract in Eng.Russiadiamond morphology
DS201907-1581
2019
Vrublevskii, V.V., Bukharova, O.V., Nebera, T.S., Sveshnikova, V.I.Composition and origin of rare metal ( Tb-Ta, REE) and sulfide mmineralization in magnesiocarbonatites from the Yenisei Ridge, central Siberia.Ore Geology Reviews, Vol. 111, 26p.Russia, Siberiacarbonatites
DS201907-1586
2019
Xu, X., Cartigny, P., Yang, J., Dilek, Y., Xiong, F., Guo, G.FTIR spectroscopy data and carbon isotope characteristics of the ophiolite hosted diamonds.Acta Geologica Sinica, Vol. 93, 1, p.38.Asia, Russiamicrodiamonds

Abstract: We report new ?13C ?values data and N?content and N?aggregation state values for microdiamonds recovered from peridotites and chromitites of the Luobusa ophiolite (Tibet) and chromitites of the Ray?Iz ophiolite in the Polar Urals (Russia). All analyzed microdiamonds contain significant nitrogen contents (from 108 up to 589 ± 20% atomic ppm) with a consistently low aggregation state, show identical IR spectra dominated by strong absorption between 1130 cm?1 and 1344 cm?1, and hence characterize Type Ib diamond. Microdiamonds from the Luobusa peridotites have ?13C ?PDB?values ranging from ?28.7‰ to ?16.9‰, and N?contents from 151 to 589 atomic ppm. The ?13C and N?content values for diamonds from the Luobusa chromitites are ?29‰ to ?15.5‰ and 152 to 428 atomic ppm, respectively. Microdiamonds from the Ray?Iz chromitites show values varying from ?27.6 ‰ to ?21.6 ‰ in ?13C and from 108 to 499 atomic ppm in N. The carbon isotopes values bear similar features with previously analyzed metamorphic diamonds from other worldwide localities, but the samples are characterized by lower N?contents. In every respect, they are different from diamonds occurring in kimberlites and impact craters. Our samples also differ from the few synthetic diamonds; we also analyzed showing enhanced ?13C ?variability and less advanced aggregation state than synthetic diamonds. Our newly obtained N?aggregation state and N?content data are consistent with diamond formation over a narrow and rather cold temperature range (i.e. <950°C), and in a short residence time (i.e. within several million years) at high temperatures in the deep mantle.
DS201907-1587
2019
Yang, J., Robinson, P., Xu, X., Xiong, F., Lian, D.Diamond in oceanic peridotites and chromitites: evidence for deep recycled mantle in the global ophiolite record.Acta Geologica Sinica, Vol. 93, 2, p.42.Europe, Turkey, Albania, Russia, Chinamicrodiamonds

Abstract: Diamonds have been discovered in mantle peridotites and chromitites of six ophiolitic massifs along the 1300 km?long Yarlung?Zangbo suture (Bai et al., 1993; Yang et al., 2014; Xu et al., 2015), and in the Dongqiao and Dingqing mantle peridotites of the Bangong?Nujiang suture in the eastern Tethyan zone (Robinson et al., 2004; Xiong et al., 2018). Recently, in?situ diamond, coesite and other UHP mineral have also been reported in the Nidar ophiolite of the western Yarlung?Zangbo suture (Das et al., 2015, 2017). The above?mentioned diamond?bearing ophiolites represent remnants of the eastern Mesozoic Tethyan oceanic lithosphere. New publications show that diamonds also occur in chromitites in the Pozanti?Karsanti ophiolite of Turkey, and in the Mirdita ophiolite of Albania in the western Tethyan zone (Lian et al., 2017; Xiong et al., 2017; Wu et al., 2018). Similar diamonds and associated minerals have also reported from Paleozoic ophiolitic chromitites of Central Asian Orogenic Belt of China and the Ray?Iz ophiolite in the Polar Urals, Russia (Yang et al., 2015a, b; Tian et al., 2015; Huang et al, 2015). Importantly, in?situ diamonds have been recovered in chromitites of both the Luobusa ophiolite in Tbet and the Ray?Iz ophiolite in Russia (Yang et al., 2014, 2015a). The extensive occurrences of such ultra?high pressure (UHP) minerals in many ophiolites suggest formation by similar geological events in different oceans and orogenic belts of different ages. Compared to diamonds from kimberlites and UHP metamorphic belts, micro?diamonds from ophiolites present a new occurrence of diamond that requires significantly different physical and chemical conditions of formation in Earth's mantle. The forms of chromite and qingsongites (BN) indicate that ophiolitic chromitite may form at depths of >150?380 km or even deeper in the mantle (Yang et al., 2007; Dobrthinetskaya et al., 2009). The very light C isotope composition (?13C ?18 to ?28‰) of these ophiolitic diamonds and their Mn?bearing mineral inclusions, as well as coesite and clinopyroxene lamallae in chromite grains all indicate recycling of ancient continental or oceanic crustal materials into the deep mantle (>300 km) or down to the mantle transition zone via subduction (Yang et al., 2014, 2015a; Robinson et al., 2015; Moe et al., 2018). These new observations and new data strongly suggest that micro?diamonds and their host podiform chromitite may have formed near the transition zone in the deep mantle, and that they were then transported upward into shallow mantle depths by convection processes. The in?situ occurrence of micro?diamonds has been well?demonstrated by different groups of international researchers, along with other UHP minerals in podiform chromitites and ophiolitic peridotites clearly indicate their deep mantle origin and effectively address questions of possible contamination during sample processing and analytical work. The widespread occurrence of ophiolite?hosted diamonds and associated UHP mineral groups suggests that they may be a common feature of in?situ oceanic mantle. The fundamental scientific question to address here is how and where these micro?diamonds and UHP minerals first crystallized, how they were incorporated into ophiolitic chromitites and peridotites and how they were preserved during transport to the surface. Thus, diamonds and UHP minerals in ophiolites have raised new scientific problems and opened a new window for geologists to study recycling from crust to deep mantle and back to the surface.
DS201908-1789
2019
Logvinova, A., Zedgenizov, D., Wirth, R.Specific multiphase assemblages of carbonatitic and Al rich silicic diamond forming fluid/melts: TEM observation of microinclusions in cuboid diamonds from the placers of northeastern Siberian craton.Minerals, Vol. 9, 11p.Russia, Siberiadeposit - Ebelyakh

Abstract: The microinclusions in cuboid diamonds from Ebelyakh River deposits (northeastern Siberian craton) have been investigated by FIB/TEM techniques. It was found that these microinclusions have multiphase associations, containing silicates, oxides, carbonates, halides, sulfides, graphite, and fluid phases. The bulk chemical composition of the microinclusions indicates two contrasting growth media: Mg-rich carbonatitic and Al-rich silicic. Each media has their own specific set of daughter phases. Carbonatitic microinclusions are characterized by the presence of dolomite, phlogopite, apatite, Mg, Fe-oxide, KCl, rutile, magnetite, Fe-sulfides, and hydrous fluid phases. Silicic microinclusions are composed mainly of free SiO2 phase (quartz), high-Si mica (phengite), Al-silicate (paragonite), F-apatite, Ca-carbonates enriched with Sr and Ba, Fe-sulfides, and hydrous fluid phases. These associations resulted from the cooling of diamond-forming carbonatitic and silicic fluids/melts preserved in microinclusions in cuboid diamonds during their ascent to the surface. The observed compositional variations indicate different origins and evolutions of these fluids/melts.
DS201908-1813
2019
Shatsky, V., Zedgenizov, D., Ragozin, A., Kalinina, V.Silicate melt inclusions in diamonds of eclogite paragenesis from placers on the northeastern Siberian craton.Minerals, Vol. 9, 7, pp. 412 ( 11p)Russia, Siberiadeposit - Kholomolokh

Abstract: New findings of silicate-melt inclusions in two alluvial diamonds (from the Kholomolokh placer, northeastern Siberian Platform) are reported. Both diamonds exhibit a high degree of N aggregation state (60-70% B) suggesting their long residence in the mantle. Raman spectral analysis revealed that the composite inclusions consist of clinopyroxene and silicate glass. Hopper crystals of clinopyroxene were observed using scanning electron microscopy and energy-dispersive spectroscopic analyses; these are different in composition from the omphacite inclusions that co-exist in the same diamonds. The glasses in these inclusions contain relatively high SiO2, Al2O3, Na2O and, K2O. These composite inclusions are primary melt that partially crystallised at the cooling stage. Hopper crystals of clinopyroxene imply rapid cooling rates, likely related to the uplift of crystals in the kimberlite melt. The reconstructed composition of such primary melts suggests that they were formed as the product of metasomatised mantle. One of the most likely source of melts/fluids metasomatising the mantle could be a subducted slab.
DS201908-1814
2019
Shatsky, V.S., Wang, Q., Skuszovatov, S.Y., Ragozin, A.L.The crust mantle evolution of the Anabar tectonic province in the Siberian craton: coupled or decoupled?Precambrian Research, Vol. 332, 105388 15p. Russia, Siberiadeposit - Udachnaya, Zarnitsa, Komsomolskaya

Abstract: To clarify the tectonic-thermal evolution of the Anabar tectonic province in the central Siberian Craton, we performed an isotope-geochemical study of 20 xenoliths from the Udachnaya, Zarnitsa, and Komsomolskaya kimberlite pipes to represent different crustal levels. Most mafic granulites have Proterozoic Nd model ages and geochemical characteristics close to those of intraplate basalts, whereas some mafic and intermediate granulites with Archean model ages exhibit geochemical features of supra-subduction ophiolitic basalts. Analysis of U-Pb ages and hafnium isotopic composition of zircon indicates that the main tectonic-thermal events modified the crust at 2.7 and 1.9-1.8?Ga, which is consistent with ages of mantle depletion events from previous studies. All zircons have Archean Hf model ages (3.2?Ga). Overall, thermal events with ages of 2.9-2.8, 2.7, 2.4, 1.97 and 1.8?Ga have remarkable influence on the studied zircons. Tectono-thermal events at 2.4 1.97, 1.9 and 1.8?Ga with no addition of juvenile material are recorded by zircons from xenoliths of mafic and intermediate granulites and metadiorites. A compilation of isotope-geochemical data demonstrates that instead of age-stratified, the crust of the Anabar tectonic province consists of variably reworked Paleoarchean rocks and juvenile Proterozoic rocks at all crustal levels. Hence the crust and mantle of the Siberian Craton has been coupled since the Paleoarchean.
DS201908-1816
2019
Shumilova, T., Isaenko, S.Nanoporous nanocrystalline impact diamonds. Popigai astroblemeMineralogy and Petrology, in press available doi.org/10.1007/ s00710-019-00671-1 10p.Russiaimpact diamonds

Abstract: Complementary nano- and atomic-scale data from SEM, FIB, HRTEM, and EELS observations of after-coal impact diamonds from the giant Kara astrobleme are described, presenting their particular nano-sized porous polycrystalline structure, which consists of well-shaped single 20-30 nm nanocrystals that are free of deformation defects and do not contain lonsdaleite. The porous micro- and nanostructure is a special typomorphic feature of after-coal diamonds that suggests a crystallisation mechanism through short distance diffusion. The data for the after-coal impact diamonds presented here demonstrate their distinguishing characteristics from after-graphite impact diamonds, and have some similarity with the enigmatic carbonado, providing new insights to the origin of the latter
DS201909-2014
2019
Agashev, A.M.Geochemistry of garnet megacrysts from the Mir kimberlite pipe ( Yakutia) and the nature of protokimberlite melts.Doklady Earth Sciences, Vol. 486, 2, pp. 675-678.Russiadeposit -Mir

Abstract: The chemical compositions of garnets from a megacryst association of the Mir kimberlite pipe have been studied. By petrogenic elements, the garnet megacrysts can be classified as high-Ti and low-Cr pyrope. The megacryst TiO2 contents of the Mir pipe correlate inversely with the MgO and Cr2O3 contents. Modeling of the composition of garnets through a fractional crystallization process showed that the most suitable composition of the melts parental for the garnets of the megacryst association is picrite. The composition of garnets crystallized from the kimberlite does not correspond to the composition of the natural garnets from the Mir pipe. The kimberlites contain less Ti, Zr, Y, and HREEs, but are more enriched with strongly incompatible elements (LREEs, Th, U, Nb, Ta, and Ba) than the model composition of the melt suitable for crystallization of the garnet megacrysts.
DS201909-2016
2019
Ashchepkov, I., Ivanov, A.S., Kostrovitsky, S.I., Vavilov, M.A., Vladykin, N., Babushkina, S.A., Tychkov, N.S., Medvedev, N.S.Mantle terranes of the Siberian craton: their interaction with plume melts based on thermobarometry and geochemistry of mantle xenocrysts.Solid Earth, Vol. 10, 2, pp. 197-245.Russia, Siberiamelting

Abstract: Variations of the structure and composition of mantle terranes in the terminology of the Siberian craton were studied using database (>60000) EPMA of kimberlite xenocrysts from the pipes of Yakutian kimberlite province (YKP) by a team of investigators from IGM, IGH, IEC and IGBM SB RAS and ALROSA company. The monomineral thermobarometry (Ashchepkov et al., 2010, 2014, 2017) Geochemistry of minerals obtained LA ICP MS was used to determine the protolith, melting degree, Type of the metasomatism . The mantle stratification commonly was formed by 6-7 paleosubduction slabs, separated by pyroxenite, eclogite, and metasomatic horizons and dunite lenses beneath kemberltes . We built mantle sections across the kimberlite field and transects of craton. Within the established tectonic terrains strengthening to thousands km (Gladkochub et al, 2006), the collage of microplates was determined at the mantle level. Under the shields of Anabar and Aldan lower SCLM consist of 3 -4 dunites dunites with Gar-Px-Ilm- Phl nests. Terranes framing protocratons like suture Khapchanskyare are saturated in eclogites and pyroxenites, sometimes dominated probably represent the ascending bodies of igneous eclogites intruding mantle lithosphere (ML). The ubiquitous pyroxenite layer at the level of 3.5-4.5 GPa originated in the early Archaean when melted eclogites stoped stoped subdction. Beneath the Early Archaean granite-greenstone terranes - Tunguskaya, Markhinskaya, Birektinskaya, Shary-Zhalgaiskaya (age to~3.8-3.0 GA) (Gladkochub et al., 2018) the SCLM is less depleted and often metasomatized having flat structures in some subterrains. Daldyn and Magan granulite-orthogneisic terranes have a layered and folded ML seen in N-S sections from Udachnaya to Krasnopresnenskaya less pronounced in latitudinal direction. From Daldyn to Alakit field increases the degree of Phl metasomatism and Cpx alkalinity. The most productive Aykhal and Yubleynaya pipes confined to the dunite core. Within the Magan terrane, the thin-layered SCLM have depleted base horizon. Granite-greenstone Markha terrane contains pelitic eclogites. Central and Northern craton parts show slight inclination of paleoslabs to West. The formation of SCLM in Hadean accompanied by submelting (Perchuk et al., 2018, Gerya, 2014.) had no deep roots. Ultrafine craton nuclei like Anabar shield was framed by steeper slab. During 3.8-3.0 GA craton keel growth in superplume periods (Condie, 2004) when melted eclogites and peridotites acquiring buoyancy of the sinking plate melted. For peridotites, the melting lines calculated from the experimental data (Herzberg, 2004) mainly lie near 5-6 GPA (Ionov et al., 2010; 2015). In classical works all geotherms are conductive (Boyd, 1973), but this is quite rare. The garnet pyroxene geotherms for (Ashchepkov et al., 2017) calculated with most reliable methods (Nimis, Taylor, 2000; McGregor , 1974; Brey Kohler, Nickel Green, 1985; Ashchepkov et al., 2010; 2017) give are sub-adiabatic and are formed during the melt percolation superplume vent often in presence of volatiles (Wyllie, Ryabchikov, 2000) and therefore, after superplumes trends P-Fe# of garnet are smoothed and change the tilts.
DS201909-2054
2019
Kriulina, G.Yu., Vasiliev, E.A., Garanin, V.K.Structural and mineralogical features of diamonds from the Lomonosov deposit ( Arkhangelsk Province): new data and interpretation.Doklady Earth Sciences, Vol. 486, 2, pp. 627-629.Russia, Archangeldeposit - Lomonosov

Abstract: Three groups of diamond crystals that differ in morphology, photoluminescence, infrared absorption, and thermal history were discovered in the Lomonosov deposit. The first group crystals are mostly octahedrons with minor signs of dissolution and a large share of nitrogen in the form of B defects. The crystals of the second type are strongly resorbed dodecahedroids with a small share of B defects. The third group consists of crystals with low-temperature ? defects; they are cuboids that are often without traces of resorption, and tetrahexahedroids. These patterns indicate the polygenicity of the diamond in the Lomonosov deposit.
DS201909-2060
2019
Logvinova, A.M., Shatskiy, A., Wirth, R., Tomilenko, A.A., Ugapeva, S.S., Sobolev, N.V.Carbonatite melt in type Ia gem diamond. Lithos, Vol. 342-343, pp. 463-467.Russiadeposit - Sytykanskaya

Abstract: Monocrystalline type Ia diamonds with octahedral growth morphology prevail among lithospheric diamonds, including precious stones. Unlike less common ‘fibrous’ diamonds that grew from alkali-rich carbonate-bearing melts and fluids, the growth medium of ‘monocrystalline’ type Ia diamonds remains debatable. Here we report the first finding of an optically visible (~30??m in size) carbonate inclusion in the center of a gem type Ia octahedral diamond from the Sytykanskaya kimberlite pipe, Yakutia. We found that the inclusion consists of submicron size carbonate phases represented by K2Ca(CO3)2 bütschliite (~15?vol%), Na2Mg(CO3)2 eitelite (~5?vol%), and dolomite (~80?vol%). Although neither bütschliite nor eitelite can coexist with dolomite under mantle P-T conditions, these phases readily appear all together in the quenched products of carbonatite melt under mantle pressures. Thus, at the moment of capture, the inclusion material was a carbonatite melt with the following composition 10(K0.75Na0.25)2CO3?90(Ca0.57Mg0.43)CO3. The content of alkali carbonates at the level of 10?mol% indicates that the melt was formed at a temperature of ?1300?°C. The high K/Na and Ca/(Ca?+?Mg) ratios in this melt indicate its derivation by partial melting of recycled marine sediments (pelites). Considering an age of the last subduction event beneath the Siberian craton, our new finding implies that subducting slabs drag carbonated material of the continental crust beneath ancient cratons, where it experiences partial melting to form a potassic dolomitic melt responsible for the formation of most diamonds, since the Late Archean.
DS201909-2072
2019
Pashkova, G.V., Panteeva, S., Ukhova, N.N., Chubarov, V.M., Finkelshtein, A.L., Ivanov, A.V., Asavin, A.M.Major and trace elements in meimechites - rarely occurring volcanic rocks: developing optimal analytical strategy.Geochemistry: Exploration, Environment, Analysis, Vol. 19, pp, 233-243.Russia, Canada, Chinameimechites

Abstract: The determination of the chemical composition of meimechites which are unique and rarely occurring ultra-high MgO igneous rocks can be complicated due to their porphyric structure, the presence of acid-insoluble minerals, and wide variation of major and trace element contents. In the present study the optimal analytical strategy based on a combination of X-ray fluorescence (XRF) and inductively coupled plasma mass spectrometry (ICP-MS) methods was suggested for the determination of the elemental composition of meimechites. The preparation of glass beads using a lithium tetraborate and metaborate mixture proved to be suitable for the XRF determination of major oxides. A comparative study of the sample decomposition procedures for the determination of trace elements by ICP-MS clearly showed that fusion with lithium metaborate was the most appropriate sample preparation technique for complete digestion of meimechites. The open beaker HF-HNO3-HClO4 acid digestion was insufficient because the results for Nb, Ta, V, Zr, Cr and Hf were underestimated by 20-80% compared to those determined using the fusion method due to the presence in the rock samples of acid-resistant accessory minerals. It is shown that using analytical data from acid digestion may lead to erroneous interpretation of geochemical data.
DS201909-2074
2019
Pernet-Fisher, J.F., Barry, P.H., Day, J.M.D., Pearson, D.G., Woodland, S., Agashev, A.M., Pokhilenko, L.N., Pokhilenko, N.P.Heterogeneous kimberlite metasomatism revealed from a combined He-Os isotope study of Siberian megacrustalline dunite xenoliths.Geochimica et Cosmochimica Acta, in press available 45p. PdfRussia, Siberiadeposit - Udachnaya East
DS201909-2084
2019
Sharkov, E.V., Chisyakov, A.V., Bogina, M.M., Bogatikov, O.A., Sjchiptsov, V.V., Belyatsky, B.V., Frolov, P.V.Ultramafic - alkaline - carbonatite complexes as a result of two stage melting of a mantle plume: from the Mid- Paleoproterozoic Tiksheozero intrusion, northern Karelia, Russia.Doklady Earth Sciences, Vol. 486, 2, pp. 638-643.Russia, Kareliacarbonatite

Abstract: The Tiksheozero ultramafic-alkaline-carbonatite intrusive complex, like numerous carbonatite-bearing complexes of similar composition, is a part of a large igneous province related to the ascent of a thermochemical mantle plume. The geochemical and isotopic data indicate that the formation of the ultramafic and alkaline rocks was related to crystallization differentiation of a primary alkali picritic melt, whereas carbonatite magmas were derived from an independent mantle source. We suggest that the origin of parental magmas of the Tiksheozero Complex, as well as other ultramafic-alkaline-carbonatite complexes, was provided by two-stage melting of the mantle-plume head: (1) adiabatic melting of its inner part generated moderately alkaline picrites, the subsequent fractional crystallization of which led to the appearance of alkaline magmas, and (2) incongruent melting of the upper cooled margin of the plume head under the influence of CO2-rich fluids, which arrived from underlying adiabatic melting zone, gave rise to carbonatite magmas.
DS201909-2086
2019
Shatsky, V.S., Nadolinny, V.A., Yuryeva, O.P., Rakhamanova, M.I., Komarovskikh, A.Yu.Features of the impurity composition of diamonds from placers of the northeastern Siberian craton.Doklady Earth Sciences, Vol. 486, 2, pp. 644-646.Russia, Siberiadiamond morphology

Abstract: Diamond crystals from the Istok (25 crystals) and Mayat (49 crystals) placers were studied using the EPR, IR, and luminescence methods. The total content of impurity nitrogen in forms of A, B, and C (P1) centers ranges from 50 to 1200 ppm. According to the EPR spectroscopy, the presence of nitrogen C (P1), N3V and nitrogen-titanium OK1, N3, NU1 impurity centers was established in the investigated crystals. For 18 crystals from the Istok placer, the N3 nitrogen-titanium center was observed in the EPR spectra, but in the luminescence spectra there was no 440.3 nm system, which was previously attributed to the manifestation of the N3 defect. It is more likely that the nitrogen-titanium N3 EPR center corresponds to the electron-vibrational system 635.7 nm, which is observed in the luminescence spectra of these crystals. Crystals from the Istok placer contain the OK1, N3, and NU1 centers, but luminescence attributed to the oxygen-containing centers is absent in the region of 610-670 nm. For the Mayat placer crystals, the reverse situation was observed. The luminescence ascribed to the oxygen-containing centers was detected for 17 crystals, but there were no OK1, N3, and NU1 centers according to the EPR and luminescence. This result contradicts the arguments of a number of authors about the oxygen nature of these defects. For 5 crystals from the Mayat placer, the nickel impurity was registered. This indicates the presence of ultrabasic paragenesis diamond crystals in this placer.
DS201909-2087
2019
Shchukina, E.V., Agashev, A.M., Soloshenko, N.G., Streletskaya, M.V.Origin of the V. Grib pipe eclogites ( Arkhangelsk region, NW Russia): geochemistry, Sm-Nd and Rb-Sr isotopes and relation to regional Precambrian tectonics.Mineralogy and Petrology, in press available 20p. PdfRussia, Archangeldeposit - Grib

Abstract: In this paper, new main and trace elements and isotopic data are presented for 14 coarse-grained eclogite xenoliths from the V. Grib kimberlite pipe in the central part of the Arkhangelsk Diamondiferous Province. Based on reconstructed whole rock MgO content, this suite is divided into high-MgO and low-MgO varieties. Eclogitic groups have a similar range of variations in the trace element compositions of garnet, clinopyroxene and reconstructed whole rock. All eclogites show positive Eu anomalies in garnet and Sr anomalies in the whole rock. The negative correlation between the Mg#, Sr/Lu ratio and HREE in a whole rock points to upper and lower oceanic crustal rocks as a protolith for eclogites with high and low whole rock HREEs, respectively. Low-MgO eclogites with higher whole rock HREEs have the basaltic upper oceanic crustal protolith, whereas the protoliths of eclogites with lower whole rock HREEs could be of gabbroic composition from the lower oceanic crust. High-MgO eclogites could represent MgO-rich portions of oceanic crustal rocks: picritic/MgO basalt portions in the upper oceanic crust and troctolite portions in the lower oceanic crust. The Sr and Nd isotope compositions suggest a complex history of eclogites during their residence in the lithospheric mantle. Similarities in the Nd isotope compositions and two-point Sm-Nd isochron ages are evidence for re-equilibration of the Sm-Nd isotope system between the eclogite garnet and clinopyroxene via a pre-kimberlite thermal event at 396?±?24 Ma. The subset of clinopyroxenes from four eclogites has a Sr isotope composition that plots on the isochron at an age of 2.84 Ga, which reflects the time of the subduction event and emplacement into the lithosphere and corresponds to the time of the Belomorian Eclogite Province of Baltic Shield formation.
DS201909-2089
2019
Simonov, V.A., Kontorovich, V.A., Stupakov, S.I., Filippov, Y.F., Saraev, S.V., Kotlyarov, A.V.Setting of the formation of Paleozoic picrite basalt complexes in the west Siberian plate basement.Doklady Earth Sciences, Vol. 486, 2, pp. 613-616.Russia, Siberiapicrites

Abstract: 40Ar/39Ar analysis showed a simultaneous (at about 490 Ma) formation of the Paleozoic picrite and basalt complexes of the West Siberian Plate basement. The petrochemistry, trace and REE geochemistry, and composition of clinopyroxene indicate the formation of the picrite of well no. 11 (Chkalov area) as a result of intraplate magmatism of the OIB type. Calculations based on the compositions of clinopyroxene allowed crystallization of minerals of porphyric picrite at 1215-1275°C and 4.5-8 kbar. In general, it has been found that the picrite basalt complexes considered were formed from enriched igneous plume systems under intraplate conditions near the active margin of the ancient ocean.
DS201910-2256
2019
Dymshits, A., Sharygin, I., Yakolev, I., Malovets, V.Thermal state and composition of the lithospheric mantle beneath the Upper Muna kimberlite field, Yakutia.Goldschmidt2019, 1p. AbstractRussia, Yakutiadeposit - Upper Muna

Abstract: Mantle xenoliths brought up by kimberlitic magmas are the main source of data on the composition and physical conditions of cratonic mantle. Temperature varioations in a complete lithospheric mantle section (80-200 km) of the Siberian craton beneath the Upper Muna kimberlite filed are estimated based 49 peridotite xenolith and 330 Cpx grains from the Komsomolskaya-Magnitnaya pipe. Pressure and temperature estimates closely follow the 34.5 mW/m2 conductive geotherm. Thermal lithospere thickness is of ~ 220 km, and “diamond window” in the Paleozoic is ~75 km thick (Fig.1). Olivine compositions range in Mg# from 82 to 94 and the majority of olivenes has very high Mg# > 93. Garnets compositions mainlly follow to harzburgite-dunite and lherzolite trends plotted as Cr2O3 vs CaO. The composition of the minerals indicated the extremly depleted lithospheric mantle beneath the Upper-Muna kimberlite field. Figure 1: Model palaeogeotherms calculated using the program FITPLOT. Komsomolskaya-Magnitnaya - our data, Novinka and Udachaya are from Z16 [1]
DS201910-2259
2019
Golovin, A.V., Sharygin, I., Korsakov, A.V., Kamenetsky, V.S., Abersteiner, A.Can primitive kimberlite melts be alkali-carbonate liquids: composition of the melt snapshots preserved in deepest mantle xenoliths.Journal of Raman Spectroscopy, in press available, 19p. PdfRussiadeposit - Udachnaya

Abstract: The study of kimberlite rocks is important as they provide critical information regarding the composition and dynamics of the continental mantle and are the principal source of diamonds. Despite many decades of research, the original compositions of kimberlite melts, which are thought to be derived from depths > 150 km, remain highly debatable due to processes that can significantly modify their composition during ascent and emplacement. Snapshots of the kimberlite?related melts were entrapped as secondary melt inclusions hosted in olivine from sheared peridotite xenoliths from the Udachnaya?East pipe (Siberian craton). These xenoliths originated from 180? to 220?km depth and are among the deepest derived samples of mantle rocks exposed at the surface. The crystallised melt inclusions contain diverse daughter mineral assemblages (>30 mineral species), which are dominated by alkali?rich carbonates, sulfates, and chlorides. The presence of aragonite as a daughter mineral suggests a high?pressure origin for these inclusions. Raman?mapping studies of unexposed inclusions show that they are dominated by carbonates (>65 vol.%), whereas silicates are subordinate (<13 vol.%). This indicates that the parental melt for the inclusions was carbonatitic. The key chemical features of this melt are very high contents of alkalis, carbon dioxide, chlorine, and sulfur and extremely low silica and water. Alkali?carbonate melts entrapped in xenolith minerals likely represent snapshots of the primitive kimberlite melt. This composition is in contrast with the generally accepted notion that kimberlites originated as ultramafic silicate water?rich melts. Experimental studies revealed that alkali?carbonate melts are a very suitable diamond?forming media. Therefore, our findings support the idea that some diamonds and kimberlite magmatism may be genetically related.
DS201910-2274
2019
Kogarko, L.N.A new geochemical criterion for rare-metal mineralization of high-alkalic magmas ( Lovozero deposit, Kola peninsula.)Doklady Earth Sciences, Vol. 487, 2, pp. 922-924.Russia, Kola Peninsuladeposit - Lovozero

Abstract: Detailed studies have shown that a change in the eudialyte occurrence forms (and the moment of its crystallization) is a new geochemical criterion for rare metal ore content in alkalic magmas (eudialyte ores). A new principle of the presence of ores in alkalic magmas has been formulated: a prerequisite for the formation of an ore deposit is early saturation of alkalic magmas with an ore mineral. If the ore component concentration is significantly lower than the cotectic (saturation), then melt saturation and crystallization of an ore mineral will take place at later stages of rock formation in a small volume of the interstitial melt, when the phenomena of convective?gravity differentiation and segregation of mineral phases in the form of ore deposits are hampered. This leads to dispersion of the ore components in the form of xenomorphic grains of accessory minerals. Rocks of the differentiated complex (lower zone of the Lovozero deposit) and rocks of the Khibiny massif contain xenomorphic eudialyte and are not promising for eudialyte ores. Eudialyte deposits are associated with the upper zone of the Lovozero intrusion where euhedral early eudialyte occurs. The initial magma is saturated with eudialyte after crystallization of about 80% of the intrusion. The proposed criterion is applicable to the largest alkalic massifs in the world. The Ilimaussaq massif (Greenland), the rocks of which contain early crystallized, euhedral eudialyte, hosts a superlarge eudialyte ore deposit. Unlike the Khibiny massif and the Pilanesberg alkalic complex, the rocks of which contain late xenomorphic eudialyte, this massif has no deposits of this type.
DS201910-2275
2019
Kriulina, G.Yu., Iskrina, A.V., Zedgenizov, D.A., Bobrov, A.V., Garanin, V.K.The compositional pecularities of microinclusions in diamonds from the Lomonosov deposit ( Arkangelsk Province).Geochemistry International, Vol. 57, 9, pp. 963-980.Russiadeposit - Lomonosov

Abstract: The data on the composition of microinclusions in diamonds from the Lomonosov deposits are reported for the first time. The studied diamonds include “coated” (n = 5) and cubic (n = 5) crystals. The estimated range of the degree of nitrogen aggregation in diamonds (4-39% B1) does not support their direct links with kimberlite magmatism; however, their short occurrence in the mantle at higher temperatures is probable as well. The composition of melt/fluid microinclusions in these samples varies from essentially carbonatitic to significantly silicate. It is shown that the contents of MgO, CaO, Na2O, Cl, and P2O5 decrease with increasing content of silicates and water. Different mechanisms of the generation and evolution of diamond-forming media are discussed to explain the observed variations.
DS201910-2287
2019
Mikhailenko, D.S., Korsakov, A.V., Rezvukhina, O.V., Golovin, A.V., Sobolev, N.V.A find of coesite in diamond bearing kyanite eclogite from the Udachnaya kimberlite pipe, Siberian craton.Doklady Earth Sciences, Vol. 487, 2, pp. 925-928.Russia, Siberiadeposit - Udachnaya

Abstract: A find of coesite in a kyanite graphite-diamond-bearing eclogite xenolith from the Udachnaya-Vostochnaya kimberlite pipe is described in this paper. The coesite relics were found in intensely fractured garnet indicating some influence of the kimberlite melt, which is supported by the typical secondary mineral assemblage around this inclusion. These data indicate that shallower diamond-free coesite-grade rocks (2.7 GPa) underwent metamorphism distinct from diamond-bearing coesite eclogites (?4 GPa). The metasomatic alteration of rock as a result of the C-O-H fluid-rock interaction during diamond crystallization may be another possible reason for the absence of coesite in diamond-bearing xenoliths.
DS201910-2288
2019
Nestola, F., Zaffiro, G., Mazzucchelli, M.L., Nimis, P., Andreozzi, G.B., Periotto, B., Princivalle, F., Lenaz, D., Secco, L., Pasqualetto, L., Logvinova, A.M., Sobolev, N.V., Lorenzetti, A., Harris, J.W.Diamond inclusion system recording old deep lithosphere conditions at Udachnaya ( Siberia).Nature Research, Vol. 9, 12586 8p. PdfRussia, Siberiadeposit - Udachnaya

Abstract: Diamonds and their inclusions are unique fragments of deep Earth, which provide rare samples from inaccessible portions of our planet. Inclusion-free diamonds cannot provide information on depth of formation, which could be crucial to understand how the carbon cycle operated in the past. Inclusions in diamonds, which remain uncorrupted over geological times, may instead provide direct records of deep Earth’s evolution. Here, we applied elastic geothermobarometry to a diamond-magnesiochromite (mchr) host-inclusion pair from the Udachnaya kimberlite (Siberia, Russia), one of the most important sources of natural diamonds. By combining X-ray diffraction and Fourier-transform infrared spectroscopy data with a new elastic model, we obtained entrapment conditions, Ptrap?=?6.5(2) GPa and Ttrap?=?1125(32)-1140(33) °C, for the mchr inclusion. These conditions fall on a ca. 35?mW/m2 geotherm and are colder than the great majority of mantle xenoliths from similar depth in the same kimberlite. Our results indicate that cold cratonic conditions persisted for billions of years to at least 200?km in the local lithosphere. The composition of the mchr also indicates that at this depth the lithosphere was, at least locally, ultra-depleted at the time of diamond formation, as opposed to the melt-metasomatized, enriched composition of most xenoliths.
DS201910-2297
2019
Shatsky, V., Ragozin, A., Logvinova, A., Wirth, R., Sobolev, N.Alluvial diamonds from iron-saturated mantle beneath the northeastern margin of Siberian craton.Goldschmidt2019, 1p. AbstractRussiacraton

Abstract: Diamonds of eclogitic paragenesis are dominant in the placer deposits in the northeastern part of the Siberian Craton. Multiple inclusions and host diamonds carbon isotopes composition are consistent with a mixing model in which they result from the interaction of slab-derived melt/fluid with surrounding mantle [1,2]. A significant portion of diamonds contains black inclusions usually interpreted as graphite or sulphides. Twenty six dark inclusions from the 22 diamonds were exposed by polishing for chemical microanalysis. Inclusions were studied with SEM, TEM and EMP. Fe-C-O melt inclusions in association with with Kfsp, Ol and silicate melt inclusions were identified. Most of the inclusions are heterogeneous in composition and consist of iron carbides, iron in various oxidation states and carbon. Carbides contain impurities of Ni (0-0.6%), Sr (up to 3.4%), Cr (up to 0.8%) Si (up to 1%). Inclusions of wustite and Fe-Ti-O melt were identified in one diamond along with inclusions of Fe-C-O melt. In two cases diamond inclusions found within host diamond crystal. Diamond inclusions are surronded by a border consisting of wustite and siderite. Inclusions of Fe-C-O melt in allivial diamonds are best explained by carbonate melt-iron reaction [3].
DS201910-2298
2019
Shiryaev, A.A., Kaminisky, F.V., Ludwig, W., Zolotov, D.A., Buzmakov, A.V., Titlov, S.V.Texture and genesis of polycrystalline varieties of diamond based on phase-contrast and diffraction contrast tomography.Geochemistry International, Vol. 57, 9, pp. 1015-1023.South America, Brazil, Africa, Central African Republic, Russiacarbonado

Abstract: Structural peculiarities of several types of cryptocrystalline diamond varieties: carbonado, impact-related yakutite and cryptocrystalline diamond aggregates from kimberlite were studied using Infrared spectroscopy, X-ray diffraction contrast (DCT—Diffraction Contrast Tomography) and phase contrast tomography (PCT). It is shown that the porosity of the carbonado and kimberlitic cryptocrystalline aggregates is similar being in range of 5-10 vol %, possibly indicating similar formation mechanism(s), whereas that of yakutite is essentially zero. Crystallographic texture is observed for some carbonado samples. It is suggested that at least partially the texture is explained by deformation-related bands. Infrared spectroscopy reveals presence of hydrous and, probably, of hydrocarbon species in carbonado.
DS201911-2508
2019
Ashchepkov, I.V., Mevedev, N.S., Yudin, D.S., Ntaflos, T., Makovchuk, I.V., Ivanov, A.S., Kiseeva, E.Mantle columns beneath Kosomolskaya and Zarnitsa kimberlite pipes: xenolith study.Goldschmidt2019, 1p. AbstractRussiadeposit - Kosomolskaya, Zarnitsa

Abstract: Mantle xenolith from Komsomolskya and Zarnitsa pie were used for the reconstryctions of mantle columns beneath theses kimberlite pipes. Relatively fresh mantle xenolith from Zarnitsa and Komsomolskaya pipes we used for PTX reconstructions of mantle sections. In Zarnitsa dunites - harburgites with richterite, Phl-Ilm veins, sheared lherzolites, pyroxenites (with amphibole) and eclogites and deformed peridotites. Mg -rich Gar and Opx formed stepped P-Fe# trend, Fe- enriched Cpx with Ilm were created mostly by protkimberlites. Sub Ca garnets rarely show U spikes while Ti rich show Th, U, Ta, Nb, Zr and peaks Many minerals demonstrate Th enrichment due to carbonitites. In mantle of Komsomolskaya pipe Phl is wide spreadin periditites from lherzolites ti dunites and in eclogites. There are 6 intervals with sharp division at 5 GPa.Mg eclogites prevae in lower part while fe- enriched in middle part. The Fe# rise is detevcted in lower and upper parts of mantle section. The TRE spiderdiagrams of grnets shows U -pb subduction peaks But Cpx mainly show n Th- peak. The ages of eclogites ogive 500-600 Ma (one 1525 MA) which is much less than in Zarnitsa or Udachnaya having Proterozoic - Archean ages.
DS201911-2524
2019
Gerocs, T.The transformation of African-Russian economic relations in the multipolar world-system.Review of African Political Economy, Vol. 46, pp. 317-335.Africa, RussiaNews item - economics

Abstract: Despite the historical legacy of the Soviet Union, the Russian Federation’s economic presence in Africa today is minuscule in comparison to that of the West or China. The aim of this Briefing is to provide a framework for the trajectory of African-Russian economic ties in the changing international environment. Although the economic, trade and investment affairs could develop more complementarity, it is still an open question whether African countries benefit from the deepening economic ties or whether these inhibit local socio-economic development.
DS201911-2544
2019
Malkovets, V.G., Rezvukhin, D.I., Griffin, W.L., Tretiakova, I.G., Pearson, N.J., Gibsher, A.A., Belousova, E.A., Zedgenizov, D.A., O'Reilly, S.Y.Re-Os dating of sulfide inclusions in Cr-pyropes from the Upper Muna kimberlites.Goldschmidt2019, 1p. AbstractRussiadeposit - Upper Muna

Abstract: Archean cratons are underlain by highly depleted subcontinental lithospheric mantle (SCLM). However, there are extensive evidences that Archean SCLM has been extensively refertilized by metasomatic processes, with the addition of Fe, Ca, and Al to depleted protoliths. The distribution of sub-calcic Cr-rich garnets in the SCLM beneath the Siberian craton suggests (1) sub-calcic garnets and diamonds are metasomatic phases in the cratonic SCLM; (2) the distribution of both phases is laterally heterogeneous on relatively small scales and related to ancient structural controls [1]. Re-Os isotopic compositions of twenty six sulfide inclusions in lherzolitic Cr-pyropes from Upper Muna kimberlites have been determined by laser ablation MCICPMS. Most analysed sulfides (~92%) have very low Re/Os ratios (<0.07), and their Re-depletion ages (TRD) form three major peaks: 3.4-2.8, 2.2-1.8 and 1.4-1.2 Ga (±0.03 Ga, mean 2s analytical uncertainty). One sulfide give the oldest TRD age at 4 Ga. Our data suggest that refertilization of the highly depleted SCLM and the introduction of Cr-pyrope garnet occurred in several episodes. The oldest age of ca 4 Ga indicate on the beginning of the formation of the depleted SCLM of the Siberian Craton in Hadean time [2].
DS201911-2556
2019
Ragozin, A., Zedgenizov, D., Kagi, H., Kuper, K.E., Shatsky, V.Deformation features of superdeep diamonds.Goldschmidt2019, 1p. AbstractSouth America, Brazil, Russia, Siberiadeposit - Juina

Abstract: Much of our knowledge of the Earth’s deep interior comes from theoretical models, which are based on the results of experimental petrology and seismology. Diamonds in such models are the unique natural samples because they contain and preserve inclusions of mantle materials that have been entrapped during diamond growth and remained unchanged for long geologic time. In the present study for superdeep sublithospheric diamonds from Saõ-Luiz (Juina, Brazil) and northeastern Siberian Platform with mineral inclusions of the Transition Zone and Lower Mantle (majorite garnet, coesite (stishovite), ferropericlase and Mg-Si-, Ca-Si-, Ca-Ti, Ca-Si- Ti-perovskite), the diffraction of backscattered electrons technique (EBSD) revealed features of the internal structure. Superdeep diamonds are characterized by a defective and imperfect internal structure, which is associated with the processes of growth and post-growth plastic deformation. The deformation is manifested both in the form of stripes parallel to the (111) direction, and in the form of an unordered disorientation of crystal blocks up to 2°. In addition, for many crystals, a block structure was established with a greater disorientation of the sub-individuals, as well as the presence of “diamond-in-diamond” inclusions and microtwins. Additional stresses are often observed around inclusions associated with the high remaining internal pressure. It has previously been shown that the crystal structure of superdeep diamonds is significantly deformed around inclusions of perovskites, SiO2 (stishovite?), and Mg2SiO4 (ringwoodite?). The significant plastic deformations detected by the EBSD around inclusions testify to phase transitions in superdeep minerals (perovskites, stishovite, and ringwoodite) [1].
DS201911-2559
2019
Schmitt, A.K., Zack, T., Kooijman, E., Logvinova, A.M., Sobolev, N.V.U-Pb ages of rare rutile inclusions in diamond indicate entrapment synchronous with kimberlite formation. MirLithos, in press available, 47p. PdfRussiadeposit - Mir
DS201911-2562
2019
Siegrist, M., Yogodzinski, G., Bizimis, M., Fournelle, J., Churikova, T., Dektor, C., Mobley, R.Fragments of metasomatized forearc: origin and implications of mafic and ultramafic xenoliths from Kharchinsky volcano, Kamchatka.Geochemistry, Geophysics, Geosystems, Vol. 20, 9, pp. 4426-4456.Russiaxenoliths

Abstract: This paper presents the results of a study of rare rock fragments (xenoliths) that were transported from the Earth's deep interior to the surface during an eruption of Kharchinsky volcano, Kamchatka. The chemical compositions, mineralogy, and textures of the samples were studied with the goal of understanding the processes that affected rocks, which may play a role in the formation of magmas in the Kamchatka subduction zone. The key process that affected the xenoliths involved the addition of fluids and dissolved elements to the samples at temperatures of 500-700 °C. These fluids are derived from seawater that was transported to 30? to 50?km depths by subduction of the Pacific Plate beneath Kamchatka. Subsequent to the addition of fluid, there was a shift in the position of the Kamchatka?Pacific Plate boundary that led to an increase in temperature and the formation of small quantities of melt that crystallized to a distinctive group of secondary minerals that are present in the samples and that postdate (overprint) the initial effects of fluid addition. The final step in the evolution of the samples was infiltration by an Fe? and Mg?rich magma that crystallized principally amphibole?group minerals.
DS201911-2565
2019
Soboelev, N.V., Logvinova, A.M., Tomilenko, A.A., Wirth, R., Bulbak, T.A., Lukyanova, L.I., Fedorova, E.N., Reutsky, V.N., Efimova, E.S.Mineral and fluid inclusions in diamonds from the Urals placers, Russia: evidence for solid molecular N2 and hydrocarbons in fluid inclusions.Geochimica et Cosmochimica Acta, Vol. 266, pp. 197-212.Russia, Uralsdiamond inclusions

Abstract: The compositions of mineral inclusions from a representative collection (more than 140 samples) of diamonds from the placer deposits in the Ural Mountains were studied to examine their compositional diversity. The overwhelming majority of rounded octahedral and dodecahedral stones typical of placers contain eclogitic (E-type) mineral inclusions (up to 80%) represented by garnets with Mg# 40-75 and Ca# 10-56, including the unique high calcic “grospydite” composition, omphacitic pyroxenes containing up to 65% of jadeite, as well as kyanite, coesite, sulfides, and rutile. Peridotitic (P-type) inclusions are represented by olivine, subcalcic Cr-pyrope, chrome diopside, enstatite and magnesiochromite that are typical for diamonds worldwide. Comparing the chemical composition of olivine, pyrope and magnesiochromite in diamonds of the Urals, north-east of the Siberian platform placers and Arkhangelsk province kimberlites show striking similarity. There are significant differences only in the variations of carbon isotopic composition of the diamonds from the placers of the Urals and north-east of the Siberian platform. One typical rounded dodecahedral diamond was found to contain abundant primary oriented submicrometer-sized (<3.0?µm) octahedral fluid inclusions identified by transmission electron microscopy, which caused the milky color of the entire diamond crystal. The electron energy-loss spectrum of a singular inclusion has a peak at ?405?eV, indicating that nitrogen is present. The Raman spectra with peaks at 2346-2350?cm?1 confirmed that nitrogen exists in the solid state at room temperature. This means that fossilized pressure inside fluid inclusions may be over 6.0 GPa at room temperature, so the diamond may be considered sublithospheric in origin. However, identification of unique fluid inclusions in one typical placer diamond allows one to expand the pressure limit to at least more than 8.0 GPa. The volatile components of four diamonds from the Urals placers were analyzed by gas chromatography-mass spectrometry (GC-MS). They are represented (rel. %) by hydrocarbons and their derivatives (14.8-78.4), nitrogen and nitrogenated compounds (6.2-81.7), water (2.5-5.5), carbon dioxide (2.8-12.1), and sulfonated compounds (0.01-0.96). It is shown that high-molecular-weight hydrocarbons and their derivatives, including chlorinated, nitrogenated and sulfonated compounds, appear to be stable under upper mantle P-T conditions. A conclusion is drawn that Urals placer diamonds are of kimberlitic origin and are comparable in their high E-type/P-type inclusion ratios to those from the northeastern Siberian platform and in part to diamonds of the Arkhangelsk kimberlite province.
DS201912-2768
2019
Alvaro, M., Mazzucchelli, M.L., Angel, R.J., Murri, M., Campmenosi, N., Scambelluri, M., Nestola, F., Korsakov, A., Tomilenko, A.A., Marone, F., Morana, M.Fossil subduction recorded by quartz from the coesite stability field. GeobarometryGeology, in press, 5p. PdfRussia, Yakutiadeposit - Mir

Abstract: Metamorphic rocks are the records of plate tectonic processes whose reconstruction relies on correct estimates of the pressures and temperatures (P-T) experienced by these rocks through time. Unlike chemical geothermobarometry, elastic geobarometry does not rely on chemical equilibrium between minerals, so it has the potential to provide information on overstepping of reaction boundaries and to identify other examples of non-equilibrium behavior in rocks. Here we introduce a method that exploits the anisotropy in elastic properties of minerals to determine the unique P and T of entrapment from a single inclusion in a mineral host. We apply it to preserved quartz inclusions in garnet from eclogite xenoliths hosted in Yakutian kimberlites (Russia). Our results demonstrate that quartz trapped in garnet can be preserved when the rock reaches the stability field of coesite (the high-pressure and high-temperature polymorph of quartz) at 3 GPa and 850 °C. This supports a metamorphic origin for these xenoliths and sheds light on the mechanisms of craton accretion from a subducted crustal protolith. Furthermore, we show that interpreting P and T conditions reached by a rock from the simple phase identification of key inclusion minerals can be misleading.
DS201912-2795
2019
Krivovichev, S.V., Yakovenchuk, V.N., Panikorovskii, T.L., Savchenko, E.E., Pakhailova, Yu, A., Selivanova, E.A., Kadyrova, G.I., Ivanyuk, G.Yu.,Krivovchev, S.V.Nikmelnikovite: Ca 12 Fe 2+ Fe 3+3 Al3(SiO4) 6(OH)20: a new mineral from the Kovdor Massif ( Kola Peninsula, Russia)Doklady Earth Sciences, Vol. 488, 2, pp. 1200-1202.Russia, Kola Peninsuladeposit - Kovdor
DS202001-0020
2020
Ionov, D.A., Guo, P., Nelson, W.R., Shirey, S.B., Willbold, M.Paleoproterozoic melt depleted lithospheric mantle in the Khanka block, far eastern Russia: inferences for mobile belts bordering the North China and Siberian cratons.Geochimica et Cosmochimica Acta, Vol. 270, pp. 95-111.China, Russiametasomatism, melting

Abstract: The eastern part of Asia between the North China and Siberian cratons contains orogenic belts formed by the Paleo-Asian and Pacific subduction and older continental blocks. A fundamental question regarding these and all mobile belts is the fate of the continental lithospheric mantle (CLM) during their formation, i.e. whether, or to what extent the CLM may be formed, replaced or affected during orogeny. Insights into these processes can be obtained from mantle xenoliths hosted by Cenozoic basalts in the Proterozoic Khanka block in the far eastern Russia between NE China and the Pacific coast of Asia. We report petrographic, chemical, and Os-Sr-Nd isotope data for spinel peridotite xenoliths at two Khanka sites: Sviyagin and Podgelban. The modal abundances and chemical compositions suggest that the peridotites are residues of low to moderate degrees of melt extraction from fertile mantle. They show an 187Os/188Os vs. 187Re/188Os correlation with an apparent 1.9?Ga age; the 187Os/188Os ratios are positively correlated with Al2O3 and other melt extraction indices. These results provide the first robust CLM age constraints for the eastern Central Asian Orogenic Belt (CAOB). The ages suggest that the ancient CLM of the Khanka block may be roughly coeval with reworked CLM at Hannuoba (North China craton), and that it persisted through the Phanerozoic orogenies. Moreover, despite the proximity to Phanerozoic subduction zones, the Khanka CLM shows little post-melting enrichment, e.g. the clinopyroxenes are typically LREE-depleted and have Sr-Nd isotope ratios typical of the MORB mantle. We posit that the metasomatism of the CLM, earlier proposed for North China xenolith suites and ascribed to the effects of Pacific or older subduction and related mantle upwelling, may not be widespread in the CAOB. In general, Proterozoic blocks composed of residual peridotites may be more common in the CLM of the SE Siberia and northern China, and possibly other orogenic belts, than previously thought.
DS202001-0024
2019
Kogarko, L.N., Veselovskiy, R.V.Geodynamic origin of carbonatites from the absolute paleoproterozoic reconstructions. Maymecha-KotuyJournal of Geodynamics, Vol. 125, pp. 13-21.Russia, Siberiacarbonatite

Abstract: Geodynamic origin of carbonatites is debated for several decades. One of hypotheses links their origin to large-volume mantle plumes rising from the core-mantle boundary (CMB). Some evidence exists for temporal and spatial relationships between the occurrences of carbonatites and large igneous provinces (LIPs), and both carbonatites and LIPs can be related to mantle plumes. A good example is the carbonatites of the Maymecha-Kotuy Province in the Polar Siberia, which were formed at the same time as the Siberian superplume event at ca. 250 Ma. In this study we use a recently published absolute plate kinematic modelling to reconstruct the position of 155 Phanerozoic carbonatites at the time of their emplacement. We demonstrate that 69% of carbonatites may be projected onto the central or peripheral parts of the large low shear-wave velocity provinces (LLSVPs) in the lowermost mantle. This correlation provides a strong evidence for the link between the carbonatite genesis and the locations of deep-mantle plumes. A large group of carbonatites (31%) has no obvious links to LLSVPs and, on the contrary, they plot above the "faster-than-average S-wave" zones in the deep mantle, currently located beneath North and Central America and China. We propose that their origin may be associated with remnants of subducted slabs in the mantle.
DS202001-0028
2019
Moilanen, J., Pavlov, B., Karshakov, E., Volovitsky, A., Garakoev. A.Airborne geophysical technologies as a basis for diamond field prognoses in regional and state scale.2019 Twelth International Conference Oct 1-3. Moscow, IEEE DOI 11.09/MLSD .2019.8911014Africa, Angola, Russia, Yakutiageophysics

Abstract: We show how to increase the effectiveness of the prognoses of kimberlite bodies by using airborne geophysical technologies. We show the advantages of electromagnetic and magnetic methods for predicting kimberlite pipes. You will see examples of a regional diamond survey in Angola and Siberia.
DS202001-0041
2019
Sorokhtina, N.V., Kogarko, L.N., Zaitsev, V.A., Kononkova, N.N., Asavin, A.M.Sulfide mineralization in the carbonatites and phoscorites of the Guli Massif, Polar Siberia, and their noble metal potential.Geochemistry International, Vol. 57, 11, pp. 1125-1146.Russia, Siberiacarbonatite

Abstract: We report the first combined investigation (neutron activation, X-ray fluorescence, and electron microprobe analysis) of mineral forms of Au and Ag and noble metal distribution in the sulfide-bearing phoscorites and carbonatites of the Guli alkaline ultrabasic massif (Polar Siberia) and magnetite and sulfide separates from these rocks. The highest noble metal contents were observed in the sulfide separates from the carbonatites: up to 2.93 Pt, 61.6 Au, and 3.61 ppm Ag. Pyrrhotite, djerfisherite, chalcopyrite, and pyrite are the most abundant sulfides and the main hosts for Au and Ag. The latest assemblage of chalcopyrite, Ag-rich djerfisherite, lenaite, sternbergite, and native silver shows significant Ag concentrations. The wide occurrence of K sulfides and presence of multiphase inclusions in pyrrhotite consisting of rasvumite, K?Na–Ca carbonate, carbocernaite, strontianite, galena, chalcopyrite, sternbergite, lenaite, and native silver suggest that the sulfides were formed at high activities of K, Na, Sr, LREE, F, Cl, and S. Chlorine shows high complex-forming capacity to Ag and could be an agent of noble metal transport in the carbonatites. Crystallization of the early djerfisherite–pyrrhotite assemblages of the phoscorites and carbonatites began at a temperature not lower than 500°C and continued up to the formation of late Ag-bearing sulfides at temperatures not higher than 150°C. The carbonatite-series rocks could be enriched in Au and Ag during late low-temperature stages and serve as a source for Au placers.
DS202001-0042
2019
Sumilova, T., Maximentko, N., Zubov, A., Kovalchuk, N., Ulyashev, V., Kis, V.Varieties of impactites and impact diamonds of the Kara meteorite crater ( Pay-Khoy, Russia).Geoscience Frontiers, 10.1016/j.gsf/2019.09.0111 1p. Abstract Conf.Russia, Siberiaimpact diamonds

Abstract: Impact diamonds are technical material with valuable mechanical properties. Despite of a quite long story from their discovery and huge diamond storages at the Popigai astrobleme (Siberia, Russia) they were not involved into industrial production, first of all because of remoteness of objects, complexity of extraction and economically more favourable synthesis of technical diamonds in the seventies of the past century. However, due to the high hardness of impact diamonds and also to the high demand of new carbon materials, including nanomaterials, the interest towards this type of natural diamonds is significantly increased in the recent years. Although the mentioned Popigai astrobleme is situated in a remote part of Russia it has been studied in more details. At the same time, the less known Kara giant meteorite crater (Pay-Khoy, Russia) is situated essentially closer to the industrial infrastructure of the European part of Russia. This astrobleme, similarly to Popigai, is enriched in impact diamonds as well. But, till recent years it was not deeply studied using modern analytical methods. During our studies in 2015 and 2017 at the territory of the Kara meteorite crater we have distinguished and described 5 varieties of impactites - bulk melt impactites which form cover-like and thick dike bodies; melt ultrahigh-pressure vein bodies and at least 3 types of suevites formed after specific sedimentary target rocks. These varieties have typomorphic features regarding the crystallinity and mineral composition. It was found that all of them have high concentration of microdiamonds formed by high-pressure high temperature pyrolysis mechanism from precursor materials like coal and organic relicts. Using a set of modern mineralogical methods we have found two principal types of diamond morphologies within the Kara impactites - sugar-like after coal diamonds and diamond paramorphs after organic relicts. The Kara diamonds have several accompanying carbon substances including newly formed graphite, glass-like carbon and probably carbyne. The studied diamondiferous Kara impactites provide an essentially novel knowledge of impact processes in sedimentary targets.
DS202002-0182
2019
Eppelbaum, L.V., Kutasov, I.M.Well drilling in permafrost regions: dynamics of the thawed zone. ( not specific to diamonds)Polar Research, Vol. 38, 3351 9p. PdfRussiapermafrost

Abstract: In the cold regions, warm mud is usually used to drill deep wells. This mud causes formation thawing around wells, and as a rule is an uncertain parameter. For frozen soils, ice serves as a cementing material, so the strength of frozen soils is significantly reduced at the ice-water transition. If the thawing soil cannot withstand the load of overlying layers, consolidation will take place, and the corresponding settlement can cause significant surface shifts. Therefore, for long-term drilling or oil/gas production, the radius of thawing should be estimated to predict platform stability and the integrity of the well. It is known that physical properties of formations are drastically changed at the thawing-freezing transition. When interpreting geophysical logs, it is therefore important to know the radius of thawing and its dynamics during drilling and shut-in periods. We have shown earlier that for a cylindrical system the position of the phase interface in the Stefan problem can be approximated through two functions: one function determines the position of the melting-temperature isotherm in the problem without phase transitions, and the second function does not depend on time. For the drilling period, we will use this approach to estimate the radius of thawing. For the shut-in period, we will utilize an empirical equation based on the results of numerical modelling.
DS202002-0194
2020
Ionov, D.A., Guo, P., Nelson, W.R., Shirey, S.B., Willbold, M.Paleoproterozoic melt depleted lithospheric mantle in the Khanka block, far eastern Russia: inferences for mobile belts bordering the North China and Siberian cratons.Geochimica et Cosmochimica Acta, Vol. 270, pp. 95-111.Russiaperidotites

Abstract: The eastern part of Asia between the North China and Siberian cratons contains orogenic belts formed by the Paleo-Asian and Pacific subduction and older continental blocks. A fundamental question regarding these and all mobile belts is the fate of the continental lithospheric mantle (CLM) during their formation, i.e. whether, or to what extent the CLM may be formed, replaced or affected during orogeny. Insights into these processes can be obtained from mantle xenoliths hosted by Cenozoic basalts in the Proterozoic Khanka block in the far eastern Russia between NE China and the Pacific coast of Asia. We report petrographic, chemical, and Os-Sr-Nd isotope data for spinel peridotite xenoliths at two Khanka sites: Sviyagin and Podgelban. The modal abundances and chemical compositions suggest that the peridotites are residues of low to moderate degrees of melt extraction from fertile mantle. They show an 187Os/188Os vs. 187Re/188Os correlation with an apparent 1.9?Ga age; the 187Os/188Os ratios are positively correlated with Al2O3 and other melt extraction indices. These results provide the first robust CLM age constraints for the eastern Central Asian Orogenic Belt (CAOB). The ages suggest that the ancient CLM of the Khanka block may be roughly coeval with reworked CLM at Hannuoba (North China craton), and that it persisted through the Phanerozoic orogenies. Moreover, despite the proximity to Phanerozoic subduction zones, the Khanka CLM shows little post-melting enrichment, e.g. the clinopyroxenes are typically LREE-depleted and have Sr-Nd isotope ratios typical of the MORB mantle. We posit that the metasomatism of the CLM, earlier proposed for North China xenolith suites and ascribed to the effects of Pacific or older subduction and related mantle upwelling, may not be widespread in the CAOB. In general, Proterozoic blocks composed of residual peridotites may be more common in the CLM of the SE Siberia and northern China, and possibly other orogenic belts, than previously thought.
DS202002-0196
2020
Kostrovitsky, S.I., Yakolev, D.A.The origin of salts in unaltered kimberlites. Comment on Abersteiner article Journal of Petrology, in press available, 13p.Russiadeposit - Udachnaya-East

Abstract: The article by Abersteiner et al., (2018) discussing the mantle origin of salts in serpentine-free kimberlites from the Udachnaya-East pipe contradicts the views of Kostrovitsky et al. (2013) concerning the origin of these salts from a surface source of brines. Here we wish to emphasize that Abersteiner et al. (2018) have presented erroneous statements regarding the genesis of these rocks. On the basis of the data collected by hydrogeologists working at Udachnaya-East we consider that unaltered kimberlites occur at 400-500 m depth, where the brines precipitated salts. The relation of unaltered kimberlites to the surface sources of salt is illustrated by the cross sections of the Mir and International’naya pipes, where serpentine-free kimberlites occur at the depths of Cambrian evaporite host rocks intercalated with thick halite layers. It is assumed that the salts from surface sources prevented olivine serpentinization. The secondary origin of salts in serpentine-free kimberlites is confirmed by our investigations and the hypothesis regarding the mantle origin of salts is doubtful.
DS202002-0211
2020
Nadolly, V.A., Shatsky, V.S., Yuryeva, O.P., Rakhmanova, M.I., Komarovskikh, A.Yu., Kalinin, A.A., Palyanov, Yu.N.Formation features of N3V centers in diamonds from the Kholomolokh placer in the Northeast Siberian craton.Physics and Chemistry of Minerals, Vol. 47, 4, 7p. PdfRussia, Siberiadeposit - Khololmolokh

Abstract: In recent years, despite significant progress in the development of new methods for the synthesis of diamond crystals and in their post-growth treatment, many questions remain unclear about the conditions for the formation and degradation of aggregate impurity nitrogen forms. Meanwhile, they are very important for understanding (evaluating) the origin, age, and post-growth conditions of natural diamonds. In the present work, an attempt was made to analyze the causes of the formation of high concentrations of N3V centers in natural IaB-type diamonds from the Kholomolokh placer (the Northeast Siberian craton). The possibility of decay of B centers during the plastic deformation of diamonds is analyzed and experiments on the high-temperature annealing of diamonds containing B centers are reported. The formation of N3V centers during the destruction of the B centers at high-pressure annealing of crystals has been established by experiment. It is assumed that, in the post-growth period, diamond crystals were exposed to tectono-thermal stages of raising the superplumes of the Earth's crust of the Siberian craton.
DS202002-0218
2019
Sonin, V., Leech, M., Chepurov, A., Zhimulev, E., Chepurov, A.Why are diamonds preserved in UHP metamorphic complexes? Experimental evidence for the effect of pressure on diamond graphitization.International Geology Review, Vol. 61, 4, pp. 504-519.Russia, Chinacoesite, UHP

Abstract: The preservation of metastable diamond in ultrahigh-pressure metamorphic (UHPM) complexes challenges our understanding of the processes taking place during exhumation of these subduction zone complexes. The presence of diamonds in UHPM rocks implies that diamonds remained metastable during exhumation, and within thermodynamic stability of graphite for an extended period. This work studies the influence of pressure on the surface graphitization rate of diamond monocrystals in carbonate systems to understand the preservation of microdiamond during exhumation of UHP subduction complexes. Experiments were performed with 2-3 mm synthetic diamond monocrystals at 2-4 GPa in ????3 (1550°?) and ?2??3 (1450°?) melts using a high-pressure multi-anvil apparatus. The highest rate of surface graphitization took place at 2 GPa; diamond crystals were almost completely enveloped by a graphite coating. At 4 GPa, only octahedron-shaped pits formed on flat {111} diamond crystal faces. Our results demonstrate that the surface graphitization rate of diamonds in the presence of carbonate melts at 1450-1550°C increases with decreasing pressure. Decreased pressure alone can graphitize diamond regardless of exhumation rate. Metastable diamond inclusions survive exhumation with little or no graphitization because of excess pressure up to 2 GPa acting on them, and because inclusions are protected from interaction with C-O-H fluid.
DS202002-0221
2020
Yelisseyev, A., Gromilov, S., Afanasiev, V., Sildos, I., Kiisk, V.Effect of lonsdaleite on the optical properties of impact diamonds.Diamonds & Related Materials, Vol. 101, 107640, 13p. PdfRussiaPopigai

Abstract: The special features of impact diamonds are the orientation of the nanosized grains relative to each other, the presence of hexagonal diamond (lonsdaleite, L) in a large part of the samples and the increased wear resistance. Using Raman spectroscopy and XRD, two groups of translucent samples of Popigai impact diamonds (PIDs) were selected: with and without lonsdaleite and the effect of lonsdaleite on the optical properties of the samples was studied. In all L-containing PIDs there is a strong absorption band of about 1230 cm-1 in the one-phonon region, in the mid-IR. The absorption edge is blurred and described by the Urbach rule. The estimated value of Eg ~4 eV for L is consistent with the first principles calculations. Impurity nitrogen is found only in L-free PIDs: There are signals from nitrogen-vacancy complexes in the photoluminescence (PL) spectra. Variations in the number of nitrogen atoms (N = 1 to 4) in the structure of these centers indicate significant variations in the parameters of PID annealing. L-containing PIDs are characterized by large strains in the lattice and, as a consequence, there are problems with the defect diffusion. The narrow lines in PL spectra, uncommon for diamond, can be the result of several orders of magnitude higher concentrations of impurities in PIDs formed during the solid-phase transition. The broadened peaks of 180, 278 and 383 K are distinguishable in the curves of thermostimulated luminescence (TSL) for L-free PIDs, but in the presence of L the TSL glow becomes continuous as in natural IaA-type diamonds with platelets. In general, lonsdaleite deteriorates the optical properties of impact diamonds and makes it difficult to create certain types of impurity-vacancy complexes for different applications.
DS202003-0330
2019
Badukhinov, L.D., Spetius, Z.V.. Kislov, E.V., Ivanov, A.S., Monkhorov, R.V.Parageneses of garnet inclusions in diamonds from Yakutia kimberlites based on Raman and IR spectroscopy data. Udachnaya, Zapolyarnaya, Komolskaya, Yuibeyana, Aikhal, Mir, Mayskaya.Geology of Ore Deposits, Vol. 61, 7, pp. 606-612. pdfRussia, Yakutiadiamond inclusions
DS202003-0357
2020
Potter, N.J., Kamenetsky, V.S., Chakhmouradian, A.R., Kamenetsky, M.B., Goemann, K., Rodemann, T.Polymineralic inclusions in oxide minerals of the Afrikanda alkaline ultramafic complex: implications for the evolution of perovskite mineralization.Contributions to Mineralogy and Petrology, Vol. 175, 13p. PdfRussiaperovskite

Abstract: The exceptional accumulation of perovskite in the alkaline-ultramafic Afrikanda complex (Kola Peninsula, Russia) led to the study of polymineralic inclusions hosted in perovskite and magnetite to understand the development of the perovskite-rich zones in the olivinites, clinopyroxenites and silicocarbonatites. The abundance of inclusions varies across the three perovskite textures, with numerous inclusions hosted in the fine-grained equigranular perovskite, fewer inclusions in the coarse-grained interlocked perovskite and rare inclusions in the massive perovskite. A variety of silicate, carbonate, sulphide, phosphate and oxide phases are assembled randomly and in variable proportions in the inclusions. Our observations reveal that the inclusions are not bona fide melt inclusions. We propose that the inclusions represent material trapped during subsolidus sintering of magmatic perovskite. The continuation of the sintering process resulted in the coarsening of inclusion-rich subhedral perovskite into inclusion-poor anhedral and massive perovskite. These findings advocate the importance of inclusion studies for interpreting the origin of oxide minerals and their associated economic deposits and suggest that the formation of large scale accumulations of minerals in other oxide deposits may be a result of annealing of individual disseminated grains.
DS202003-0364
2019
Sun, Z., Palke, A. C., Muyal, J., DeGhionno, D., McClaure, S.F.Geographic origin determination of alexandrite.Gems & Gemology, Vol. 55, 4, pp. 660-681.Russia, South America, Brazil, Africa, Tanzania, Zimbabwe, India, Asia, Sri Lankaalexandrite

Abstract: The gem and jewelry trade has come to place increasing importance on the geographic origin of alexandrite, as it can have a significant impact on value. Alexandrites from Russia and Brazil are usually more highly valued than those from other countries. In 2016, GIA began researching geographic origin of alexandrite with the intent of offering origin determination as a laboratory service. Unfortunately, collecting reliable samples with known provenance can be very difficult. Alexandrite is often recovered as a byproduct of mining for other gemstones (e.g., emerald and corundum), so it can be difficult to secure reliable parcels of samples because production is typically erratic and unpredictable. The reference materials studied here were examined thoroughly for their trace element chemistry profiles, characteristic color-change ranges under daylight-equivalent and incandescent illumination, and inclusion scenes. The data obtained so far allow us to accurately determine geographic origin for alexandrites from Russia, Brazil, Sri Lanka, Tanzania, and India. Future work may help to differentiate alexandrites from other localities.
DS202003-0368
2019
Vasilev, E.A., Klepikov, I.V., Lukianova, L.I.Comparison of diamonds from the Rassolninskaya depression and modern alluvial placers of the Kranovishersky district ( Ural region).Geology of Ore Deposits, Vol. 61, 7, pp. 598-605. pdfRussia, Uralsdiamond morphology

Abstract: Three hundred thirty-six diamonds from deposits of the Rassolninskaya depression and 144 crystals from recent alluvial placers of the Krasnovishersky district were studied by IR absorption and photoluminescence spectroscopy. It is shown that crystals from the Rassolninskaya depression have a close-to-normal distribution for the nitrogen concentration. The average nitrogen content is 725 ppm, and no nitrogen-free crystals were detected. A sampling from recent alluvial placers contains 25% crystals with a nitrogen concentration smaller than 150 ppm; 3% of them are nitrogen-free. Among crystals from the Rassolninskaya depression, 12% are octahedral, 80% rhombododecahedral, and only one crystal has relicts of cubic faces. The collection from recent placers contains 3% cubic crystals, 10% individuals with relicts of cubic faces, 16% octahedroids, and 66% dodecahedra. Alluvial diamonds are often encountered with crescent-shaped cracks; however, they were observed only on a single crystal from the Rassolninskaya depression. It has been revealed that among alluvial placer diamonds, up to 95% of crystals contain nitrogen in the form of B1 defects. Thus, first, in morphological and structural-mineralogical features, diamonds from the Rassolninskaya depression differ from crystals of the nearest recent alluvial placers; second, they may belong to primary deposits based on the set of their characteristics.
DS202003-0370
2019
Vetrin, V.R.Isotopic geochemical systematics ( Sm-Nd, Lu-Hf) of Neoarchean subalkaline and alkaline rocks of the Keivy structure ( Kola Peninsula): their age and genetic relations.Geology of Ore Deposits, Vol. 61, 7, pp. 581-588. pdfRussia, Kola Peninsulamagmatism

Abstract: The Neoarchean subalkaline magmatism of the Keivy structure is expressed in the formation of the volcanoplutonic latite-monzonite-granite association (LMGA). The formation of LMGA magmas is assumed to occur due to melting of metasomatically altered mafic rocks during intrusion into the lower crust of basaltic melts initial for rocks of the dike complex and gabbro-labradorite massifs. The alkaline granites associated with LMGA have a close U-Pb age but a later formation time based on the geological data. With respect to LMGA, alkali granites have increased concentrations of SiO2, alkalis (K2O/Na2O = 1.1-1.4), iron (F# = 84-98%), a high agpaitic index (Kagp = 0.86-1.2), and lower quantities of TiO2, MgO, Fetot, and Al2O3, which probably resulted from the higher degree of differentiation of their initial melts compared to LMGA.
DS202003-0372
2020
Yang, J., Simakov, S.K., Moe, K., Scribano, V., Lian, D., Wu, W.Comment on the Comparison of enigmatic diamonds from Tolbachik arc volcano ( Litasov 2019) also Litasov responseGondwana Research, in press availableRussiaKamchatka
DS202004-0510
2020
Faryad, S.W., Cuthbert, S.J.High temperature overprint in (U)HPM rocks exhumed from subduction zones: a product of isothermal decompression or a consequence of slab break-off ( slab rollback?) Dabie Sulu, KokechtavEarth-Science Reviews, Vol. 202, 103108 14p. PdfChina, Russiasubduction

Abstract: This paper presents and discusses petrological observations from high- to ultrahigh-pressure (U)HP metamorphic terrains in relation to existing geophysical and numerical models for subduction and exhumation processes in orogenic belts. The interpretations are mostly based on observations from gneiss terrains bearing abundant bodies mafic (meta-)eclogite and ultramafic garnet peridotite and pyroxenite, exposed in collisional orogens. The inclusions and compositional zoning of minerals are considered to be first order information that is needed to constrain PT paths of HP-UHP rocks and reconstruct the related geodynamic models for subduction and exhumation of crustal and mantle rocks. The Bohemian Massif of the European Variscides is used as the basis for a model example to explain these processes, but (U)HP rocks from various other terrains are taken into consideration to discuss available PT paths in relation to proposed subduction and exhumation rates of (U)HP rocks based on geophysical and geochronological data. Primarily information used in this respect include textural relations and preserved prograde zoning in minerals from many (U)HP rocks, which reveal that a relatively cool geothermal gradient typical of subduction zones tended to prevail during the prograde and peak pressure segments of PT paths prior to initiation of exhumation and may have continued, even with cooling, if exhumation rates were rapid. The commonly applied interpretation of isothermal decompression during exhumation is critically appraised, considering whether a simple thermal relaxation (and radiogenic heating) during exhumation is responsible for formation of post-peak pressure, retrograde mineral assemblages and textures observed in (U)HP rocks. We go on to consider whether this can satisfactorily explain the often pervasive medium-pressure, high-temperature metamorphic re-equilibration of (U)HP rocks or whether an additional, external source of heat is a better explanation. We conclude that the commonly observed high-temperature metamorphic overprint exhibited by (U)HP rocks occurs mostly after rocks have been exhumed from the subduction channel and have reached normal crustal positions, when mantle upwelling resulting from slab breakoff (delamination) or slab rollback takes place at the onset of continent-continent collision. We also explore contrasting PT trajectories for mantle rocks that have been entrained into crustal material during their subduction or exhumation; PT paths of mantle and subducted crustal rocks tend to converge as mantle rocks impinge upon the cooler subduction zone and, once entrained, share a common evolution that depends on the exhumation mechanism and rate. Considering all of the data presented in this work we conclude that the diverse, polyphase metamorphic evolution exhibited by (U)HP terrains, embodied in the PT paths of HP and UHP rocks, has important consequences for reconstructing their changing thermal regimes and provides important constraints for geodynamic models involving subduction and the transition to collision.
DS202004-0512
2020
Gales, E., Black, B., Elkins-Tanton, E.Carbonatites as a record of the carbon isotope composition of large igneous province outgassing.Earth and Planetary Science Letters, Vol. 535, 116076 11p. PdfRussia, Siberiacarbonatite

Abstract: Large igneous province (LIP) eruptions have been linked in some cases to major perturbations of Earth's carbon cycle. However, few observations directly constrain the isotopic composition of carbon released by LIP magmas because carbon isotopes fractionate during degassing, which hampers understanding of the relative roles of mantle versus crustal carbon reservoirs. Carbonatite magmatism associated with LIPs provides a unique window into the isotopic systematics of LIP carbon because the majority of carbon in carbonatites crystalizes rather than degassing. Although the volume of such carbonatites is small, they offer one of the few available constraints on the mantle carbon originally hosted in other more voluminous magma types. Here, we present new data for the Guli carbonatites in the Siberian Traps. In addition, we compile ?260 published measurements of from carbonatites related to the Deccan Traps and the Paraná-Etendeka. We find no evidence for magmas with carbon isotope ratios lighter than depleted mantle values of ‰ from any of these LIPs, though some carbonatites range to heavier . We attribute relatively heavy in some carbonatites to either slightly 13C-enriched domains in the mantle lithosphere or carbon isotope fractionation in deep, carbon-saturated LIP magma reservoirs. The absence of a light component in LIP magmas supports the view that lithospheric carbon reservoirs must be tapped during cases of LIP magmatism linked with sharp negative carbon isotope excursions and mass extinctions.
DS202004-0531
2020
Rezvukhin, D.I., Alifirova, T.A., Golovin, A.V., Korsakov, A.V.A plethora of epigenetic minerals reveals a multistage metasomatic overprint of a mantle orthopyroxenite from the Udachaya kimberlite.Minerals MDPI, Vol. 10, 10030264. 34p. PdfRussiadeposit - Udachnaya

Abstract: More than forty mineral species of epigenetic origin have been identified in an orthopyroxenite from the Udachnaya-East kimberlite pipe, Daldyn kimberlite field, Siberian platform. Epigenetic phases occur as: (1) Mineral inclusions in the rock-forming enstatite, (2) daughter minerals within large (up to 2 mm) crystallized melt inclusions (CMI) in the rock-forming enstatite, and (3) individual grains and intergrowths in the intergranular space of the xenolith. The studied minerals include silicates (olivine, clinopyroxene, phlogopite, tetraferriphlogopite, amphibole-supergroup minerals, serpentine-group minerals, talc), oxides (several generations of ilmenite and spinel, rutile, perovskite, rare titanates of the crichtonite, magnetoplumbite and hollandite groups), carbonates (calcite, dolomite), sulfides (pentlandite, djerfisherite, pyrrhotite), sulfate (barite), phosphates (apatite and phosphate with a suggested crystal-chemical formula Na2BaMg[PO4]2), oxyhydroxide (goethite), and hydroxyhalides (kuliginite, iowaite). The examined epigenetic minerals are interpreted to have crystallized at different time spans after the formation of the host rock. The genesis of minerals is ascribed to a series of processes metasomatically superimposed onto the orthopyroxenite, i.e., deep-seated mantle metasomatism, infiltration of a kimberlite-related melt and late post-emplacement hydrothermal alterations. The reaction of orthopyroxene with the kimberlite-related melt has led to orthopyroxene dissolution and formation of the CMI, the latter being surrounded by complex reaction zones and containing zoned olivine grains with extremely high-Mg# (up to 99) cores. This report highlights the utility of minerals present in minor volume proportions in deciphering the evolution and modification of mantle fragments sampled by kimberlitic and other deep-sourced magmas. The obtained results further imply that the whole-rock geochemical analyses of mantle-derived samples should be treated with care due to possible drastic contaminations from “hiding” minor phases of epigenetic origin.
DS202004-0536
2020
Sun, J., Rudnick, R.L., Kostrovitsky, S., Kalashnikova, T., Kitajima, K., Li, R., Shu, Q.The origin of low-MgO eclogite xenoliths from Obnazhennaya kimberlite, Siberian craton.Contributions to Mineralogy and Petrology, Vol. 175, 22p. Pdf.Russiadeposit - Obnazhennaya

Abstract: The petrology, mineral major and trace-element concentrations, and garnet oxygen isotopic composition of low-MgO (11-16 wt%) eclogites from the Obnazhennaya kimberlite, Siberian craton, are used to infer their petrogenesis. These eclogites contain two types of compositionally distinct garnet: granular coarse garnet, and garnet exsolution (lamellae and fine-grained garnet) in clinopyroxene. The former record higher temperatures at lower pressures than the latter, which record the last stage of equilibrium at moderate pressure-temperature conditions 2.3-3.7 GPa and 855-1095 °C in the upper mantle at the time of entrainment. Although derived from the garnet stability field, these rocks have low-pressure cumulate protoliths containing plagioclase, olivine, and clinopyroxene as reflected by pronounced positive Eu and Sr anomalies in all eclogites, and low heavy rare earth element (HREE) contents in both minerals and reconstructed bulk rocks for a number of samples. Major elements, transition metals, and the HREE compositions of the reconstructed whole rocks are analogous to modern oceanic gabbro cumulates. Despite geochemical signatures supporting an oceanic crust origin, mantle-like ?18O of the garnets (5.07-5.62‰) for most samples indicates that the protoliths either did not interact with seawater or have coincidently approximately normal igneous values. Some of the eclogite xenoliths have lower SiO2 contents and depleted light REE ((Nd/Yb)N?
DS202004-0540
2019
Vasilev, E.A., Klepikov, I.V., Kozlov, A.V., Antonov, A.V.The nature of the elongated form of diamond crystals from Urals ( Russia) placers.Journal of Mining Institute * not sure if in english?, Vol. 239, 5, pp. 492-496.Russiadiamond crystallography

Abstract: The article presents the results of a study of the internal structure of highly elongated diamond crystals from placers in the Krasnovishersky district of the Urals. Very elongated crystals are found within diamond-bearing placer with unrevealed primary sources. Determining the conditions of such crystals formation can help one to determine the primary deposits type. There are three hypotheses for the formation of the elongated shape of such crystals: 1) crystals initially elongated along the <100> (strongly distorted octahedra); 2) individual crystals of columnar aggregates; 3) elongated crystals fragments. To study the internal structure, we selected three most elongated individuals of the 155 crystals samples. The study of the internal structure of selected crystals with the usage of photoluminescent (PL) tomography, cathodoluminescence (CL), and optical microscopy has shown that these samples are fragments of larger single crystals. CL imaging allowed to determine slip lines within the crystal's volume. The recorded PL spectra show the 912, 946, and 986 nm peaks, which are characteristic of crystals with plastic deformation. The revealed features are indicators of plastic deformation accompanying the destruction of the crystals. The significant dissolution following the destruction of the crystals led to the rounding of the vertices and edges of their fragments. Apparently, most of the very elongated crystals from placers with unknown sources are also highly dissolved isometric crystal fragments. The obtained results have shown that the deformation and dissolution of diamond crystals are related events characteristic of diamonds from hitherto undetected, but highly productive primary deposits.
DS202004-0549
2020
Zedgenizov, D., Bogush, I., Shatsky, V., Kovalchuk, O., Ragozin, A., Kalinina, V.Mixed habit type Ib-IaA diamond from an Udachnaya eclogite.Minerals MDPI, Vol. 9, 9120741, 12p. PdfRussiadeposit - Udachnaya

Abstract: The variety of morphology and properties of natural diamonds reflects variations in the conditions of their formation in different mantle environments. This study presents new data on the distribution of impurity centers in diamond type Ib-IaA from xenolith of bimineral eclogite from the Udachnaya kimberlite pipe. The high content of non-aggregated nitrogen C defects in the studied diamonds indicates their formation shortly before the stage of transportation to the surface by the kimberlite melt. The observed sectorial heterogeneity of the distribution of C- and A-defects indicates that aggregation of nitrogen in the octahedral sectors occurs faster than in the cuboid sectors.
DS202005-0718
2020
Afanasiev, V.P., Pokhilenko, N.P., Egorova, E.O., Lindenblot, E.S.The most ancient diamond crystals of the Siberian platform. Lamproites Morgogor Creek .. Ebelyakh River.Doklady Earth Sciences, Vol. 489, 2, pp. 1409-1412. pdf Russia, Siberiadiamond alluvials

Abstract: Based on a study of diamond grains from placers of the northeastern Siberian Platform, it is shown that certain types of diamonds (rounded dodecahedroids, diamonds of the II and V?VII varieties, according to the classification by Yu.L. Orlov) could have originated from Precambrian sources. “Ancient” diamonds also differ in terms of their sedimentological history: those of varieties V?VII, despite the maximum abrasion resistance, have the maximum degree of rounding, reflecting their more long-term sedimentological history, and, therefore, their ore bodies were likely the most ancient.
DS202005-0719
2020
Agashev, A.M., Chervyakovskaya, M.V., Serov, I.V., Tolstov, A.V., Agasheva, E.V., Votyakov, S.L.Source rejuvenation vs. re-heating: constraints on Siberian kimberlite origin from U-Pb and Lu-Hf isotope compositions and geochemistry of mantle zircons. ( Silurian, Devonian, Triassic, Jurassic)Lithos, Vol. 364-365, 10p. PdfRussia, Siberiadeposit - Druzhba, Choumurdakh

Abstract: We have studied a suite of mantle zircons from several differently aged pipes of the Siberian kimberlite province via UPb and LuHf isotope analyses and trace element compositions. The UPb ages we obtained confirmed four main episodes (Silurian, Devonian, Triassic and Jurassic) of kimberlite activity on the Siberian craton. The Druzhba pipe had two populations of zircons dating from the Silurian and Devonian, respectively. The geochemical features of our suite of mantle zircons show low concentrations of U, Th and heavy rare earth elements (REEs), positive Ce anomalies, and weak or absent Eu anomalies, which is in accord with the mantle-derived nature of the zircon. Despite having broadly similar geochemistry, zircons from differently aged kimberlites had some clear differences arising from variations in the composition of the protokimberlite metasomatic melt and from peculiarities of fractional crystallization. The Th/U ratios were highest in the Silurian zircons and sharply decreased toward the Devonian. The Triassic zircons had elevated and highly variable Ce/Nb ratios with low and nearly constant Th/U ratios. Zircons from Siberian kimberlites with different UPb ages showed systematic variations in their initial Hf isotope compositions. The oldest Silurian kimberlite field, Chomurdakh, had two zircon populations: Silurian zircons, with ?Hft values in the range of +2.8 to +5.9 units, and Devonian zircons, with ?Hft values in the range of +1.6 to +2.0 units. Zircons from the Devonian field kimberlites were in the range of +5.6 to +9.6 ?Hft units. The Triassic kimberlitic zircons had the most juvenile Hf isotope composition, at +9.3 to +11.2 ?Hft units, while the Jurassic zircons had +6.9 ?Hft units. The combination of the UPb and LuHf isotope data suggests a periodic rejuvenation of the lithospheric mantle roots by low-volume melts from the asthenospheric mantle, resulting shortly after in kimberlite emplacements. Some Devonian and Jurassic kimberlites may have been melted by re-heating the Silurian and Triassic age sources, respectively, about 60 Myr after they were formed.
DS202005-0731
2020
Galimov, E.M., Kaminsky, F.V., Shilobreeva, S.N., Sevastyanov, V.S., Voropaev, S.A., Khachatryan, G.K., Wirth, R., Schreiber, A., Saraykin, V.V., Karpov, G.A., Anikin, L.P.Enigmatic diamonds from the Tolbachik volcano, Kamchatka.American Mineralogist, Vol. 105, pp. 498-509. pdfRussiadeposit - Tolbachik

Abstract: Approximately 700 diamond crystals were identified in volcanic (mainly pyroclastic) rocks of the Tolbachik volcano, Kamchatka, Russia. They were studied with the use of SIMS, scanning and transmission electron microscopy, and utilization of electron energy loss spectroscopy and electron diffraction. Diamonds have cube-octahedral shape and extremely homogeneous internal structure. Two groups of impurity elements are distinguished by their distribution within the diamond. First group, N and H, the most common structural impurities in diamond, are distributed homogeneously. All other elements observed (Cl, F, O, S, Si, Al, Ca, and K) form local concentrations, implying the existence of inclusions, causing high concentrations of these elements. Most elements have concentrations 3-4 orders of magnitude less than chondritic values. Besides N and H, Si, F, Cl, and Na are relatively enriched because they are concentrated in micro- and nanoinclusions in diamond. Mineral inclusions in the studied diamonds are 70-450 nm in size, round- or oval-shaped. They are represented by two mineral groups: Mn-Ni alloys and silicides, with a wide range of concentrations for each group. Alloys vary in stoichiometry from MnNi to Mn2Ni, with a minor admixture of Si from 0 to 5.20-5.60 at%. Silicides, usually coexisting with alloys, vary in composition from (Mn,Ni)4Si to (Mn,Ni)5Si2 and Mn5Si2, and further to MnSi, forming pure Mn-silicides. Mineral inclusions have nanometer-sized bubbles that contain a fluid or a gas phase (F and O). Carbon isotopic compositions in diamonds vary from -21 to -29‰ ?13CVPDB (avg. = -25.4). Nitrogen isotopic compositions in diamond from Tolbachik volcano are from -2.32 to -2.58‰ ?15NAir. Geological, geochemical, and mineralogical data confirm the natural origin of studied Tolbachik diamonds from volcanic gases during the explosive stage of the eruption.
DS202005-0735
2020
Gryaznov, I.A., Zhimulev, E.I., Sonin, V.M., Lindenblot, E.S., Chepurov, A.A.Morphological features of diamond crystals resulting from dissolution in a Fe-Ni-S melt under high pressure.Doklady Earth Sciences, Vol. 489, 2, pp. 1449-1452 .pdfRussiadiamond morphology, CLIPPIR

Abstract: The primary results are presented on the dissolution of plane-faced diamond crystals of octahedral habit in a Fe-Ni-S melt under 3.5 GPa and 1400°C. It was found that the dissolution resulted in the transformation of plane-faced into curve-faced individuals of morphological features characteristic for kimberlite diamonds. It was concluded that the diamond forms as such might have formed in reduced domains of the Earth’s mantle before becoming involved in the kimberlite magma.
DS202005-0743
2020
Kostrovitsky, S.I., Yakolev, D.A., Soltys, A., Ivanov, A.S., Matsyuk, S.S., Robles-Cruz, S.E.A genetic relationship between magnesian ilmenite and kimberlites of the Yakutian diamond fields.Ore Geology Reviews, Vol. 120, 16p. PdfRussia, Yakutiailmenite

Abstract: We present new major element geochemical data, and review the existing data for ilmenite macrocrysts, megacrysts, as well as ilmenite in mantle xenoliths from four diamondiferous kimberlite fields in the Yakutian province. This combined data set includes 10,874 analyses of ilmenite from 94 kimberlite pipes. In the studied samples we identify various different ilmenite compositional distributions (e.g., “Haggerty's parabola”, or “Step-like” trends in MgO-Cr2O3 bivariate space), which are common to all kimberlites from a given cluster, but the compositional distributions differ between clusters. We propose three stages of ilmenite crystallization: 1) Mg-Cr poor ilmenite crystallising from a primitive asthenospheric melt (the base of Haggerty's parabola on MgO-Cr2O3 plots). 2) This primitive asthenospheric melt was then modified by the partial assimilation of lithospheric material, which enriched the melt in MgO and Cr2O3 (left branch of Haggerty’s parabola). 3) Ilmenite subsequently underwent sub-solidus recrystallization in the presence of an evolved kimberlite melt under increasing oxygen fugacity (ƒO2) conditions (right branch of Haggerty’s parabola in MgO-Cr2O3 plots). Significant differences in the ilmenite compositional distribution between different kimberlite fields are the result of diverse conditions during subsequent ilmenite crystallization in a kimberlite melt ascending through the lithospheric mantle, which have different textures and compositions beneath the studied kimberlite fields. We propose that a TiO2 fluid formed due to immiscibility of an asthenospheric melt with low Cr and high Ti contents. This fluid infiltrated lithospheric mantle rocks forming Mg-ilmenite. These features indicate a genetic link between ilmenite and the host kimberlite melt.
DS202005-0746
2020
Lebedeva, N., Nosova, A.A., Kargin, A., Sazonova, L.V.Multi-stage evolution of kimberlite melt as inferred from inclusions in garnet megacrysts in the Grib kimberlite ( Arkangelsk region, Russia.Mineralogy and Petrology, doi: 10.1007/s00710- 020-00704-0 in press 16p. PdfRussia, Arkangeldeposit - Grib

Abstract: To provide new insights into the origin of garnet megacrysts and evolution of kimberlite melts, we studied in detail the polymineralic and monomineralic inclusions and their host garnets from the Grib kimberlite (Arkhangelsk diamond province, Russia). Low-Cr and high-Cr garnet megacrysts and eclogitic garnets contain abundant polymineralic and rare monomineralic inclusions. Monomineralic inclusions presented by clinopyroxene, ilmenite, olivine replaced by serpentine, were found exclusively within the low-Cr megacrysts. The composition of clinopyroxene exhibits geochemical equilibrium with the host garnet, indicating its primary origin during the formation of the megacryst assemblage. The low-Cr garnet-clinopyroxene mineral assemblage formed as a result of high-temperature, melt-associated mantle metasomatism by failed kimberlite within the lithospheric mantle (T = 1150 °C and P = 5.5 GPa). Polymineralic inclusions are characterised by a silicate or silicate-sulphate matrix. The central part of the silicate inclusions is filled by serpentine and contains ilmenite, spinel, perovskite, calcite and apatite. At the contact with host garnets, phlogopite, spinel and amphibole occur as reaction minerals. Composition of spinel and other minerals within inclusions with silicate matrix suggests that kimberlite melt was trapped at mantle pressures. Inclusions with silicate matrix were found in all garnets. The matrix of silicate-sulphate inclusions consists of silicate cryptocrystalline phases and sulphate minerals (celestine-barite) and contains calcite grains. The inclusions are distributed in some low-Cr garnet megacrysts and eclogitic garnet. The silicate-sulphate inclusions were crystallised from the late-stage kimberlite melt. Diverse reaction textures are evidences of disequilibrium between the host crystals and polymineralic inclusions and indicate that garnet and the hosted inclusions reacted with the ascending kimberlite melt. The silicate-sulphate inclusions with a thin rim of epidote within eclogitic garnets indicate that a kimberlite melt invaded the garnet and induced partial melting. The studied inclusions allow us to propose three stages of the Grib kimberlite evolution: 1) generation of garnet megacrysts and primary inclusions due to melt metasomatism, 2) reaction of the high-Ti kimberlite melt with garnet megacrysts (including their dissolution) and 3) alteration of the inclusions in garnet after kimberlite ascent.
DS202005-0754
2020
Nosova, A.A., Kargin, A.V., Sazonova, L.V., Dubinina, E.O., Chugaev, A.V., Lebedeva, N.M., Yudin, D.S., Larionova, Y.O., Abersteiner, A., Gareev, B.I., Batalin, G.A.Sr-Nd-Pb isotopic systematic and geochronology of ultramafic alkaline magmatism of the southwestern margin of the Siberian craton: metasomatism of the sub-continental lithospheric mantle related to subduction and plume events.Lithos, Vol. 364-365, 21p. PdfRussia, Siberiadeposit - Ilbokich, Chadobets

Abstract: To provide new insights into the origin and evolution of ultramafic lamprophyres (UMLs) and their mantle source, we examined two UML (aillikite and damtjernite) occurrences of different ages in the western portion of the Siberian Craton (Ilbokich and Chadobets). New age, mineral and rock geochemistry, along with Sr-Nd-Pb-C-O isotope data was obtained. Our new 206Pb/238U perovskite age (399 ± 4 Ma) confirms the previously published Early Devonian age of the Ilbokich aillikite. RbSr isochron and 40Ar/39Ar dating yielded a Middle Triassic age (243 ± 3 Ma and 241 ± 1 Ma, respectively) for the Chadobets aillikites, indicating post-Trap emplacement of these rocks. Both UMLs are characterized by incompatible elements, including light rare earth element (LREE) enrichments (La is up to ×200 chondrite concentration), and strong fractionation of REEs ((La/Yb)n: 33-84). Despite the close geochemical affinity of both UMLs, the Nd isotopic compositions of aillikites, as well as the Pb isotopic composition of Chadobets and Ilbokich UMLs, do not overlap and are distinctly different from each other. The initial Sr and Nd isotopic compositions of the Ilbokich UMLs fall in within a narrow 87Sr/86Sr0 range (0.7032-0.7042) and ?Nd(T) (4.03-3.97). Chadobets UMLs have a similar Sr isotopic signature (87Sr/86Sr0: 0.7031-0.7043) and a more depleted Nd isotopic signature (?Nd(T) 4.09-5.08). The initial Pb isotope compositions of the Chadobets UMLs are moderately radiogenic, ranging between 206Pb/204Pb = 18.4-19.0, 208Pb/204Pb = 38.3-38.8, and are characterized by a narrow 207Pb/204Pb ratio between 15.5 and 15.6. The Ilbokich Pb isotope compositions are less variable and range between 206Pb/204Pb = 18.0-18.4, 208Pb/204Pb = 37.8-38.4 and 207Pb/204Pb ratios between 15.5 and 15.6. The oxygen isotopic composition of carbonate from both UMLs is characterized by highly variable ?18O values from +12.1 and up to +20.5‰ (SMOW). The isotopic composition of ?13C values range from ?1.3‰ to ?7.1. Based on the minor impact of crustal contamination in both aillikites, it is inferred that their radiogenic isotope composition reflects a mantle source signature. The mantle source of the Chadobets aillikites is likely to include carbonatitic magma as a metasomatic agent. In contrast, phlogopite-rich metasomes within the lithospheric mantle could have contributed more significantly to the Ilbokich aillikites. These metasomes could be formed during the Caledonian orogeny, which did not only affect the southwestern boundary of the Siberian Craton, but also expanded to the craton interior. This study provides additional support for the evolution of the south-western portion of the Siberian SCLM, ranging from mantle containing phlogopite enrichment domains during the Early Devonian to hydrous-phase reduced mantle in the Triassic due to the thermal impact of the Siberian Traps.
DS202005-0760
2020
Shatsky, V.S., Ragozin, A.L., Logvinova, A.M., Wirth, R.Diamond-rich placer deposits from iron-saturated mantle beneath the northeastern margin of the Siberian craton.Lithos, Vol. 364-365, 12p. PdfRussiadeposit - Olenek

Abstract: We demonstrate for the first time the presence of iron carbides in placer diamonds from the northeastern region of the Siberian craton. It was found that the inclusions are polycrystalline aggregates, and iron carbides filling the fissures in the diamonds, thus providing clear evidence that the iron melts were captured first. Iron carbides were identified in diamonds containing mineral inclusions of eclogitic (Kfs, sulfide) and peridotitc (olivine) paragenesis. Iron carbides with minor amounts of admixed nickel were detected in a diamond sample containing an olivine inclusion (0.3 wt% Ni), indicating that the iron melt was not in equilibrium with the mantle peridotite.The low nickel contents of the iron carbides provide the best evidence that the subducted crust is a likely source of the iron melt. Diamonds containing carbide inclusions are characterised by a relatively low nitrogen aggregation state (5-35%), which is not consistent with the high temperature of the transition zone. Therefore, we have reason to assume that the studied diamonds are from the lower regions of the lithosphere. Considering all factors, the model for the interaction of the ascending asthenospheric mantle with the subducting slab seems to be more realistic.
DS202005-0769
2020
Vrublevskii, V.V., Nikiforov, A.V., Sugorakov, A.M., Kozulina, T.V.Petrogenesis and tectonic setting of the Cambrian Kharly alkaline-carbonatite complex ( Sangilen Plateau, southern Siberia): implications for the early Paleozoic evolution of magmatism in the western Asian orogenic belt.Journal of Asian Earth Sciences, Vol. 188, 26p. PdfRussia, Siberiacarbonatite

Abstract: The Cambrian Kharly alkaline plutonic complex composed mainly of foidolite and nepheline syenite makes up a small intrusive field in the Sangilen Plateau in Tuva (southern Siberia). The rocks show large ranges of major oxides (38-58 wt% SiO2; 1-18 wt% Na2O + K2O; 11-28 wt% Al2O3; 1.5-20 wt% CaO; 0.1-8 wt% MgO; 2-12 wt% Fe2O3) controlled by variable percentages of minerals: clinopyroxenes, calcic amphiboles, micas, nepheline and feldspars. Alkaline rocks are cut by carbonatite veins composed of predominant calcite coexisting with femic minerals (10-15% of aegirine-ferrosalite-hedenbergite, sodic-calcic amphiboles, ferrobiotite, Ti-garnet), Na-K feldspar and nepheline (up to 15-20%), fluorapatite (up to 20-25%), Sr-apatite, and accessory carbocernaite, titanite, Ti-magnetite and ilmenite. Carbonatites (4057-8859 ppm Sr, 426-1901 ppm Ba (Sr/Ba ? 2), 290-980 ppm REE + Y, 2 to 100 ppm Zr, and 0.5 to 15 ppm Nb) possibly originated at high (?500-650 °C) temperatures as a result of liquid immiscibility. The isotope systematics of rocks and minerals (?Nd(t) from ~2.9 to 6.5; 207Pb/206Pbin = 0.89; 208Pb/206Pbin = 2.15; 87Sr/86Sr(t) = 0.70567-0.70733, ?18OV-SMOW ? 7.2-19.5‰, and ?13CV-PDB from ?6.0 to ?1.4‰) suggest mixing of PREMA and EM 1 material during magma generation and crustal contamination of the evolving melts. The rocks bear signatures of interaction with “magmatic-equilibrated” fluids or heated meteoric waters. LILE/HFSE ratios indicate mixed magma sources that involved the material of IAB and OIB, as well as a crustal component, possibly, due to interaction of a mantle plume with rock complexes on the active continental margin.
DS202005-0774
2020
Yuryeva, O.P., Rakhmanova, M.I., Zedgenizov, D.A., Kalinina, V.V.Spectroscopic evidence of the origin of brown and pink diamonds family from Internatsionalnaya kimberlite pipe ( Siberian craton).Physics and Chemistry of Minerals, Vol. 47, 20 doi.org/10/1007/ s00269-020-01088-5 19p. PdfRussiadeposit - International

Abstract: New spectroscopic data were obtained to distinguish the specific features of brown and pink diamonds from Internatsionalnaya kimberlite pipe (Siberian craton). It is shown that pink and brown samples differ markedly in the content and degree of aggregation of nitrogen defects. Pink diamonds generally have higher nitrogen content and a lower aggregation state compared to brown samples, which often show significant variations in nitrogen content and aggregation state between different growth zones. The 491 and 576 nm luminescent centres, which are signs of deformed brown diamonds, are absent or of low intensity in pink diamonds implying that high nitrogen content predominantly in A form in the pink diamonds had stiffened the diamonds against natural plastic deformation. The GR1 centre, formed by a neutrally charged vacancy, was observed only in pink diamonds, which may be due to their formation and storage in the mantle at lower-temperature conditions. Mineral inclusions indicate peridotitic and eclogitic paragenesis for studied brown and pink diamonds, respectively. It is suggested that brown diamonds have been formed in a primitive mantle at higher temperatures and/or stored there much longer.
DS202006-0908
2020
Afanasiev, V.P., Pokhilenko, N.P., Grinenko, V.S., Kostin, A.V., Malkovets, V.G., Oleinikov, O.B.Kimberlitic magmatism in the south western flank of the Vilui basin. ( pyrope from Kenkeme River catchment) Jurassic-Cretaceous barren kimberlites.Doklady Earth Science, Vol. 490, 2, pp. 51-54.Russiageochronology

Abstract: We have analyzed 141 grains of pyrope from Neogene sediments in a quarry of construction materials, in the Kenkeme River catchment, along its left-side tributary (Chakiya River), about 60 km northwest of Yakutsk city. The mineral chemistry patterns of pyropes are typical of Jurassic-Cretaceous barren kimberlites, like the pipes of Obnazhennaya or Muza, but are uncommon to diamondiferous Middle Paleozoic kimberlites. The results allow identifying the magmatic event and placing time constraints on kimberlite magmatism in the southeastern flank of the Vilui basin, which was part of the Late Jurassic-Early Cretaceous tectonic-magmatic event in northeastern Asia.
DS202006-0914
2020
Chayka, I.F., Sobolev, A.V., Izokh, A.E., Batanova, V.G., Krasheninnikov, S.P., Chervyakovskaya, M.V., Kontonikas-Charos, A., Kutyrev, A.V., Lobastov, B.M., Chervyakovskiy, V.S.Fingerprints of kamafugite-like magmas in Mesozoic lamproites of the Aldan Shield: evidence from olivine and olivine-hosted inclusions.Minerals, Vol. 10, 4, 30p.Russia, Siberiadeposit - Ryabinoviy

Abstract: Mesozoic (125-135 Ma) cratonic low-Ti lamproites from the northern part of the Aldan Shield do not conform to typical classification schemes of ultrapotassic anorogenic rocks. Here we investigate their origins by analyzing olivine and olivine-hosted inclusions from the Ryabinoviy pipe, a well preserved lamproite intrusion within the Aldan Shield. Four types of olivine are identified: (1) zoned phenocrysts, (2) high-Mg, high-Ni homogeneous macrocrysts, (3) high-Ca and low-Ni olivine and (4) mantle xenocrysts. Olivine compositions are comparable to those from the Mediterranean Belt lamproites (Olivine-1 and -2), kamafugites (Olivine-3) and leucitites. Homogenized melt inclusions (MIs) within olivine-1 phenocrysts have lamproitic compositions and are similar to the host rocks, whereas kamafugite-like compositions are obtained for melt inclusions within olivine-3. Estimates of redox conditions indicate that “lamproitic” olivine crystallized from anomalously oxidized magma (?NNO +3 to +4 log units.). Crystallization of "kamafugitic" olivine occurred under even more oxidized conditions, supported by low V/Sc ratios. We consider high-Ca olivine (3) to be a fingerprint of kamafugite-like magmatism, which also occurred during the Mesozoic and slightly preceded lamproitic magmatism. Our preliminary genetic model suggests that low-temperature, extension-triggered melting of mica- and carbonate-rich veined subcontitental lithospheric mantle (SCLM) generated the kamafugite-like melts. This process exhausted carbonate and affected the silicate assemblage of the veins. Subsequent and more extensive melting of the modified SCLM produced volumetrically larger lamproitic magmas. This newly recognized kamafugitic "fingerprint" further highlights similarities between the Aldan Shield potassic province and the Mediterranean Belt, and provides evidence of an overlap between "orogenic" and "anorogenic" varieties of low-Ti potassic magmatism. Moreover, our study also demonstrates that recycled subduction components are not an essential factor in the petrogenesis of low-Ti lamproites, kamafugites and leucitites.
DS202006-0916
2020
Davey, S.C., Bleeker, W., Kamo, S.L., Vuollo, J., Ernst, R.E., Cousens, B.L.Archean block rotation in western Karelia: resolving dyke swarm patterns in metacraton Karelia-Kola for a refined paleogeographic reconstruction of supercraton Superia.Lithos, in press available 95p. PdfRussia, Kola Peninsulacraton

Abstract: Rifting, breakup, and subsequent collision related to the ca. 1.92-1.79?Ga Svecofennian orogeny fragmented and deformed the western margin of the Archean Karelia-Kola craton into four crustal blocks: Pudasjärvi, Iisalmi, Kuhmo, and Taivalkoski. Detailed quantification of Svecofennian deformation is limited due to poorly exposed basement geology and an as yet incomplete dyke swarm record. New U-Pb ID-TIMS geochronological results on baddeleyite and zircon are presented for three key mafic dykes from the Pudasjärvi block, namely the Uolevinlehto, Myllykangas, and Sipojuntti dykes. The age of the 325°-trending Uolevinlehto dyke is estimated at ca. 2400?±?12?Ma from discordant multigrain baddeleyite fractions, showing it to be younger than ca. 2450?Ma dykes across Karelia. The 350°-trending Myllykangas dyke has a minimum age of 2135.2?+?3.6/?3.7?Ma based on chemically abraded zircon. Results from single baddeleyite grains provide a precise upper intercept age of 2128.9?±?1.2?Ma for the 320°-trending Sipojuntti dyke. Our new U-Pb ages are integrated with those from the literature to define six major dyke swarms in the Pudasjärvi block: the WNW-trending ca. 2.45?Ga Pääjärvi, NW-trending ca. 2.40?Ga Uolevinlehto, NW-trending ca. 2.13-2.10?Ga Tohmajärvi, WNW-trending ca. 2.07?Ga Palomaa, NNW-trending ca. 1.98?Ga Paukkajanvaara and undated"East-West" dykes. Trends of contemporaneous dyke swarms in the Taivalkoski and Kuhmo blocks, however, are systematically offset by 35°. With subvertical dips, offset dyke swarms record 35° clockwise vertical-axis rotation of the Pudasjärvi block relative to the interior of Karelia, consistent with dextral transpression during the Svecofennian orogeny. Structural restoration of the Pudasjärvi blocks improves the constraints on regional dyke swarm patterns, and these are used to revise the position of the Karelia-Kola craton within the context of the paleogeographic reconstruction of supercraton Superia.
DS202006-0921
2020
Gusev, N.I., Sergeeva, L. Yu., Larionov, A.N., Skublov, S.G.Relics of the Eoarchean continental crust of the Anabar shield, Siberian Craton.Petrology, Vol. 28, 2, pp. 118-140.Russiadeposit - Daldyn

Abstract: In the northern part of the Anabar Shield, orthopyroxene plagiogneisses of the granulite Daldyn Group host lenses of mafic rocks surrounded by melanocratic rims. According to their chemical composition, the mafic rocks correspond to subalkaline gabbro, the plagiogneisses correspond to granodiorites contaminated with mafic material, and the rims are diorites. The orthopyroxene plagiogneisses of granodiorite composition have 147Sm/144Nd = 0.1097, ?Nd(?) = 1.6, TNd(DM) = 3.47 Ga and are metamorphosed anatectic granitoids with an age of 3.34 Ga. The mafic rocks have high Zr, Th, and Pb contents, are enriched in REE (?REE = 636 ppm), with a high degree of fractionation [(La/Yb)N = 17.73] and a well-defined Eu minimum (Eu/Eu* = 0.51), and have 147Sm/144Nd = 0.099, ?Nd(?) = 1.4 and TNd(DM) = 3.65 Ga. It is assumed that these rocks crystallized from melt derived from an enriched mantle (plume) source. Based on U-Pb (SHRIMP-II) dating of 50 zircon grains from the mafic rocks, a group of grains with concordant ages from 3567 to 1939 Ma was distinguished, along with a large number of discordant values. Multiple measurements in zircon grains with discordant age values make it possible to identify seven grains of Eoarchean age, with upper intercepts of the discordia corresponding to 3987 ± 71 to 3599 ± 33 Ma. The Lu-Hf systematics of 14 zircon grains is characterized by ?Hf(T) = +3.7 and by close values of THf(DM) = 3.95 and TCHf = 3.93 Ga (3.99 Ga for the oldest zircon). The Paleoarchean (3.57 Ga) zircons are characterized by negative values of ?Hf(T) = -5.3 and -6.8, THf(DM) = 3.92-3.98 Ga, and TCHf = 4.14-4.24 Ga, which indicate recycling of the preexisting Eoarchean and Hadean continental crust. The younger zircon (3287-2410 Ma) was also formed when the preexisting crust was recycled.
DS202006-0937
2020
Mikhailenko, D., Golovin, A., Korsakov, A., Aulbach, S., Gerdes, A., Ragozin, A.Metasomatic evolution of coesite-bearing diamondiferous eclogite from the Udachnaya kimberlite.Minerals, Vol. 10, 4, 24p. PdfRussia, Siberiadeposit - Udachnaya

Abstract: A coesite-bearing diamondiferous eclogite from the Udachnaya kimberlite (Daldyn field, Siberian craton) has been studied to trace its complex evolution recorded in rock-forming and minor mineral constituents. The eclogite sample is composed of rock-forming omphacite (60 vol%), garnet (35 vol%) and quartz/coesite (5 vol%) and contains intergranular euhedral zoned olivine crystals, up to 200 µm long, coexisting with phlogopite, orthopyroxene, clinopyroxene (secondary), K-feldspar, plagioclase, spinel, sodalite and djerfisherite. Garnet grains are zoned, with a relatively homogeneous core and a more magnesian overgrowth rim. The rim zones further differ from the core in having higher Zr/Y (6 times that in the cores), ascribed to interaction with, or precipitation from, a kimberlite-related melt. Judging by pressure-temperature estimates (~1200 °C; 6.2 GPa), the xenolith originated at depths of ~180-200 km at the base of the continental lithosphere. The spatial coexistence of olivine, orthopyroxene and coesite/quartz with K-Na-Cl minerals in the xenolith indicates that eclogite reacted with a deep-seated kimberlite melt. However, Fe-rich olivine, orthopyroxene and low-pressure minerals (sodalite and djerfisherite) likely result from metasomatic reaction at shallower depths during transport of the eclogite by the erupting kimberlite melt. Our results demonstrate that a mixed eclogitic-peridotitic paragenesis, reported previously from inclusions in diamond, can form by interaction of eclogite and a kimberlite-related melt.
DS202006-0942
2020
Nikitina, L.P., Goncharov, A.G., Bogomolov, E.S., Beliatsky, B.V., Krimsky, R.Sh., Prichodko, V.S., Babushkina, M.S., Karaman, A.A.HFSE and REE geochemistry and Nd-Sr-Os systematics of peridotites in the subcontinental lithospheric mantle of the Siberian craton and central Asian fold belt junction area: data on mantle xenoliths.Petrology, Vol. 28, 2, pp. 207-219.RussiaREE

Abstract: Mantle xenoliths were found in alkaline basalts of Tokinsky Stanovik (TSt) in the Dzhugdzhur-Stanovoy superterrane (DS) and Vitim plateau (VP) in the Barguzin-Vitim superterrane (BV) (Stanovoy suture area) at junction of the Central Asian Orogenic Belt (CAOB) and the Siberian craton (SC). Xenoliths from TSt basalts are represented by spinel lherzolites, harzburgites, wehrlites; while VP basalts frequently contain spinel-garnet and garnet peridotites lherzolites, and pyroxenites. Xenoliths in kimberlites of the Siberian craton are mainly represented by garnet-bearing lherzolites with abundant eclogite xenoliths (age of 2.7-3.1 Ga), which were not found in mantle of superterranes. The Re-Os determinations point to the Early Archean age of peridotites and eclogites from mantle beneath the Siberian craton. The major and trace (rare-earth and high-filed strength) elements and Nd-Sr-Os composition were analyzed in the peridotites (predominant rocks) of lithospheric mantle at junction of the Central Asian Orogenic Belt and Siberian Craton. The degree of rock depletion in CaO and Al2O3 and enrichment in MgO relative to the primitive mantle in the peridotites of the Dzhugdzhur-Stanovoy superterrane is close to that of the Siberian craton. The peridotites of the Barguzin-Vitim superterrane are characterized by much lower degree of depletion and have mainly a primitive composition. Mantle melting degree reaches up to 45-50% in the Siberian Craton and Dzhugdzhur-Stanovoy superterrane, and is less than 25% in the Barguzin-Vitim terrane. The mantle peridotites of the craton as compared to those of adjacent superterranes are enriched in Ba, Rb, Th, Nb, and Ta and depleted in Y and REE from Sm to Lu. However, all studied peridotites are characterized by mainly superchondritic values of Nb/Ta (>17.4), Zr/Hf (>36.1), Nb/Y (>0.158), and Zr/Y (>2.474). The Nb/Y ratio is predominantly >1.0 in SC peridotites and < 1.0 in the superterrane peridotites. The Nd and Sr isotopic compositions in the latter correspond to those of oceanic basalts. The 187Os/188Os ratio is low (0.108-0.115) in the peridotites of the Siberian Craton and > 0.115 but usually lower than 0.1296 (primitive upper mantle value) in the peridotites of the Dzhugdzhur-Stanovoy and Barguzin-Vitim superterranes. Thus, the geochemical and isotopic composition of peridotites indicates different compositions and types of mantle beneath the Siberian craton and adjacent superterranes of the Central Asian Orogenic Belt in the Early Archean, prior to the formation of 2.7-3.1 Ga eclogites in the cratonic mantle.
DS202006-0943
2020
Novosa, A.A., Kargin, A.V., Sazonova, L.V., Dubinina, E.O., Chugaev, A.V., Lebedeva, N.M., Yudin, D.S., Larionova, Y.O., Abersteiner, A., Gareev, B.I., Batalin, G.A.Sr-N-Pb isotopic systematic and geochronology of ultramafic alkaline magmatism of the southwestern margin of the Siberian craton: metasomatism of the sub-continental lithospheric mantle related to subduction and plume events.Lithos, Vol. 364-365, 21p. PdfRussiaailikite, damjernite

Abstract: To provide new insights into the origin and evolution of ultramafic lamprophyres (UMLs) and their mantle source, we examined two UML (aillikite and damtjernite) occurrences of different ages in the western portion of the Siberian Craton (Ilbokich and Chadobets). New age, mineral and rock geochemistry, along with Sr-Nd-Pb-C-O isotope data was obtained. Our new 206Pb/238U perovskite age (399 ± 4 Ma) confirms the previously published Early Devonian age of the Ilbokich aillikite. RbSr isochron and 40Ar/39Ar dating yielded a Middle Triassic age (243 ± 3 Ma and 241 ± 1 Ma, respectively) for the Chadobets aillikites, indicating post-Trap emplacement of these rocks. Both UMLs are characterized by incompatible elements, including light rare earth element (LREE) enrichments (La is up to ×200 chondrite concentration), and strong fractionation of REEs ((La/Yb)n: 33-84). Despite the close geochemical affinity of both UMLs, the Nd isotopic compositions of aillikites, as well as the Pb isotopic composition of Chadobets and Ilbokich UMLs, do not overlap and are distinctly different from each other. The initial Sr and Nd isotopic compositions of the Ilbokich UMLs fall in within a narrow 87Sr/86Sr0 range (0.7032-0.7042) and ?Nd(T) (4.03-3.97). Chadobets UMLs have a similar Sr isotopic signature (87Sr/86Sr0: 0.7031-0.7043) and a more depleted Nd isotopic signature (?Nd(T) 4.09-5.08). The initial Pb isotope compositions of the Chadobets UMLs are moderately radiogenic, ranging between 206Pb/204Pb = 18.4-19.0, 208Pb/204Pb = 38.3-38.8, and are characterized by a narrow 207Pb/204Pb ratio between 15.5 and 15.6. The Ilbokich Pb isotope compositions are less variable and range between 206Pb/204Pb = 18.0-18.4, 208Pb/204Pb = 37.8-38.4 and 207Pb/204Pb ratios between 15.5 and 15.6. The oxygen isotopic composition of carbonate from both UMLs is characterized by highly variable ?18O values from +12.1 and up to +20.5‰ (SMOW). The isotopic composition of ?13C values range from ?1.3‰ to ?7.1. Based on the minor impact of crustal contamination in both aillikites, it is inferred that their radiogenic isotope composition reflects a mantle source signature. The mantle source of the Chadobets aillikites is likely to include carbonatitic magma as a metasomatic agent. In contrast, phlogopite-rich metasomes within the lithospheric mantle could have contributed more significantly to the Ilbokich aillikites. These metasomes could be formed during the Caledonian orogeny, which did not only affect the southwestern boundary of the Siberian Craton, but also expanded to the craton interior. This study provides additional support for the evolution of the south-western portion of the Siberian SCLM, ranging from mantle containing phlogopite enrichment domains during the Early Devonian to hydrous-phase reduced mantle in the Triassic due to the thermal impact of the Siberian Traps.
DS202006-0946
2020
Ponomarchuk, V.A., Dobretsov, N.L. , Lazareva, E.V., Zhmodik, S.M., Karmanov, N.S., Tolstov, A,V., Pyryaev, A.N.Evidence of microbial-induced mineralization in rocks of the Tomtor carbonatite complex ( Arctic Siberia).Doklady Earth Science, Vol. 490, 2, pp. 76-80.Russia, Siberiacarbonatite

Abstract: Carbonates of the Tomtor complex of ultramafic alkaline rocks and carbonatites (the northern part of the Republic of Sakha Yakutia) are distinguished by a wide range of carbon isotopic composition ?13C from +2 to -59.9‰. The geological position, localization patterns, mineral and chemical compositions and the relationship with REE mineralization of samples with values of ?13C carbonates from -25 to -59‰ are characterized. The formation of abnormally low ?13C in carbonates is determined by the biogenic oxidation of methane from ?13Cmet to -70‰.
DS202007-1121
2020
Abramov, S.S., Rass, I.T., Kononkova, N.N.Fenites of the Miaskite carbonatite complex in the Vishnevye Mountains, southern Urals, Russia: origin of the metasomatic zoning and thermodynamic simulations of the processes.Petrology, Vol. 28, 3, pp. 298-323. pdfRussia, Uralscarbonatite

Abstract: Mineral zoning in fenites around miaskite intrusions of the Vishnevye Mountains complex can be interpreted as a magmatic-replacement zonal metasomatic aureole (in D.S. Korzhinskii’s understanding): the metasomatic transformations of the fenitized gneisses under the effect of deep alkaline fluid eventually resulted in the derivation of nepheline syenite eutectic melt. Based on the P-T-fO2 parameters calculated from the composition of minerals coexisting in the successive zones, isobaric-isothermal fO2-aSiO2 and µNa2O-µAl2O3 sections were constructed with the Perplex program package to model how the fenites interacted with H2O-CO2 fluid (in the Na-K-Al-Si-Ca-Ti-Fe-Mg-O-H-C system). The results indicate that the fluid-rock interaction mechanisms are different in the outer (fenite) and inner (migmatite) parts of the zonal aureole. Its outer portion was dominated by desilication of rocks, which led, first, to quartz disappearance from these rocks and then to an increase in the Al# of the coexisting minerals (biotite and clinopyroxene). In the inner part of the aureole, fenite transformations into biotite-feldspathic metasomatic rocks and nepheline migmatite were triggered by an increase in the Na and Al activities in the system alkaline H2O-CO2 fluid-rock. As a consequence, the metasomatites were progressively enriched in Al2O3 and alkalis, and these transformations led to the development of biotite in equilibrium with K-Na feldspar and calcite at the sacrifice of pyroxene. The further introduction of alkalis led to the melting of the biotite-feldspathic metasomatites and the origin of nepheline migmatites. The simulated model sequence of metasomatic zones that developed when the gneiss was fenitized and geochemical features of the successive zones (differences in the LILE and REE concentrations in the rocks and minerals of the fenitization aureole and the Sm-Nd isotope systematics of the rocks of the alkaline complex) indicate that the source of the fluid responsible for the origin of zonal fenite-miaskite complexes may have been carbonatite, a derivative of mantle magmas, whereas the miaskites were produced by metasomatic transformations of gneisses and subsequent melting under the effect of fluid derived from carbonatite magmas.
DS202007-1136
2020
Doucet, L.S., Xu, Y., Klaessens, D., Hui, H., Ionov, D.A., Mattielli, N.Decoupled water and iron enrichments in the cratonic mantle: a study on peridotite xenoliths from Tok, SE Siberian craton.American Mineralogist, Vol. 105, pp. 803-819.Russia, Siberia peridotites

Abstract: Water and iron are believed to be key constituents controlling the strength and density of the lithosphere and, therefore, play a crucial role in the long-term stability of cratons. On the other hand, metasomatism can modify the water and iron abundances in the mantle and possibly triggers thermo-mechanical erosion of cratonic keels. Whether local or large scale processes control water distribution in cratonic mantle remains unclear, calling for further investigation. Spinel peridotite xenoliths in alkali basalts of the Cenozoic Tok volcanic field sampled the lithospheric mantle beneath the southeastern margin of the Siberian Craton. The absence of garnet-bearing peridotite among the xenoliths, together with voluminous eruptions of basaltic magma, suggests that the craton margin, in contrast to the central part, lost its deep keel. The Tok peridotites experienced extensive and complex metasomatic reworking by evolved, Ca-Fe-rich liquids that transformed refractory harzburgite to lherzolite and wehrlite. We used polarized Fourier transform infrared spectroscopy (FTIR) to obtain water content in olivine, orthopyroxene (Opx), and clinopyroxene (Cpx) of 14 Tok xenoliths. Olivine, with a water content of 0-3 ppm H2O, was severely degassed, probably during emplacement and cooling of the host lava flow. Orthopyroxene (49-106 ppm H2O) and clinopyroxene (97-300 ppm H2O) are in equilibrium. The cores of the pyroxene grains, unlike olivine, experienced no water loss due to dehydration or addition attributable to interaction with the host magma. The water contents of Opx and Cpx are similar to those from the Kaapvaal, Tanzania, and North China cratons, but the Tok Opx has less water than previously studied Opx from the central Siberian craton (Udachnaya, 28-301 ppm; average 138 ppm). Melting models suggest that the water contents of Tok peridotites are higher than in melting residues, and argue for a post-melting (metasomatic) origin. Moreover, the water contents in Opx and Cpx of Tok peridotites are decoupled from iron enrichments or other indicators of melt metasomatism (e.g., CaO and P2O5). Such decoupling is not seen in the Udachnaya and Kaapvaal peridotites but is similar to observations on Tanzanian peridotites. Our data suggest that iron enrichments in the southeastern Siberian craton mantle preceded water enrichment. Pervasive and large-scale, iron enrichment in the lithospheric mantle may strongly increase its density and initiate a thermo-magmatic erosion. By contrast, the distribution of water in xenoliths is relatively “recent” and was controlled by local metasomatic processes that operate shortly before the volcanic eruption. Hence, water abundances in minerals of Tok mantle xenoliths appear to represent a snapshot of water in the vicinity of the xenolith source regions.
DS202007-1143
2020
Gladkochub, D.P., Donskaya, T.V.Geochemical composition of dolerites as an indicator of the distance of a dike swarm from the mantle plume center ( case study of Proterozoic dike swarms, Siberian craton).Doklady Earth Sciences, Vol. 491, pp. 243-246.Russia, Siberiadyke

Abstract: Based on investigation of Proterozoic mafic dike swarms of the Siberian Craton, we inferred how the geochemical and isotopic characteristics of dike swarms of dolerites of Large Igneous Provinces depend on their distance from the mantle plume head. It has been found that the dolerite parent melts near the mantle plume head correspond to OIB compositions. At significant distances from the plume, the initial melts of dolerites are generated in the subcontinental lithospheric mantle, which provides a wide range of their compositions differing from typical OIB and do not indicate directly the genetic relationship of these mafic rocks with the mantle plume.
DS202007-1149
2019
In Color MagazineThe Russian emerald saga - The Mariinsky Priisk mine.incolorMagazine.com, Vol. Fall pp. 26-46.Russiadeposit - Mariinsky Priisk
DS202007-1150
2020
Ionov, D.A., Liu, Z., Li, J., Golovin, A.V., Korsakov, A.V., Xu, Y.The age and origin of cratonic lithospheric mantle: Archean dunites vs paleoproterozoic harzburgites from the Udachnaya kimberlite, Siberian craton.Geochimica et Cosmochimica Acta, Vol. 281, pp. 67-90. pdfRussia, Siberiadeposit - Udachnaya

Abstract: Cratonic lithospheric mantle is believed to have been formed in the Archean, but kimberlite-hosted coarse peridotites from Udachnaya in the central Siberian craton typically yield Paleoproterozoic Re-depletion Os isotope ages (TRD). By comparison, olivine megacrysts from Udachnaya, sometimes called “megacrystalline peridotites”, often yield Archean TRD ages, but the nature of these rare materials remains enigmatic. We provide whole-rock (WR) Re-Os isotope and PGE analyses for 24 olivine-rich xenoliths from Udachnaya as well as modal and petrographic data, WR and mineral major and trace element compositions. The samples were selected based on (a) high olivine abundances in hand specimens and (b) sufficient freshness and size to yield representative WR powders. They comprise medium- to coarse-grained (olivine??1?cm) dunite, olivine megacrysts and low-orthopyroxene (11-21% opx) harzburgites equilibrated at 783-1154?°C and 3.9-6.5 GPa; coarse dunites have not been previously reported from Udachnaya; two xenoliths contain ilmenite. The harzburgites and dunites have similar WR variation ranges of Ca, Al, Fe, Cr and Mg# (0.917-0.934) typical of refractory cratonic peridotites, but the dunites tend to have higher MgO, NiO and Mg/Si. Mineral abundances and those of Ca and Al are not correlated with Mg#WR; they are not due to differences in melting degrees but are linked to metasomatism. Several samples with high 187Re/188Os show a positive linear correlation with 187Os/188Os with an apparent age of 0.37?Ga, same as eruption age of host kimberlite. Robust TRD ages were obtained for 16 xenoliths with low 187Re/188Os (0.02-0.13). TRD ages for low-opx harzburgites (1.9-2.1?Ga; average 2.0?±?0.1?Ga, 1 ?) are manifestly lower than for dunites and megacrysts (2.4-3.1?Ga); the latter define two subsets with average TRD of 2.6?±?0.1?Ga and 3.0?±?0.1?Ga, and TMA of 3.0?±?0.2?Ga and 3.3?±?0.1?Ga, respectively. Differences in olivine grain size (coarse vs. megacrystalline) are not related to age. The age relations suggest that the dunites and megacrysts could not be produced by re-melting of harzburgites, e.g. in arc settings, nor be melt channel materials in harzburgites. Instead, they are relict fragments of lithospheric mantle formed in the Archean (likely in two events at or after 2.6?Ga and 3.0?Ga) that were incorporated into cratonic lithosphere during the final assembly of the Siberian craton in the Paleoproterozoic. A multi-stage formation of the Siberian lithospheric mantle is consistent with crustal basement ages from U-Pb dating of zircons from crustal xenoliths at Udachnaya and detrital zircons from the northern Siberian craton (1.8-2.0, 2.4-2.8 and 3.0-3.4?Ga). The new data from the Siberian and other cratons suggest that the formation of strongly melt-depleted cratonic lithosphere (e.g. Mg# ?0.92) did not stop at the Archean-Proterozoic boundary as is commonly thought, but continued in the Paleoproterozoic. The same may be valid for the transition from the ‘Archean’ (4-2.5?Ga) to modern tectonic regimes.
DS202007-1177
2020
Salnikova, E.B., Samsonov, A.V., Stepanova, A.V., Veselovskiy, R.V., Egorova, S.V., Arzamastsev, A.A., Erofeeva, K.G.Fragments of Paleoproterozoic large igneous provinces in northern Fennoscandia: baddeleyite U-Pb age data for mafic dykes and sills.Doklady Earth Sciences, Vol. 491, pp. 227-230.Europe, Russia, Kola Peninsulageochronology

Abstract: New data on the age of dolerite dikes in the NE part of the Kola province of the Fennoscandinavian shield and the picrodolerite sills that cut the dikes are presented. The results of U-Pb ID-TIMS baddeleyite dating indicate that dolerites were formed between 2508 ± 6 and 2513 ± 16 Ma ago, simultaneously with the intrusions of the Monchegorsk group. A comparison of the composition of the dolerites studied with dykes of the same age found in other Archean cratons shows their significant similarity and suggests their formation at the same large magmatic province. The age of baddeleyite from the picrodolerites sills at 2403 ± 12 Ma ago indicates an event of basic magmatism that was not previously established in this part of the Fennoscandinavian shield. It is possible that, along with dolerite dykes with an age of 2405 Ma and komatiites of the Vetreny belt of the Karelian craton, sills of the Kola province are a component of a unified large magmatic event.
DS202008-1366
2020
Artyushkov, E.V., Kolka, V.V., Chekhovich, P.A.The occurrence of lower viscosity layer in the crust of old cratons as a cause of the strongly differentiated character of postglacial uplift.Doklady Earth Sciences, Vol. 492, pp. 351-355.Europe, Fennoscandia, Kola Peninsula, Karelia, Canadacraton

Abstract: Rapid glacio-isostatic rebound in Fennoscandia and Canada that is nonuniform in time and space indicates that there is a layer with strongly decreased viscosity at shallow crustal depths. The upper boundary of the layer is near the depth of 15 km, which corresponds to the maximum depth of earthquake hypocenters in the Precambrian cratons of the Kola Peninsula and Karelia. The position of the lower boundary is less distinct; however, most likely it is located near the base of the crust. The formation of such a layer in the Pliocene-Quaternary occurred due to infiltration of a large volume of mantle fluids into the crust. In many regions, this has led to retrograde metamorphism with rock expansion and a strong decrease in rocks viscosity.
DS202008-1387
2020
Duncombe, J.The ticking time bomb of Arctic permafrost.Eos, 101, doi,org./10.1029/EO1414607 June 24, Russiapermafrost

Abstract: Arctic infrastructure is under threat from thawing permafrost.
DS202008-1395
2019
Golovin, A.V., Sharygin, I., Korsakov, A.V., Abersteiner, A.Can primitive kimberlitic melts be alkali-carbonate liquids: composition of the melt snapshots preserved in deepest mantle xenoliths.Journal of Raman Spectroscopy, doi.org/10.1002/jrs.5701 19p pdfRussiadeposit - Udachnaya-East

Abstract: The study of kimberlite rocks is important as they provide critical information regarding the composition and dynamics of the continental mantle and are the principal source of diamonds. Despite many decades of research, the original compositions of kimberlite melts, which are thought to be derived from depths > 150 km, remain highly debatable due to processes that can significantly modify their composition during ascent and emplacement. Snapshots of the kimberlite?related melts were entrapped as secondary melt inclusions hosted in olivine from sheared peridotite xenoliths from the Udachnaya?East pipe (Siberian craton). These xenoliths originated from 180? to 220?km depth and are among the deepest derived samples of mantle rocks exposed at the surface. The crystallised melt inclusions contain diverse daughter mineral assemblages (>30 mineral species), which are dominated by alkali?rich carbonates, sulfates, and chlorides. The presence of aragonite as a daughter mineral suggests a high?pressure origin for these inclusions. Raman?mapping studies of unexposed inclusions show that they are dominated by carbonates (>65 vol.%), whereas silicates are subordinate (<13 vol.%). This indicates that the parental melt for the inclusions was carbonatitic. The key chemical features of this melt are very high contents of alkalis, carbon dioxide, chlorine, and sulfur and extremely low silica and water. Alkali?carbonate melts entrapped in xenolith minerals likely represent snapshots of the primitive kimberlite melt. This composition is in contrast with the generally accepted notion that kimberlites originated as ultramafic silicate water?rich melts. Experimental studies revealed that alkali?carbonate melts are a very suitable diamond?forming media. Therefore, our findings support the idea that some diamonds and kimberlite magmatism may be genetically related.
DS202008-1406
2020
Kargin, A.V., Kamenetsky, V.S.Links between ultramafic lamprophyres and kimberlites in the Anabar shield, Yakutia, Russia: evidence from multiphase inclusions in rock-forming minerals.Goldschmidt 2020, 1p. AbstractRussia, Yakutiadeposit - Viktoria

Abstract: To provide new constraints on the evolution of ultramafic lamprophyre melts and relation to kimberlites, we examined monomineralic and primary multiphase melt inclusions in rock-forming minerals within damtjernite from Viktoria pipe, Anabar region, Siberia craton, Russia. The studied samples are relatively unaltered nepheline-bearing, carbonate-poor damtjernite with a significant amount of monticellite in the groundmass and as a replacement of olivine. Studied inclusions hosted by groundmass monticellite, magnesian ulvöspinel-magnetite and perovskite. Monomineralic inclusions sized up to 10 ?m are round-toeuhedral in shape and are comprised of monticellite, spinel, perovskite and nepheline. Multiphase melt inclusions sized up to 10-15 ?m have rounded to elongate and amoeboid shapes. These inclusions are heterogeneous in composition and consist of perovskite, spinel group minerals, apatite (including F- and Sr-apatite), feldspathoids, multiphase alkali (Na, K) carbonate and chloride (sylvite/halite), rare K-Naand Ba-sulfates, phlogopite and baddeleyite. Despite the lack of carbonate phases in studied rocks, the composition of multiphase inclusions indicates that lamprophyre melts contained carbonate or carbonate/chlorite components. The CO2 degassing is consistent with the reaction between olivine and carbonate-bearing melt led to decarbonation reaction and generation of montichellite, as described in [1]. The composition of multiphase inclusions within minerals from lamprophyres is close to the composition of multiphase inclusions within olivine, spinel, monticellite, perovskite from kimberlites, thus indicating possible genetic links between parental melts of ultramafic lamprophyre and kimberlite.
DS202008-1407
2020
Kargin, A.V., Nosova, A.A., Sazonova, L.V., Peresetskaya, E.V., Golubeva, Yu.Yu., Lebedeva, N.M., Tretyachenko, V.V., Khvostikov, V.A., Burmii, J.P.Ilmenite from the Arkangelsk diamond province, Russia: composition, origin and indicator of diamondiferous kimberlites.Petrology, Vol. 28, 4, pp. 341-369. pdfRussia, Archangelilmenite

Abstract: To provide new insights into the origin and evolution of kimberlitic magmas with different diamond concentrations from the Arkhangelsk diamond province in northwestern Russia, we examined the major-and trace-element compositions of ilmenite from diamondiferous kimberlite of the Grib pipe and diamond barren kimberlites from the Kepino cluster (Stepnaya and TsNIGRI-Arkhangelskaya pipes). Ilmenite from diamond-barren kimberlites shows lower Mg, Ti, Cr, Ni and Cu concentrations with increase in both Fe 3+ and Fe 2+ and Nb, Ta, Zr, Hf, Zn and V concentrations. The main differences between kimberlites with different diamond contents are the Nb and Zr concentrations and their correlation patterns with Mg and Cr concentrations. Ilmenite from the Grib kimberlite has Zr concentrations <110 ppm, whereas ilmenite from the Kepino kimberlites has Zr concentrations >300 ppm. Ilmenite crystallisation within the Grib kimberlite occurred under increasing oxygen fugacity (fO 2), which may reflect assimilation of mantle peridotite by the kimberlitic magmas. Ilmenite from the Kepino kimberlites suggests its crystallisation under constant fO 2 , with the ilmenite composition being controlled by processes of fractional crystallisation of megacrystic minerals. These assumptions were confirmed with assimilation-fractional crystallisation calculations. On the basis of obtained data, we developed a model for the evolution of the kimberlitic magmas for both diamon-diferous and barren kimberlites. The diamond-bearing kimberlitic magmas were generated under intense interaction of kimberlitic magmas with the surrounding lithospheric mantle. It may be that during early modification of the lithospheric mantle by kimberlitic magmas as well as with kimberlitic magmas' local stretching and swift ascent, the capture of the mantle xenoliths was favoured over the crystallisation of phenocrysts. The formation of barren kimberlitic magmas may have occurred when the lithospheric mantle in the vicinity of ascending magmas was already geochemically equilibrated with them. It also is possible that the magma's ascent slowed under conditions of dominantly compressive stresses with crystallisation of olivine and other megacrystic phases.
DS202008-1409
2020
Klashnikova, T.V., Soloveva, L.V., Kostrovitsky, S.I., Sun, J.Geochemical features of peridotite xenolith from Obnazhennaya kimberlite pipe - cumulates or residues?Goldschmidt 2020, 1p. AbstractRussiadeposit - Obnazhennaya

Abstract: This study concerns the geochemical characteristics of mantle xenoliths from the upper-Jurassic Obnazhennaya kimberlite pipe (Kuoika field, Yakutian kimberlite province, the north-east of Siberian craton). The so-called magnesian xenolith group (Sp, Sp-Grt, Grt lherzolites, olivine websterites and websterites) was distinguished, the rocks of the group are assumed to be of the same genesis based on transitions in modal mineral composition and a change in the composition of minerals. The chemical composition (CaO, MgO) of most depleted harzburgites, as well as part of the lherzolites of the magnesian group coincide with the restites obtained by experimental melting, which suggested their residue origin. Narrow variations in the composition of olivine (Mg # - 91-92; NiO - 0.35-0.45 wt.%) and orthopyroxene (Mg # - 92-93) for Obnazhennaya peridotites also support this hypothesis. In terms of chemical composition, olivines coincide with the “mantle trend” of olivines from the lithospheric mantle. Nevertheless, garnets from the peridotites consistently change their composition in the direction of decreasing Cr2O3, CaO and Mg # values from Grt, Sp-Grt lherzolites to Grt websterites. The garnet composition from Obnazhennaya peridotites differs from Udachnaya peridotites, for which the residue hypothesis assumed. They are similar in composition to garnets from Beni-Bousera garnet pyroxenites, as well as to garnets from deformed lherzolites of the Udachnaya pipe, which suggests crystallization of garnets from the melt and the effect of metasomatic processes. The formation of orogenic massifs is a multi-stage process, many authors suggest that pyroxenite veins in mafic complexes are cumulative in origin and show signs of metasomatic processes (in particular, enrichment with aluminum, calcium and chromium, increased REE concentrations in garnet). So peridotite cumulative origin and further metasomatic transformations were suggested.
DS202008-1411
2020
Korneeva, A.A., Nikolai, N.A., Kamenetsky, V.S., Portnyagin, M.V., Savelyev, D.P., Krasheninnikov, S.P., Abersteiner, A., Kamenetsky, M.B., Zelenski, M.E., Shcherbakov, V.D., Botcharnikov, R.E.Composition, crystallization conditions and genesis of sulfide saturated parental melts of olivine-phyric rocks from Kamchatsky Mys ( Kamchatka, Russia).Lithos, 10.1016/j.lithos.2020.105657Russia, Kamchatkapicrites

Abstract: Sulfide liquids that immiscibly separate from silicate melts in different magmatic processes accumulate chalcophile metals and may represent important sources of the metals in Earth's crust for the formation of ore deposits. Sulfide phases commonly found in some primitive mid-ocean ridge basalts (MORB) may support the occurrence of sulfide immiscibility in the crust without requiring magma contamination and/or extensive fractionation. However, the records of incipient sulfide melts in equilibrium with primitive high-Mg olivine and Cr-spinel are scarce. Sulfide globules in olivine phenocrysts in picritic rocks of MORB-affinity at Kamchatsky Mys (Eastern Kamchatka, Russia) represent a well-documented example of natural immiscibility in primitive oceanic magmas. Our study examines the conditions of silicate-sulfide immiscibility in these magmas by reporting high precision data on the compositions of Cr-spinel and silicate melt inclusions, hosted in Mg-rich olivine (86.9-90 mol% Fo), which also contain globules of magmatic sulfide melt. Major and trace element contents of reconstructed parental silicate melts, redox conditions (?QFM = +0.1 ± 0.16 (1?) log. units) and crystallization temperature (1200-1285 °C), as well as mantle potential temperatures (~1350 °C), correspond to typical MORB values. We show that nearly 50% of sulfur could be captured in daughter sulfide globules even in reheated melt inclusions, which could lead to a significant underestimation of sulfur content in reconstructed silicate melts. The saturation of these melts in sulfur appears to be unrelated to the effects of melt crystallization and crustal assimilation, so we discuss the reasons for the S variations in reconstructed melts and the influence of pressure and other parameters on the SCSS (Sulfur Content at Sulfide Saturation).
DS202008-1414
2020
Lebedeva, N., Nosova, A., Kargin, A., Larionova, Y., Sazonova, L., Tikhomirova, Y.Grib kimberlite peridotitic xenoliths: isotopic evidence of variable source of mantle metasomatism.Goldschmidt 2020, 1p. AbstractRussia, Kola Peninsuladeposit - Grib

Abstract: We present petrography and mineral chemistry for both phlogopite, from mantle-derived xenoliths (garnet peridotite, eclogite and clinopyroxene-phlogopite rocks) and for megacryst, macrocryst and groundmass flakes from the Grib kimberlite in the Arkhangelsk diamond province of Russia to provide new insights into multi-stage metasomatism in the subcratonic lithospheric mantle (SCLM) and the origin of phlogopite in kimberlite. Based on the analysed xenoliths, phlogopite is characterized by several generations. The first generation (Phl1) occurs as coarse, discrete grains within garnet peridotite and eclogite xenoliths and as a rock-forming mineral within clinopyroxene-phlogopite xenoliths. The second phlogopite generation (Phl2) occurs as rims and outer zones that surround the Phl1 grains and as fine flakes within kimberlite-related veinlets filled with carbonate, serpentine, chlorite and spinel. In garnet peridotite xenoliths, phlogopite occurs as overgrowths surrounding garnet porphyroblasts, within which phlogopite is associated with Cr-spinel and minor carbonate. In eclogite xenoliths, phlogopite occasionally associates with carbonate bearing veinlet networks. Phlogopite, from the kimberlite, occurs as megacrysts, macrocrysts, microcrysts and fine flakes in the groundmass and matrix of kimberlitic pyroclasts. Most phlogopite grains within the kimberlite are characterised by signs of deformation and form partly fragmented grains, which indicates that they are the disintegrated fragments of previously larger grains. Phl1, within the garnet peridotite and clinopyroxene-phlogopite xenoliths, is characterised by low Ti and Cr contents (TiO2 < 1 wt.%, Cr2O3 < 1 wt.% and Mg# = 100 × Mg/(Mg + Fe) > 92) typical of primary peridotite phlogopite in mantle peridotite xenoliths from global kimberlite occurrences. They formed during SCLM metasomatism that led to a transformation from garnet peridotite to clinopyroxene-phlogopite rocks and the crystallisation of phlogopite and high-Cr clinopyroxene megacrysts before the generation of host-kimberlite magmas. One of the possible processes to generate low-Ti-Cr phlogopite is via the replacement of garnet during its interaction with a metasomatic agent enriched in K and H2O. Rb-Sr isotopic data indicates that the metasomatic agent had a contribution of more radiogenic source than the host-kimberlite magma. Compared with peridotite xenoliths, eclogite xenoliths feature low-Ti phlogopites that are depleted in Cr2O3 despite a wider range of TiO2 concentrations. The presence of phlogopite in eclogite xenoliths indicates that metasomatic processes affected peridotite as well as eclogite within the SCLM beneath the Grib kimberlite. Phl2 has high Ti and Cr concentrations (TiO2 > 2 wt.%, Cr2O3 > 1 wt.% and Mg# = 100 × Mg/(Mg + Fe) < 92) and compositionally overlaps with phlogopite from polymict breccia xenoliths that occur in global kimberlite formations. These phlogopites are the product of kimberlitic magma and mantle rock interaction at mantle depths where Phl2 overgrew Phl1 grains or crystallized directly from stalled batches of kimberlitic magmas. Megacrysts, most macrocrysts and microcrysts are disintegrated phlogopite fragments from metasomatised peridotite and eclogite xenoliths. Fine phlogopite flakes within kimberlite groundmass represent mixing of high-Ti-Cr phlogopite antecrysts and high-Ti and low-Cr kimberlitic phlogopite with high Al and Ba contents that may have formed individual grains or overgrown antecrysts. Based on the results of this study, we propose a schematic model of SCLM metasomatism involving phlogopite crystallization, megacryst formation, and genesis of kimberlite magmas as recorded by the Grib pipe.
DS202008-1415
2020
Lebedeva, N.M., Nosova, A.A., Kargin, A.V., Sazonova, L.V.Multi-stage evolution of kimberlite melt as inferred from inclusions in garnet megacrysts in the Grib kimberlite ( Arkangelsk region, Russia).Mineralogy and Petrology, Vol. 114, 4, pp. 272-288. pdfRussia, Archangeldeposit - Grib

Abstract: To provide new insights into the origin of garnet megacrysts and evolution of kimberlite melts, we studied in detail the polymineralic and monomineralic inclusions and their host garnets from the Grib kimberlite (Arkhangelsk diamond province, Russia). Low-Cr and high-Cr garnet megacrysts and eclogitic garnets contain abundant polymineralic and rare monomineralic inclusions. Monomineralic inclusions presented by clinopyroxene, ilmenite, olivine replaced by serpentine, were found exclusively within the low-Cr megacrysts. The composition of clinopyroxene exhibits geochemical equilibrium with the host garnet, indicating its primary origin during the formation of the megacryst assemblage. The low-Cr garnet–clinopyroxene mineral assemblage formed as a result of high-temperature, melt-associated mantle metasomatism by failed kimberlite within the lithospheric mantle (T?=?1150 °C and P?=?5.5 GPa). Polymineralic inclusions are characterised by a silicate or silicate-sulphate matrix. The central part of the silicate inclusions is filled by serpentine and contains ilmenite, spinel, perovskite, calcite and apatite. At the contact with host garnets, phlogopite, spinel and amphibole occur as reaction minerals. Composition of spinel and other minerals within inclusions with silicate matrix suggests that kimberlite melt was trapped at mantle pressures. Inclusions with silicate matrix were found in all garnets. The matrix of silicate-sulphate inclusions consists of silicate cryptocrystalline phases and sulphate minerals (celestine–barite) and contains calcite grains. The inclusions are distributed in some low-Cr garnet megacrysts and eclogitic garnet. The silicate-sulphate inclusions were crystallised from the late-stage kimberlite melt. Diverse reaction textures are evidences of disequilibrium between the host crystals and polymineralic inclusions and indicate that garnet and the hosted inclusions reacted with the ascending kimberlite melt. The silicate-sulphate inclusions with a thin rim of epidote within eclogitic garnets indicate that a kimberlite melt invaded the garnet and induced partial melting. The studied inclusions allow us to propose three stages of the Grib kimberlite evolution: 1) generation of garnet megacrysts and primary inclusions due to melt metasomatism, 2) reaction of the high-Ti kimberlite melt with garnet megacrysts (including their dissolution) and 3) alteration of the inclusions in garnet after kimberlite ascent.
DS202008-1436
2020
Prokopyev, I.R., Kozlov, E., Fomina,E., Doroshkevich, A.Mineralogy and fluid regime of formation of the REE-Late-Stage hydrothermal mineralization of Petyayan-Vara carbonatites ( Vuoriyarvi, Kola region, NW Russia.Minerals, 19p. PdfRussia, Kola Peninsulacarbonatite

Abstract: The Vuoriyarvi Devonian alkaline-ultramafic complex (northwest Russia) contains magnesiocarbonatites with rare earth mineralization localized in the Petyayan-Vara area. High concentrations of rare earth elements are found in two types of these rocks: (a) ancylite-dominant magnesiocarbonatites with ancylite-baryte-strontianite-calcite-quartz (±late Ca-Fe-Mg carbonates) ore assemblage, i.e., “ancylite ores”; (b) breccias of magnesiocarbonatites with a quartz-bastnäsite matrix (±late Ca-Fe-Mg carbonates), i.e., “bastnäsite ores.” We studied fluid inclusions in quartz and late-stage Ca-Fe-Mg carbonates from these ore assemblages. Fluid inclusion data show that ore-related mineralization was formed in several stages. We propose the following TX evolution scheme for ore-related processes: (1) the formation of ancylite ores began under the influence of highly concentrated (>50 wt.%) sulphate fluids (with thenardite and anhydrite predominant in the daughter phases of inclusions) at a temperature above300-350 °C; (2) the completion of the formation of ancylite ores and their auto-metasomatic alteration occurred under the influence of concentrated (40-45 wt.%) carbonate fluids (shortite and synchysite-Ce in fluid inclusions) at a temperature above 250-275 °C; (3) bastnäsite ores deposited from low-concentrated (20-30 wt.%) hydrocarbonate-chloride fluids (halite, nahcolite, and/or gaylussite in fluid inclusions) at a temperature of 190-250 °C or higher. Later hydrothermal mineralization was related to the low-concentration hydrocarbonate-chloride fluids (<15 wt.% NaCl-equ.) at 150-200 °C. The presented data show the specific features of the mineral and fluid evolution of ore-related late-stage hydrothermal rare earth element (REE) mineralization of the Vuoriyarvi alkaline-ultramafic complex.
DS202008-1437
2020
Rezvukhin, D.I., Alifirova, T.A., Golovin, A.V., Korsakov, A.V.A plethora of epigenetic minerals reveals a multistage metasomatic overprint of a mantle orthopyroxenite from the Udachnaya kimberlite.MDPI Minerals, Vol. 10, 264, doi.10.3390/ min10030264 34p. PdfRussiadeposit - Udachnaya-East

Abstract: More than forty mineral species of epigenetic origin have been identified in an orthopyroxenite from the Udachnaya-East kimberlite pipe, Daldyn kimberlite field, Siberian platform. Epigenetic phases occur as: (1) Mineral inclusions in the rock-forming enstatite, (2) daughter minerals within large (up to 2 mm) crystallized melt inclusions (CMI) in the rock-forming enstatite, and (3) individual grains and intergrowths in the intergranular space of the xenolith. The studied minerals include silicates (olivine, clinopyroxene, phlogopite, tetraferriphlogopite, amphibole-supergroup minerals, serpentine-group minerals, talc), oxides (several generations of ilmenite and spinel, rutile, perovskite, rare titanates of the crichtonite, magnetoplumbite and hollandite groups), carbonates (calcite, dolomite), sulfides (pentlandite, djerfisherite, pyrrhotite), sulfate (barite), phosphates (apatite and phosphate with a suggested crystal-chemical formula Na2BaMg[PO4]2), oxyhydroxide (goethite), and hydroxyhalides (kuliginite, iowaite). The examined epigenetic minerals are interpreted to have crystallized at different time spans after the formation of the host rock. The genesis of minerals is ascribed to a series of processes metasomatically superimposed onto the orthopyroxenite, i.e., deep-seated mantle metasomatism, infiltration of a kimberlite-related melt and late post-emplacement hydrothermal alterations. The reaction of orthopyroxene with the kimberlite-related melt has led to orthopyroxene dissolution and formation of the CMI, the latter being surrounded by complex reaction zones and containing zoned olivine grains with extremely high-Mg# (up to 99) cores. This report highlights the utility of minerals present in minor volume proportions in deciphering the evolution and modification of mantle fragments sampled by kimberlitic and other deep-sourced magmas. The obtained results further imply that the whole-rock geochemical analyses of mantle-derived samples should be treated with care due to possible drastic contaminations from “hiding” minor phases of epigenetic origin.
DS202008-1438
2019
Rezvukhina, O.V., Korsakov, A.V., Rezvukin, D.I., Zamyatin, D.A., Zelenovskiy, P.S., Greshnyakov, E.D., Shur, V.Y.A combined Raman spectroscopy, cathodoluminescence, and electron backscatter diffraction study of kyanite porphyroblasts from diamondiferous and diamond-free metamorphic rocks ( Kokchetav Massif).Journal of Raman Spectroscopy, 13p. PdfRussialuminescence

Abstract: A series of precise nondestructive analytical methods (Raman spectroscopy, cathodoluminescence, and EBSD—electron backscatter diffraction) has been employed to investigate the internal textures of kyanite porphyroblasts from diamondiferous and diamond?free ultrahigh?pressure metamorphic rocks (Kokchetav massif, Northern Kazakhstan). Such internal kyanite characteristics as twinning, radial fibrous pattern, and spotty zoning were identified by means of Raman and cathodoluminescence imaging, whereas an intergrowth of two kyanite crystals was distinguished only by Raman imaging. The EBSD analysis recorded an ~10-25° changing of orientations along the elongation in the investigated kyanite porphyroblasts. The absence of a radial fibrous pattern and a spotty zoning on the EBSD maps indicates that these textures are not related to variations in crystallographic orientation. The absence of clear zoning patterns (cores, mantles, and rims) on the Raman, cathodoluminescence, or EBSD maps of the kyanite porphyroblasts indicates the rapid single?stage formation of these porphyroblasts near the peak metamorphic conditions and the lack of recrystallization processes. The obtained results provide important implications for deciphering of mineral internal textures, showing that the data obtained by cathodoluminescence mapping can be clearly reproduced by Raman imaging, with the latter method occasionally being even more informative. This observation is of significant importance for the study of minerals that are unexposed on a thin section surface or Fe? and Ni?rich minerals that do not show luminescence emission. The combination of the Raman spectroscopic, cathodoluminescence, and EBSD techniques may provide better spatial resolution for distinguishing different domains and textural peculiarities of mineral than the selective application of individual approaches.
DS202008-1450
2020
Sun, J., Rudnick, R.L., Kostrovitsky, S.I., Kalashnikova, T., Kitajima, K., Li, R.P., Shu, Q.The origin of low-MgO eclogite xenoliths from Obnazhennaya kimberlite, Siberia craton.Goldschmidt 2020, 1p. AbstractRussia, Siberiadeposit - Obnazhennaya

Abstract: The petrology, mineral major and trace element concentrations, and garnet oxygen isotopic composition of low-MgO (11-16 wt.%) eclogites from the Obnazhennaya kimberlite, Siberian craton, are used to infer their petrogenesis. These eclogites equilibrated at moderate pressure-temperature conditions 2.3-3.7 GPa and 855- 1095?C at the time of entrainment. Although derived from the garnet stability field, these rocks have low-pressure cumulate protoliths containing plagioclase, olivine, and clinopyroxene as reflected by pronounced positive Eu and Sr anomalies in all eclogites, and low heavy rare earth element (HREE) contents in both minerals and reconstructed bulk rocks for a number of samples. Major elements, transition metals, and the HREE compositions of the reconstructed whole rocks are analogous to modern oceanic gabbro cumulates. Despite geochemical signatures supporting an oceanic crust origin, mantle-like ?18O of the garnets (5.07-5.62 ‰ ) for most samples indicates that the protoliths either did not interact with seawater or have coincidently approximately normal igneous values. Some of the eclogite xenoliths have lower SiO2 contents and depleted light REE ((Nd/Yb)N ? 1) compared to modern oceanic gabbros, suggesting that they experienced partial melting. Positively inclined middle to heavy-REE patterns ((Dy/Yb)N ?1) of the reconstructed bulk rocks mostly result from repeated partial melting in the eclogite stability field, based on melting model calculations. We therefore suggest that the Obnazhennaya low-MgO eclogites may represent the gabbroic section of subducted or foundered basaltic crust that underwent continued partial melting processes at high pressures where garnet was the main residual phase.
DS202008-1454
2020
Vasilev, E., Kriulina, G., Klepikov, I.Luminescence of natural diamond in the NIR range.Physics and Chemistry of Minerals, Vol. 47, 31 6p. PdfRussialuminesence

Abstract: Natural diamond remains the source of many interesting effects and finds that are difficult to reproduce or detect in synthetic crystals. Herein, we investigate the photoluminescence (PL) of more than 2000 natural diamonds in the range 800-1050 nm. PL spectra were registered with excitation at 405, 450, 488 (Ar+), and 787 nm. The investigation revealed several systems that were not previously described. Some new dislocation-related systems were discovered in the spectra of crystals with signs of plastic deformation. They are four sets of doublets 890/900.3 nm, 918/930 nm, 946.5/961.5 nm, and 981/994 nm; four lines at 946, 961.5, 986, and 1020 nm. In low-nitrogen diamonds, they are accompanied by a line at 921 nm. Unreported vibronic systems with zero-phonon lines at 799.5, 819.6, 869.5, and 930 nm were revealed. In most cases, the systems were accompanied with doublet 883/885 of the simplest Ni-related center. We assigned these systems to Ni-related centers of different complexity. The results expand opportunities to restore growth conditions and thermal history of diamond crystals. The detection of new shallow centers expands the prospects of diamond as an optic and semiconductor material for applications in the NIR range.
DS202008-1457
2020
Vorobei, S.S., Garanin, V.K., Minervina, E.A., Posukhova, T.V., Weisheng, X.The mineralogy and geochemistry of mantle xenoliths from diamondiferous kimberlite of China and Russia.Moscow University Geology Bulletin, Vol. 75, 2, pp. 128-135. pdfRussia, Chinadeposit - Mir, Shandong, Liaoning

Abstract: enoliths from the Mir pipe and from the Shandong and Liaoning provinces were studied by the methods of EMPA and ICP-MS. Their mineralogical, geochemical, and genetic features were revealed. Minerals of diamondiferous paragenesis were detected in xenoliths from the Mir pipe, while they were not found in xenoliths of China. All xenoliths are characterized by secondary alterations, which are more intense in xenoliths of China. The distribution of REEs shows the involvement of subduction processes in the formation of xenoliths from the Mir pipe. The influence of metasomatism is clearly evident in xenoliths from China. The calculated P-T parameters (? = 600-700°C, P = 2-2.5 GPa) are not consistent with the mantle environments that correspond to the metasomatic conditions.
DS202009-1634
2020
Kaneva, E., Shendrik, R.Yu., Radomskaya, T.A., Suvorova, L.E.Fedorite from Murun alkaline complex ( Russia): spectroscopy and crystal chemical features.Minerals ( MDPI), Vol. 10, 702, 24p. PdfRussiadeposit - Murun

Abstract: Fedorite is a rare phyllosilicate, having a crystal structure characterized by SiO4-tetrahedral double layers located between continuous layers formed by edge-sharing (Ca,Na)-octahedra, and containing interlayer K, Na atoms and H2O molecules. A mineralogical-petrographic and detailed crystal-chemical study of fedorite specimens from three districts of the Murun alkaline complex was performed. The sequence of the crystallization of minerals in association with fedorite was established. The studied fedorite samples differ in the content of interlayer potassium and water molecules. A comparative analysis based on polyhedral characteristics and deformation parameters was carried out. For the first time, EPR, optical absorption and emission spectra were obtained for fedorite. The raspberry-red coloration of the mineral specimens could be attributed to the presence of Mn4+ ions.
DS202009-1636
2019
Kozenko, J.A song of ice and diamonds. Alrosa …. Challenging landscapes… Gems & Jewellery, Vol. 29, 3, autumn pp. 29-31.Russia, Yakutia Arkhanelskhistory
DS202009-1641
2020
Moine, B.N., Bolfan-Casanova, N., Radu, I.B., Ionov, D.A., Costin, G., Korsakov, A.V., Golovin, A.V., Oleinikov, O.B., Deloule, E., Cottin, J.Y.Molecular hydrogen in minerals as a clue to interpret deltaD variations in the mantle. ( Omphacites from eclogites from Kaapvaal and Siberian cratons.)Nature Communications, doi:.org/10.1038/ s41467-020-17442 -8 11p. PdfAfrica, South Africa, Russia, Siberiawater

Abstract: Trace amounts of water dissolved in minerals affect density, viscosity and melting behaviour of the Earth’s mantle and play an important role in global tectonics, magmatism and volatile cycle. Water concentrations and the ratios of hydrogen isotopes in the mantle give insight into these processes, as well as into the origin of terrestrial water. Here we show the presence of molecular H2 in minerals (omphacites) from eclogites from the Kaapvaal and Siberian cratons. These omphacites contain both high amounts of H2 (70 to 460 wt. ppm) and OH. Furthermore, their ?D values increase with dehydration, suggesting a positive H isotope fractionation factor between minerals and H2-bearing fluid, contrary to what is expected in case of isotopic exchange between minerals and H2O-fluids. The possibility of incorporation of large quantities of H as H2 in nominally anhydrous minerals implies that the storage capacity of H in the mantle may have been underestimated, and sheds new light on H isotope variations in mantle magmas and minerals.
DS202009-1675
2020
Yakovlev, E.Yu.Features of radioactive element distribution within the Arkhangelsk diamondiferous province: possible directions for development of isotope-radiogeochemical methods for kimberlite prospecting in complex landscape geology and climate conditions of the subaGeochemistry: Exploration, Environment, Analysis, Vol. 20, pp. 269-279. pdfRussia, Arkangelgeochemisty
DS202010-1824
2020
Abramov, S.S., Rass, I.T., Kononkova, N.N.Fenites of the Miasite-carbonatite complex in the Vishevye Mountains, southern Urals, Russia: origin of the metasomatic zoning and thermodynamic simulations of the processes.Petrology, Vol. 28, 3, pp. 263-286.Russia, Uralscarbonatite

Abstract: Mineral zoning in fenites around miaskite intrusions of the Vishnevye Mountains complex can be interpreted as a magmatic-replacement zonal metasomatic aureole (in D.S. Korzhinskii’s understanding): the metasomatic transformations of the fenitized gneisses under the effect of deep alkaline fluid eventually resulted in the derivation of nepheline syenite eutectic melt. Based on the P-T-fO2 parameters calculated from the composition of minerals coexisting in the successive zones, isobaric-isothermal fO2-aSiO2 and µNa2O-µAl2O3 sections were constructed with the Perplex program package to model how the fenites interacted with H2O-CO2 fluid (in the Na-K-Al-Si-Ca-Ti-Fe-Mg-O-H-C system). The results indicate that the fluid-rock interaction mechanisms are different in the outer (fenite) and inner (migmatite) parts of the zonal aureole. Its outer portion was dominated by desilication of rocks, which led, first, to quartz disappearance from these rocks and then to an increase in the Al# of the coexisting minerals (biotite and clinopyroxene). In the inner part of the aureole, fenite transformations into biotite-feldspathic metasomatic rocks and nepheline migmatite were triggered by an increase in the Na and Al activities in the system alkaline H2O-CO2 fluid-rock. As a consequence, the metasomatites were progressively enriched in Al2O3 and alkalis, and these transformations led to the development of biotite in equilibrium with K-Na feldspar and calcite at the sacrifice of pyroxene. The further introduction of alkalis led to the melting of the biotite-feldspathic metasomatites and the origin of nepheline migmatites. The simulated model sequence of metasomatic zones that developed when the gneiss was fenitized and geochemical features of the successive zones (differences in the LILE and REE concentrations in the rocks and minerals of the fenitization aureole and the Sm-Nd isotope systematics of the rocks of the alkaline complex) indicate that the source of the fluid responsible for the origin of zonal fenite-miaskite complexes may have been carbonatite, a derivative of mantle magmas, whereas the miaskites were produced by metasomatic transformations of gneisses and subsequent melting under the effect of fluid derived from carbonatite magmas.
DS202010-1827
2020
Ashchepkov, I., Medvedev, N., Vladykin, N., Ivanov, A., Downes, H.Thermobarometry and geochemistry of mantle xenoliths from Zapolyarnaya pipe, Upper Muna field, Yakutia: implications for mantle layering, interaction with plume melts and diamond grade.Minerals, Vol. 10, 9, 740 10.3390/ min10090755 29p. PdfRussia, Yakutiadeposit - Zapplyarnaya

Abstract: Minerals from mantle xenoliths in the Zapolyarnaya pipe in the Upper Muna field, Russia and from mineral separates from other large diamondiferous kimberlite pipes in this field (Deimos, Novinka and Komsomolskaya-Magnitnaya) were studied with EPMA and LA-ICP-MS. All pipes contain very high proportions of sub-calcic garnets. Zapolyarnaya contains mainly dunitic xenoliths with veinlets of garnets, phlogopites and Fe-rich pyroxenes similar in composition to those from sheared peridotites. PT estimates for the clinopyroxenes trace the convective inflection of the geotherm (40-45 mW•m?2) to 8 GPa, inflected at 6 GPa and overlapping with PT estimates for ilmenites derived from protokimberlites. The Upper Muna mantle lithosphere includes dunite channels from 8 to 2 GPa, which were favorable for melt movement. The primary layering deduced from the fluctuations of CaO in garnets was smoothed by the refertilization events, which formed additional pyroxenes. Clinopyroxenes from the Novinka and Komsomolskaya-Magnitnaya pipes show a more linear geotherm and three branches in the P-Fe# plot from the lithosphere base to the Moho, suggesting several episodes of pervasive melt percolation. Clinopyroxenes from Zapolyarnaya are divided into four groups according to thermobarometry and trace element patterns, which show a stepwise increase of REE and incompatible elements. Lower pressure groups including dunitic garnets have elevated REE with peaks in Rb, Th, Nb, Sr, Zr, and U, suggesting mixing of the parental protokimberlitic melts with partially melted metasomatic veins of ancient subduction origin. At least two stages of melt percolation formed the inclined PT paths: (1) an ancient garnet semi-advective geotherm (35-45 mW•m?2) formed by volatile-rich melts during the major late Archean event of lithosphere growth; and (2) a hotter megacrystic PT path (Cpx-Ilm) formed by feeding systems for kimberlite eruptions (40-45 mW•m?2). Ilmenite PT estimates trace three separate PT trajectories, suggesting a multistage process associated with metasomatism and formation of the Cpx-Phl veinlets in dunites. Heating associated with intrusions of protokimberlite caused reactivation of the mantle metasomatites rich in H2O and alkali metals and possibly favored the growth of large megacrystalline diamonds.
DS202010-1829
2013
Ashchepkov, I.V., Alymova, N.V., Loginova, A.M., Vladykin, N.V., Kuligin, S.S., Mityukhin, S.I., Stegnitsky, Y.B., Prokopiev, S.A., Salikhov, R.F., Palessky, V.S., Khmelnikova, O.S.Picroilmenites in Yakutian kimberlites: variations and genetic models. Solid Earth Discussions, Vol. 5, pp. 1-75. pdf * note dateRussia, Yakutiapicroilmenites

Abstract: Major and trace element variations in picroilmenites from Late Devonian kimberlite pipes in Siberia reveal similarities within the region in general, but show individual features for ilmenites from different fields and pipes. Empirical ilmenite thermobarometry (Ashchepkov et al., 2010), as well as common methods of mantle thermobarometry and trace element geochemical modeling, shows long compositional trends for the ilmenites. These are a result of complex processes of polybaric fractionation of protokimberlite melts, accompanied by the interaction with mantle wall rocks and dissolution of previous wall rock and metasomatic associations. Evolution of the parental magmas for the picroilmenites was determined for the three distinct phases of kimberlite activity from Yubileynaya and nearby Aprelskaya pipes, showing heating and an increase of Fe# (Fe# = Fe / (Fe + Mg) a.u.) of mantle peridotite minerals from stage to stage and splitting of the magmatic system in the final stages. High-pressure (5.5-7.0 GPa) Cr-bearing Mg-rich ilmenites (group 1) reflect the conditions of high-temperature metasomatic rocks at the base of the mantle lithosphere. Trace element patterns are enriched to 0.1-10/relative to primitive mantle (PM) and have flattened, spoon-like or S- or W-shaped rare earth element (REE) patterns with Pb > 1. These result from melting and crystallization in melt-feeding channels in the base of the lithosphere, where high-temperature dunites, harzburgites and pyroxenites were formed. Cr-poor ilmenite megacrysts (group 2) trace the high-temperature path of protokimberlites developed as result of fractional crystallization and wall rock assimilation during the creation of the feeder systems prior to the main kimberlite eruption. Inflections in ilmenite compositional trends probably reflect the mantle layering and pulsing melt intrusion during melt migration within the channels. Group 2 ilmenites have inclined REE enriched patterns (10-100)/PM with La / Ybn ~ 10-25, similar to those derived from kimberlites, with high-field-strength elements (HFSE) peaks (typical megacrysts). A series of similar patterns results from polybaric Assimilation + fractional crystallization (AFC) crystallization of protokimberlite melts which also precipitated sulfides (Pb < 1) and mixed with partial melts from garnet peridotites. Relatively low-Ti ilmenites with high-Cr content (group 3) probably crystallized in the metasomatic front under the rising protokimberlite source and represent the product of crystallization of segregated partial melts from metasomatic rocks. Cr-rich ilmenites are typical of veins and veinlets in peridotites crystallized from highly contaminated magma intruded into wall rocks in different levels within the mantle columns. Ilmenites which have the highest trace element contents (1000/PM) have REE patterns similar to those of perovskites. Low Cr contents suggest relatively closed system fractionation which occurred from the base of the lithosphere up to the garnet-spinel transition, according to monomineral thermobarometry for Mir and Dachnaya pipes. Restricted trends were detected for ilmenites from Udachnaya and most other pipes from the Daldyn-Alakit fields and other regions (Nakyn, Upper Muna and Prianabarie), where ilmenite trends extend from the base of the lithosphere mainly up to 4.0 GPa. Interaction of the megacryst forming melts with the mantle lithosphere caused heating and HFSE metasomatism prior to kimberlite eruption.
DS202010-1840
2020
Dymshits, A., Sharygin, I., Malkovets, V., Yakovlev, I.V., Gibsher, A.A., Alifirova, T.A., Vorobei, S.S., Potapov, S.V., Garanin, V.K.Thermal state, thickness and composition of the lithospheric mantle beneath the Upper Muna kimberlite field, Siberian Craton, constrained by clinopyroxene xenocrysts and comparison with Daldyn and Mirny fields.Minerals, 10.1039/DOJA00308E 20p. PdfRussiadeposit - Muna

Abstract: To gain better insight into the thermal state and composition of the lithospheric mantle beneath the Upper Muna kimberlite field (Siberian craton), a suite of 323 clinopyroxene xenocrysts and 10 mantle xenoliths from the Komsomolskaya-Magnitnaya (KM) pipe have been studied. We selected 188 clinopyroxene grains suitable for precise pressure (P)-temperature (T) estimation using single-clinopyroxene thermobarometry. The majority of P-T points lie along a narrow, elongated field in P-T space with a cluster of high-T and high-P points above 1300 °C, which deviates from the main P-T trend. The latter points may record a thermal event associated with kimberlite magmatism (a “stepped” or “kinked” geotherm). In order to eliminate these factors, the steady-state mantle paleogeotherm for the KM pipe at the time of initiation of kimberlite magmatism (Late Devonian-Early Carboniferous) was constrained by numerical fitting of P-T points below T = 1200 °C. The obtained mantle paleogeotherm is similar to the one from the nearby Novinka pipe, corresponding to a ~34-35 mW/m2 surface heat flux, 225-230 km lithospheric thickness, and 110-120 thick "diamond window" for the Upper Muna field. Coarse peridotite xenoliths are consistent in their P-T estimates with the steady-state mantle paleogeotherm derived from clinopyroxene xenocrysts, whereas porphyroclastic ones plot within the cluster of high-T and high-P clinopyroxene xenocrysts. Discrimination using Cr2O3 demonstrates that peridotitic clinopyroxene xenocrysts are prevalent (89%) among all studied 323 xenocrysts, suggesting that the Upper Muna mantle is predominantly composed of peridotites. Clinopyroxene-poor or -free peridotitic rocks such as harzburgites and dunites may be evident at depths of 140-180 km in the Upper Muna mantle. Judging solely from the thermal considerations and the thickness of the lithosphere, the KM and Novinka pipes should have excellent diamond potential. However, all pipes in the Upper Muna field have low diamond grades (<0.9, in carats/ton), although the lithosphere thickness is almost similar to the values obtained for the high-grade Udachnaya and Mir pipes from the Daldyn and Mirny fields, respectively. Therefore, other factors have affected the diamond grade of the Upper Muna kimberlite field.
DS202010-1841
2020
Dymshits, A., Sharygin, I., Liu, Z., Korolev, N., Malkovets, V., Alifirova, T., Yakovlev, I., Xu, Y-G.Oxidation state of the lithospheric mantle beneath Komosomolskaya-Magnitnaya kimberlite pipe, Upper Muna field, Siberian craton.Minerals, Vol. 10, 9, 740 10.3390/ min10090740 24p. PdfRussiadeposit - Muna

Abstract: The oxidation state of the mantle plays an important role in many chemical and physical processes, including magma genesis, the speciation of volatiles, metasomatism and the evolution of the Earth’s atmosphere. We report the first data on the redox state of the subcontinental lithospheric mantle (SCLM) beneath the Komsomolskaya-Magnitnaya kimberlite pipe (KM), Upper Muna field, central Siberian craton. The oxygen fugacity of the KM peridotites ranges from ?2.6 to 0.3 logarithmic units relative to the fayalite-magnetite-quartz buffer (?logfO2 (FMQ)) at depths of 120-220 km. The enriched KM peridotites are more oxidized (?1.0-0.3 ?logfO2 (FMQ)) than the depleted ones (from ?1.4 to ?2.6 ?logfO2 (FMQ)). The oxygen fugacity of some enriched samples may reflect equilibrium with carbonate or carbonate-bearing melts at depths >170 km. A comparison of well-studied coeval Udachnaya and KM peridotites revealed similar redox conditions in the SCLM of the Siberian craton beneath these pipes. Nevertheless, Udachnaya peridotites show wider variations in oxygen fugacity (?4.95-0.23 ?logfO2 (FMQ)). This indicates the presence of more reduced mantle domains in the Udachnaya SCLM. In turn, the established difference in the redox conditions is a good explanation for the lower amounts of resorbed diamonds in the Udachnaya pipe (12%) in comparison with the KM kimberlites (33%). The obtained results advocate a lateral heterogeneity in the oxidation state of the Siberian SCLM.
DS202010-1847
2020
Kaneva, E.V., Shendrik, R.Yu., Radomskaya, T.A., Suvorova, L.F.Fedorite from Murun alkaline complex ( Russia): spectroscopy and crystal chemical features.Minerals, Vol. 10, 702 10.3390/min10080702 24p. PdfRussia, Yakutiadeposit - Murun

Abstract: Fedorite is a rare phyllosilicate, having a crystal structure characterized by SiO4-tetrahedral double layers located between continuous layers formed by edge-sharing (Ca,Na)-octahedra, and containing interlayer K, Na atoms and H2O molecules. A mineralogical-petrographic and detailed crystal-chemical study of fedorite specimens from three districts of the Murun alkaline complex was performed. The sequence of the crystallization of minerals in association with fedorite was established. The studied fedorite samples differ in the content of interlayer potassium and water molecules. A comparative analysis based on polyhedral characteristics and deformation parameters was carried out. For the first time, EPR, optical absorption and emission spectra were obtained for fedorite. The raspberry-red coloration of the mineral specimens could be attributed to the presence of Mn4+ ions.
DS202010-1848
2020
Kargin, A.V., Nosova, A.A., Babarina, I.I., Dokuchaev, A.Ya., Kondrashov, I.A.Paleproterozoic kimberlites of Kimozero: petrographic facies recstruction of kimberlite pipe overcoming tectonic and metamorphic modification.Doklady Earth Sciences, Vol. 493, 1, pp. 522-525.Russiadeposit - Kimozero

Abstract: Based on a detailed petrographic investigation and geological observations of the Paleoproterozoic Kimozero kimberlite (Karelia, Russia), we present a new model of kimberlite pipe with multiphase and mono-crater structure. We recognised volcanoclastic and coherent kimberlite series that filled the inner and outer zones of the kimberlite crater. The multiphase structure, emplacement style, petrography and reconstructed size of the Kimozero kimberlite correspond to Phanerozoic kimberlite pipes.
DS202010-1849
2020
Kargin, A.V., Nosova, A.A., Sazonova, L.V., Peresetskaya, E.V., Golubeva, Yu.Yu., Lebedeva, N.M., Tretyachenko, V.V., Khvostikov, V.A., Burmii, J.P.Ilmenite from the Arkangelsk diamond province, Russia: composition, origin and indicator of diamondiferous kimberlites.Petrology, Vol. 28, 4, pp. 315-337. pdfRussia, Archangeldeposit - Grib, Kepino cluster

Abstract: To provide new insights into the origin and evolution of kimberlitic magmas with different diamond concentrations from the Arkhangelsk diamond province in north-western Russia, we examined the major- and trace-element compositions of ilmenite from diamondiferous kimberlite of the Grib pipe and diamond-barren kimberlites from the Kepino cluster (Stepnaya and TsNIGRI-Arkhangelskaya pipes). Ilmenite from diamond-barren kimberlites shows lower Mg, Ti, Cr, Ni and Cu concentrations with increase in both Fe3+ and Fe2+ and Nb, Ta, Zr, Hf, Zn and V concentrations. The main differences between kimberlites with different diamond contents are the Nb and Zr concentrations and their correlation patterns with Mg and Cr concentrations. Ilmenite from the Grib kimberlite has Zr concentrations <110 ppm, whereas ilmenite from the Kepino kimberlites has Zr concentrations >300 ppm. Ilmenite crystallisation within the Grib kimberlite occurred under increasing oxygen fugacity (fO2), which may reflect assimilation of mantle peridotite by the kimberlitic magmas. Ilmenite from the Kepino kimberlites suggests its crystallisation under constant fO2, with the ilmenite composition being controlled by processes of fractional crystallisation of megacrystic minerals. These assumptions were confirmed with assimilation-fractional crystallisation calculations. On the basis of obtained data, we developed a model for the evolution of the kimberlitic magmas for both diamondiferous and barren kimberlites. The diamond-bearing kimberlitic magmas were generated under intense interaction of kimberlitic magmas with the surrounding lithospheric mantle. It may be that during early modification of the lithospheric mantle by kimberlitic magmas as well as with kimberlitic magmas’ local stretching and swift ascent, the capture of the mantle xenoliths was favoured over the crystallisation of phenocrysts. The formation of barren kimberlitic magmas may have occurred when the lithospheric mantle in the vicinity of ascending magmas was already geochemically equilibrated with them. It also is possible that the magma’s ascent slowed under conditions of dominantly compressive stresses with crystallisation of olivine and other megacrystic phases.
DS202010-1850
2020
Kiseeva, E.S., Yuzmukhametov, R.N.Women at the dawn of diamond discovery in Siberia or how two women discovered the Siberian diamond province. Popugaeva and SarsadskhihBurek, C.V., Higgs, B. eds Celebrating 100 years of female fellowship of the Geological Society: Discovering forgotten histories. Geological Society of London Special Publ. 506, in press, 13p. PdfRussia, Siberiahistory

Abstract: Exploration for diamonds in the Soviet Union started in the 1940s, however it was not until the beginning of 1950s that the government acknowledged a strong need for locally mined diamonds. In this article, based on publications from Russian literature, we recount a story of two female geologists, Larisa Popugaeva and Natalia Sarsadskhih. Natalia was the head of the mineralogical laboratory who implemented a new methodology to search for mineral indicators of primary diamond deposits. Larisa was a young geologist who joined Natalia's team in 1953. The work of these women led to the discovery in 1954 of the first diamond deposit in the country - a kimberlite pipe "Zarnitsa". In 1954 Natalia was unable to go into the field, therefore the discovery was made by Larisa. Credit for this discovery, however, was claimed by the higher officials from the Amakinskaya expedition, one of the largest diamond exploration organisations in the country. Multiple efforts to restore justice did not succeed, with Larisa only being awarded the title of the "Discoverer" in 1970, and Natalia not until 1990. This article provides a description of Larisa's and Natalia's life up until the discovery of Zarnitsa, and a few significant events after.
DS202010-1852
2020
Komarovskikh, A., Rakhmanova, M., Yuryeva, O., Nadolinny, V.Infrared, photoluminescence, and electron paramagnetic resonance characteristic features of diamonds from Aikhal pipe, (Yakutia).Diamond & Related Materials, Vol. 109, 108045, 9p. PdfRussiadeposit - Aikhal

Abstract: The diversity of the defects in the collection (50 samples) of diamonds from the Aikhal pipe (Yakutia) has been studied with IR, PL, and EPR spectroscopy. The specific features of crystals have been established; the obtained information leads to the discussion about the diamond formation and growth conditions. One of the specific features observed is a high concentration of platelets. According to the platelet behavior, most of the crystals are regular suggesting the growth temperature to be 1100-1200 °C. The concentrations of A and B defects have been evaluated and the same temperature conditions have been obtained according to the Taylor diagram. Using the EPR spectroscopy, the C and N3V centers have been found in many crystals suggesting the aggregation of nitrogen during residence in the mantle at high temperatures. An interesting feature has been observed in the PL spectra. For most crystals, the spectrum with ZPL at 563.5 nm is very intensive. The structure of the observed defect is remaining unknown, the spectrum disappears as a result of annealing at 600 °C indicating the interstitial-vacancy annihilation mechanism.
DS202010-1856
2020
Lebedeva, N.M., Nosova, A.A., Kargin, A.V., Larionova, Y.O., Sazonova, L.V., Tikhomirova, Y.S.S-Nd-O isotopic evidence of variable sources of mantle metasomatism in the subcratonic lithospheric mantle beneath the Grib kimberlite, northwestern Russia.Lithos, in press available, 54p. PdfRussia, Kola Peninsuladeposit - Grib

Abstract: To provide new insights into the type and extent of mantle metasomatism in the subcratonic lithospheric mantle, we examined the Sr-Nd-O isotopic compositions of orthopyroxene, clinopyroxene, garnet, ilmenite and phlogopite from sheared garnet lherzolite, granular garnet harzburgites and lherzolites and clinopyroxene-phlogopite rocks from the Grib kimberlite in the Arkhangelsk diamond province in northwestern Russia. Clinopyroxene and orthopyroxene from sheared garnet lherzolite initially have a close value of 87Sr/86Sr(t) (~0.7034) and close weak positive ?Nd. Orthopyroxene and clinopyroxene are in oxygen isotope equilibrium with coexisting olivine. Clinopyroxene from a garnet harzburgite has a low 87Sr/86Sr(t) isotope ratio of 0.70266. Clinopyroxene from granular garnet lherzolites has a relatively narrow variation in 87Sr/86Sr(t) (0.70456-0.70582) and considerably larger variations in ?Nd (?4.3???+1.0) isotope ratios. Garnet displays elevated initial 87Sr/86Sr(t) values (0.70540-0.70633). Ilmenite shows a narrow range in 87Sr/86Sr(t) (0.70497-0.70522) coupled with ?Nd values of +0.4 and +3.5. These isotopic data suggest granular garnet lherzolite of mantle metasomatism took place during the interaction of kimberlite melts with SCLM that contained mica-amphibole-rutile-ilmenite-diopside (MARID)-type metasomes. Clinopyroxenes from clinopyroxene-phlogopite (phlogopite wehrlite) xenoliths display a broader range in 87Sr/86Sr(t) (0.70486-0.70813) that is significantly higher than the kimberlite values and a circa-chondritic ?Nd (?0.1 ??+1.3) with a restricted ?18O range (5.11‰-5.33‰). More radiogenic Sr isotopic composition decoupled from Nd isotopes could have been induced by metasomatic melt/fluid related to a subducted material. The isotopic compositions of mantle minerals preserve Sr-Nd isotopic evidence of pre-kimberlite metasomatic events that were probably due to incomplete reequilibration with ultramafic carbonated melt. Based on mineral pairs Rb-Sr isochrons and a clinopyroxene-based Sm-Nd errochron, these mantle metasomatic events correspond to ~550-600?Ma and ~1200?Ma episodes of magmatic-thermal activity.
DS202010-1861
2020
Mints, M.V., Dokukina, K.A.Age of eclogites formed by the subduction of the mesoarchean oceanic crust (salma, belomorian eclogite province, eastern fennoscandian shield, Russia): a synthesis.Precambrian Research, doi.org/10.1016/j.precamres.2020.105879in press available, 80p. Pdf Russiaeclogites

Abstract: Competing evolutionary models and age of eclogite facies metamorphism, Mesoarchaean, Neoarchaean or Palaeoproterozoic, of the subducted Mesoarchaean oceanic crust (Salma association, Belomorian Eclogite Province) are discussed on a basis of systematic analysis of previously known and newly obtained data. Four main types of zircons were distinguished in eclogites: porous crystals with numerous inclusions from eclogite-metagabbro; wide-rimmed zircons with relict porous cores similar to previous type separated from garnetites; round-oval zircons from eclogite-metagabbronorite that are characteristic for granulite facies rocks and zircons with euhedral oscillatory zoning cores and oval grains that are characteristic for the eclogite facies pillow basalts. Regular changes in REE patterns and in crystallization-recrystallization temperatures of certain domains of the porous zircons display sequence of magmatic and metamorphic events. The???2.9?Ga domains retain magmatic-type REE patterns. Low- and medium-temperature inclusions of prenite, pumpelliite, albite, actinolite, chlorite, diaspore and saponite in garnet and abundant microinclusions of the prenite-pumpelliite and greenschist facies in zircons with LREE-MREE enrichment indicate hydrothermal metamorphism in the spreading ridge and ocean floor at 2.9-2.82?Ga. Disappearance of Ce positive anomaly from REE pattern in zircon, change negative to positive Eu anomaly and LREE-MREE enrichment caused by plagioclase removal and replacement of rutile with sphene evidence eclogite facies metamorphism linked with subduction at 2.82-2.78?Ga. Temperatures in the 700-900?°C range of the round-oval zircons from eclogite-metagabbronorite records the Neoarchaean granulite facies overprint at 2.77-2.70?Ga. Series of the high temperature Palaeoprpoterozoic events was terminated by 2.1-1.7?Ga event marked by the rims with lowest REE that frame all types of zircons. Change from positive to negative Eu anomaly, retrieval of negative Ce anomaly indicate the presence of plagioclase, reduction type of fluids and low water activity characteristic of high-temperature metamorphism under stretching condition and mantle-plume activity. The deep reworking of the Sm-Nd isotope system in the Belomorian tectonic province at???1.9?Ga, including the Salma eclogite association, was caused by the enormous crustal heating that spread from the Lapland granulite belt southward. Radiogenic 176Hf enrichment of 1.9?Ga zircon indicates recrystallization of a long-existed garnet with release of significant amount of 176Hf.
DS202010-1865
2020
Pashkevich, M.A., Alekseenko, A.V.Reutilization prospects of diamond clay tailings at the Lomonosov mine, northwestern Russia.Minerals, Vol. 10, 517 10.3390/min10060517 17p. PdfRussiadeposit - Lomonosov

Abstract: Approaches to reutilization of diamond clay tailings in northern environments are considered in the example of the Subarctic region of Russia. The monitoring studies are conducted at storage facilities of Severalmaz PJSC where ca. 14 million cubic meters of waste rock are produced annually after kimberlite mining and processing. The tailings of diamond ore dressing waste are situated in complex geological conditions of high-groundwater influx and harsh cold climate with low levels of solar radiation and the average annual temperature below freezing point. Furthermore, the adjoining protected forests with a significant diversity of biogeocenoses and salmon-spawning rivers are affected by the storage area. Reducing the impact of the tailings can be achieved through the reuse of the stored clay magnesia rocks obtained from saponite-containing suspension. The experiments reveal the most promising ways of their application as potential secondary mineral raw materials: cement clinker and ceramics manufacture, integration of alkaline clay into the reclamation of acidic peat bogs, and production of aqueous clay-based drilling fluid. Field and laboratory tests expose the advantages and prospects of each suggested treatment technique.
DS202010-1876
2020
Shatsky, V.S., Ragozin, A.L., Kozmenko, O.A., Denisenko, A.A.Geochemical evidence for participation of the subducted crust in the process of transformation of the subcontinental mantle in the Yakutian diamondiferous province.Doklady Earth Sciences, Vol. 493, 1, pp. 513-516. pdfRussia, Yakutiasubduction

Abstract: The data available indicate the complex evolution of deformed peridotites of mantle xenoliths, the P-T parameters of which indicate that they are fragments of the metasomatized lower part of the cratonic lithosphere. The zoning established in garnets from xenoliths in kimberlite pipes is interpreted as a result of metasomatism that occurred shortly before xenoliths reached the surface. Metasomatic alterations in xenoliths of deformed harzburgites were manifested not only in the development of zoning of minerals. The study results show that there is a discrepancy between the data calculated based on the contents of incompatible elements in minerals of xenoliths and those obtained due to direct measurements of the bulk composition of xenoliths. To determine the balance of incompatible elements, we have carried out experiments on leaching xenoliths of deformed lherzolites from the Udachnaya kimberlite pipe. It was established that a significant part of LREEs in the studied xenoliths occurs in the intergranular space. The distribution pattern of incompatible elements and, in particular, the presence of a positive Eu anomaly indicate that the appearance of the intergranular component is not associated with contamination of xenoliths by the kimberlite melt. Quite a few xenoliths demonstrate a positive Eu anomaly, which indicates the influence of the subducted crustal component at one of the modification stages of xenoliths.
DS202010-1880
2020
Sonin, V.M., Tomilenko, A.A., Zhimulev, E.I., Bulbak, T.A., Timina, T.Y., Chepurov, A.I., Pokhilenko, N.P.Diamond crystallization at high pressure: the relative efficiency of metal graphite and metal carbonate systems.Doklady Earth Sciences, Vol. 493, 1, pp. 508-512.RussiaUHP

Abstract: Data on the interaction of the Fe-Ni melt with CaCO3 and graphite at 5 GPa and 1400°? under the thermogradient conditions used in experiments on the growth of diamond on the BARS high-pressure apparatus are presented. The phase composition and component composition of the fluid captured by diamonds in the form of inclusions were studied by gas chromatography-mass spectrometry (GC-MS). Diamonds were synthesized from graphite. During the interaction of the Fe-Ni melt with CaCO3, Ca-Fe oxides and (Fe, Ni)3C carbide were formed. The stability of heavy hydrocarbons under the experimental conditions was confirmed. It was established that the composition of the fluid in synthesized diamonds is close to the composition of the fluid from inclusions in some natural diamonds. Nevertheless, it was concluded that crystallization of large diamonds under natural conditions is hardly possible due to the filling of the main crystallization volume with refractory oxide phases.
DS202010-1882
2020
Ugapeva, S., Afanasiev, V., Pavlushin, A., Eliseev, A.Main features of Yakutites from Ebelyakh placer.World Multidisciplinary Earth Sciences Symposium ( researchgate), 7p. PdfRussialonsdaleite

Abstract: Yakutites (polycrystalline diamonds with lonsdaleite admixture) from the Ebelyakh placer (Yakutia, Russia) have been studied by optical microscopy, Raman spectroscopy, and neutron diffraction in order to reveal their difference from tagamite-hosted diamonds of the Popigai impact crater. The yakutite aggregates are 2.0 mm to 13.0 mm in size and have a shapeless morphology or sometimes preserve hexagonal contours of primary graphite. Raman spectra are characterized by a broadened line in the region of cubic 3C diamond, which is interpreted as the sum of spectra from cubic 3C diamond and three peaks related to Lonsdaleite: 1338 (E1g), 1280 (A1g) and 1224 (E2g). On the surface of yakutites revealed the presence of a silicate glass film. The main elements are iron, silicon from the surrounding silicate matter. Neutron stress diffractometry showed the content of diamond and Lonsdaleite in the sample of yakutite by 50%, two cases of preferential orientation of two phases were recorded: (110) diamond // (110) Lonsdaleite; (111) diamond // (001) Lonsdaleite. Both yakutites and tagamite-hosted diamonds are of impact origin and share similarity in the phase composition consisting of more abundant diamond and subordinate amounts of lonsdaleite. Differences between them depend on the place of their formation. Yakutites were formed in the epicenter of the explosion and were thrown out of the crater at a distance of more than 550 km in radial directions, and from the vertical ejection - they got back to the crater. In tagamites, impact diamonds were formed simultaneously with the rock melting due to the shock wave that came from the epicenter. The presence of a silicate glass film on the surface of yakutites indicates that they were hardened after ejection from the crater. Yakutites represent distinct mineral fraction outside the crater. They are found as placers along with common diamonds and other detritus. Within the crater they are genetically related to suevites - tuffaceous component of the impactites and enter the crater placers due to the physical weathering of suevites. Tagamite diamonds practically do not occur in the crater placers, because tagamite is a very hard rock and in the absence of chemical weathering these diamonds can't be released. Thus, diamonds from tagamites and yakutites, having a common impact nature, differ in some properties determined by the place of formation and post-impact history.
DS202011-2036
2020
Chukanov, N.V., Aksenov, S.M., Pekov, I.V., Belakovskiy, D.I., Vozchikova, S.A., Britvin, S.N.Sergevanite, new eudialyte group mineral from the Lovozero alkaline massif, Kola Peninsula.The Canadian Mineralogist, Vol. 58, pp. 421-436.Russia, Kola Peninsuladeposit - Lovozero

Abstract: The new eudialyte-group mineral sergevanite, ideally Na15(Ca3Mn3)(Na2Fe)Zr3Si26O72(OH)3•H2O, was discovered in highly agpaitic foyaite from the Karnasurt Mountain, Lovozero alkaline massif, Kola Peninsula, Russia. The associated minerals are microcline, albite, nepheline, arfvedsonite, aegirine, lamprophyllite, fluorapatite, steenstrupine-(Ce), ilmenite, and sphalerite. Sergevanite forms yellow to orange-yellow anhedral grains up to 1.5 mm across and the outer zones of some grains of associated eudialyte. Its luster is vitreous, and the streak is white. No cleavage is observed. The Mohs' hardness is 5. Density measured by equilibration in heavy liquids is 2.90(1) g/cm3. Calculated density is equal to 2.906 g/cm3. Sergevanite is nonpleochroic, optically uniaxial, positive, with ? = 1.604(2) and ? = 1.607(2) (? = 589 nm). The infrared spectrum is given. The chemical composition of sergevanite is (wt.%; electron microprobe, H2O determined by HCN analysis): Na2O 13.69, K2O 1.40, CaO 7.66, La2O3 0.90, Ce2O3 1.41, Pr2O3 0.33, Nd2O3 0.64, Sm2O3 0.14, MnO 4.15, FeO 1.34, TiO2 1.19, ZrO2 10.67, HfO2 0.29, Nb2O5 1.63, SiO2 49.61, SO3 0.77, Cl 0.23, H2O 4.22, -O=Cl -0.05, total 100.22. The empirical formula (based on 25.5 Si atoms pfu, in accordance with structural data) is H14.46Na13.64K0.92Ca4.22Ce0.27La0.17Nd0.12Pr0.06Sm0.02Mn1.81Fe2+0.58Ti0.46Zr2.67Hf0.04Nb0.38Si25.5S0.30Cl0.20O81.35. The crystal structure was determined using single-crystal X-ray diffraction data. The new mineral is trigonal, space group R3, with a = 14.2179(1) Å, c = 30.3492(3) Å, V = 5313.11(7) Å3, and Z = 3. In the structure of sergevanite, Ca and Mn are ordered in the six-membered ring of octahedra (at the sites M11 and M12), and Na dominates over Fe2+ at the M2 site. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 7.12 (70) (110), 5.711 (43) (202), 4.321 (72) (205), 3.806 (39) (033), 3.551 (39) (220, 027), 3.398 (39) (313), 2.978 (95) (?forumla?), 2.855 (100) (404). Sergevanite is named after the Sergevan' River, which is near the discovery locality.
DS202011-2050
2020
Limanov, E.V., Butvina, V.G., Safonov, O.G., Van, K.V., Aranovich, L. Ya.Phlogopite formation in the orthopyroxene-garnet system in the presence of H2O-KCL fluid to the processes of mantle metasomatism.Doklady Earth Sciences, Vol. 494, 1, pp. 713-717.Russiametasomatism

Abstract: The results of experimental studies are presented for reactions in the orthopyroxene-garnet-phlogopite system in the presence of H2O-KCl fluid at 3-5 GPa and 900-1000°C, which model the processes of phlogopite formation in garnet peridotites and pyroxenites during alkaline metasomatism of the upper mantle. The experiments demonstrated regular variations in the composition of garnet, pyroxenes, and phlogopite depending on the KCl content of the fluid. With increasing KCl content of the fluid, enstatite and garnet become unstable, the Al2O3 content of enstatite decreases, and the amount of grossular and knorringite components in garnet are maximum at a KCl content of ~10 mol %. Our results illustrate well the regular variations in the compositions of the coexisting minerals and their zoning in phlogopite-bearing peridotites of the lithospheric mantle.
DS202011-2064
2020
Tian, G., Liu, J., Scott, J.M., Chen, L-H., Pearson, D.G., Chu, Z.Architecture and evolution of the lithospheric roots beneath circum-cratonic orogenic belts - the Xing'an Mongolian orogenic belt and its relationship with adjacent North China and Siberian cratonic roots.Lithos, Vol. 376-377, 18p. PdfChina, Russia, Siberiaxenoliths

Abstract: The accretionary mobile belts surrounding ancient cratonic cores are an important facet of the growth and preservation of continental landmasses. Peridotites from Nuominhe in the Xing'an Mongolia Orogenic Belt (XMOB) provide an additional opportunity to examine the age, structure and evolution of mantle lithosphere separating two of the largest existing ancient continental nuclei: the North China Craton and the Siberian Craton. This suite of mantle rocks comprises fertile to refractory garnet- and spinel-facies harzburgites and lherzolites. Their lithophile element systematics show that the peridotites were metasomatized to variable extent by silicate?carbonate melts. Despite this, the highly siderophile element and Os isotope systematics appear to have been largely undisturbed. The Nuominhe peridotites have Re-depletion Os model ages (TRD) that range from 0.5 Ga to 2.4 Ga, with three peaks/major ranges at ~2.0-2.4 Ga, ~1.4-1.5 Ga and ~ 0.8 Ga, of which the latter two are closely similar to those data from other XMOB localities reported in the literature. The only section of the mantle that appears to have ages which correlate with crust formation is the suite with Neoproterozoic (~0.8 Ga) depletion ages, while the older mantle domains document older episodes of mantle depletion. Given the lack of correlation between equilibrium temperatures and bulk composition or TRD ages, the Nuominhe peridotites were inter-mixed in the mantle column, most likely as a result of incorporation of recycled older continental mantle fragments into juvenile Neoproterozoic mantle during the orogenic processes responsible for new lithosphere formation. Geothermobarometry of the Nuominhe peridotites indicates a conductive geotherm of ~60 mWm?2 and therefore a lithosphere thickness of ~125 km, which is thicker than most Phanerozoic continental terranes, and even thicker than Proterozoic regions that comprise the larger cratonic unit of the Siberian craton. This thick Proterozoic lithosphere sandwiched between the converging North China and Siberian cratons was evidently partly constructed from recycled refractory continental mantle fragments, perhaps extant in the convecting mantle, or in-part derived from the surrounding cratons, leading to a composite nature of the mantle in this re-healed continental suture. Re-accretion of recycled refractory old continental mantle fragments plays a significant role in affecting mantle composition and controlling the thickness of circum-cratonic landmasses between cratonic blocks.
DS202011-2070
2020
Zemnukhov, A.L., Reutsky, V.N., Zedgenizov, D.A., Ragozin, A.L., Zhelonkin, R.Y., Kalinina, V.V.Subduction related population of diamonds in Yakutian placers, northeastern Siberian platform.Contributions to Mineralogy and Petrology, Vol. 175, 98 10.1007/s00410-020-01741-w 11p. PdfRussia, Yakutiadiamond crystallography

Abstract: The 35 paired diamond intergrowths of rounded colorless transparent and gray opaque crystals from the placers of northeastern Siberian Platform were investigated. Mineral inclusions (KFsp, Coe, E-Grt, Po) detected in studied samples belong to eclogitic paragenesis. The majority of studied samples have uniform ranges of nitrogen content (1126-1982 at. ppm) and carbon isotope composition (??16.8 to ??23.2 ‰). These characteristics pointing towards subducted material are possible sources for their genesis. Two samples consist of a gray opaque crystal with the subduction-related characteristics (?13C ca. ??21‰ and N ca. 1300 at. ppm) and a transparent crystal with low nitrogen content (412 and 29 at. ppm) and a heavy carbon isotopic composition (?13C ??4.2 and ??4.6‰) common for primary mantle range. The higher degree of nitrogen aggregation in the crystals with mantle-like characteristics testifies their longer storage in the mantle conditions. These samples reflect multistage diamond growth history and directly indicate the mixing of mantle and subduction carbon sources at the basement of subcontinental lithospheric mantle of northeastern Siberian Platform.
DS202011-2071
2020
Zhimulev, E.I., Babich, Yu.V., Karpovich, Z.A., Chepurov, A.I., Pokhilenko, N.P.Low nitrogen diamond growth in Fe-C-S system.Doklady Earth Sciences, Vol. 494, 1, pp. 696-698.Russiadiamond genesis

Abstract: The first results on diamond growth in the Fe-?-S system with 1 wt % S (relative to Fe) at 6 GPa and 1450°C have been reported. The diamonds obtained contain about 30 ppm N, on average, and belong to the low-N transition diamond group Ib-IIa. It has been suggested that the reduction conditions formed by certain active elements such as S can play an important role in the formation of natural low-N diamonds.
DS202012-2224
2020
Komarovskikh, A., Rakmanova, M., Yuryeva, O., Nadolinny, V.Infrared, photoluminescence, and electron paramagnetic resonance characteristic features of diamonds from the Aikhal pipe ( Yakutia).Diamond and Related Materials, Vol. 109, 108045, 9p. PdfRussiadeposit - Aikhal

Abstract: The diversity of the defects in the collection (50 samples) of diamonds from the Aikhal pipe (Yakutia) has been studied with IR, PL, and EPR spectroscopy. The specific features of crystals have been established; the obtained information leads to the discussion about the diamond formation and growth conditions. One of the specific features observed is a high concentration of platelets. According to the platelet behavior, most of the crystals are regular suggesting the growth temperature to be 1100-1200 °C. The concentrations of A and B defects have been evaluated and the same temperature conditions have been obtained according to the Taylor diagram. Using the EPR spectroscopy, the C and N3V centers have been found in many crystals suggesting the aggregation of nitrogen during residence in the mantle at high temperatures. An interesting feature has been observed in the PL spectra. For most crystals, the spectrum with ZPL at 563.5 nm is very intensive. The structure of the observed defect is remaining unknown, the spectrum disappears as a result of annealing at 600 °C indicating the interstitial-vacancy annihilation mechanism.
DS202012-2234
2020
Mikhailenko, D.S., Stagno, V., Korsakov, A.V., Andreozzi, G.B., Marras, G., Cerantola, V., Malygina, E.V.Redox state determination of eclogite xenoliths from Udachnaya kimberlite pipe ( Siberian craton), with some implications for the graphite/diamond formation.Contributions to Mineralogy and Petrology, Vol. 175, 107, 17p. PdfRussiadeposit - Udachnaya

Abstract: The formation of diamonds within eclogitic rocks has been widely linked to the fate of carbon during subduction and, therefore, referred to conditions of pressure, temperature, and oxygen fugacity (fo2). Mantle-derived eclogite xenoliths from Udachnaya kimberlite pipes represent a unique window to investigate the formation of carbon-free, graphite-diamond-bearing and diamond-bearing rocks from the Siberian craton. With this aim, we exploited oxy-thermobarometers to retrieve information on the P-T-fo2 at which mantle eclogites from the Siberian craton equilibrated along with elemental carbon. The chemical analyses of coupled garnet and omphacitic clinopyroxene were integrated with data on their iron oxidation state, determined both by conventional and synchrotron 57Fe Mössbauer spectroscopy. The calculated fo2s largely vary for each suite of eclogite samples from 0.10 to ? 2.43 log units (?FMQ) for C-free eclogites, from ? 0.01 to ? 2.91 (?FMQ) for graphite-diamond-bearing eclogites, and from ? 2.08 to ? 3.58 log units (?FMQ) for diamond-bearing eclogites. All eclogite samples mostly fall in the fo2 range typical of diamond coexisting with CO2-rich water-bearing melts and gaseous fluids, with diamondiferous eclogites being more reduced at fo2 conditions where circulating fluids can include some methane. When uncertainties on the calculated fo2 are taken into account, all samples essentially fall within the stability field of diamonds coexisting with CO2-bearing melts. Therefore, our results provide evidence of the potential role of CO2-bearing melts as growth medium on the formation of coexisting diamond and graphite in mantle eclogites during subduction of the oceanic crust.
DS202012-2248
2020
Sahoo, S., Sreenivasan, B.Response of Earth's magnetic field to large lower mantle heterogeneity.Earth and Planetary Letters, Vol. 550, 116507, 11p. PdfRussia, Canadageophysics - magnetics

Abstract: A simplified two-fold pattern of convection in the Earth's core is often used to explain the non-axisymmetric magnetic flux concentrations in the present day geomagnetic field. For large lateral variations in the lower mantle heat flux, however, a substantial east-west dichotomy in core convection may be expected. This study examines the effect of a large lateral variation in heat flux at the outer boundary in cylindrical annulus experiments that achieve approximate geostrophy of the convection as well as in rapidly rotating spherical shell simulations. In either geometry, the imposed boundary heat flux is derived from the seismic shear wave velocity in the lowermost mantle. The pattern of large-scale convection in the simulations closely follows that in the annulus experiments, which suggests that the lateral buoyancy at the equator essentially determines the structure of core convection. In particular, the location of a coherent downwelling that forms beneath Canada in mildly driven convection entirely switches over to the Siberian region in strongly driven states. Spherical dynamo models in turn show that this eastward migration of convection causes the relative instability or even the disappearance of the high-latitude magnetic flux in the Western hemisphere. Finally, large radial buoyancy causes homogenization of convection, which may place an upper bound for the Rayleigh number in the core.
DS202012-2251
2020
Skublov, S.G., Tolstov, A.V., Baranov, L.N., Melnik, A.E., Levashova, E.V.First data on the geochemistry and U-Pb age of zircons from the kamaphorites of the Tomtor alkaline-ultrabasic massif, Arctic Yakutia.Geochemistry , in press available, 11p. PdfRussia, Yakutiadeposit - Tomtor

Abstract: Zircon from Tomtor syenites and kamaphorites was dated following the U-Pb method (SHRIMP-II), and the distribution of trace and rare-earth elements (REE) was studied at the same zircon point using an ion microprobe. The main zircon population from syenites was dated at 402?±?7 Ma, while the age range of single zircon grains was 700-660 M?. Different-aged zircon groups from syenites exhibited the characteristics of magmatic zircon, but their concentrations of REE and other trace elements differed markedly. The REE distribution in 700-660-M? zircon is consistent with that of the typical zircon from syenites (Belousova et al., 2002), while the heavy rare-earth elements (HREE), P, Ti, and Y concentrations of ca. 400-Ma zircon differ from those of older zircon. This is the first isotope-geochemical study of zircon from kamaphorites, and the U-Pb age of ca. 400 M? is within the error limits with of the main zircon population from syenites. The considerable enrichment of REE, C?, Ti, Sr, Y, Nb, and Ba in zircon from kamaphorites may be partly due to the presence of burbankite microinclusions. The trace-element distribution pattern of zircon from kamaphorites is very similar to the geochemical characteristics of zircon from Tiksheozero carbonatites (Tichomirowa et al., 2013). The new age dates for Tomtor syenites and kamaphorites, consistent with 700-660 M? and ca. 400 M? events, support the zircon (Vladykin et al., 2014) and pyrochlore (Antonov et al., 2017) age dates determined following the U-Pb method and those of biotite obtained following the 40Ar-39Ar method (Vladykin et al., 2014).
DS202012-2256
2020
Zedgenizov, D.A., Skuzovatov, S.Y., Griffin, W.L., Pomazansky, B.S., Ragozin, A.:., Kalinina, V.V.Diamond forming HDFs tracking episodic mantle metasomatism beneath Nyurbinskaya kimberlite pipe (Siberian craton).Contributions to Mineralogy and Petrology, Vol. 175, 106, 21p. PdfRussiadeposit - Nyurbinskaya

Abstract: We present a new dataset on the composition of high-density fluids (HDFs) in cloudy (n?=?25), coated (n?=?10) and cuboid (n?=?10) diamonds from the Nyurbinskaya kimberlite pipe. These diamonds represent different populations each showing distinct growth histories. The cores of coated diamonds display multiple growth stages and contrasting sources of carbon. Fibrous coats and cuboid diamonds have similar carbon isotopes and nitrogen systematics, suggesting their formation in the last metasomatic events related to kimberlite magmatism, as is common for most such diamonds worldwide. The HDFs in most of these diamonds span a wide range from low-Mg carbonatitic to hydrous silicic compositions. The major- and trace-element variations suggest that the sources for such HDFs range in composition between the depleted mantle and more fertile mantle reservoirs. Hydrous-silicic HDFs could originate from a 13C-enriched source, which originates through subduction of crustal metasedimentary material. Percolation of such HDFs through carbonated eclogites and peridotites facilitates the formation of cuboid diamonds and fibrous coats in the mantle section beneath the corresponding area of the Siberian craton. Cloudy diamonds represent an apparently older population, reflecting continuous diamond formation predominantly from high-Mg carbonatitic HDFs that caused discrete episodes of diamond precipitation. Their high Mg# and enrichment in incompatible elements support a metasomatized peridotitic source for these HDFs.
DS202101-0031
2020
Rezvukhina, O.V., Korsakov, A.V., Rezvukin, D.I., Mikhailenko, D.S., Zamyatin, D.A., Greshnyakov, E.D., Shur, V.Y.Zircon from diamondiferous kyanite gneisses of the Kokchetav massif: revealing growth stages using an integrated cathodluminescence- Raman spectroscopy- electron microprobe approach.Mineralogical Magazine, in press 28p. https://doi.org /10.1180/mgm.2020.95RussiaKokchetav
DS202101-0033
2020
Spengler, D., Alifirova, T.A.Formation of Siberian cratonic mantle websterites from high - Mg magmas.Lithos, in press available 13p. PdfRussiadeposit - Mir, Obnazhennaya, Udachnaya

Abstract: Garnet-(olivine) websterite xenoliths from the lithospheric mantle of the central and northeastern parts of the Siberian Craton contain exsolution microstructures after Si- and Ti-rich precursor garnets. We petrographically, geochemically, and thermobarometrically investigated 13 such xenoliths from the Mir, Obnazhennaya, and Udachnaya kimberlite pipes. All samples contain garnet grains with needle- to lamellae-shaped precipitates (up to 3.0?vol%), including Ti-oxide and/or pyroxene. Orthopyroxene and clinopyroxene grains host oriented lamellae of complementary Ca-rich and Ca-poor pyroxene, respectively, in addition to lamellae of garnet and Ti- and/or Cr-oxides. The common exsolution lamellae assemblages in garnet and pyroxene imply that exsolution occurred during cooling from high-temperature precursors. Exsolution is unlikely to have resulted from variations in pressure, given experimental and thermodynamic constraints. Host mineral partitioning of transition metal and lanthanide elements with different diffusivities record temperatures that range between those of local geotherms and a dry pyroxenite solidus. Inferred magmatic minimum temperatures of 1500-1700?°C satisfy the physical conditions predicted from experimental studies of the solubility of excess Si and Ti in garnet. Granular inclusions of all major minerals within each other imply an overlapping crystallisation history. The reconstructed compositions of the websterite whole-rocks have high MgO contents (15.7-35.7?wt%). A plot of MgO/SiO2 versus SiO2 forms an array, apart from the compositions of natural websterites that formed by interaction of peridotite with basaltic or siliceous melts. The array overlaps the compositional range of komatiite flows from Commondale and Barberton, South Africa, including spinifex, massive, and cumulate subtypes of komatiites. Other major and minor element abundances and ratios of the Siberian websterite suite resemble those of South African Al-enriched komatiites and are distinct from melt-rock reaction websterites. Therefore, the mineral microstructures and geochemistry of the Siberian websterites are suggestive of the former presence of a thermal anomaly. We propose that mantle plume activity or a similar form of lower-mantle ascent played a major role in stabilising cratonic nuclei before amalgamation of the present-day Siberian Craton.
DS202102-0174
2021
Barry, P.H., Broadley, M.W.Nitrogen and noble gases reveal a complex history of metasomatism in the Siberian lithospheric mantle.Earth and Planetary Science Letters, Vol. 556, doi.org/10.1016 /j.epsl.2020. 116707 12p. PdfRussianitrogen

Abstract: The Siberian flood basalts (SFB) erupted at the end of the Permian period (?250 Ma) in response to a deep-rooted mantle plume beneath the Siberian Sub-Continental Lithospheric Mantle (SCLM). Plume-lithosphere interaction can lead to significant changes in the structure and chemistry of the SCLM and trigger the release of metasomatic material that was previously stored within the stable craton. Here, we investigate the nature of the Siberian-SCLM (S-SCLM) by measuring nitrogen abundances and isotopes (N) in 11 samples of two petrologically-distinct suites of peridotitic xenoliths recovered from kimberlites which bracket the eruption of the SFB: the 360 Myr old Udachnaya and 160 Myr old Obnazhennaya pipes. Nitrogen isotope (N) values range from -5.85 ± 1.29‰ to +3.94 ± 0.63‰, which encompasses the entire range between depleted Mid-Ocean Ridge Basalt (MORB) mantle (DMM; -5 ± 2‰) and plume-derived (+3 ± 2‰) endmembers. In addition, we present neon (n=7) and argon (n=8) abundance and isotope results for the same two suites of samples. The 20Ne/22Ne and 21Ne/22Ne range from atmospheric-like values of 9.88 up to 11.35 and from 0.0303 to 0.0385, respectively, suggesting an admixture of DMM and plume-derived components. Argon isotopes (40Ar/36Ar) range from 336.7 to 1122 and correlate positively with 40Ar contents. We show that volatile systematics of Siberian xenoliths: (1) exhibit evidence of ancient metasomatic and/or recycled signatures, and (2) show evidence of subsequent plume-like re-fertilization, which we attribute to the emplacement of the SFB. Metasomatic fluids are highly enriched in radiogenic gases and have elevated Br/Cl and I/Cl values, consistent with an ancient subducted crustal component. The metasomatic component is marked by light N isotope signatures, suggesting it may be derived from an anoxic Archean subducted source. Taken together, these N2-Ne-Ar isotope results suggest that mantle plume impingement has profoundly modified the S-SCLM, and that N, Ne and Ar isotopes are sensitive tracers of metasomatism in the S-SCLM. Metasomatic fluids that permeate the S-SCLM act to archive a “subduction-fingerprint” that can be used to probe relative volatile-element recycling efficiencies and thus provide insight into volatile transport between the surface and mantle reservoirs over Earth history.
DS202102-0177
2019
Chayka, I., Izokh, A.E., Vasyukova, E.A.Can low-titanium lamproite magmas produce ore deposits? Evidence from Mesozoic Aldan Shield lamproites. *** note dateResearchgate Conference paper, 335395794 5p. PdfRussialamproites

Abstract: Lamproites and lamprophyres from Ryabinovoye gold deposit (Aldan Shield, Siberia) were studied. We demonstrate that these rocks, varying from Ol-Di-Phl-lamproites to syenite-porphyries, form a continuous series of lamproite magma differentiation. At the stage of phlogopite and clinopyroxene crystallization, silicate-carbonate and then carbonate-salt immiscibilities occur. A suggestion is that during these processes LREE, Y, U, Sr and Ba distribute to a phosphate-fluoride fraction and probably accumulate in apatite-fluorite gangues. Based on our results and considering existing data onore-bearing massifs within Central Aldan (lnagli, Ryabinoviy) and also of the Nam-Xe ore-bearing province (Vietnam), we concluded that Au, PGE and Th-U-Ba-REE deposits can be genetically connected with low-titanium lamproite magmas.
DS202102-0178
2020
Chayka, I., Kamenetsky, V.S., Vasilyev, Y., Prokopyev, I.R.Spinel-group minerals in peridotites of the Guli and Bor-Uryakh intrusions ( Meimecha-Kotuy Province, northern Siberia).SGEM Conference 20th., doi:10.5593/ sgem2020/1.1. /s01.038Russia, Siberiaperidotites

Abstract: The Guli and Bor-Uryakh massifs, a part of the Siberian Large igneous province (LIP) are mafic-ultramafic intrusive complexes, withstrongalkaline affinity. They contain deposits of apatite and arealsoknown to be source rocks ofOs-Ir-Ruplacers.These massifs are of great interest for petrologists worldwide, as they are composed of an unusual variety of rocks (dunites/olivinites, shonkinites, melilitites, alkali syenites and carbonatites) and being coeval with Siberian trap volcanic rocks, includingdiamondiferous kimberlites. Since mineralogical approaches based on spinel-group minerals have been proved to be efficient in constraining origin of the ultramafics, we present the first descriptive study of chromite and magnetite mineralization, observed in olivine-dominated rocks of the Guli and Bor-Uryakh intrusions. In dunites of Guli massif spinel-group minerals are dominated by Mg-poor chromite (FeMg)Cr2O4and Cr-Ti-rich magnetiteFeFe2O4, while in Bor-Uryakh massif spinel-group minerals are predominantly magnetite with only minor Mg-poor chromite.These minerals form either small euhedral inclusions in olivine or largesubhedral to anhedral grains in serpentinized fractures and interstitial space. The lattertype of grainscan have intricated irregular shapeand contain inclusions. We also observed abundant Cr-magnetite lamellae in olivine and chromite/magnetite micro-grains within olivine-hosted multiphase inclusions.Spinel (MgAl2O4) is occasionally found in intergrowths with chromite and magnetite.The obtained data show that spinel-group minerals in the massifsdo not correspond to primary-magmatic varieties and suggestextensive alteration during post-magmatic processes. Textural and chemical evidenceof substantial modification of initially-cumulative lithologies of Guli and Bor-Uryakh massifsfavorsmeta-magmatic origin for these massifs.
DS202102-0191
2021
Galimov, E.M., Kaminsky, F.V.Diamond in oceanic lithosphere. Volcanic diamonds and diamonds in ophiolites.Geochemistry International, Vol. 59, 1, pp. 1-11. pdfRussiadeposit - Tolbachik, Kamchatka
DS202102-0194
2021
Gladkochub, D.P., Donskaya, T.V., Pisarevesky, S.A., Salnikova E.B., Mazukabzov, A.M., Kotov, A.B., Motova, Z.I., Stepanova, A.V., Kovach, V.P.Evidence of the latest Paleoproterozoic ( ~1615 Ma) mafic magmatism the southern Siberia: extensional environments in Nuna subcontinent.Precambrian Research, Vol. 354, doi.org/10.1016 /j.precamres. 2020.10049 14p. PdfRussiaCraton - Siberian
DS202102-0202
2021
Litasov, K.D., Kagi, H., Bekker, T.B., Makino, Y., Hirata, T., Brazhkin, V.V.Why Tolbachik diamonds cannot be natural.The American Mineralogist, Vol. 106. pp. 44-53. pdfRussiadeposit - Kamchatka

Abstract: Taking into account recent publications, we provide additional comprehensive evidence that type Ib cuboctahedral diamonds and some other microcrystalline diamonds from Kamchatka volcanic rocks and alluvial placers cannot be natural and undoubtedly represent synthetic materials, which appear in the natural rocks by anthropogenic contamination. The major arguments provided in favor of the natural origin of those diamonds can be easily disproved. They include the coexistence of diamond and deltalumite from Koryaksky volcano; coexistence with super-reduced corundum and moissanite, Mn-Ni silicide inclusions, F-Cl enrichment and F/Cl ratios, and carbon and nitrogen isotopes in Tolbachik diamonds, as well as microtwinning, Mn-Ni silicides, and other inclusions in microcrystalline diamond aggregates from other Kamchatka placers. We emphasize the importance of careful comparison of unusual minerals found in nature, which include type Ib cuboctahedral diamonds and super-reduced phase assemblages resembling industrial slags, with synthetic analogs. The cavitation model proposed for the origin of Tolbachik diamonds is also unreliable since cavitation has only been shown to cause the formation of nanosized diamonds only.
DS202102-0215
2020
Pavlushkin, A., Loginova, A., Seryotkin, Y.Crystallographic orientation and geochemical features of mineral inclusions in diamonds.Russian Geology and Geophysics, doi:10.15372 /RG2020144 21p. PdfRussiadeposit - Mir, Udachnaya, Aikal, Yubileinya

Abstract: The orientation of 76 mineral inclusions represented by olivine (25 inclusions), pyrope (13 inclusions), and magnesiochromite (38 inclusions) was measured in 16 diamond samples from the major primary diamond deposits of Yakutia: Mir, Udachnaya, Internatsionalnaya, Aikhal, and Yubileynaya kimberlite pipes. The novelty of the study is that it provides a special purposeful approach to selection of samples containing not only olivine inclusions that have been extensively studied in the most recent years after the publication of the book Carbon in Earth (2013). The present collection accounts for more than 25% of all samples studied across the world and includes the most typical mineral inclusions of the predominant peridotitic paragenesis in almost all known kimberlites. Both this experiment and similar studies conducted by foreign colleagues in 2014-2019 have found no inclusions whose orientation meets the epitaxial criterion. Only single magnesiochromite inclusions in three diamonds demonstrate an orientation close to the regular one. A significant correlation between the carbon isotope composition and the mineral composition of inclusions of peridotitic and eclogitic paragenesis diamonds as well as the lack of a correlation with other properties may be considered one of the geochemical features. However, given the numerous published and proprietary data demonstrating the complex diamond growth history and, in some cases, wide variations in the composition of mineral inclusions in different zones, along with the difference in their morphology, the authors a believe that syngenetic and protogenetic inclusions can coexist in the same diamond. This is also confirmed by the discoveries of diamondiferous peridotite and eclogite xenoliths in kimberlites where diamonds are completely enclosed in garnet or olivine. Of particular note is the constant presence of heavy hydrocarbons (rel.%), from pentane (C5H12) to hexadecane (C16H34), that are predominant in fluid inclusions in kimberlite and placer diamonds as well as in pyrope and olivine of diamondiferous peridotite xenoliths.
DS202102-0216
2021
Pavlushkin, A., Zedgenizov, D., Vasilev, E., Kuper, K.Morphology and genesis of ballas and ballas-like diamonds.MDPI Crystals, Vol. 11, 17 dx.doi.org/ 103390/ Qcrystal11010017 24p. PdfRussia, Yakutia, Urals, South America, Brazildeposits - Mir, Udachnaya, Aikal, Yubilenya

Abstract: Ballas diamond is a rare form of the polycrystalline radial aggregate of diamonds with diverse internal structures. The morphological features of ballas diamonds have experienced repeated revision. The need that this paper presents for development of a crystal-genetic classification was determined by a rich variety of combined and transitional forms of ballas-like diamonds, which include aggregates, crystals, and intergrowths. The new crystal-genetic classification combines already-known and new morphological types of ballas as well as ballas-like diamonds discovered in the placers of Yakutia, the Urals, and Brazil. The ballas-like diamond forms include spherocrystals, aggregates with a single crystal core, split crystals, radial multiple twin intergrowths, and globular crystals. The crystal genetic scheme of the evolution of ballas and ballas-like diamonds is a sequence of the morphological types arranged in accordance with the conventional model of the dependence of the mechanism and diamond growth from carbon supersaturation developed by I. Sunagawa. The evolution of the growth forms of ballas and ballas-like diamonds was tracked based on the macrozonal structure of diamonds varying from a flat-faced octahedron to a fibrous cuboid with its transition forms to the radiating crystal aggregates. The morphological diversity of the ballas-like diamonds depends on the level of supersaturation, and abrupt changes of the level of supersaturation engender abrupt changes in a mechanism of crystal growth. The change in the rate of growth under the influence of adsorption and absorption of the mechanic impurities accompanied the sudden appearance of the autodeformation defects in the form of splitting and multiple radial twinning of crystals. The spherical shape of Yakutia ballas-like diamonds is due to the volumetric dissolution that results in the curved-face crystals of the "Urals" or "Brazilian" type associated with ballas diamonds in placers.
DS202102-0222
2020
Sizyakov, V.M., Kawalla, R., Brichkin, V.N.Geochemical aspects of the mining and processing of the large tonne mineral resources of the hibinian alkaline massif.Geochemistry, Vol. 80, doi.org/10.1016 /j.chemer.2019 .04.002 5p. PdfRussiadeposit - Khibiny

Abstract: This article presents an analysis of the influences of nature and production factors relating to the chemical-mineralogical composition of products that formed at the stages of mining and processing apatite-nepheline ores in the Khibiny Mountain Massif. It is shown that all main production processes are connected to the formation of dump waste products that are subject to further changes under the influence of exogenous factors, which include conditions of outdoor storage in dumps and sludge accumulators. According to the dead tails (stale tails) of apatite production, the characteristic changes in the chemical-mineralogical composition and grain-size distribution are determined and have a significant effect on the indicators of their mineral processing. The experimental study of dead tails includes processing a set of technological operations, and their flowsheets are also determined. These flowsheets provide a nepheline concentrate of the required composition with indicators no worse than when processing the tailings of the current composition. It is shown that the existing flowsheets for apatite or nepheline concentrate processing lead to the accumulation of significant amounts of mulls associated with the separation of less valuable components of raw materials into the dump waste products, including calcium and silica. The experimental work also demonstrates the conversion process of gypsum wastes produced during the production of phosphoric acid and shows the importance of additional hydrochemical treatment of belite mull to achieve an economically justified ratio of the main and by-products in the processing of aluminosilicate raw materials.
DS202102-0223
2020
Skublov, S.G., Tolstov, A.V., Baranov, L.N., Melnik, A.E., Levashova, E.V.First data on the geochemistry and U-Pb age of zircons from the kamaphorites of the Tomtor alkaline-ultrabasic massif, Arctic Yakutia.Geochemistry, Vol. 80, doi.org/10.1016 /j.chemer. 2019.04.001 11p. PdfRussiadeposit - Tomtor

Abstract: Zircon from Tomtor syenites and kamaphorites was dated following the U-Pb method (SHRIMP-II), and the distribution of trace and rare-earth elements (REE) was studied at the same zircon point using an ion microprobe. The main zircon population from syenites was dated at 402?±?7 Ma, while the age range of single zircon grains was 700-660 M?. Different-aged zircon groups from syenites exhibited the characteristics of magmatic zircon, but their concentrations of REE and other trace elements differed markedly. The REE distribution in 700-660-M? zircon is consistent with that of the typical zircon from syenites (Belousova et al., 2002), while the heavy rare-earth elements (HREE), P, Ti, and Y concentrations of ca. 400-Ma zircon differ from those of older zircon. This is the first isotope-geochemical study of zircon from kamaphorites, and the U-Pb age of ca. 400 M? is within the error limits with of the main zircon population from syenites. The considerable enrichment of REE, C?, Ti, Sr, Y, Nb, and Ba in zircon from kamaphorites may be partly due to the presence of burbankite microinclusions. The trace-element distribution pattern of zircon from kamaphorites is very similar to the geochemical characteristics of zircon from Tiksheozero carbonatites (Tichomirowa et al., 2013).The new age dates for Tomtor syenites and kamaphorites, consistent with 700-660 M? and ca. 400 M? events, support the zircon (Vladykin et al., 2014) and pyrochlore (Antonov et al., 2017) age dates determined following the U-Pb method and those of biotite obtained following the 40Ar-39Ar method (Vladykin et al., 2014).
DS202102-0224
2020
Skuzovatov, S.Yu., Shatsky, V.S., Ragozin, A.L., Wang, K-L.Ubiquitous post-peak zircon in an eclogite from the Kumdy-Kol, Kokchetav UHP-HP massif ( Kazakhstan): significance of exhumation-related zircon growth and modification in continental-subduction settings.Island Arc, doi:10.1111/ iar.12385 29p. PdfRussia, Kazakhstandeposit - Kumby-Kol

Abstract: U-Pb geochronological, trace?element and Lu-Hf isotopic studies have been made on zircons from ultrahigh?pressure (UHP) mafic eclogite from the Kumdy?Kol area, one of the diamond?facies domains of the Kokchetav Massif (northern Kazakhstan). The peak eclogitic assemblage equilibrated at >?900?°C, whereas the bulk sample composition displays light rare?earth element (LREE) and Th depletion evident of partial melting. Zircons from the eclogite are represented by exclusively newly formed metamorphic grains and have U-Pb age spread over 533-459?Ma, thus ranging from the time of peak subduction burial to that of the late post?orogenic collapse. The major zircon group with concordant age estimates have a concordia age of 508.1?±4.4?Ma, which corresponds to exhumation of the eclogite?bearing UHP crustal slice to granulite? or amphibolite?facies depths. This may indicate potentially incoherent exhumation of different crustal blocks within a single Kumdy?Kol UHP domain. Model Hf isotopic characteristics of zircons (?Hf(t) +1.5 to +7.8, Neoproterozoic model Hf ages of 1.02-0.79?Ga) closely resemble the whole?rock values of the Kumdy?Kol eclogites and likely reflect in situ derivation of HFSE source for newly formed grains. The ages coupled with geochemical systematics of zircons confirm that predominantly late zircon growth occurred in Th-LREE?depleted eclogitic assemblage, that experienced incipient melting and monazite dissolution in melt at granulite?facies depths, followed by amphibolite?facies rehydration during late?stage exhumation?related retrogression.
DS202102-0229
2020
Wang, W., Yazawa, E., Persaud, S., Myagkaya, E., D'Haenens-Johansson, U., Moses, T.M.Formation of the Matryoshka diamond from Siberia.Gems & Gemology , Vol. 56, 1, pp. 127-129.Russia, Siberiadiamond crystalography

Abstract: A freely moving diamond trapped inside another diamond was discovered in Siberia by Alrosa in 2019. The unusual diamond, nicknamed the “Matryoshka” after the traditional Russian nesting dolls, attracted widespread interest in how this feature formed.
DS202102-0238
2020
Zayakina, N., Ugapeva, S., Oleinikov, O.Rare hydrated magnesium carbonate minerals of the kimberlite pipe Obnazhennaya, the Yakutian kimberlite province.6th World Multidisciplenary Earth Sciences Symposium IOP Publ., 9p. PdfRussiadeposit - Obnazhennaya

Abstract: The first discovery of hydrated magnesium carbonates, dypingite and nesquehonite, in the kimberlite pipe Obnazhennaya of the Kuoyka field, the Yakutian kimberlite province is described. The pipe is composed of kimberlite breccia with abundant diverse xenoliths of practically intact mantle rocks. Olivine in phenocrysts and mantle rock is generally intact. The main body of the rock is carbonate-serpentine. Nesquehonite and dypingite are rare minerals and have first been observed in relation to kimberlites. The minerals were found in the bedrock outcrop of the Obnazhennaya pipe as white crusts up to 5 mm thick scattered over an area of a few tens of square meters. To identify and study the crusts we used the following methods: powder X-ray diffraction, electron microscopy, and Raman scattering spectroscopy. A comprehensive study suggests that the main minerals of these epigenetic formations are hydrated carbonates: nesquehonite MgCO3squ3H2O and dypingite Mg5(CO3)4(OH)2squ5H2O. Also, Raman scattering spectroscopy revealed a small proportion of hydromagnesite Mg5(CO3)4(OH)2squ4H2O. Hydrated magnesium carbonate minerals we found make a significant contribution to the collection of kimberlites. They are epigenetic in nature, with their origin being related to weathering of silicates, in particular serpentine. Mechanisms of carbonate formation appear to be close to that suggested by Wilson et. al., 2009, with CO2 being trapped from the atmosphere to form nesquehonite. In the case of the Obnazhennaya pipe, mineral solutions form when rainwater filters through the talus at the top of the outcrop. They are enriched in Mg from minerals and trap CO2 from the atmosphere. After filtering, solutions reach the vertical wall of kimberlite breccia where modern precipitation of nesquehonite upon evaporation occurs. Further, dypingite and hydromagnesite form via decomposition of nesquehonite. A lip extending over the rock wall significantly contributes to the development and stability of nesquehonite and dypingite aggregates. Crusts of nesquehonite and dypingite are not found on rock outcrops without lips at the top. Thus, despite the fact that intrusion of the kimberlite pipe occurred during the Jurassic (Zaitsev, Smelov, 2010), formation of nesquehonite and dypingite in association with kimberlite rocks continues in the modern time due to favorable environmental factors, first of all, a unique natural outcrop of kimberlite.
DS202103-0388
2018
Kozlov, E., Fomina, E., Sidorov, M., Shilovskikh, V.Ti-Nb mineralization of late carbonatites and role of fluid in its formation: Petyayan-Vara rare-earth carbonatites ( Vuoriyarvi Massif, Russia). ***dateMDPI Applied Sciences, 19p. PdfRussiacarbonatite

Abstract: This article is devoted to the geology of titanium-rich varieties of the Petyayan-Vara rare-earth dolomitic carbonatites in Vuoriyarvi, Northwest Russia. Analogues of these varieties are present in many carbonatite complexes. The aim of this study was to investigate the behavior of high field strength elements during the late stages of carbonatite formation. We conducted a multilateral study of titanium- and niobium-bearing minerals, including a petrographic study, Raman spectroscopy, microprobe determination of chemical composition, and electron backscatter diffraction. Three TiO2-polymorphs (anatase, brookite and rutile) and three pyrochlore group members (hydroxycalcio-, fluorcalcio-, and kenoplumbopyrochlore) were found to coexist in the studied rocks. The formation of these minerals occurred in several stages. First, Nb-poor Ti-oxides were formed in the fluid-permeable zones. The overprinting of this assemblage by residual fluids led to the generation of Nb-rich brookite (the main niobium concentrator in the Petyayan-Vara) and minerals of the pyrochlore group. This process also caused niobium enrichment with of early generations of Ti oxides. Our results indicate abrupt changes in the physicochemical parameters at the late hydro (carbo) thermal stage of the carbonatite formation and high migration capacity of Ti and Nb under these conditions. The metasomatism was accompanied by the separation of these elements.
DS202103-0408
2021
Shubin, I.I., Filina, M., Kogarko, L.Evolution of pyroxenes of the Lovozero rare metal deposit ( Lower zone).Geochemistry International, Vol. 59, pp. 92-98. pdfRussiaREE

Abstract: This paper reports the results of the first study of pyroxenes from the deepest zones of the Lovozero deposit. The geochemical and mineralogical study of these rocks is of great scientific interest, as they are the least differentiated rocks and provide insight into the composition of a parental magma. According to microprobe analysis, clinopyroxenes evolve from early diopside-hedenbergite-augite to later alkaline aegirine-augite species. Upsection, the contents of Na, Fe3+ and Ti increase, while Mg, Ca, Fe2+, and Zr decrease. Thus, isomorphic substitution in pyroxenes of the lower zone follows the scheme (Ca, Mg, Fe2+, Zr) ? (Na, Fe3+, Ti).
DS202104-0563
2020
Afanasiev, V.P., Pohilenko, N.P., Kuligin, S.S., Samdanov, D.A.On the prospects of diamond content of the southern side of the Vilyui syneclise. ( Lena River)Geology of Ore Deposits, Vol. 62, 6, pp. 535-541.RussiaIndicator minerals

Abstract: The paper describes indicator minerals of kimberlites found on the southern side of the Vilyui syneclise in the Markha River basin, a tributary of the Lena River. It is shown that indicator minerals-pyrope and picroilmenite-derive from Middle Paleozoic kimberlites, very likely diamondiferous. Methods are proposed for further studies on determining the prospects for the diamond content of the southern side of the Vilyui syneclise and the northern slope of the Aldan anteclise.
DS202104-0571
2021
Dobretsov, N.L., Zhmodik, S.M., Lazareva, E.V., Bryanskaya, A.V., Ponomarchuk, V.A., Saryg-ool, B. Yu., Kirichenko, I.S., Tolstov, A.V., Karmanov, N.S.Structural and morphological features of the participation of microorganisms in the formation of Nb-REE-rich ores of the Tomtor field, Russia.Doklady Earth Sciences, Vol. 496, pp. 135-138. Russiadeposit - Tomtor

Abstract: Data indicating the important role of microorganisms in the redistribution of REEs in the weathering crust and the decisive role in the concentration of REEs during the formation of ores in the upper ore horizon of the Tomtor field are obtained. The uptake of REEs was carried out by the community of microorganisms, such as phototrophs, methanogens, methanotrophs, and proteobacteria, which form the basis of the microbiocenosis for this paleoecosystem. The isotopic composition of C carbonates in all samples studied with fossilized microorganisms corresponds to the biogenic one, and the isotopic composition ?18?SMOW (from 7 to 20‰) indicates the endogenous (hydrothermal) and, to a lesser extent, exogenous nature of the solutions. The low (87Sr/86Sr)I values of carbonates (~0.7036-0.7042) exclude the participation of seawater.
DS202104-0577
2021
Fritsch, E.Revealing the formation secrets of the Matryosha diamond.Journal of Gemmology, Vol. 37, 5, pp. 528-533.Russiadiamond genesis
DS202104-0582
2020
Klepikov, I.V., Vasilev, E.A., Antonov, A.V.The defect impurity composition of diamond crystals with ( 100) growth pyramids from placers of the Krasnovishersk district, the Urals.Geology of Ore Deposits, Vol. 62, 8, pp. 743-753. pdfRussia, Uralscuboid diamonds

Abstract: The internal structure and spectroscopic features of cuboid diamonds from recent alluvial placers of the Krasnovishersk District (the Urals) have been investigated. Crystals were divided into four groups by their anatomy and spectroscopy: cuboids of the II group (according to the Yu.L. Orlov classification): cuboids with a transparent core and peripheral zone saturated with inclusions; crystals with mixed habit growth of ?100? and ?111? pyramids, and crystals with the sequential growth of ?100? and ?111? pyramids. In all studied crystals, the regenerative formation of the {111} face steps together with the formation of tetragonal pits on the cuboid surface was the last stage of growth. Local photoluminescence investigations have been carried out for all cubic diamond crystals of the Urals for the first time. It was established that luminescence bands at 926 and 933 nm are related to growth pyramids of ?100? and ?111?, respectively. Bands with peaks at 800, 820.5, 840, 860, and 869 nm were revealed in the luminescence systems of the cuboids of II group. We note that the cuboid diamonds from different regions of the world have similar internal structures and spectroscopic features.
DS202104-0583
2020
Krivovichev, V.G., Charykova, M.V., Krivovichev, S.V.Mineral systems based on the number of species-defining chemical elements in minerals: their diversity, complexity, distribution, and the mineral evolution of the Earth's crust: a review.Geology of Ore Deposits, Vol. 62,8, pp. 704-718. pdfRussia, Canadaalkaline rocks

Abstract: The chemical diversity of minerals can be analyzed in terms of the concept of mineral systems based on the set of chemical elements that are essential for defining a mineral species. Only species-defining elements are considered to be essential. According to this approach, all minerals are classified into ten types of mineral systems with the number of essential components ranging from 1 to 10. For all known minerals, only 70 chemical elements act as essential species-defining constituents. Using this concept of mineral systems, various geological objects may be compared from the viewpoint of their mineral diversity: for example, alkali massifs (Khibiny and Lovozero in Russia; Mont Saint Hilaire in Canada), evaporite deposits (Inder in Kazakhstan and Searles Lake in the United States), fumaroles of active volcanoes (Tolbachik in Kamchatka and Vulcano in Sicily, Italy), and hydrothermal deposits (Otto Mountain in the United States and El Dragon in Bolivia). Correlations between chemical and structural complexities of the minerals were analyzed using a total of 5240 datasets on their chemical compositions and 3989 datasets on their crystal structures. The statistical analysis yields strong and positive correlations (R2 > 0.95) between chemical and structural complexities and the number of different chemical elements in a mineral. The analysis of relationships between chemical and structural complexities provides strong evidence for the overall trend of a greater structural complexity at a higher chemical complexity. Following R. Hazen, four groups of minerals representing four mineral evolution stages have been considered: (I) “Ur-minerals,” (II) minerals from chondrite meteorites, (III) Hadean minerals, and (IV) contemporary minerals. According to the obtained data, the number of species-defining elements in minerals and their average contents increase regularly and significantly from stage I to stage IV. The analyzed average chemical and structural complexities in these four groups demonstrate that both are gradually increasing in the course of mineral evolution. The increasing complexity follows an overall trend: the more complex minerals were formed in the course of geological time, without replacing the simpler ones. The observed correlations between chemical and structural complexities understood in terms of the Shannon information suggest that chemical differentiation is the major force that drives the increase of mineral complexity over the course of geological time.
DS202104-0586
2021
Letnikova, E.F., Izokh, A.E., Kosticin, Y.A., Letnikov, F.A., Ershova, V.B., Federyagina, E.N., Ivanov, A.V., Nojkin, A.D., Shkolnik, S.I., Brodnikova, E.A.High-potassium volcanism approximately 640 Ma in the southwestern Siberian platform ( Biryusa uplift Sayan region).Doklady Earth Sciences, Vol. 496, 1, pp. 53-59.Russia, Siberiaalkaline rocks

Abstract: On the basis of petrographic and mineralogical studies, we have established the presence of clastic rocks with a strong predominance of K-feldspar among the rock-forming fragments within the Late Precambrian sedimentary sequence in the southwestern part of the Siberian Platform. Two types of mineralogical occurrence of K-feldspars are determined: (1) huge zonal crystal clasts with increased Ba concentrations in the central parts of the grains and (2) the main mineral phase in the form of a decrystallized glassy mass. In both cases, low concentrations of Na (lower than 0.1 wt %) are detected. K-feldspars of the second type contain intergrowths of idiomorphic rhombic dolomite with a high ankerite component. Dolomite grains contain inclusions of K-feldspar. The prevailing accessory minerals are F-apatite (with high concentrations of REEs), zircon (with high concentrations of Th), magnetite, rutile, monacite, and sinchizite. Encasement minerals with an idiomorphic shape are identified, with K-feldspar being located in the center, while the middle shell is formed by apatite with a high REE content, and the outer shell is formed by apatite without rare earth elements. These rocks are products of high-potassium volcanic activity. The age of this event has been established on the basis of U-Pb zircon dating to about 640 Ma. The Lu-Hf zircon systematics for these rocks indicates the connection of volcanism with igneous events of mantle genesis within its range. The products of explosive eruption, which are widespread within the Biryusa uplift of the Siberian Platform, were erroneously considered earlier as Riphean sedimentary rocks of the Karagas Series.
DS202104-0591
2021
Malkovets, V.G., Shatsky, V.S., Dak, A.I., Gibsher, A.A., Yakovlev, I.V., Belousova, E.A., Tsujimori, T., Sobolev, N.V.Evidence for multistage and polychronous alkaline-ultrabasic Mesozoic magmatism in the area of diamondiferous placers of the Ebelyakh River basin, ( eastern slope of the Anabar shield).Doklady Earth Sciences, Vol. 496, 1, pp. 48-52.Russiadeposit - Anabar

Abstract: New mineralogical and isotope-geochemical data for zircon megacrysts (n = 48) from alluvium of Kholomolokh Creek (a tributary of the Ebelakh River) are reported. Using the geochemical classification schemes, the presence of zircons of kimberlitic and carbonatitic genesis was shown. The U-Pb dating of zircons revealed two major age populations: the Triassic (258-221 Ma, n = 18) and Jurassic (192-154 Ma, n = 30). Weighted mean 206Pb/238U ages allowed us to distinguish the following age stages: 155 ± 3, 161 ± 2, 177 ± 1.5, 183 ± 1.5, 190 ± 2, 233 ± 2.5, and 252 ± 4 Ma. It is suggested that the Ebelyakh diamonds could have been transported from the mantle depths by kimberlite, as well as by other related rocks, such as carbonatite, lamprophyre, lamproite, olivine melilitite, etc. Diamonds from the Ebelyakh placers most likely have polygenic native sources and may be associated with polychronous and multistage Middle Paleozoic and Mesozoic kimberlite and alkaline-ultrabasic magmatism in the eastern slope of the Anabar Shield (the Ebelyakh, Mayat, and Billyakh river basins).
DS202104-0594
2021
Mikhailenko, D.S., Korsakov, A.V., Ohfuji, H., Sobolev, N.V.Silicate inclusions in metamorphic diamonds from the ultra-high pressure Kokchetav complex, Kazakhstan.Doklady Earth Sciences, Vol. 496, pp. 142-145.Russia, Kazakhstandeposit - Kokchetav

Abstract: Mineral inclusions in cubic diamonds from garnet-clinopyroxene rock of the Kokchetav massif were studied. The coexistence of fluid and silicate inclusions in the central part of the diamond of the G0 sample was revealed by means of transmission electron microscopy. Silicate inclusions are represented by intergrowths of garnet and mica, which are spatially related with the carbonate and fluid inclusions. The first finding of silicate inclusions in the cubic diamonds from the UHP complex discovered over 50 years of their study is apparently due to a selective capture of the silicate minerals in the process of the diamond crystallization from the carbonate-bearing C-O-H fluid. The processes of diamond crystallization in the metamorphic deeply subducted rocks and upper mantle rocks, which are carried to the surface as xenoliths by kimberlite melts, have much in common.
DS202104-0600
2020
Petrovskii, M.N.Rare earth minerals from carbonatite veins in the Soustov pluton, Kola Peninsula, as an indicator of its ore specialization.Geology of Ore Deposits, Vol. 62, 8, pp. 754-763. pdfRussia, Kola PeninsulaREE

Abstract: This paper presents the results of the first geological, isotope, geochemical, and mineralogical study of carbonatite veins that were previously unknown in the Soustov pluton. The studied veins are similar in the Sm-Nd isotope composition and model age to the host rocks, which implies a common formation processs. High contents of light lanthanides, Sr, and Nb in carbonatite veins were measured. These elements are concentrated in bastnäsite, strontianite, monazite, and pyrochlore. These data significantly enlarge our concepts of the geochemical and ore specialization of the massif.
DS202104-0601
2021
Prokopyev, I.R., Doroshkevich, A.G., Zhumadilova, D.V., Starikova, A.E., Nugumanova, Ya.N., Vladykin, N.V.Petrogenesis of Zr-Nb ( REE) carbonatites from the Arbarastakh complex ( Aldan Shield, Russia): mineralogy and inclusion data.Ore Geology Reviews, Vol. 131, 104042, 15p. Pdf.Russiadeposit - Arbarastakh

Abstract: The Arbarastakh Neoproterozoic ultramafic carbonatite complex is located in the southwestern part of the Siberian Craton (Aldan Shield) and contains ore-bearing Zr-Nb (REE) carbonatites and phoscorites. Carbonatites are mainly represented by calcite and silicocarbonatite varieties. The primary minerals composing the carbonatites are calcite and dolomite, as well as phlogopite, clinopyroxene, fluorapatite, amphibole, fluorite, K-feldspar and feldspathoids. Olivine (forsterite), Ti-magnetite, apatite, phlogopite, calcite, dolomite and the minor spinel group minerals form the primary phoscorites. The ore-bearing Zr-Nb mineral assemblages of the phoscorites and carbonatites include accessory zircon, zirconolite, perovskite, pyrochlore and baddeleyite. The Ba-Sr-REE hydrothermal mineralisation consists of ancylite-(Ce), bastnaesite-(Ce) and burbankite, as well as barite-celestite, strontianite, barytocalcite, and rare Cu-Fe sulphides. The silicocarbonatites and carbonatites formed in multiple stages from a single alkaline Ca-Na-K-silicocarbonatite melt, while the phoscorites are products of differentiation of the carbonatitic melt and were crystallised from an Fe-rich phosphate-carbonate melt at temperatures of more than 720 °C. The silicate-phosphate-carbonate melts were responsible for the Zr-Nb mineralisation of the carbonatites at temperatures of more than 540-575 °C; the hydrothermal REE-bearing mineral assemblages crystallised from saline (60-70 wt%) carbonatitic fluids of Na-Ca-Mg-F-carbonate composition at a minimum temperature range of 350-300 °C. The Ca-Sr-carbonate as well as the Na-hydro-carbonate fluids were responsible for the Ba-Sr-REE mineralisation of the phoscorites at ~500-480 and 450-430 °C.
DS202104-0607
2021
Shumilova, T.Diamond fossils as an important new key for astrobiology.Researchgate conference paper, 2p. PdfRussiaimpact craters Kara, Popigai

Abstract: Astrobiology is one of the actively studied fields aimed to answer the question about the Earth life origin. The detail studies of the organic matter could give a key for understanding about possible conditions for preservation of the biological material at the extreme conditions of the giant impact events and meteorite fallings. In the context of the astrobiological problem the recent discovery of diamond fossils is very informative and impressive [1, 2]. Here we describe in short the features of the impact-preserved organic relicts in the diamond state having relict fragments of cellulose and lignin, pointing to possibility to save organics even under the conditions of diamond formation. Impact Diamonds: Almost 50 years have passed since the discovery of impact diamonds. Currently, several varieties of impact diamonds are known in natural geological objects, determined by the type of carbon precursor, that define their formation mechanisms and structural features. Actually, aftergraphite, after-coal and after-organic diamonds are known [1-5]. The latter usually present in the form of diamond fossils after plant fragments. After-Graphitic Impact Diamonds: The aftergraphitic diamonds were discovered in the 70s of the XX century in the largest Popigai astrobleme with a diameter of about 100 km, bearing giant reserves of valuable technical diamond raw materials [3, 4]. This type of impact diamonds is formed by solid-state transformation of the graphite precursor structure to diamond with a diffusion-free mechanism forming micropolycrystalline aggregates with submicrometersized crystals [1]. This variety is characterized by polyphase aggregates with possible substantial amount of hexagonal packaging defects (named “lonsdaleite”) within the cubic diamond structure [6]. It may also include an admixture of relict graphite, amorphous and onion-like carbon [7, 8]. Currently, apographic diamonds have been discovered in several deposits, for example diamond-rich Popigai and Puchezh-Katunki in Russia, Ries (Germany), Sudbury (Canada). After-Coal Impact Diamonds: After-coal impact diamonds were discovered a bit later, they were found in the giant Kara astrobleme in 80s of the XX century [3, 4]. This diamond type was formed by short-distance diffusion mechanism from coalificated carboniferous particles from the host sedimentary rocks, described in detail in [5]. The diamonds have crystallites size about 20-50 nm, differ from the after-graphitic variety by presence of ideal octahedral crystallite shapes and dislocation-free (lonsdaleite-free) structure [2]. By present the after-coal diamonds are known only at the Kara astrobleme and near-set Ust`-Kara impactites. After-Organic Diamonds (Diamond Fossils): The diamond fossils have been just discovered. The first find has been found out within melt fragment within suevitic breccia at the Kara astrobleme (Fig. 1). The diamonds are presented with well preserved relict cell micromorphology and have very specific structure, composition and spectroscopic features studied and described in detail in [1].
DS202104-0609
2020
Sonin, V.M., Zhimulev, E.I., Chepurov, A.A., Lindenblot, E.S., Loginova, A.M., Shcheglov, D.V., Pomazanskii, B.S., Afanasiev, V.P., Chepurov, A.I.Dissolution of natural octahedral diamonds in an Fe-S melt at high pressure.Geology of Ore Deposits, Vol. 62, 6, pp. 497-507. pdfRussia, Yakutiadeposit Yubileinaya

Abstract: An experimental study was carried out on the dissolution of natural octahedral diamonds from the Internatsionalnaya and Yubileinaya kimberlite pipes (Yakutia) in an Fe-S melt at 4 GPa and 1450-1500°C with different sulfur contents (10-25 wt %). It was found that with an increase in sulfur content in the iron melt, the degree of diamond dissolution sharply decreases. The stationary (final) shape of diamond crystal dissolution under the achieved conditions corresponds to an octahedroid with trigonal etching layers, which is confirmed by photogoniometry. Diamonds with similar morphology are common in kimberlite pipes, especially in mantle xenoliths from kimberlites. It was concluded that diamonds with this shape did not undergo natural dissolution in a kimberlite magma, but, similar to flat-faced octahedra, were probably isolated from it in xenoliths. Therefore, the higher the content of octahedroid-shaped diamonds with trigonal layers in a deposit, the smaller the direct influence of an aggressive kimberlite magma on the diamond content.
DS202104-0611
2021
Titkov, S.V., Yakovleva, V.V., Breev, I.D., Anisimov, A.N., Baranov, P.G., Dorofeeva, A.I., Bortnikov, N.S.Distribution of nitrogen-vacancy NV centers in cubic diamond crystals from Anabar placers as revealed by ODMR and PL tomography.Doklady Earth Sciences, Vol. 496, 1, pp. 45-47. pdfRussiadeposit - Anabar

Abstract: Nitrogen-vacancy NV- centers, which are of considerable interest for quantum electronics, are artificially produced in the diamond structure by irradiation and subsequent annealing. In this work, these centers were revealed in natural diamonds of cubic habit (type IaA + Ib according to physical classification) from an industrial placer deposit of the Anabar River (NE Siberian platform) using the method of optically detected magnetic resonance (ODMR). Localization of the NV- centers in the dislocations slip planes {111}, separated by distances of about 5 ?m, was established by means of scanning the ODMR and PL signals with a submicron resolution. In various crystals, one or two intersecting systems of such slip planes have been revealed. The largest amounts of these defects were found in the peripheral zones of crystals containing increased amounts of single isomorphic nitrogen atoms in the structure. The data obtained indicate the formation of the NV- centers in natural diamonds under post-crystallization plastic deformation, i.e., by a mechanism that differs from the widely used method of their artificial production.
DS202105-0771
2021
Khokhryakov, A., Kruk, A.N., Sokol, A.G.The effect of oxygen fugacity on diamond resorption in ascending kimberlite melt.Lithos, 10.1016/j.lithos.2021.106166, 12p.Russiadeposit - Udachnaya

Abstract: When transported by magmas to the Earth's surface, diamond crystals underwent resorption, the intensity of which significantly differed in various kimberlite pipes. We experimentally simulated diamond resorption at different oxygen fugacities (fO2) in ascending kimberlite magma enriched in CO2 and H2O. The experiments were carried out using specially prepared unaltered Group I kimberlite from the Udachnaya East pipe (Yakutia) and model carbonatite at 3.0 GPa, 1200-1400 °C, and fO2 in a range of NNO-2 to NNO + 3.2 log units (where NNO is Ni-NiO buffer). Over the investigated range of conditions, resorption of octahedral diamond crystals is found to occur according to a single scenario. Negative trigons and shield-shaped laminae develop on the {111} faces and crystal edges are truncated by the surfaces of tetrahexahedroids. The rate of diamond resorption increases in all studied systems as fO2 and temperature are raised. In this case, water-enriched melts are the most aggressive media in the investigated T-fO2 interval. Among the most oxidized high-temperature melts, it is carbonatite melts depleted in SiO2 that provide the maximum rate of diamond resorption. Furthermore, the rates of diamond resorption we obtained are an order of magnitude higher than those previously measured in silicate melts containing CO2 and H2O, at fO2 values from the NNO buffer to NNO-2. Therefore, high oxygen fugacity, a temperature of ~1400 °C, and essentially carbonate composition of water-containing magma could provide a high intensity of diamond resorption at the mantle stage of magma ascent to the surface. Apparently, this process primarily influenced the formation of the appearance and preservation of natural diamond crystals in kimberlite pipes.
DS202105-0772
2021
Krivovichev, V.G., Charykova, M.V., Krivovichev, S.V.Mineral systems based on the number of species-defining chemical elements in minerals: their diversity, complexity, distribution, and the mineral evolution of the Earth's crust: a review. Mentions Khibiny, Lovozero, Mount St. HilaireGeology of Ore Deposits, Vol. 62, 8, pp. 704-718. pdfRussia, Canada, QuebecMineralogy

Abstract: The chemical diversity of minerals can be analyzed in terms of the concept of mineral systems based on the set of chemical elements that are essential for defining a mineral species. Only species-defining elements are considered to be essential. According to this approach, all minerals are classified into ten types of mineral systems with the number of essential components ranging from 1 to 10. For all known minerals, only 70 chemical elements act as essential species-defining constituents. Using this concept of mineral systems, various geological objects may be compared from the viewpoint of their mineral diversity: for example, alkali massifs (Khibiny and Lovozero in Russia; Mont Saint Hilaire in Canada), evaporite deposits (Inder in Kazakhstan and Searles Lake in the United States), fumaroles of active volcanoes (Tolbachik in Kamchatka and Vulcano in Sicily, Italy), and hydrothermal deposits (Otto Mountain in the United States and El Dragon in Bolivia). Correlations between chemical and structural complexities of the minerals were analyzed using a total of 5240 datasets on their chemical compositions and 3989 datasets on their crystal structures. The statistical analysis yields strong and positive correlations (R2 > 0.95) between chemical and structural complexities and the number of different chemical elements in a mineral. The analysis of relationships between chemical and structural complexities provides strong evidence for the overall trend of a greater structural complexity at a higher chemical complexity. Following R. Hazen, four groups of minerals representing four mineral evolution stages have been considered: (I) “Ur-minerals,” (II) minerals from chondrite meteorites, (III) Hadean minerals, and (IV) contemporary minerals. According to the obtained data, the number of species-defining elements in minerals and their average contents increase regularly and significantly from stage I to stage IV. The analyzed average chemical and structural complexities in these four groups demonstrate that both are gradually increasing in the course of mineral evolution. The increasing complexity follows an overall trend: the more complex minerals were formed in the course of geological time, without replacing the simpler ones. The observed correlations between chemical and structural complexities understood in terms of the Shannon information suggest that chemical differentiation is the major force that drives the increase of mineral complexity over the course of geological time.
DS202105-0779
2021
Nikolenko, E.I., Sharygin, I.S., Rezvukhin, D.I., Malkovets, v.G., Tychkov, N.S., Pokhilenko, N.P.Sulfide-bearing polymineralic inclusions in mantle-derived garnets from lamprophyres of the Chompolo field, (Central Aldan, Siberian Craton).Doklady Earth Sciences, Vol. 497, pp. 300-304.Russia, Siberiadeposit - Chompolo

Abstract: Sulfide-bearing polymineralic inclusions in mantle-derived chromium pyrope garnets of lherzolite paragenesis from lamprophyres of the Chompolo field (Aldan shield, southern Siberian craton) have been studied. The inclusions are composed of either only sulfides or sulfides in association with other minerals (carbonates, silicates, oxides, etc.). The sulfide part of the inclusions is represented by up to four minerals. Among the sulfides, minerals rich in Cu and Ni have been found, whereas Fe sulfides (pyrrhotite, troilite) are absent. This distinguishes the inclusions studied from the majority of sulfide inclusions in mantle minerals and diamonds, as well as in mantle xenoliths from kimberlites. The formation of polymineralic inclusions in chromium garnets of the Chompolo field is attributed to the effect of a carbonate-silicate metasomatic melt/fluid on mantle peridotites, as evidenced by the mineral suite associated with the sulfides. The research results indicate significant differences in the nature of metasomatic processes that occurred in the lithospheric mantle of the southern and central parts of the Siberian craton.
DS202105-0787
2021
Rezvukhina, O.V., Skublov, S.G., Rezvukhin, D.I., Korsakov, A.V.Rutile in diamondiferous metamorphic rocks: new insight from trace element composition, mineral/fluid inclusions, and U-Pb-ID-TIMS dating.Lithos, Vol. 394-395, 7p. PdfRussia, Kazakhstandiamond inclusions

Abstract: This study highlights the usefulness of rutile when applied for reconstruction of the metamorphic evolution of ultrahigh-pressure rocks containing diamond. Within the diamondiferous kyanite gneiss (Kokchetav massif, Northern Kazakhstan), rutile shows three distinct textural positions: (i) rounded/irregular-shaped grains in the rock matrix; (ii) monomineralic inclusions in garnet, kyanite, quartz, and zircon; and (iii) grains in polyphase inclusions within garnet and kyanite porphyroblasts. High Nb (1990-3197 ppm) and relatively low Cr (404-703 ppm) concentrations in rutile indicate its metapelitic derivation. The Zr content in rutile varies from 480 to 798 ppm and the average temperature estimates yielded by the Zr-in-rutile geothermometer for 5 GPa are 880 °C. Rutile-hosted Zn-rich (up to 1.74 wt% ZnO) staurolite is interpreted as a record of the prograde metamorphic stage formed as a result of gahnite+pyrophyllite+diaspore breakdown at 0.3-0.8 GPa, 400-450 °C. Inclusions of diamond±CO2 ± carbonate±garnet in rutile originated near the peak of metamorphism (~5 GPa and ~ 880 °C). U-Pb ID-TIMS dating of a representative rutile separate yielded a concordant age of 519 ± 1.6 Ma that is younger than the previously estimated U-Pb crystallization ages of the peak metamorphic assemblages of the Kokchetav massif (528 ± 3 Ma). The obtained age represents the timing of cooling to the closure temperature for Pb diffusion in rutile (Tc; 420-640 °C). The cooling of the rocks from the peak temperatures to Tc occurred with the rates of 27-51 °C/Ma, whereas the exhumation rates (from 880 °C and 5 GPa to 420-640 °C and 0.5-1 GPa) were 1.3-1.5 cm/year. The peak temperature estimates as well as rapid cooling and exhumation rates reported here are in agreement with published data on zircon from similar diamondiferous Kokchetav gneisses. This work demonstrates that rutile provides a beneficial tool in studies dealing with reconstruction of the metamorphic evolution of diamondiferous rocks.
DS202106-0920
2021
Agasheva, E.Magmatic material in sandstone shows prospects for new diamond deposits within the northern east European platform.Minerals, Vol. 11, 339. doi.org/10.3390/min11040339 27p. PdfRussia, Arkhangelskdeposit - KL-01

Abstract: A detailed study of sandstones recovered from the upper part of the recently discovered KL-01 magmatic pipe in the southern part of the Arkhangelsk diamondiferous province (ADP), containing magmatic material and rare kimberlite indicator minerals, is presented in this paper. Results are compared to the composition of crater samples of the highly diamondiferous Vladimir Grib kimberlite pipe and several poorly to non-diamondiferous ADP pipes. To identify the type of magmatic material admixture, a model of binary mixing between country Vendian sandstones and typical ADP magmatic rocks based on correlations of La/Yb and Zr/Nb ratios and Ni contents is proposed. The modeling results show that the type of magmatic component in the KL-01 samples can be identified as kimberlite, with a maximum admixture of 20 vol.%. Kimberlite indicator mineral geochemistry did not exclude the interpretation that the composition, structure, thermal state and metasomatic enrichment of the lithospheric mantle sampled by the KL-01 pipe were suitable for the formation and preservation of diamonds. The lower boundary of the sampled lithospheric mantle could be in the depth range of 175-190 km, with a diamond window width of 55-70 km. Thus, the sandstones could represent the upper level of the crater of a new kimberlite pipe.
DS202106-0922
2021
Ashchepkov, I.,Medvedev, N.,Ivanov, A., Vladykin, N., Ntafos,T.,Downes, H.,Saprykin, A.,Tolstov, A.Vavilov, M., Shmarov, G.Deep mantle roots of the Zarnitsa kimberlite pipe, Siberian craton, Russia: evidence for multistage polybaric interaction with mantle melts.Journal of Asian Earth Sciences, Vol. 213, 104756, 22p.pdfRussia, Siberiadeposit - Zarnitsa

Abstract: Zarnitsa kimberlite pipe in Central Yakutia contains pyrope garnets with Cr2O3 ranging from 9 to 19.3 wt% derived from the asthenospheric mantle. They show mostly S-shaped, inflected rare earth element (REE) patterns for dunitic and harzburgitic, lherzolitic and harzburgitic varieties and all are rich in high field strength elements (HFSE) due to reaction with protokimberlite melts. Lithospheric garnets (<9 wt% Cr2O3) show a similar division into four groups but have more symmetric trace element patterns. Cr-diopsides suggest reactions with hydrous alkaline, protokimberlitic and primary (hydrous) partial melts. Cr-diopsides of metasomatic origin have inclined REE patterns and high LILE, U, Th and Zr concentrations. Four groups in REE of Ti-rich Cr-diopsides, and augites have asymmetric bell-like REE patterns and are HFSE-rich. Mg-ilmenites low in REE were formed within dunite conduits. Ilmenite derived from differentiated melts have inclined REE patterns with LREE ~ 100 × chondrite levels. Thermobarometry for dunites shows a 34 mWm?2 geotherm with a HT branch (>50 mWm?2) at 6-9 GPa, and a stepped HT geotherm with heated pyroxenite lenses at four levels from 6.5 to 3.5 GPa. Parental melts calculated with KDs suggest that augites and high-Cr garnets in the lithosphere base reacted with essentially carbonatitic melts while garnets from lower pressure show subduction peaks in U, Ba and Pb. The roots of the Zarnitsa pipe served to transfer large portions of deep (>9 GPa) protokimberlite melts to the lithosphere. Smaller diamonds were dissolved due to the elevated oxidation state but in peripheral zones large diamonds could grow.
DS202106-0946
2021
Kargin, A.V.Multistage mantle metasomatism during the generation of kimberlite melts: evidence from mantle xenoliths and megacrysts of the Grib kimberlite, Arkangelsk, Russia.Petrology, Vol. 29, 3, pp. 221-245. pdfRussia, Arkhangelskdeposit - Grib

Abstract: Major and trace element compositions of garnet, clinopyroxene, orthopyroxene, phlogopite, and ilmenite from garnet peridotite, ilmenite-bearing peridotite (dunites), and clinopyroxene-phlogopite xenoliths, as well as megacrysts of these minerals from the Grib kimberlite, Arkhangelsk diamond province, Russia, have been analyzed. These data are used to propose a model for mantle metasomatism of lithospheric mantle by kimberlite melts, including their generation and evolution, geochemical enrichment of depleted lithosphere mantle, and formation of megacrystic assemblage. The lithospheric mantle beneath the Arkhangelsk diamond province, from its base (depth ~180-210 km) to a depth of ~100-120 km (corresponding to a pressure of 3.5 GPa) experienced extensive metasomatism along the main kimberlite melt channel. Petrography of the peridotite xenoliths indicates a progressive refertilization of depleted harzburgite into garnet lherzolite, phlogopite-garnet wehrlite, and clinopyroxene-phlogopite rocks. Metasomatic refertilization occurred shortly before the capture of these xenoliths by the kimberlite melt. The model melt compositions calculated from garnet-clinopyroxene equilibria in different types of xenoliths and megacrysts show that alkaline-carbonate-ultramafic kimberlite melt acted as a metasomatic agent in the sheared peridotite at the base of the lithospheric mantle. High-Ti garnet and high-Cr clinopyroxene megacrysts in the middle part of the lithospheric mantle, as well as the main volume of garnet lherzolite xenoliths were formed in geochemical equilibrium with the kimberlite melts, which demonstrate an increase of silicate components and fractionation of Fe-Ti phases. The modification could be related to the interaction of ascending carbonate-rich protokimberlite melts with surrounding lithospheric mantle. The similarities in the compositions of garnet, clinopyroxene, phlogopite, and ilmenite megacrysts with minerals of peridotite xenoliths in the Grib kimberlite suggest that these megacrysts are disintegrated fragments of coarsest grained metasomatized garnet lherzolite, ilmenite-bearing peridotite, and clinopyroxene-phlogopite mantle rocks or formed under the same conditions as xenoliths or directly crystallized from metasomatic melts.
DS202106-0963
2020
Oparin, N., Oleynikov, O.Picroilmenite from kimberlite pipes of central Yakutia.IOP Conference series: Earth and Environmental Science, 609, 01028 8p. PdfRussia, Yakutiadeposit - Manchary, Aprelskaya

Abstract: Picroilmenite is one of the most important indicator minerals of kimberlite rocks, which can be used in solving petrological problems and in the search for diamond deposits. The present study shows the results of studying picroilmenite grains from the Manchary and Aprelskaya pipes within the Khompu-May kimberlite field (Central Yakutia). The rocks composing the pipes are represented by porphyritic kimberlite and kimberlite breccia, between which there are gradual transitions. Rocks forming the upper pipe horizons are highly carbonatized and supergenetically altered. Porphyritic segregations are represented by carbonatized serpentine pseudomorphs from macro-, megacrysts and olivine phenocrysts. Pyrope, picroilmenite mega-, macrocrysts and chromospinellide macrocrysts are found in both pipes. Most weakly altered parts of mesostasis are microgranular and formed mostly by phlogopite, with xenomorphic segregations of calcite and serpentine. Picroilmenite in both kimberlite bodies occurs as irregular and rounded macrorysts ranging from 0.7 to 10 mm and megacrysts ranging from 10 to 25 mm. Micrograins of this mineral were not diagnosed in the mesostasis. Individual grains of picroilmenite from the Manchary pipe are surrounded by a polymineral rim composed of either ferrospinel and magnetite, or perovskite and magnetite. High-and low-chromium varieties which correspond to two parageneses are identified among the picroilmenite grains from the Manchary pipe. Crystallization trend of high-chromium ilmenites from the Manchary pipe is clearly seen in the diagram in the coordinates Fe2O3-FeTiO3-MgTiO3 and associated with the presence of Cr-rich phlogopite from lherzolites xenoliths. Picroilmenite grains from the Aprelskaya kimberlite pipe are more magnesian in comparison with similar grains from the Manchary pipe. Picroilmenite from both pipes in the coordinates Fe2O3-FeTiO3-MgTiO3 is characterized by a magmatic kimberlite trend of the mineral composition evolution. The distribution of mineral composition points from the studied pipes in the diagram in the coordinates MgO - Cr2O3 has form of the "Haggerty parabola" (Haggerty, 1975) - typical for picroilmenites from kimberlites of industrial diamond-bearing middle Paleozoic pipes of Yakutia (Aikhal, Mir, Udachnaya). In general, picroilmenite of Central Yakutia pipes differs from picroilmenite of the Aikhal, Mir and Udachnaya pipes by the presence of the parabola right branch in the Haggerty diagram and an indistinct left branch. The Aikhal, Mir, and Udachnaya pipes are characterized by a clear demonstration of the left branch and a weak right. At the same time, the composition points of the high-chromium picroilmenite variety from the Manchary pipe in the Haggerty diagram coincide with the high-chromium picroilmenite from the Grib kimberlite pipe (Arkhangelsk diamondiferous province). Thus, the study showed the genetic polygeny of picroilmenite from the Manchary and Aprelskaya kimberlite pipes, and also the correlation with mineralogical diamond potential of both pipes traced by comparison with the known industrial ilmenite diamondiferous pipes of Yakutia and Arkhangelsk region.
DS202106-0964
2021
Perchuk, A.L., Sapegina, A.V., Safonov, O.G., Yapaskurt, V.O., Shatsky, V.S., Malkovets, V.G.Reduced amphibolite facies conditions in the Precambrian continental crust of the Siberian craton recorded by mafic granulite xenoliths from the Udachnaya kimberlite pipe, Yakutia.Precambrian Research, Vol. 357, 1061022, 14p. PdfRussia, Yakutiadeposit - Udachnaya

Abstract: It is widely accepted that granulite xenoliths from kimberlites provide a record of granulite facies metamorphism at the basement of cratons worldwide. However, application of the phase equilibria modeling for seven representative samples of mafic granulites from xenoliths of the Udachnaya kimberlite pipe, Yakutia, revealed that a granulitic garnet + clinopyroxene + plagioclase ± orthopyroxene ± amphibole ± scapolite mineral assemblage was likely formed in the middle crust under amphibolite facies conditions (600-650 °C and 0.8-1.0 GPa) in a deficiency of fluid. Clinopyroxene in the rocks is characterized by elevated aegirine content (up to 10 mol.%) both in the earlier magmatic cores and in the later metamorphic rim zones of the grains. Nevertheless, the phase equilibrium modeling for all samples indicates surprisingly reduced conditions, i.e. oxygen fugacity 1.6-3.3 log units below the FMQ (Fayalite-Magnetite-Quartz) buffer. In contrast, the coexistence of Fe-Ti oxides indicates temperatures of 850-990 °C and oxygen fugacity about lg(FMQ) ± 0.5, conditions which correspond to earlier stages of rock evolution. Reduction of oxygen fugacity during cooling is discussed in the context of the evolution of a complex fluid. The reconstructed P-T conditions for the final equilibration in the mafic granulites indicate that temperatures were ~250 °C higher than those extrapolated from the continental conductive geotherm of 35-40 µW/m2 deduced from peridotite xenoliths of the Udachnaya pipe. Although the granulites resided in the crust for a period for at least 1.4 Ga, they did not re-equilibrate to the temperatures of the geotherm, likely due to the blocking of mineral reactions under relatively low temperatures and fluid-deficient conditions
DS202107-1103
2021
Ivanov, A.V., Corfu, F., Kamenetsky, V.S., Marfin, A.E., Vladykin, N.V.207Pb-excess in carbonatitic baddeleyite as the result of Pa scavenging from the melt. ( Guli Siberian traps)Geochemical Perspectives Letters, Vol. 18, pp. 11-15. pdfRussia, Siberiacarbonatite

Abstract: For the last two decades, the end of the voluminous phase of eruptions of the Siberian Traps large igneous province has been constrained by a U-Pb date of discordant baddeleyite collected from the Guli carbonatite intrusion with the assumption that the discordance resulted from unsupported 207Pb. In this study we have re-analysed baddeleyite from the same intrusion and found two types of discordance: (1) due to 207Pb-excess, and (2) radiogenic lead loss from high U mineral inclusions. The former implies that baddeleyite is an efficient scavenger of protactinium during crystallisation, leaving the magma depleted in this element. Together with a published high precision U-Pb date of 252.24?±?0.08 Ma for the Arydzhansky Formation, our new date of 250.33?±?0.38 Ma for the Guli carbonatite constrains the total duration of the voluminous eruptions of the Siberian Traps LIP at 1.91?±?0.38 million years. The lower intercept of the (231Pa)/(235U) corrected discordance line yields a date of 129.2?±?65.0 Ma, which points to the widespread Early Cretaceous rifting in East and Central Asia.
DS202107-1104
2021
Kargin, A.V., Nosova, A.A., Sazonova, L.V., Tretyachenko, V.V., Larinova, Y.O., Kovalchuk, E.V.Ultramafic alkaline rocks of Kepino cluster, Arkhangelsk, Russia: different evolution of kimberlite melts in sills and pipes.Minerals MDPI, Vol. 11, 540, 33p. PdfRussia, Arkhangelskdeposit - Kepino

Abstract: To provide new insights into the evolution of kimberlitic magmas, we have undertaken a detailed petrographic and mineralogical investigation of highly evolved carbonate-phlogopite-bearing kimberlites of the Kepino cluster, Arkhangelsk kimberlite province, Russia. The Kepino kimberlites are represented by volcanoclastic breccias and massive macrocrystic units within pipes as well as coherent porphyritic kimberlites within sills. The volcanoclastic units from pipes are similar in petrography and mineral composition to archetypal (Group 1) kimberlite, whereas the sills represent evolved kimberlites that exhibit a wide variation in amounts of carbonate and phlogopite. The late-stage evolution of kimberlitic melts involves increasing oxygen fugacity and fluid-phase evolution (forming carbonate segregations by exsolution, etc.). These processes are accompanied by the transformation of primary Al- and Ti-bearing phlogopite toward tetraferriphlogopite and the transition of spinel compositions from magmatic chromite to magnesian ulvöspinel and titanomagnetite. Similar primary kimberlitic melts emplaced as sills and pipes may be transitional to carbonatite melts in the shallow crust. The kimberlitic pipes are characterised by low carbonate amounts that may reflect the fluid degassing process during an explosive emplacement of the pipes. The Kepino kimberlite age, determined as 397.3 ± 1.2 Ma, indicates two episodes of ultramafic alkaline magmatism in the Arkhangelsk province, the first producing non-economic evolved kimberlites of the Kepino cluster and the second producing economic-grade diamondiferous kimberlites.
DS202107-1106
2021
Kogarko, L.N., Nielsen, T.F.D.Compositional variation of eudialyte-group minerals from the Lovozero and Ilmaussaq complexes on the origin of peralkaline systems.Minerals MDPI, Vol. 11, 548, 15p. PdfRussia, Kola Peninsula, Europe, Greenlanddeposit - Lovozero, Ilimaussaq

Abstract: The Lovozero complex, Kola peninsula, Russia and the Ilímaussaq complex in Southwest Greenland are the largest known layered peralkaline intrusive complexes. Both host world-class deposits rich in REE and other high-tech elements. Both complexes expose spectacular layering with horizons rich in eudialyte group minerals (EGM). We present a detailed study of the composition and cryptic variations in cumulus EGM from Lovozero and a comparison with EGM from Ilímaussaq to further our understanding of peralkaline magma chambers processes. The geochemical signatures of Lovozero and Ilímaussaq EGM are distinct. In Lovozero EGMs are clearly enriched in Na + K, Mn, Ti, Sr and poorer Fe compared to EGM from Ilímaussaq, whereas the contents of ?REE + Y and Cl are comparable. Ilímaussaq EGMs are depleted in Sr and Eu, which points to plagioclase fractionation and an olivine basaltic parent. The absence of negative Sr and Eu anomalies suggest a melanephelinitic parent for Lovozero. In Lovozero the cumulus EGMs shows decrease in Fe/Mn, Ti, Nb, Sr, Ba and all HREE up the magmatic layering, while REE + Y and Cl contents increase. In Lovozero EGM spectra show only a weak enrichment in LREE relative to HREE. The data demonstrates a systematic stratigraphic variation in major and trace elements compositions of liquidus EGM in the Eudialyte Complex, the latest and uppermost part of Lovozero. The distribution of elements follows a broadly linear trend. Despite intersample variations, the absence of abrupt changes in the trends suggests continuous crystallization and accumulation in the magma chamber. The crystallization was controlled by elemental distribution between EGM and coexisting melt during gravitational accumulation of crystals and/or mushes in a closed system. A different pattern is noted in the Ilimaussaq Complex. The elemental trends have variable steepness up the magmatic succession especially in the uppermost zones of the Complex. The differences between the two complexes are suggested to be related dynamics of the crystallization and accumulation processes in the magma chambers, such as arrival of new liquidus phases and redistributions by mush melts
DS202107-1107
2021
Kostrovitsky, S.I., Yakolev, D.A., Suvorova, L.F., Demonterova, E.I.Carbonatite-like rock in a dike of the Aikhal kimberlite pipe: comparison with carbonatites of the Nomokhtookh site ( Anabar area).Russian Geology and Geophysics, Vol. 62, pp. 605-618.Russiadeposit - Aikhal

Abstract: A dike of rock similar in composition to carbonatites has been found in the Aikhal diamondiferous pipe of the Alakit-Markha field of the Yakutian kimberlite province (YaKP). The fine-grained rock of essentially carbonate composition (dolomite and calcite) rich in thin-platy phlogopite contains minerals typical of carbonatites: monazite, baddeleyite, and pyrochlore. In the high contents and distribution of incompatible elements the rock differs significantly from kimberlites and is transitional from kimberlites to carbonatites. The content of incompatible elements in this rock is 3-5 times lower than that in carbonatite breccias of the pipes in the Staraya Rechka kimberlite field of the YaKP (Nomokhtookh site). The compositions of accessory trace element minerals from the Aikhal dike rock and the Nomokhtookh carbonatite breccias are compared. An assumption is made that the high contents of incompatible elements in the carbonatite-like rock, which caused the crystallization of accessory minerals, are due to the differentiation of kimberlite melt/fluid. The high Sr isotope ratios indicate that the rock altered during hydrothermal and metasomatic processes. The obtained data on the composition of the carbonatite-like rock cannot serve as an argument for the genetic relationship between the Aikhal kimberlites and typical carbonatites. The genetic relationship between kimberlites and carbonatites in the northern fields of the YaKP remains an open issue.
DS202107-1109
2021
Kruk, M.N., Doroshkevich, A.G., Prokopyev, I.R., Izbrodin, I.A.Mineralogy of phoscorites of the Arbarastakh complex, Republic of Sakha, Yakutia, Russia).Minerals MDPI, Vol. 11, 556 24p. PdfRussia, Yakutiacarbonatite

Abstract: The Arbarastakh ultramafic carbonatite complex is located in the southwestern part of the Siberian Craton and contains ore-bearing carbonatites and phoscorites with Zr-Nb-REE mineralization. Based on the modal composition, textural features, and chemical compositions of minerals, the phoscorites from Arbarastakh can be subdivided into two groups: FOS 1 and FOS 2. FOS 1 contains the primary minerals olivine, magnetite with isomorphic Ti impurities, phlogopite replaced by tetraferriphlogopite along the rims, and apatite poorly enriched in REE. Baddeleyite predominates among the accessory minerals in FOS 1. Zirconolite enriched with REE and Nb and pyrochlore are found in smaller quantities. FOS 2 has a similar mineral composition but contains much less olivine, magnetite is enriched in Mg, and the phlogopite is enriched in Ba and Al. Of the accessory minerals, pyrochlore predominates and is enriched in Ta, Th, and U; baddeleyite is subordinate and enriched in Nb. Chemical and textural differences suggest that the phoscorites were formed by the sequential introduction of different portions of the melt. The melt that formed the FOS 1 was enriched in Zr and REE relative to the FOS 2 melt; the melt that formed the FOS 2 was enriched in Al, Ba, Nb, Ta, Th, U, and, to a lesser extent, Sr.
DS202107-1112
2021
Marfin, A., Radomskaya, T.A., Ivanov, A.V., Belozerova, O.Y.U-Pb dating of apatite, titanite and zircon of the Kingash mafic-ultramafic massif, Kan terrane Siberia: from Rodinia break-up to the reunion of the Siberian craton.Journal of Petrology, Vol. 62, 6, EGAb049Russia, Siberiacratons

Abstract: The initial stage of Rodinia supercontinent break-up occurred at about 750?Ma. It preceded formation of the Irkutsk and Franklin Large Igneous Provinces (LIPs)at 712 ± 2?Ma to 739 ± 8?Ma. These LIPs were emplaced within the formerly connected Laurentian and Siberian cratons. The Kingash massif is located in the Precambrian Kan terrane in direct contact with the Siberian Craton at its southwestern boundary. It has been linked to an important suite of mafic-ultramafic intrusions which border the southern margin of the Siberian craton, and which have been inferred to belong to the Irkutsk LIP. The massif is also significant, because it hosts PGE-Cu-Ni rich mineralization and is the only large deposit in the region. However, despite numerous dating attempts, the age of the massif had not been resolved. A significant difficulty is post-magmatic recrystallization at amphibolite facies that affected the rocks of the massif. In this study we used U-Pb dating of zircon, titanite and apatite from rocks of the Kingash massif and cross-cutting granite and monzonite veins. The oldest igneous zircon grain of the Kingash massif analysed by LA-ICPMS yields an age of c. 750?Ma, taken as a tentative age of magmatism. Dating of multiple grains of metamorphic zircon by CA-ID-TIMS yielded 564.8 ± 2.2?Ma, which is in agreement with LA-ICPMS titanite ages 557 ± 19?Ma, 565 ± 35?Ma and 551 ± 17?Ma. Apatite of two different samples showed ages of 496.4 ± 7.9?Ma and 497.0 ± 1.8?Ma (LA-ICPMS), which are interpreted as the time when the terrane cooled below the closure temperature of apatite. Using our new data we suggest that at the time of the Irkutsk-Franklin LIP event the Kan terrane was a part of Rodinia, then it separated from either Siberia or Laurentia during the break-up of Rodinia and finally collided with Siberia at 560?Ma; the time of regional amphibole facies metamorphism.
DS202107-1116
2020
Myshenkova, M.S., Zaitsev, V.A., Thomson, S., Latyshev, A.V., Zakharov, V.S., Bagdasaryan, T.E., Veselovsky, R.E.Thermal history of the Guli Pluton ( north of the Siberian platform) according to apatite fission-track dating and computer modeling. (carbonatite)Geodynamics & Tectonophysics, Vol. 11, pp. 75-87. pdfRussia, Siberiageothermometry

Abstract: We present the first results of fission-track dating of apatite monofractions from two rock samples taken from the Southern carbonatite massif of the world’s largest alkaline ultrabasic Guli pluton (~250 Ma), located within the Maymecha-Kotuy region of the Siberain Traps. Based on the apatite fission-track data and computer modeling, we propose two alternative model of the Guli pluton's tectonothermal history. The models suggest (1) rapid post-magmatic cooling of the studied rocks in hypabyssal conditions at depth about 1.5 km, or (2) their burial under a 2-3 km thick volcano-sedimentary cover and reheating above 110°C, followed by uplift and exhumation ca. 218 Ma.
DS202107-1123
2021
Pokhilenko, L.Kelphite rims on garnets of contrast parageneses in mantle xenoliths from the Udachnaya-East kimberlite pipe ( Yakutia).Minerals MDPI, Vol. 11, 615 29p. PdfRussia, Yakutiadeposit - Udachnaya-East

Abstract: A new classification of kelyphitic rims on garnets from xenoliths of peridotitic and eclogitic parageneses of the mantle section under the Udachnaya-East kimberlite pipe (Yakutia) is presented. Five types of rims are identified: Rim1 develops between garnet and olivine/pyroxene (or rim2) and is composed of high-alumina pyroxenes, spinel, phlogopite; rim2, the coarse grain part of rim1, is located between rim1 and olivine/pyroxene, and mainly consists of phlogopite and less aluminous larger pyroxenes and spinel; rim3 develops between garnet and kimberlite, and presents with phlogopite and Fe-Ti spinel; rim4 sometimes presents instead of rim1/rim2 and consists of zoned high-Cr phlogopite with rare fine grains of chromium spinel; rim5, a “pocket” between garnet and rim1, is represented by microcrystalline aggregates of clinopyroxene, mica, spinel, calcite, and feldspar in different variations. Rims 1, 2, and 3 are typical for garnets of all studied parageneses. Rims 4 and 5 develop on high-Cr subcalcic garnets of the most depleted peridotites. Reactions of the formation of all types of rims are given in the article. Each type of kelyphite demonstrates a clear enrichment with a certain component: Rim1—MgO and alkalis; rim2—TiO2; rim3—FeO and TiO2; rim4—Cr2O3; and rim5—CaO, suggesting the multistage injection of different components by mantle fluid.
DS202107-1126
2021
Savko, K.A., Tsybulyaev, S.V., Samsonov, A.V., Bazikov, N.S., Korish, E.H., Terentiev, R.A., Panevin, V.V.Archean carbonatites and alkaline rocks of the Kursk Block, Sarmatia: age and geodynamic setting.Doklady Earth Sciences, Vol. 498, 1, pp. 412-417.Russiacarbonatite

Abstract: Neoarchean intraplate granitoid (2.61 Ga) and carbonatite magmatism are established in the Kursk block of Sarmatia in close spatial association. Alkaline pyroxenites, carbonatites, and syenites of the Dubravinskii complex are represented by two relatively large intrusions and a few small plutons. They underwent amphibolite facies metamorphism at about 2.07 Ga. The age of alkaline-carbonatite magmatism is 2.59 Ga according to SIMS isotope dating of zircon from syenites. The close age and spatial conjugation allow the Dubravinskii carbonatite complex to be considered to have formed in intraplate conditions. The mantle plume upwelling caused metasomatic alteration and consequent partial melting of the sublithospheric mantle and intrusion of enriched magmas into the crust. Contamination of alkaline mantle melts in the crust by Archean TTGs caused the formation of syenites melts in the form of dykes that cutting through pyroxenites and carbonatites.
DS202107-1127
2021
Shatsky, V.S., Ragozin, A.L., Skuzovatov, S. Yu., Kozmenko, O.A., Yagoutz, E.Isotope-geochemical evidence of the nature of protoliths of diamondiferous rocks of the Kokchetav subduction-collision zone ( northern Kazakhstan).Russian Geology and Geophysics, Vol. 62, pp. 547-556, pdfRussia, Kazakhstandeposit - Kokchetav

Abstract: The isotope-geochemical features of diamondiferous metamorphic rocks of the Kokchetav subduction–collision zone (KSCZ) show that both the basement rocks and the sediments of the Kokchetav massif were their protoliths. A whole-rock Sm–Nd isochron from the diamondiferous calc-silicate, garnet–pyroxene rocks and migmatized granite-gneisses of the western block of the KSCZ yielded an age of 1116 ± 14 Ma, while an age of 1.2–1.1 Ga was obtained by U–Pb dating of zircons from the granite-gneiss basement of the Kokchetav microcontinent. Based on these data, we assume that the protoliths of the calc-silicate, garnet–pyroxene rocks and the granite-gneisses of the KSCZ were the basement rocks sharing an initially single Nd source, which was not influenced by high- to ultrahigh-pressure metamorphism (~530 Ma). Therefore, their geochemical features are probably not directly related to ultrahigh-pressure metamorphism. The corresponding rock associations lack isotope-geochemical evidence of partial melting that would occur during ultrahigh-pressure metamorphism, which suggesting that they were metamorphosed under granulite-facies conditions. At the same time, the high-alumina diamondiferous rocks of the Barchi area (garnet–kyanite–mica schists and granofelses), which were depleted to different degrees in light rare-earth elements (REE) and K, have yielded a Sm–Nd whole-rock isochron age of 507 ± 10 Ma indicating partial melting of these rocks during their exhumation stage. The close ?Nd (1100) values of the basement rocks and garnet–kyanite–mica schist with geochemical characteristics arguing against its depletion during high-pressure metamorphism indicate that the basement rocks were a crustal source for high-alumina sediments.
DS202107-1132
2021
Smit, K.Preservation of Archaean mantle. *** see outline on cover of July 2021GSSA, https://www.youtube.com/watch?v=N_oS7FQQZ3MRussia, Scandinaviadeposit - Grib
DS202107-1135
2021
Sonin, V.M., Gryaznov, I.A., Chepurov, A. I., Pokhilenko, N.P.H2O as a possible initiator of surface graphitization of impact diamonds.Doklady Earth Sciences, Vol. 498, 1, pp. 388-391.Russiadiamond crystallography
DS202108-1266
2021
Abersteiner, A., Kamenetsky, V.S., Golovin, A., Goemann, K., Ehrig, K.Dissolution of mantle orthopyroxene in kimberlitic melts: petrographic, geochemical and melt inclusion constraints from an orthopyroxenite xenolith from the Udachnaya-East kimberlite ( Siberian Craton, Russia).Lithos, Vol. 398-399, 17p. PdfRussia, Siberiadeposit - Udachnaya-East

Abstract: Reconstructing the original composition of kimberlite melts in the mantle and delineating the processes that modify them during magmatic ascent and emplacement in the crust remains a significant challenge in kimberlite petrology. One of the most significant processes commonly cited to drive initial kimberlite melts towards more Si-Mg-rich compositions and decrease the solubility of CO2 is the assimilation of mantle orthopyroxene. However, there is limited direct evidence to show the types of reactions that may occur between mantle orthopyroxene and the host kimberlite melt. To provide new constraints on the interaction between orthopyroxene and parental kimberlite melts, we examined a fresh (i.e. unmodified by secondary/post-magmatic alteration) orthopyroxenite xenolith, which was recovered from the serpentine-free units of the Udachnaya-East kimberlite (Siberian Craton, Russia). This xenolith is composed largely of orthopyroxene (~ 90%), along with lesser olivine and clinopyroxene and rare aluminous magnesian chromite. We can show that this xenolith was invaded by the host kimberlite melt along grain interstices and fractures, where it partially reacted with orthopyroxene along the grain boundaries and replaced it with aggregates of compositionally distinct clinopyroxene, olivine and phlogopite, along with subordinate Fe-Cr-Mg spinel, Fesingle bondNi sulphides and djerfisherite (K6(Fe,Ni,Cu)25S26Cl). Primary melt inclusions in clinopyroxene replacing xenolith-forming orthopyroxene, as well as secondary melt inclusion trails in xenolith orthopyroxene, clinopyroxene and olivine are composed of similar daughter mineral assemblages that consist largely of: Nasingle bondK chlorides, along with varying proportions of phlogopite, Fe-Cu-Ni sulphides, djerfisherite, rasvumite (KFe2S3), Cr-Fe-Mg spinel, nepheline and apatite, and rare rutile, sodalite, barite, olivine, Ca-K-Na carbonates and Nasingle bondK sulphates. The melt entrapped by these inclusions likely represent the hybrid products produced by the invading kimberlite melt reacting with orthopyroxene in the xenolith. The mechanism that could explain the partial replacement of orthopyroxene in this xenolith by clinopyroxene, olivine and phlogopite could be attributed to the following reaction: Orthopyroxene + Carbonatitic (melt) ? Olivine + Clinopyroxene + Phlogopite + CO2. This reaction is supported by theoretical and experimental studies that advocate the dissolution of mantle orthopyroxene within an initially silica-poor and carbonate-rich kimberlite melt. The mineral assemblages replacing orthopyroxene in the xenolith, together with hosted melt inclusions, suggests that the kimberlitic melt prior to reaction with orthopyroxene was likely carbonate-rich and Na-K-Cl-S bearing. The paucity of carbonate in the reaction zones around orthopyroxene and in melt inclusions in clinopyroxene replacing xenolith-forming orthopyroxene and xenolith minerals (orthopyroxene, clinopyroxene and olivine) is attributed to the consumption of carbonates and subsequent exsolution of CO2 by the proposed decarbonation reaction. Concluding, we propose that this orthopyroxenite xenolith provides a rare example of the types of reactions that can occur between mantle orthopyroxene and the host kimberlite melt. The preservation of this xenolith and zones around orthopyroxene present new insights into the composition and evolution of parental kimberlite melts and CO2 exsolution.
DS202108-1267
2021
Agasheva, E.V., Kolesnichenko, M.V., Malygina, E.V., Agashev, A.M., Zedgenizov, D.A.Origin of water in mantle eclogites from the V. Grib kimberlite pipe, NW Russia.Lithosphere, Vol. 2021, 7866657, 18p. PdfRussia, Arkangelskdeposit - Grib

Abstract: The water content in the garnet and clinopyroxene in the mantle eclogites from the V. Grib kimberlite pipe (Arkhangelsk Diamondiferous Province, NW Russia) was analysed using Fourier transform infrared spectrometry. The results show that all clinopyroxene grains contained structural water at concentrations of 39 to 247?ppm, whereas two garnet samples contained detectable water at concentrations of 211 and 337?ppm. The low-MgO eclogites with oceanic gabbro precursors contained significantly higher water concentrations in the omphacites (70-247?ppm) and whole rock (35-224?ppm) compared to those with oceanic basalt protoliths (49-73?ppm and 20-36?ppm, respectively). The incorporation of water into the clinopyroxene may be associated with vacancies at the M2 site, Al in the tetrahedral position, and the elements that filled the M2 site (mostly Na and Ca). The highest water content in the omphacite was detected in a nonmetasomatised sample and was assumed to represent residual water that survived during subduction. Other eclogite samples showed signs of modal and/or cryptic metasomatism and contained less water in the omphacites compared to the nonmetasomatised sample. The water content was heterogeneous within the eclogite section of the sampled lithospheric mantle. The lack of distinct and uniform correlations between the indices of eclogite modification and their water content indicated that the saturation with water was disturbed during their residence within the lithospheric mantle.
DS202108-1269
2021
Ashchepkov, I.Diamondiferous kimberlites from recently explored Upper Muna field ( Siberian craton): petrology, mineralogy and geochemistry insights.Geological Society of London Special Publications, 513, 34p. PdfRussiadeposit - Upper Muna

Abstract: Petrographic, geochemical and mineralogical characteristics of diamond deposits from the Upper Muna field have been investigated. Geochemically, diamondiferous kimberlites from Upper Muna belong to the most widespread Fe-Mg-rich rocks in the Yakutian kimberlite province (average FeOtotal = 8.4 wt%, MgO = 32.36 wt%, TiO2 = 1.6 wt.%). Striking mineralogical features of Upper Muna kimberlites are: 1) abundance of monticellite and perovskite in the groundmass; 2) rare occurrence of Mg-ilmenite; 3) abundance of phlogopite megacrysts (up to 8 cm across); 4) coexistence of low-Cr (0.1-4wt. % Cr2O3, with 0.8-1.2 wt.% TiO2), and high-Cr (3-8 wt.% Cr2O3, with 0.1-0.6 wt.% TiO2) garnet megacrysts with contrasting REE patterns. The compositional features of groundmass minerals, the relatively low CaO and CO2 contents in kimberlites, and few deuteric alteration in Upper Muna kimberlites suggest high-temperature melt crystallization during pipe emplacement. Based on the compositional data of garnet and Cr-diopside from megacrysts and peridotites, we suggest a poor Cr dunite-harzburgitic and lherzolitic mantle source beneath the Upper Muna field where Cr-diopside crystallized within a wide P-T range (40-65 kbar and 900-1350 °C). Mineral geochemistry, trace element distribution and Sr-Nd isotope variations of Upper Muna kimberlites are typical for group I kimberlites and reflect a deep-seated asthenospheric (convective mantle) source for the kimberlites.
DS202108-1282
2019
Fedoraeva, A.S., Shatskiy, A., Litasov, K.D.The join CaCO3 -CaSiO3 at 6 Gpa with implication to Ca-rich lithologies trapped by kimberlitic diamonds. ** dateInternational Journal of High Pressure Research, Vol. 39, 4, pp. 547-560.RussiaUHP
DS202108-1283
2021
Fomina, E.N., Kozlov, E.N.Stable ( C, O) radiogenic ( Sr, Nd) isotopic evidence for REE- carbonatite formation processes in Petyayan-Vara ( Vuoriyarvi Massif, NW Russia).Lithos, Vol. 398-399, 17p. PdfRussiaREE

Abstract: A study of radiogenic (Sr, Nd) and stable (C, O) isotopic data for rare earth carbonatites from the Petyayan-Vara field of the Devonian Vuoriyarvi alkaline-ultrabasic massif is presented. The cumulative evidence indicates that the primary igneous rocks of the Petyayan-Vara area are burbankite-bearing magnesiocarbonatites having isotopic signatures of the depleted mantle (?Nd365Ma = 5.0, 87Sr/86Sr(i) = 0.7031, ?13C ca. -4‰, and ?18O ca. 11‰). Interaction of the primary carbonatite melt with the host silicate rocks produced high-Ti carbonatites with a mantle ?13C (ca. -4‰) and isotopically heavy ?18O (ca. 20‰). These rocks trapped K, Na, Mg, CO2, and rare earth elements (REEs) (mainly heavy REEs) from the melt and Si, Al, Fe, Ti, and P from the host rocks. Early post-magmatic exposure of burbankite-bearing carbonatites to a mixture of fluids of crustal and orthomagmatic carbonatite origin caused redistribution of REEs, Ba, and Sr and formation of REE-rich carbonatites with abundant ancylite mineralization. This effect did not disturb the Smsingle bondNd system but induced radiogenic Sr accumulation and a change in C and O isotopic composition towards heavier values. Later, but most likely before denudation, the Petyayan-Vara rocks underwent another metasomatic event involving crustal fluids infiltrating through fracture systems. This event triggered formation of bastnäsite-rich carbonatites with fewer REEs at the expense of ancylite-rich carbonatites, and changed all the isotopic systems in the affected rocks. This model successfully accounts for the evolution of all the carbonatite varieties discovered to date in the Petyayan-Vara field.
DS202108-1284
2021
Garanin, V., Garanin, K., Kriulina, G., Samosorov, G.Geological summary of kimberlites and related rocks in the Archangelsk diamondiferous region ( ADR).Book: Diamonds from the Arkangelk Province, NW Russia., July doi.10.1007/978-3-030-35717-7_1 30p.Russia, Archangelkimberlites

Abstract: The chapter headlines the historical perspective of discovering the Arkhangelsk Diamondiferous Region, previously was also called the Arkhangelsk Diamondiferous Province (hereinafter named ADR), offers the contemporary concept of the ADR geology, and location of kimberlite fields and magmatic rock bodies in its area. It describes the layout, structure, mineralogical characteristics and lithology of pipes from the Grib and Lomonosov deposits. It gives a snapshot of the alkaline ultrabasic rocks’ representatives from the Zimny Bereg area of the ADR that is not covered by the deposits.
DS202108-1295
2021
Lapin, A.V., Kulikova, I.M., Nabelkin, O.A.Surface formations in the weathering crusts of carbonatites: implication for the genesis of unique rare metal ores in the Tomtor deposit, Russia.Lithology and Mineral Resources, Vol. 56, pp. 356-374.Russiadeposit - Tomtor

Abstract: A comparative analysis of the composition and structure of the surface facies of carbonatite weathering crusts (profiles) in the Chuktukon (Russia) and Seis Lagos (Brazil) deposits and ultra-rich rare metal ores in the Tomtor deposit (Russia) is presented. It is shown that the main geochemical trends in the formation of the Tomtor-type ultra-rich rare metal ores and the surface facies of weathering profiles are opposite. The obtained results do not confirm the genetic link between the unique Tomtor ores and the surface facies of the crust of carbonatites, but serve as evidence of their later formation due to the reductive epigenesis of carbonatite weathering products under the influence of solutions draining the overlying coaliferous rocks. Wide distribution of the phenomena of colloidal liquid layering into manganese and ferruginous fractions was established for the first time in surface facies of the weathering crust of carbonatites, and active lateral colloidal migration of Ti from the host rocks was revealed.
DS202108-1301
2021
Nosova, A.A., Kopylova, M.G., Sazonova, L.V., Vozniak, A.A., Kargin, A.V., Lebedeva, N.M., Volkova, G.D., Peresetskaya, E.V.Petrology of lamprophyre dykes in the Kola alkaline carbonatite province.Lithos, Vol. 398-399. 106277Russia, Kola Peninsulacarbonatite

Abstract: The study reports petrography, bulk major and trace element compositions of lamprophyric Devonian dykes in three areas of the Kola Alkaline Carbonatite Province (N Europe). Dykes in one of these areas, Kandalaksha, are not associated with a massif, while dykes in Kandaguba and Turij Mys occur adjacent (< 5 km) to coeval central multiphase ultramafic alkaline?carbonatitic massifs. Kandalaksha dyke series consists of aillikites - phlogopite carbonatites and monchiquites. Kandaguba dykes range from monchiquites to nephelinites and phonolites; Turij Mys dykes represent alnöites, monchiquites, foidites, turjaites and carbonatites. Some dykes show extreme mineralogical and textural heterogeneity and layering we ascribe to fluid separation and crystal cumulation. Melt evolution of the dykes was modelled with Rhyolite-MELTS and compared with the observed order and products of the crystallization. Our results suggest that the studied rocks were related by fractional crystallization and liquid immiscibility. Primitive melts of aillikites or olivine melanephelinites initially evolved at P = 1.5-0.8 GPa without a SiO2 increase due to abundant clinopyroxene crystallization controlled by the CO2-rich fluid. At 1-1.1 GPa the Turij Mys melts separated immiscible carbonatite melt, which subsequently exsolved late carbonate-rich fluids extremely rich in trace elements. Kandaguba and Turij Mys melts continued to fractionate at lower pressures in the presence of hydrous fluid to the more evolved nephelinite and phonolite melts. The studied dykes highlight the critical role of the parent magma chamber in crystal fractionation and magma diversification. The Kandalaksha dykes may represent a carbonatite - ultramafic lamprophyre association, which fractionated at 45-20 km in narrow dykes on ascent to the surface and could not get more evolved than monchiquite. In contrast, connections of Kandaguba and Turij Mys dykes to their massif magma chambers ensured the sufficient time for fractionation, ascent and a polybaric evolution. This longevity generated more evolved rock types with the higher alkalinity and an immiscible separation of carbonatites.
DS202109-1474
2020
Ivanov, A.V., Corfu, F., Kamenetsky, V.S., Marfin, A.E., Vladykin, N.V.207 Pb-excess in carbonatitic baddeleyite as the result of Pa scavenging from the melt.Geochemical Perspectives Letters, Vol. 18, pp. 11-15. pdfRussia, Siberiadeposit - Guli

Abstract: For the last two decades, the end of the voluminous phase of eruptions of the Siberian Traps large igneous province has been constrained by a U-Pb date of discordant baddeleyite collected from the Guli carbonatite intrusion with the assumption that the discordance resulted from unsupported 207Pb. In this study we have re-analysed baddeleyite from the same intrusion and found two types of discordance: (1) due to 207Pb-excess, and (2) radiogenic lead loss from high U mineral inclusions. The former implies that baddeleyite is an efficient scavenger of protactinium during crystallisation, leaving the magma depleted in this element. Together with a published high precision U-Pb date of 252.24?±?0.08 Ma for the Arydzhansky Formation, our new date of 250.33?±?0.38 Ma for the Guli carbonatite constrains the total duration of the voluminous eruptions of the Siberian Traps LIP at 1.91?±?0.38 million years. The lower intercept of the (231Pa)/(235U) corrected discordance line yields a date of 129.2?±?65.0 Ma, which points to the widespread Early Cretaceous rifting in East and Central Asia.
DS202109-1486
2021
Ragozin, A.I., Agashev, A.M., Zedgenizov, D.A., Denisenko, A.A.Evolution of the lithospheric mantle beneath the Nakyn kimberlite field: evidence from garnets in the peridotite xenoliths of the Nyurba and Botuoba pipes.Geochemistry International, Vol. 59, 8, pp. 743-756. pdfRussia, Siberiadeposit - Nyurba, Botuoba

Abstract: The paper presents data on garnets from serpentinized peridotite xenoliths in the Nyurba and Botuoba kimberlite pipes of the Nakyn kimberlite field. The major and trace-element compositions of the garnets were analyzed to determine their compositional specifics and genesis. Based on the REE content and chondrite-normalized distribution patterns, the garnets are divided into two types with sinusoidal ((Sm/Er)n > 1) and normal ((Sm/Er)n < 1) REE distribution patterns. In terms of the Y, Zr, Ti, and Eu relations, and the shape of REE distribution pattern, all the garnets correspond to garnets of metasomatized peridotites, except for one sample falling into the field of depleted garnets of harzburgite-dunite paragenesis. The geochemical characteristics of the garnets record two types of metasomatic agents: carbonatite/fluid for type 1 garnets and silicate/melt for type 2 garnets. The carbonatite metasomatic agent produced harzburgitic garnet and its further transformation into lherzolitic garnet. Silicate metasomatism, which led to the formation of the REE pattern of type 2 garnets, likely overprinted two different types of garnets and, respectively, gave two evolutionary trends. These are depleted residual garnets and type 1 garnets previously subjected to carbonatite metasomatism. The low Y and Th contents in combination with the low Ti/Eu ratios in garnets suggest a moderate reworking of lithospheric peridotites by silicate melts, which is consistent with the high diamond grade of the Nakyn kimberlite field.
DS202109-1487
2021
Reguir, E.P., Salinkova, E.B., Yang, P., Chakmouradian, A.R., Stifeeva, M.V., Rass, I.T., Kotov, A.B.U-Pb geochronology of calcite carbonatites and jacupirangite from the Guli alkaline complex, Polar Siberia, Russia.Mineralogical Magazine, Vol. 85, 4, pp. 469-483.Russia, Siberiadeposit - Guli

Abstract: Mantle xenoliths from the Middle-Late Jurassic Obnazhennaya kimberlite are often compared with those from the Udachnaya kimberlite (ca. 367 Ma) to inform the evolution of the Siberia craton. However, there are no direct constraints on the timing of the Obnazhennaya kimberlite eruption. Such uncertainty of the kimberlite age precludes a better understanding of the mantle xenoliths from the Obnazhennaya pipe, and thus also of the evolution of the Siberia craton. This paper reports U-Pb ages for both perovskite from the Obnazhennaya kimberlite and rutile in an Obnazhennaya eclogite xenolith. The fresh perovskite formed during the early stage of magmatic crystallization and yields a U-Pb age of 151.8 ± 2.5 Ma (2?). Rutile in the eclogite xenolith yields an overlapping U-Pb age of 154.2 ± 1.9 Ma (2?). Because rutile has a Pb closure temperature lower than the inferred residence temperature of the eclogite prior to eruption, the U-Pb isotope system in rutile was not closed until the host eclogite was entrained and delivered to the surface by the kimberlite and therefore records the timing of kimberlite eruption. These data provide the first direct constraints on the emplacement age of the Obnazhennaya kimberlite and add to the global ‘kimberlite bloom’ from ca. 250-50 Ma as well as to the largest pulse of kimberlite volcanism in Siberia from ca. 171-144 Ma. The timing of this Jurassic-Cretaceous pulse coincides with the closure of the Mongol-Okhotsk Ocean, but the depleted Sr-Nd isotopic characteristics of 171-144 Ma kimberlites are inconsistent with a subduction-driven model for their petrogenesis. Thus, the closure of the Mongol-Okhotsk Ocean may act as a trigger for the initiation of 171-144 Ma kimberlite emplacement of Siberia, but was not the source.
DS202110-1599
2021
AlrosaAlrosa has completed the first phase of a study into kimberlites' ability to absorb CO2 from the atmosphereMining Magazine.com, Sept. 16, 1p.Russiacarbon
DS202110-1632
2021
Panikorovskii, T.L., Mikhailova, J.A., Pakhomovsky, y.A., Bazai, A.V., Aksenov, S.M., Kalashnikov, A.O., Krivovichev, S.V.Zr-rich eudialyte from the Lovozero peralkaline massif, Kola Peninsula, Russia.Minerals MDPI, Vol. 11, 982. 18p pdfRussia, Kola Peninsuladeposit - Lovozero

Abstract: The Lovozero peralkaline massif (Kola Peninsula, Russia) has several deposits of Zr, Nb, Ta and rare earth elements (REE) associated with eudialyte-group minerals (EGM). Eudialyte from the Alluaiv Mt. often forms zonal grains with central parts enriched in Zr (more than 3 apfu) and marginal zones enriched in REEs. The detailed study of the chemical composition (294 microprobe analyses) of EGMs from the drill cores of the Mt. Alluaiv-Mt. Kedykvyrpakhk deposits reveal more than 70% Zr-enriched samples. Single-crystal X-ray diffraction (XRD) was performed separately for the Zr-rich (4.17 Zr apfu) core and the REE-rich (0.54 REE apfu) marginal zone. It was found that extra Zr incorporates into the octahedral M1A site, where it replaces Ca, leading to the symmetry lowering from R3¯m to R32. We demonstrated that the incorporation of extra Zr into EGMs makes the calculation of the eudialyte formula on the basis of Si + Al + Zr + Ti + Hf + Nb + Ta + W = 29 apfu inappropriate.
DS202110-1634
2021
Proskumin, V.F., Grakhanov, S.A., Petrov, O.V., Vasiliev, E.A., Berzon, E.I., Antonov, A.V., Sobolev, N.V.Forecast of the diamond potential of Taimyr.Doklady Earth Sciences, Vol. 499, 2, pp. 611-615.Russiadeposit - Taimyr

Abstract: Although irrefutable evidence for the presence of signs of diamondiferous kimberlite on the Taimyr Peninsula were obtained in the 1930s, it was only in 2020 that a macrodiamond (>1 mm) was first discovered in Eastern Taimyr. This was a colorless laminar crystal of a transitional shape from an octahedron to a rhombododecahedron. According to the set of features, the crystal is rare and atypical of the known primary and alluvial deposits of the Siberian Diamond Province. The find of this diamond indicates the presence of primary sources and the need for medium-scale geological survey and exploration over a large area from Anabar Bay (Pronchishchev Ridge) to the west to the Kiryaka-Tas and Tulai-Kiryaka highlands and to the northeast to Tsvetkov Cape.
DS202110-1635
2021
Sharkov, E.V., Chistyakov, A.V., Bogina, M.M., Shchiptsov, V.V., Belyatsky, B.V., Frolov, P.V.Petrology of the Mid-Paleoproterozoic Tiksheozero ultramafic-alkaline-carbonatite complex, ( Northern Karelia).Petrology, Vol. 29, 5, pp. 475-501. pdfRussia, Kareliadeposit - Tiksheozero

Abstract: The paper reports first comprehensive geological, petrographic, mineralogical, and geochemical data on one of the world’s oldest Tiksheozero ultramafic?alkaline?carbonatite complex (~1.99 Ga), which belongs to the Mid-Paleoproterozoic igneous province of the Baltic Shield. The complex was formed in three intrusive phases. The first phase is composed of the low-alkali mafic?ultramafic rocks: dunites, wehrlites, clinopyroxenites, and gabbro. The rocks of the second phase are alkaline ultramafic rocks represented mainly by jacupirangites (alkaline clinopyroxenites) and foidolites (melteigites, ijoliltes, and urtites), with subordinate olivinites, alkaline gabbro, and nepheline syenites. The third intrusive phase is made up of carbonatites. Geochemical and mineralogical data indicate that all three phases were derived from different primary melts. It is shown that the nepheline syenites were obtained by fractionation of foidolites. A model of formation of such complexes through decompressional melting of mantle plume head enriched in carbonate fluid is proposed.
DS202110-1636
2021
Shi, Y-N., Li, Z-H., Chen, L., Morgan, J.P.Connection between a sublithocontinental plume and the mid-lithospheric discontinuity leads to fast and intense craton lithospheric thinning. Tectonics, e2021TC006711 22p. PdfAustralia, China, Canada, Russia, South Americacraton

Abstract: Removal and thinning of cratonic lithosphere is believed to have occurred under different tectonic settings, for example, near subduction zones and above mantle plumes. Subduction-induced cratonic modification has been widely discussed; however, the mechanisms and dynamic processes of plume-induced lithospheric removal remain elusive and require further systematic investigation. In this study, we conduct a series of 2-D thermo-mechanical models to explore the dynamics of the removal and thinning of cratonic lithosphere due to the interaction between a mantle plume and a weak mid-lithosphere discontinuity (MLD) layer. Our modeling results suggest that the interaction between a mantle plume and weak MLD layer can lead to a large-scale removal of the cratonic lithosphere as long as the connection between the hot upwelling and weak MLD layer is satisfied. The presence of a vertical lithospheric weak zone and its closeness to the plume center play critical roles in creating a connection between the weak MLD and hot plume/asthenosphere. Furthermore, delamination of cratonic lithosphere is favored by a larger plume radius/volume, a higher plume temperature anomaly, and a lower viscosity of the MLD layer. A systematic comparison between subduction-induced and plume-induced lithospheric thinning patterns is further conducted. We summarize their significant differences on the origin and migration of melt generation, the water content in melts, and topographic evolution. The combination of numerical models and geological/geophysical observations indicates that mantle plume-MLD interaction may have played a crucial role in lithospheric removal beneath South Indian, South American and North Siberian Cratons.
DS202110-1637
2021
Solovev, K.A., Golovin, A.V., Sharygin, I.S., Pokhilenko, N.P.Origin of epigenetic iron-rich olivine in lherzolite xenolith from the Udachnaya kimberlite pipe ( Siberian craton).Doklady Earth Sciences, Vol. 499, 2, pp. 619-622.Russiadeposit - Udachnaya

Abstract: Olivine is the most common rock-forming mineral of the majority of the lithospheric mantle rocks beneath ancient cratons. This study provides the information about an epigenetic olivine in a lherzolite xenolith from the Udachnaya kimberlite pipe (Siberian craton), which is characterized by lower Mg# compared to the rock-forming one (Mg# = 87.4). The iron-rich olivine has been observed in the epigenetic mineral assemblage that forms a kelyphite shell around the rock-forming garnet. Olivine from the kelyphite shell occurs as both homogeneous grains (Mg# = 84.3-85.9) and zoned grains (Mg# = 85.1-87.5). The major and minor elements asymmetric zoning patterns have been found in the rock-forming olivine grains at the contact with the kelyphite shell. These olivine grains have an outer low Mg# (up to 85.9) zone at the contact with the kelyphite shell as the epigenetic olivine grains in the kelyphite shell. We suggest that the iron-rich epigenetic olivine was produced as the result of a reaction between the rock-forming garnet and the primitive kimberlite melt. During this reaction, a hybrid melt was formed in the interstitial space. The hybrid melt was iron-enriched relative to the kimberlite melt. The source of iron for the micro-portions of the interstitial hybrid melt was the rock-forming garnet.
DS202110-1642
2021
Tychkov, N.S., Agashev, A.M., Pokhilenko, N.P.Lithospheric refertilization trends in xenoliths and xenocrysts from the Udachnaya kimberlite ( Siberian craton).Doklady Earth Sciences, Vol. 499, 2, pp. 634-638.Russiadeposit - Udachnaya

Abstract: Comprehensive studies of peridotitic xenoliths from the Udachnaya kimberlite (Yakutian diamond province, Siberian craton) confirm that garnet shows inverse correlation of its volumetric percentage with its Cr2O3 contents in refertilizated peridotites, but no such correlation is observed in depleted peridotites. The correlation relationship plots as an isosceles hyperbola, which is consistent with the existing knowledge of origin of refertilized peridotite. The bulk content of aluminum is proportional to the garnet percentage both in depleted and refertilized peridotites, but Al2O3 in the rock correlates with Cr2O3 in garnet only in the refertilized varieties, while the two parameters are independent in depleted mantle rocks. According to the modeling of refertilization-related composition changes in the Udachnaya peridotites, garnet percentages are directly proportional to the amount of clinopyroxene (Gnt = 0.879*Cpx + 0.022, R2 = 0.78) and inversely proportional to that of olivine (Gnt = 0.026/Ol3.141, R2 = 0.79). As the shares of Gnt and Cpx increase from minimum values, orthopyroxene first increases (to 0.16) and then decreases since 0.65 Ol, 0.09 Cpx, and 0.10 Gnt. This model can constrain the place of the parent rock in the refertilization series knowing Cr2O3 contents in separate garnet grains. The average refertilization degree of lithospheric mantle in the region estimated from the compositions of more than 800 garnet xenocrysts in the Udachnaya kimberlite is expressed in the rock modal composition as: Ol = 0.72, Opx = 0.15, Gnt = 0.07, and Cpx = 0.06 (median values).
DS202111-1761
2020
Chanturia, V.A., Dvoichenkova, G.P., Morozov, V.V., Kovalchuk, O.E., Podkamennyi, Yu.A., Yakolev, V.N.Selective attachment of luminophore-bearing emulsion at diamonds - mechanism analysis and mode selection.Journal of Mining Science, Vol. 56, 1, pp. 96-103, 8p. PdfRussialuminescence

Abstract: The authors present an efficient modification method of X-ray fluorescence separation with mineral and organic luminophores used to adjust spectral and kinetic characteristics of anomalously luminescent diamonds. The mechanism of attachment of luminophores at diamonds and hydrophobic minerals is proved, including interaction between the organic component of emulsions and the hydrophobic surface of a treated object and the concentration of insoluble luminophore grains at the organic and water interface. Selective attachment of the luminophore-bearing organic phase of emulsion at the diamond surface is achieved owing to phosphatic dispersing agents. Tri-sodium phosphate and sodium hexametaphosphate added to emulsion reduce attachment of the luminophore-bearing organic phase at the surface of kimberlite minerals. It is shown that phosphate concentration of 1.0-1.5 g/l modifies and stabilizes spectral and kinematic parameters of kimberlite mineral on the level of initial values. This mode maintains the spectral and kinematic characteristics of anomalously luminescent diamonds at the wanted level to ensure extraction of diamonds to concentrate.
DS202111-1766
2021
Garanin, V., Garanin, K., Kriulina, G., Samosorov, G.Diamonds from the Arkangelsk Province, NW Russia. ENGLISHSpringer Mineralogy http://www.springer.com/series/13488, Reference to the book only! Russia, Arkangelskdiamond - morphology

Abstract: Provides researchers the latest data on the Arkhangelsk and Yakutian Diamondiferous Provinces in Russia. Enriches readers’ understanding of diamond geology and its evolution. Illustrates the complete process of diamond formation in the Archangelsk Diamondiferous Provinces.
DS202111-1770
2021
Grishina, S., Goryainov, S., Oreshonkov, A., Karmanov, N.Micro-Raman study of cesanite ( Ca2Na3(OH)(SO4)3) in chloride segregations from Udachnaya-East kimberlites.Journal of Raman Spectroscopy, 11p. PdfRussiadeposit - Udachnay-East

Abstract: Cesanite (Ca2Na3(OH)(SO4)3), a rare mineral, has been found in a few places restricted to a geothermal field and caves. We report the new occurrence of cesanite in quite different geological site—within sulfate-rich melt inclusions in chloride segregations from kimberlites of Udachnaya-East pipe (Siberia). Two halite generations: ?esanite free and ?esanite-bearing, were distinguished in concentrically zonal segregations according to the results of the mineral and sulfate melt inclusion study by micro-Raman spectroscopy and SEM-EDS. We have applied the Raman spectroscopy and first principles calculations to understand structural and vibrational properties of cesanite daughter mineral in polyphase sulfate inclusions. Polarized spectra provided additional information on the overlapped components of the spectral profile. The Raman spectra of cesanite in the range of OH stretching vibrations are reported for the first time. The study aims to clarify the source of the Na-S-Cl-enrichment in the Udachnaya-East pipe, which is highly discussed.
DS202111-1772
2021
Legostaeva, Y.R., Gololobova, A.G.Long-term geochemical monitoring of the soil cover in the impact zone of diamond mining enterprises: a case study in the Nakyn kimberlite field, Russia.Environmental Monitoring Assessment, Vol. 193, 337, 6p. PdfRussiadeposit - Nakyn

Abstract: The most severe disturbance of the earth’s surface occurs when the open-cut method of mineral deposits mining is used. The geoecological situation was assessed based on the nature of the soil cover based on the example of an industrial site of a diamond mining and processing plant located in the permafrost zone. During the period from 2007 to 2018, the soil cover of the industrial site is characterized by polyelement contamination. In the surface, soil horizons were an increase in the concentrations of mobile forms of Mn, Zn, Cd, Cr, Co, and Ni. It is identified that AO, ABcr, and CR are the accumulation horizons if the soil profile is preserved. Mobile forms Mn, Zn, Ni, Cr, Co, and As can migrate along with the soil profile to a depth of 40-50 cm depending on the amount of soil organic matter, the degree of its decomposition, and the scale of the cryoturbation. Research in 2018 allowed us to localize and confirm the increase in the area of contamination of the industrial site. Areas with an extremely dangerous category of soil cover contamination increased by 3 times compared to 2014. The results obtained are the basis for a more detailed study of the horizons of geochemical accumulation and the creation of artificial geochemical barriers with the development of technologies for the subsequent extraction of useful components.
DS202111-1775
2021
Mikhailenko, D.S., Aulbach, S., Korsakov, A.V., Golovin, A.V., Malygina, E.V., Gerdes, A., Stepanov, A.S., Xu, Y-G.Origin of graphite-diamond bearing eclogites from Udachnaya kimberlite pipe.Journal of Petrology, Vol. 62, 8, pp. 1-32. pdfRussiadeposit - Udachnaya

Abstract: Kimberlite-borne mantle eclogites represent an important diamond source rock. Although the origin and stability of diamond, as opposed to its low-pressure polymorph graphite, have been studied for decades, their relationship in rare natural samples where both polymorphs coexist remains poorly constrained. To shed new light on this issue, seven graphite-diamond-bearing eclogites from the kimberlite pipe Udachnaya, Siberian craton were comprehensively investigated with respect to their petrography, mineral chemical composition and omphacite 87Sr/86Sr, acquired in situ by laser ablation multicollector inductively coupled plasma mass spectrometry. The calculated P-T conditions for basaltic group eclogites (Eu/Eu* < 1) correspond to a pressure range of 4•8-6•5?GPa and temperatures of 1060-1130?°C, whereas gabbroic eclogites with positive Eu- and Sr-anomalies have a smaller pressure variation (4•8-5•8?GPa), but a larger range in temperature (990-1260?°C). Reconstructed bulk compositions for gabbroic eclogites indicate an oceanic crustal origin for their protoliths, with accumulation of plagioclase and olivine ± clinopyroxene (gabbronorite or olivine gabbro). The protoliths of basaltic eclogites probably formed from the complementary residual melt. The presence of coesite and low Mg# in basaltic eclogites suggest that their light rare earth element depletion was the result of <10?% partial melting during subsequent subduction and emplacement into the cratonic lithosphere. Extremely unradiogenic 87Sr/86Sr (0•70091-0•70186 for six of seven samples) not only provides new evidence for the Archean age (2•5-2•9?Gyr) of Yakutian graphite-diamond-bearing eclogites and for formation of their protoliths in a depleted mantle source, but also suggests that they were not significantly metasomatically overprinted after their formation, despite their extended residence in the cratonic mantle lithosphere. The mineralogical and petrographic features indicate that the primary mineral association includes garnet, omphacite, ± coesite, ± kyanite, ± rutile, graphite, and diamond. Graphite occurs in the samples in the form of idiomorphic crystals (the longest dimensions being 0•4-1?mm) in garnet and kyanite and extends beyond their grain boundaries. Diamonds occur as octahedral cubic transparent, slightly colored or bright yellow crystals as large as 0•1-2?mm. Furthermore, idiomorphic and highly ordered graphite occurs as inclusions in diamond in four samples. The carbon isotope composition for diamond and graphite has a narrow range (?4 to ?6•6?‰) for both groups (gabbroic and basaltic), indicating a mantle source and limiting the role of subducted isotopically light biogenic carbon or reduction of isotopically heavy carbonate in diamond crystallization. Importantly, the presence of graphite and diamond inclusions in garnet, omphacite, and kyanite in three samples indicates a co-formation close in time to eclogitization. Combined, the petrographic and geochemical evidence suggests that both polymorphic carbon modifications can form in the diamond stability field, as also suggested by experiments and some natural examples, although the exact mechanism remains unresolved. Furthermore, this study provides natural evidence that graphite can be preserved (metastably) deep within the diamond stability field, without recrystallizing into diamond, for a long time, ?2•5?Gyr.
DS202111-1776
2021
Morozov, V.V., Dvoichenkova, G.P., Kovalenko, E.G., Chanturia, E.L., Chernysheva, E.N.The mechanism and parameters of froth flotation stimulation for diamond-bearing materials by thermal and electrochemical effects.Journal of Mining Science, Vol. 57, 2, pp. 286-297. pdfRussiaIPKON RAS

Abstract: The thermodynamic analysis and tests of minerogenesis under higher temperatures determine conditions of thermochemical decomposition of hydrophilic attachments on diamond surface. It is found that hydrophilic mineral attachments can be removed from diamond surface by combining thermal treatment of slurry at the temperature of 80-85 ?C with electrochemical treatment of recirculated water, which enables required change in ion-molecule composition of water phase in the slurry. The hybrid conditioning technology ensures recovery of the natural hydrophobic behavior and floatability of diamonds and enhances performance of froth flotation of diamonds by 5.1%.
DS202111-1778
2021
Nadolinny, V.A., Komarovskikh, A.Yu., Rakhmanova, M.I.,Yuryeva, O.P., Shatsky, V.S., Palyanov, Yu.N. Guskova, M.I.New data on the N1 nitrogen paramagnetic center in brownish type IaAB diamonds from Mir pipe.Diamond and Related Materials, Vol. 120, 108638 6p. PdfRussiadeposit - Mir

Abstract: In this work, two brownish crystals from the Mir pipe attributed to type IaAB have been examined by a complex of spectroscopic methods: electron paramagnetic resonance, infrared, and photoluminescence spectroscopies. A combination of features such as brownish color, optical system 490.7 nm, and paramagnetic centers W7 and 490.7 points out to plastic deformation of the crystals. The W7 is known to be formed as a result of destruction of A-aggregates during plastic deformation while part of the N3V centrers can be formed due to the disruption of the B-aggregates. The narrow-line EPR spectra from the nitrogen-related N3V centers and the P1 centers indicate that the crystals were annealed after plastic deformation. Another feature of the crystals studied is the observation of the well-known paramagnetic N1 center with only two magnetically inequivalent positions (i.e. with two magnetically inequivalent directions of the C1-N1 fragments) instead of the previously reported four. Possible transformation pathways of the W7 center (N1-C1-C2-N2+) into the N1 center (N1-C-N2+) during the post-deformation annealing are considered.
DS202111-1785
2021
Simakov, S., Stegnitskiy, Y.A new pyrope-based mineralogical-petrological method for identifying the diamond potential of kimberlite/lamproite deposits.Ore and Energy Resource Geology, Vol. 7, 100013 12p. PdfRussiamantle fluids

Abstract: P-T- Oxygen fugacity (fO2) conditions and fluid compositions were estimated for the formation conditions of pyrope garnet inclusions in diamonds and xenocrysts from diamond-bearing and diamond-free kimberlites using their total chemical analyses and single oxythermobarometry. Our data indicate that optimal conditions for diamond growth and preservation occur in the presumed water-rich mantle fluids containing the lowest abundance of free atomic carbon. The majority of the calculated C-H-O fluid compositions for diamond formation in peridotite xenoliths from high diamond grade kimberlites correspond to a high hydrogen and low carbon and oxygen atomic fluid percents, while those from the majority of peridotite xenoliths in the low grade diamond kimberlites corresponds to the low hydrogen, high carbon and oxygen atomic percent fluids. This new approach defines the conditions of diamond formation for kimberlitic deposits. It better characterizes diamond grades in kimberlites in comparison to the previous empirical mineralogical Ca-Cr methods and can be used as a more precise mineralogical-petrological method for prospecting for kimberlitic diamond deposits.
DS202111-1793
2021
Yakovlev, E., Puchkov, A.Radon over kimberlite pipes: estimation of the emanation properties of rocks ( Lomonosov diamond deposit, NW Russia).MDPI Applied Sciences, Vol. 11, 6065, 22p. PdfRussia, Arkangelskdeposit - Lomonosov

Abstract: In this paper, using the example of the Lomonosov diamond deposit, experimental studies of rocks were carried out to assess the main radiation and physical factors affecting the formation of the radon field over the kimberlite pipes of the Arkhangelsk diamondiferous province. For various types of rocks, represented by vent kimberlites, tuffaceous-sedimentary rocks of the crater and enclosing and overlying sediments, the following were studied: porosity, density, activity of radium-226, activity of radon in a free state, level of radon production, and emanation coefficient. The research results showed that the greatest amount of radon in a free state is produced by rocks of the near-pipe space, represented by the enclosing Vendian V2 deposits and characterized by high values of the emanation coefficient, radium activity, radon production level and porosity. This fact is associated with the structural and geological features of the near-pipe space, which was exposed to the impact of kimberlite magma on the host rocks. The lowest values of these parameters are characteristic of the kimberlites of the vent facies, which limits the formation of free radon in the body of the pipe. The results of the experimental studies create prospects for the development of emanation methods for searching for kimberlite pipes in the conditions of the Arkhangelsk diamondiferous province.
DS202112-1919
2021
Ashchepkov, I.V., Alymova, N.V., Loginova, A.M., Vladykin, N.V.. Kuligin, S.S., Mityukhin, S.I., Stegnitsky, Y.B., Prokopiev, S.A.Picroilmenites in Yakutian kimberlites: variations and genetic models.Lithos, Vol. 406-407. doi: 10.1016/j.lithos.2021.106499 77p. PdfRussiakimberlite genesis

Abstract: Major and trace element variations in picroilmenites from Late Devonian kimberlite pipes in Siberia reveal similarities within the region in general, but show individual features for ilmenites from different fields and pipes. Empirical ilmenite thermobarometry (Ashchepkov et al., 2010), as well as common methods of mantle thermobarometry and trace element geochemical modeling, shows long compositional trends for the ilmenites. These are a result of complex processes of polybaric fractionation of protokimberlite melts, accompanied by the interaction with mantle wall rocks and dissolution of previous wall rock and metasomatic associations. Evolution of the parental magmas for the picroilmenites was determined for the three distinct phases of kimberlite activity from Yubileynaya and nearby Aprelskaya pipes, showing heating and an increase of Fe# (Fe# = Fe / (Fe + Mg) a.u.) of mantle peridotite minerals from stage to stage and splitting of the magmatic system in the final stages. High-pressure (5.5–7.0 GPa) Cr-bearing Mg-rich ilmenites (group 1) reflect the conditions of high-temperature metasomatic rocks at the base of the mantle lithosphere. Trace element patterns are enriched to 0.1–10/relative to primitive mantle (PM) and have flattened, spoon-like or S- or W-shaped rare earth element (REE) patterns with Pb > 1. These result from melting and crystallization in melt-feeding channels in the base of the lithosphere, where high-temperature dunites, harzburgites and pyroxenites were formed. Cr-poor ilmenite megacrysts (group 2) trace the high-temperature path of protokimberlites developed as result of fractional crystallization and wall rock assimilation during the creation of the feeder systems prior to the main kimberlite eruption. Inflections in ilmenite compositional trends probably reflect the mantle layering and pulsing melt intrusion during melt migration within the channels. Group 2 ilmenites have inclined REE enriched patterns (10–100)/PM with La / Ybn ~ 10–25, similar to those derived from kimberlites, with high-field-strength elements (HFSE) peaks (typical megacrysts). A series of similar patterns results from polybaric Assimilation + fractional crystallization (AFC) crystallization of protokimberlite melts which also precipitated sulfides (Pb < 1) and mixed with partial melts from garnet peridotites. Relatively low-Ti ilmenites with high-Cr content (group 3) probably crystallized in the metasomatic front under the rising protokimberlite source and represent the product of crystallization of segregated partial melts from metasomatic rocks. Cr-rich ilmenites are typical of veins and veinlets in peridotites crystallized from highly contaminated magma intruded into wall rocks in different levels within the mantle columns. Ilmenites which have the highest trace element contents (1000/PM) have REE patterns similar to those of perovskites. Low Cr contents suggest relatively closed system fractionation which occurred from the base of the lithosphere up to the garnet–spinel transition, according to monomineral thermobarometry for Mir and Dachnaya pipes. Restricted trends were detected for ilmenites from Udachnaya and most other pipes from the Daldyn–Alakit fields and other regions (Nakyn, Upper Muna and Prianabarie), where ilmenite trends extend from the base of the lithosphere mainly up to 4.0 GPa. Interaction of the megacryst forming melts with the mantle lithosphere caused heating and HFSE metasomatism prior to kimberlite eruption.
DS202112-1921
2021
Buikin, A.J., Hopp, J., Verchovsky, A., Trieloff, M.The sources and evolution of fluid phases of Guli Massif carbonatites ( West Siberia): summarizing of noble gases, N2, CO2, H2O stepwise crushing data.Petrology, Vol. 29, 6, pp. 657-675. pdfRussia, Siberiadeposit - Guli Massif

Abstract: Here we present summarizing of isotopic compositions and element ratios of noble gases, nitrogen, carbon and hydrogen in carbonatites of different generations of the Guli massif (West Siberia, Russia) obtained by stepwise crushing. The data point to the subcontinental lithospheric mantle (SCLM) as a primary source of the fluid phase in Guli carbonatites. However, the estimated 40Ar/36Ar ratio in the Guli mantle source of about 5400 is similar to the Kola plume value of 5000 ± 1000 (Marty et al., 1998). One explanation of such a low estimated 40Ar/36Ar ratio in the mantle end-member with SCLM type helium (4??/3?? ~ 120000) and neon (21N?/22N?mantle ~ 0.7) is an admixture of atmospheric argon to the local mantle source. This assumption is supported by the Ar-Ne systematics as well as by the data for hydrogen isotopic composition. Early carbonatite differs significantly from the later ones by the concentration of highly volatile components, as well as by the isotopic compositions of carbon (CO2), argon, and hydrogen (H2O). The mantle component dominated in fluids at the early formation stages of the Guli massif rocks, whereas the late stages of carbonatite formation were characterized by an additional fluid source, which introduced atmospheric argon and neon, and most likely a high portion of CO2 with isotopically heavy carbon. The argon-neon-hydrogen isotope systematics suggest that the most plausible source of these late stage fluids are high temperature paleometeoric waters. The absence of a plume signature could be explained in terms that Guli carbonatites have been formed at the waning stage of plume magmatic activity with an essential input of SCLM components.
DS202112-1922
2021
Chepurov, A., Sonin, V., Shcheglov, D., Zhimulev, E., Sitnikov, S., Yelisseyev, A., Chepurov, A.Surface porosity of natural crystals after the catalytic hydrogenation.Crystals, Vol. 11, 1341 9p pdfRussiadeposit - Popigai

Abstract: The study of diamond surfaces is traditionally undertaken in geology and materials science. As a sample material, two natural diamond crystals of type Ia were selected, and their luminescence and nitrogen state was characterized. In order to etch the surface catalytic hydrogenation was performed using Fe particles as an etchant. Micromorphology of the surface was investigated by scanning electron and laser confocal microscopy. It was demonstrated that etching occurred perpendicular to the crystal surface, with no signs of tangential etching. The average depth of caverns did not exceed 20-25 ?m with a maximal depth of 40 ?m. It is concluded that catalytic hydrogenation of natural type Ia diamonds is effective to produce a porous surface that can be used in composites or as a substrate material. Additionally, the comparison of results with porous microsculptures observed on natural impact diamond crystals from the Popigai astrobleme revealed a strong resemblance.
DS202112-1925
2021
Danilov, K., Yakovlev, E., Afonin, N.Study of deep structure of the kimberlite pipe named after M. Lomonosov of the Arkhangelsk diamondiferous province obtained by joint using of passive seismic and radiometric methods.Pure and Applied Geophysics, Vol. 178, 10, pp, 3933-3952.Russia, Arkangelskdeposit - Lomonsov

Abstract: Kimberlite pipes are difficult to investigate due to their vertical orientation, conic shape and diverse physical characteristics and petrological compositions, all of which obstruct the use of magnetic methods, reflection and refraction seismic surveys to examine kimberlite pipes. Wherein the emplacement model for kimberlite pipes has important significance in resource geology and in mine design process. As a result, the development of new methods of investigating kimberlite pipes remains necessary. To that end, because the most stable characteristic of kimberlite pipes is their downward-tapering structure, the pipes can be more effectively examined by using methods offering high resolution and new indicators for prospecting. Herein, we present the results of jointly using passive seismic and radiometric methods to study the structure of a kimberlite pipe and its enclosing environment. In particular, we employed a microseismic sounding method, passive seismic interferometry, the H/V method, gamma spectrometry and emanation mapping to model the kimberlite pipe named after M. Lomonosov of the Arkhangelsk diamondiferous province. The combined use of those methods revealed an ore-controlled fault and probably a supply channel (i.e. dyke). The obtained model is correspondent to drill whole data and includes additional information about the structure and elastic properties of the studied pipe. Amongst its principal benefits, the proposed technique affords the possibility of discerning the primary elements of the kimberlite pipes and enclosing environments at depths from 30 m to 2 km, which can significantly increase the effectiveness of investigations into kimberlite pipes.
DS202112-1933
2020
Khokhryakov, A., Nechaev, D.V., Sokol, A.G.Microrelief of rounded diamond crystals as an indicator of the redox conditions of their resorption in a kimberlite melt.Crystals, Vol. 10, 12p. Pdf Russiadiamond morphology

Abstract: We conducted a detailed study of the morphology of diamond crystals partially dissolved in a water-bearing kimberlite melt at pressure of 6.3 GPa, temperature of 1400 °C, and two oxygen fugacities (fO2) corresponding to the Re-ReO2 buffer and near the magnetite-hematite (MH) buffer. The triangular etch pits on the {111} faces, which formed during experimental diamond dissolution, were found to completely correspond to negative trigons on natural diamond crystals in the shape and sidewalls inclination angle. Furthermore, two experimental fO2 values were associated with two relief types of the rounded tetrahexahedroid surfaces typical of natural rounded diamonds. Therefore, the surface microrelief on rounded natural diamond crystals was concluded to be an indicator of the redox conditions of natural diamond resorption.
DS202112-1939
2021
Lysakovskyi, V.V., Ivakhnenko, S.O.. Kovalenko, T., Burchenia, A.V. Morphology of diamond single crystals grown in Fe-Co-Ti(Zr)-C system.Journal of Crystal Growth, Vol. 578 126422 6p. pdfRussiadiamond morphology

Abstract: The morphology of diamond single crystals grown under high pressure and high temperature (5.5 - 6.5 GPa and 1400 - 1700 °C) in the Fe-Co-Ti(Zr)-C system was studied. For growth systems based on Fe-Co doped with Ti and Zr, the sequence of change of habit types can be represented as cube-octahedron ? tetragon-trioctahedron ? octahedron. It was showed that the highest quality crystals have a tetragon-trioctahedron-octahedral habit.
DS202112-1944
2021
Saveleva, V.B., Danilova, Y.,Bazarova, E.P., Danilov, B.S.Kimberlite-like rocks of the Urik-Iya graben, eastern Sayan region: mineral composition, geochemistry and formation conditions.Geodynamics & Tectonophysics, Vol. 11, 4, pp. 678-696.Russiadeposit - Sayan

Abstract: The study of the Bol’shaya Tagna alkaline-carbonatite massif and adjacent areas was focused on the mineral and chemical compositions of minerals, the distribution of petrogenic and trace elements in pyroxene-free alkaline picrites in veins and dikes dated at the late Riphean (circa 645 Ma), and comparison with the Bushkanai kimberlite-picrite dike. Phenocrysts in the pyroxene-free picrites are represented by olivine (replaced with serpentine) and phlogopite; the bulk is formed by serpentine, phlogopite, monticellite, calcite, etc .; xenocrysts of pyrope and chrome diopside are absent. Phlogopite and Cr-spinel from the picrites are chemically similar to these minerals in kimberlites, but the evolution of the spinel compositions corresponds to the titanomagnetite trend; monticellite is depleted in forsterite (Mg2SiO4). The rocks contain strontianite, burbankite, titanium andradite, calcirtite and Mn-ilmenite, which are not typical of kimberlites, but are inherent in carbonate-bearing ultramafic lamprophyres, ayllikites. The pyroxene-free picrites have low contents (wt %) of SiO2 (28.4?33.2), Al2O3 (3.2?5.6), and Na2O (0.01?0.05); relatively high contents of TiO2 (2.0?3.3), and ?2? (0.45?1.33); varying contents of MgO (16.1?24.1), ??? (12.9?22.8), ??2 (1.1?12.2), Ni (260?850 ppm), and Cr (840?2200 ppm); and Mg#=0.73?0.80. The contents of Th, U, Nb, Ta, La, and Ce in the veins are approximately two orders higher than those in the primitive mantle; the spectra of trace elements differ from the spectra of the South African and Yakuian kimberlites. In the pyroxene-free picrites and the rocks of the Bushkanai dike, the Nb/U, Nb/Th, Th/Ce, La/Nb, and Zr/Nb ratios are similar to those in ocean island basalts (OIB) and thus give evidence of the leading contribution of the recycled component into the source melt. In experiments conducted to investigate melting of carbonated garnet lherzolite, the pyroxene-free alkaline picrites melted at 5-6 GPa.
DS202112-1945
2021
Sharygin, I.S., Golovin, A.V., Dymshits, A.M., Kalugina, A.D., Solovev, K.A., Malkovets, V.G., Pokhilenko, N.P.Relics of deep alkali-carbonate melt in the mantle xenolith from the Komosomolskaya-Magnitnaya kimberlite pipe ( Upper Muna field, Yakutia).Doklady Earth Sciences, Vol. 500, 2, pp. 842-847.Russia, Yakutiadeposit - Komosomolskaya-Magnitnaya

Abstract: The results of study secondary crystallized melt inclusions in olivine of a sheared peridotite xenolith from the Komsomolskaya-Magnitnaya kimberlite pipe (Upper Muna field, Yakutia) are reported. Monticellite, phlogopite, tetraferriphlogopite KMg3(Fe3+)Si3O10(F,Cl,OH), apatite, aphthitalite K3Na(SO4)2, burkeite Na6CO3(SO4)2, and carbonates, namely calcite, nyerereite (Na,K)2Ca(CO3)2, shortite Na2Ca2(CO3)3, and eitelite Na2Mg(CO3)2, were detected among the daughter minerals of the melt inclusions by the method of confocal Raman spectroscopy. The abundance of alkali carbonates in the inclusions indicates the alkali-carbonate composition of the melt. Previously, identical inclusions of alkali-carbonate melt were reported in olivine of sheared peridotites from the Udachnaya pipe (Daldyn field). Melt inclusions in sheared peridotites are the relics of a crystallized kimberlite melt that penetrated into peridotites either during the transport of xenoliths to the surface or directly in the mantle shortly prior to the entrapment of xenoliths by the kimberlite magma. If the second scenario took place, the finds of alkali-carbonate melt inclusions in sheared peridotites carried from different mantle depths in the Udachnaya and Komsomolskaya-Magnitnaya kimberlite pipes indicate a large-scale metasomatic alteration of the lithospheric mantle of the Siberian Craton by alkaline-carbonate melts, which preceded the kimberlite magmatism. However, regardless of which of the two models proposed above is correct, the results reported here support the alkali-carbonate composition of primary kimberlite melts.
DS202112-1946
2022
Shatskiy, A., Bekhtenova, A., Arefiev, A.V., Podborodnikov, I.V., Vinogradova, Y.C., Rezvukin, D.I., Litasov, K.D.Solidus and melting of carbonated phlogopite peridotite at 3-6.5 Gpa: implications for mantle metasomatism.Gondwana Research, Vol. 101, 156-174. pdfRussiadeposit - Udachnaya

Abstract: It is well known that water significantly lowers mantle solidi. But it turns out this paradigm is not always true. Here, we studied the interaction of K-rich carbonate melts with the natural garnet lherzolite from the Udachnaya kimberlite (Russia) in the presence of water at 3.0-6.5 GPa, corresponding to depths of 100-200 km. We found that at ? 1100 °C, the metasomatic interaction consumes garnet, orthopyroxene, and melt to produce phlogopite ± K-richterite + magnesite ± dolomite. Besides, primary clinopyroxene is replaced by one with a lower amount of jadeite component. Thus, the addition of water to the K-rich carbonate melt, infiltrating the subcontinental lithospheric mantle, should yield its partial or complete disappearance accompanied by phlogopitization and carbonation. The studied systems have H2O/K2O = 2, like that in phlogopite, and therefore correspond to carbonated phlogopite peridotite under fluid-absent conditions. At 4.0-6.5 GPa, the solidus of carbonated phlogopite peridotite is controlled by the following reaction: phlogopite + clinopyroxene + magnesite = garnet + orthopyroxene + olivine + hydrous K-carbonatite melt, which is bracketed between 1100 and 1200 °C. At 3 GPa, the solidus temperature decreases to about 1050 °C presumably owing to the Ca-Mg exchange reaction, clinopyroxene + magnesite = orthopyroxene + dolomite, which stabilizes dolomite reacting with phlogopite at a lower temperature than magnesite. Our results suggest that the phlogopite- and carbonate-rich metasomatic vein networks, weakening rigid lithosphere and promoting continental rifting, could be formed as a result of infiltration of hydrous K-carbonatite melt at the base of subcontinental lithospheric mantle. Stretching and thinning of the cratonic lithosphere make geotherms warmer and shifts their intersections with the solidus of carbonated phlogopite peridotite to shallower depths. Consequently, the successive erosion of the continental lithosphere and ascent of the lithosphere-asthenosphere boundary during continental rifting should be accompanied by remelting of phlogopite-carbonate metasomes, upward percolation of K-rich melt, and its solidification at the front of the magmatic-metasomatic mantle system.
DS202112-1947
2021
Shumlyanskyy, L., Kamenetsky, V.S., Tsymbal, S.M., Wilde, S.A., Nemchin, A.A., Ernst, R.E.,Shumlianska, L.Zircon megacrysts from Devonian kimberlites of the Azov Domain, Eastern part of the Ukrainian Shield: Implications for the origin and evolution of kimberlite meltsLithos, Vol. 406-407. doi: 10.1016/j.lithos.2021.106528 12p. PdfRussiadeposit - Azov

Abstract: Zircon megacrysts are commonly found in kimberlites and, together with olivine, low-Cr garnet, pyroxene, phlogopite, and ilmenite megacrysts, they constitute a mineral assemblage known as the "low-Cr suite". The generally close similarity of ages and similar isotope geochemical characteristics of megacrysts and matrix minerals in the host kimberlites support a cognate origin. However, alteration rims commonly develop on zircon and ilmenite megacrysts, providing evidence for a lack of chemical equilibrium between the megacrysts and kimberlitic melts. Here, we report results of a detailed geochronological and geochemical study of zircon megacrysts found in the Middle Devonian Novolaspa kimberlite pipe and dyke located in the Azov Domain of the Ukrainian Shield. The concordia age of zircons is 397.0 ± 2.0 Ma, and it is 14 m.y. older than the age of kimberlite emplacement as defined by a Rb-Sr isochron on phlogopite. The average ?Hf(397) value for unaltered zircon megacrysts is 6.8 ± 0.14, with the alteration rims having similar Hf isotope systematics. These hafnium isotope data indicate a moderately depleted mantle source for zircon. Unaltered megacrystic zircons have low abundances of trace elements and fractionated REE, with pronounced positive Ce/Ce* anomalies and almost no Eu/Eu* anomalies. In contrast, alteration rims have very high and variable concentrations of trace elements, indicating a reaction between zircon and kimberlite melt. The melt or fluid responsible for zircon and ilmenite megacryst formation, in contrast to kimberlitic melt, was poor in incompatible trace elements, except for the HFSE (Zr, Hf, Nb, Ta, and Ti). The oxygen fugacity during crystallization of the megacryst suite was close to the FMQ buffer. Azov zircon megacrysts do not demonstrate close geochronological and isotope-geochemical similarities with their host kimberlites. They are cognate in the broad sense of being related to the same plume event, but their direct affinity is not clearly defined. The megacryst suite may have crystallized from the earliest melts/fluids that separated from the ascending mantle plume, whereas kimberlite magmas were emplaced 14 m.y. after this event.
DS202112-1951
2021
Sonin, V., Zhimulev, E., Chepurov, A., Gryaznov, I., Chepurov, A., Afanasiev, V., Poikilenko, N.Experimental etching of diamonds: extrapolation to impact diamonds from the Popigai Crater ( Russia)MDPI, Vol. 11, 11p. Pdf Russiadeposit - Popigai

Abstract: Diamond etching in high-temperature ambient-pressure experiments has been performed aimed to assess possible postimpact effects on diamonds in impact craters, for the case of the Popigai crater in Yakutia (Russia). The experiments with different etchants, including various combinations of silicate melts, air, and inert gases, demonstrated the diversity of microstructures on {111} diamond faces: negative or positive trigons, as well as hexagonal, round, or irregularly shaped etch pits and striation. The surface features obtained after etching experiments with kimberlitic diamonds are similar to those observed on natural impact diamonds with some difference due to the origin of the latter as a result of a martensitic transformation of graphite in target rocks. Extrapolated to natural impact diamonds, the experimental results lead to several inferences: (1) Diamond crystals experienced natural oxidation and surface graphitization during the pressure decrease after the impact event, while the molten target rocks remained at high temperatures. (2) Natural etching of diamonds in silicate melts is possible in a large range of oxidation states controlled by O2 diffusion. (3) Impact diamonds near the surface of molten target rocks oxidized at the highest rates, whereas those within the melt were shielded from the oxidizing agents and remained unchanged.
DS202112-1953
2018
Ugapeval, S., Molotkov, A., Popov, V.Vibration spectroscopy of central olivine inclusions in a diamond.Mineral Processing, conf. paper 7p. PdfRussiadeposit - Sytykan

Abstract: The results of studying characteristics of IR and Raman spectra of a diamond plate from the Sytykan pipe with central olivine inclusions are presented. The correlation between changes in the content of nitrogen defects and the internal stress of individual diamond growth zones is provided by IR spectroscopy. The total nitrogen content as A and B1 defects has a range from 81 ppm to 1075 ppm. Area of decreased nitrogen defects concentration in the centre of the diamond plate corresponds to the local pressure around the olivine inclusion. The results of the Raman spectroscopy of this sample showed that the olivine inclusion is stressed. In this connection, the maximum shift of the most intensive bands of SiO4 stretching vibrations is ?? = 5 ± 0.09 and 4 ± 0.12 cm-1, which corresponds to the internal residual pressure in the inclusion of Pi = 1.64 ± 0.1 GPa calculated by formulas given in (Izraeli, 1999; Yasuzuka, 2009). According to Izraeli, E. S. (1999) and the obtained results of Pi the pressure of diamond crystallization Pf = 6,4 ± 0,5 GPa at the model growth temperature of 1200°C is calculated. The area of diamond and inclusion contact zone is identified (bright yellow) by the Raman mapping, it exhibits wide bands 655 - 792 cm-1, typical for non-crystalline material such as Si2O(OH)6 dimers and Si(OH)4 monomers in an aqueous fluid (Nimis et al., 2016).
DS202112-1959
2021
Zubov, A.A., Shumilova, T.C., Zhuravlev, A.V., Isaenko, S.I.X-ray computed microtomography of diamondiferous impact suevitic breccia and clast poor melt rock from the Kara astrobleme ( Pay-Khoy, Russia).American Mineralogist, Vol. 106, pp. 1860-1870.Russiaastrobleme

Abstract: X-ray computed microtomography (CT) of impact rock varieties from the Kara astrobleme is used to test the method’s ability to identify the morphology and distribution of the rock components. Three types of suevitic breccias, clast-poor melt rock, and a melt clast from a suevite were studied with a spatial resolution of 24 µm to assess CT data values of 3D structure and components of the impactites. The purpose is first to reconstruct pore space, morphology, and distribution of all distinguishable crystallized melt, clastic components, and carbon products of impact metamorphism, including the impact glasses, after-coal diamonds, and other carbon phases. Second, the data are applied to analyze the morphology and distribution of aluminosilicate and sulfide components in the melt and suevitic breccias. The technical limitations of the CT measurements applied to the Kara impactites are discussed. Because of the similar chemical composition of the aluminosilicate matrix, glasses, and some lithic and crystal clasts, these components are hard to distinguish in tomograms. The carbonaceous matter has absorption characteristics close to air, so the pores and carbonaceous inclusions appear similar. However, X-ray microtomography could be used to prove the differences between the studied types of suevites from the Kara astrobleme using structural-textural features of the whole rock, porosity, and the distributions of carbonates and sulfides.
DS202201-0020
2021
Kargin, A., Bussweiler, Y., Nosova, A., Sazonova, L., Berndt, J., Klemme, S.Titanium-rich metasomatism in the lithospheric mantle beneath the Arkangelsk diamond province, Russia: insights from ilemenite-bearing xenoliths with HP-HT reaction experiments.Contributions to Mineralogy and Petrology, Vol. 176, 12, Russia, Arlangelskdeposit - Grib

Abstract: To provide new insights into the interaction of ultramafic alkaline melts with the subcontinental lithospheric mantle, we present results of a petrographical-mineralogical study of ilmenite-bearing mantle xenoliths from the Grib kimberlite, Archangelsk, Russia along with results from reaction experiments between harzburgite and Fe-Ti bearing carbonate-silicate melts similar to aillikite. The compositions of orthopyroxene, ilmenite and garnet from our mantle xenoliths are similar to compositions of minerals of the low-Cr megacryst suite from different kimberlite occurrences worldwide including the Grib kimberlite as well as minerals from sheared lherzolite xenoliths captured by the Grib kimberlite. This suggests that ilmenite-bearing xenoliths, megacrysts, and sheared lherzolite xenoliths could have a common origin and/or formed under similar conditions. The reaction experiments were performed at 4 GPa and 1200 °C with varying proportions of aillikite (0, 10, and 50 wt%) that reacted with harzburgite. The experimental runs with 10% and 50% aillikite resulted in two layers within the capsule, with an ilmenite-bearing reaction zone at the contact between aillikite and harzburgite, and an ilmenite-free zone characterized by higher garnet and clinopyroxene abundances. An increase of aillikite melt is directly correlated with increasing TiO2 and decreasing Cr2O3 contents and Mg# values in the mineral phases, most significantly for pyroxenes. Overall, the experiments produce a chemical gradation of minerals from Cr-rich (Fe-Ti-poor) to Cr-poor (Fe-Ti-rich) which is strikingly similar to the chemical gradation observed in minerals from natural mantle-derived xenoliths from kimberlites. In summary, comparison of our experimental data with natural samples indicates possible links between the generation of megacrysts and Ti-rich metasomatism of the lithospheric mantle by ultramafic alkaline (aillikite-related) melts and their possible evolution towards kimberlites. Our results illustrate the importance of melt-rock ratios in generating the mineralogical and chemical diversity in mantle xenolith suites.
DS202201-0021
2021
Kitiyama, Y., d'Eyrames, E.Geochemical evidence for carbon and chlorine enrichments in the mantle source of kimberlites ( Udachnaya pipe, Siberian craton).Geochimica et Cosmochimica Acta, Vol. 315, pp. 295-316.Russia, Siberiadeposit - Udachnaya

Abstract: Deep, carbonate-rich melts are key constituents of kimberlites and are crucial for understanding the cycle of volatile elements in the mantle. On the Siberian craton, the Udachnaya-East kimberlite hosts extremely well-preserved nodules composed of chlorides + carbonates + sulfates, that do not present any relict sedimentary textures. These salty nodules display textures that are commonly observed in quenched liquids and may thus represent the very last stage liquid of the kimberlite. Alternatively, they could represent assimilated sedimentary material, or even post-magmatic hydrothermal alteration, because kimberlites are known to ascend through the lithosphere while assimilating material from their wall rocks. Here we focus specifically on those chloride-carbonate nodules, which are composed of 70% chloride + 30% alkali-carbonate and sulfate, and used two radiogenic systems (Rb-Sr, Sm-Nd) and the isotopic composition of sulfur, in addition to their major and trace element compositions (n = 3). We then compared the results with the same geochemical data on host kimberlites (n = 4), sedimentary cover (n = 3) and hydrothermal veins (n = 3). Taken together, our results show that the nodules are not the product of a contamination by the Cambrian sedimentary cover. Trace element patterns of the nodules display extreme enrichments in the same elements that are relatively depleted in the host kimberlite but also in kimberlites worldwide (K, Rb, Sr, Pb), suggesting that chloride-carbonate nodules are snapshots of the latest stage liquid present in the kimberlite system. Their isotopic compositions (Rb-Sr, Sm-Nd and ?34S) are consistent with a common magmatic source with their host kimberlite. We propose that chloride-carbonate nodules record a missing compositional endmember, which could explain the trend towards more radiogenic Sr isotope ratios at nearly constant Nd signatures observed in their host kimberlite, as well as in other kimberlites worldwide. This observed trend suggests the presence of a recycled component with high Rb/Sr (such as salts or terrigenous sediments) in the mantle sampled by some kimberlites, either in the lithosphere or the asthenosphere. This study highlights that the role of alkalies and halogens may have been underestimated in the genesis of kimberlites at depths where diamonds are stable, as well as in more evolved magmatic stages. Segregations of chlorides and carbonates occur specifically in sulfate-bearing kimberlites, which may thus sample a mantle domain in which sulfates with ?34S > 0‰ are dominant. The existence of such a reservoir could explain the apparent imbalance observed between the chondritic value (?34S of 0‰) and the negative S isotopic compositions of mantle sulfides (MORB and peridotites).
DS202201-0044
2021
Toyama, C., Sumino, H., Okabe, N., Ishikawa, A., Yamamoto, J., Kaneoka, I., Muramatsu, Y.Halogen heterogeneity in the subcontinental lithospheric mantle revealed by I/Br ratios in kimberlites and their mantle xenoliths from South Africa, Greenland, China, Siberia, Canada and Brazil.American Mineralogist, Vol. 106, pp. 1890-1899.Africa, South Africa, Europe, Greenland, China, Russia, Siberia, Canada, South America, Brazilsubduction, metasomatism

Abstract: To investigate halogen heterogeneity in the subcontinental lithospheric mantle (SCLM), we measured the concentrations of Cl, Br, and I in kimberlites and their mantle xenoliths from South Africa, Greenland, China, Siberia, Canada, and Brazil. The samples can be classified into two groups based on halogen ratios: a high-I/Br group (South Africa, Greenland, Brazil, and Canada) and a low-I/Br group (China and Siberia). The halogen compositions were examined with the indices of crustal contamination using Sr and Nd isotopes and incompatible trace elements. The results indicate that the difference between the two groups was not due to different degrees of crustal contamination but from the contributions of different mantle sources. The low-I/Br group has a similar halogen composition to seawater-influenced materials such as fluids in altered oceanic basalts and eclogites and fluids associated with halite precipitation from seawater. We conclude that the halogens of the high-I/Br group are most likely derived from a SCLM source metasomatized by a fluid derived from subducted serpentinite, whereas those of the low-I/Br group are derived from a SCLM source metasomatized by a fluid derived from seawater-altered oceanic crust. The SCLM beneath Siberia and China could be an important reservoir of subducted, seawater-derived halogens, while such role of SCLM beneath South Africa, Greenland, Canada, and Brazil seems limited.
DS202201-0048
2021
Zinchenko, V.N., Ivanov, A.S., Ashepkov, I.V.Composition of the diamond indicator minerals on the Mitchell chart - criteria of CLIPPIR diamonds in kimberlites and conditions of their mantle crystallization.Acta Geologica Sinica, Vol. 95, 1, pp. 121-124.Russiaindicator minerals
DS202202-0186
2021
Adushkin, V.V., Goev, A.G., Sanina, I.A., Fedorov, A.V.The deep velocity structure of the Central Kola Peninsula obtained using the receiver function technique.Doklady Earth Sciences, Vol. 501, pp. 1049-1051.Russia, Kola Peninsulageophysics - seismics

Abstract: New results are presented on the features of the deep velocity structure of two of the three main tectonic blocks that make up the Kola region-Murmansk and Belomorskii-by the P receiver function technique. The research is based on data from the broadband seismic stations Teriberka and Kovda. The results are compared with the models obtained by mutual inversion of PRF and SRF using the data from the stations Apatity and Lovozero. It is shown that the crust has a two-layer structure with the border at a depth of 11 km under the Murmansk block and at a depth of 15 km under the Kola and Belomorskii blocks. The crust thickness of the Murmansk, Belomorskii, and Kola blocks are 35, 33, and 40 km, respectively. The presence of the MLD was revealed in all tectonic structures analyzed for the first time, with a top at a depth of about 70 km for the Murmansk and Belomorskii blocks and 90 km for the Kola block and a bottom at 130-140 km for all structures.
DS202202-0198
2021
Kogarko, L.N.Geochemistry of rare earth metals in the ultrabasic-alkaline-carbonatite complex of the Kugda ( Polar Siberia).Doklady Earth Sciences, Vol. 501, pp. 1020-1022.Russia, Siberiadeposit - Kugda

Abstract: The distribution patterns of rare earth metals (REM) in the rocks of the Kugda massif (Polar Siberia) are assessed. The REM content decreases from early olivinite rocks, containing, on average, 1938 ppm, to the end products of syenite differentiation and increases again in carbonatites. The difference in the distribution coefficients of light and heavy rare earth metals is the reason for the noticeable fractionation of these elements during the evolution of the magmatic system of the Kugda massif. The ratio of light REM to heavy Ce/Yb drops by almost an order of magnitude in later differentiation products. The main process of the Kugda massif formation was continuous crystallization differentiation, characterized by a wide crystallization field of perovskite. An interesting feature of the process is the very early crystallization of perovskite, associated with the high potential of carbon dioxide.
DS202202-0199
2021
Konishhchev, V.S., Kovkhuto, A.M.Criteria and prospects of diamonds of the Vitebsk granulite massif.Journal of the Belarusian State University. Geography and Geology, Title onlyRussiadeposit - Vitebsk

Abstract: The article describes the history of studying the diamond content of tectonic structures of the territory of Belarus. Based on the results of magnetometric, mineralogical, tectonic studies carried out by industrial geologists and scientists over the past 50 years, new scientifically substantiated criteria for the search for explosion pipes have been developed using Clifford’s rule, according to which kimberlite explosion pipes are developed within the Archean cratons, where the thickness of the lithosphere is 175–270 km, and are absent in the zones of Early Proterozoic stabilisation and tectonomagmatic activation. Explosion tubes on the African-Arabian, East Siberian, Sino-Korean and East European platforms demonstrate their confinement to the Archean cratons and may be associated with zones of paleosubduction of the Proterozoic oceanic crust beneath the Archean cratons. Based on this, the authors scientifically substantiated the hypothesis that during the closure of the Early Proterozoic paleoocean separating the Fenno-Scandinavian craton from the Volga-Ural and Sarmatian cratons, subduction of the younger crust took place under these cratons, the southwestern corner of which on the territory of Belarus is the Vitebsk granulite massif. The article concludes that the Vitebsk granulite massif is the most promising in terms of diamond-bearing on the territory of Belarus, and within its limits – the Smolensk regional deep fault at the intersection of this fault of northeastern striking with the Odessa-Gomel regional deep fault of submeridional striking south of the city of Orsha. Recommendations are given for further study of promising areas in order to determine their diamond content.
DS202202-0200
2022
Kopylova, M.G.What lamprophyres teach us about kimberlites: lessons from the Kola Peninsula alkaline carbonatitic province.VKC zoom meeting, Feb. 8 6pm PST https://us02web.zoom.us/j/8862150863?pwd=c09uSEhEckRpWU8rQlEvQ1Rrb01WQT09 Meeting ID: 886 215 0863 Passcode: n2LWa3Russia, Kola Peninsulacarbonatite
DS202202-0201
2022
Kostrivitsky, S.I., Yakolev, D.A., Sharygin, I.S., Gladkochub, D.P., Donskaya, T.V., Tretiakova, I.G., Dymshits, A.M.Diamondiferous lamproites of Ingashi field, Siberian craton.Geological Society of London Special Publication 513, pp. 45-70.Russialamproites

Abstract: Ingashi lamproite dykes are the only known primary sources of diamond in the Irkutsk district (Russia) and the only non-kimberlitic one in the Siberian craton. The Ingashi lamproite field is situated in the Urik-Iya graben within the Prisayan uplift of the Siberian craton. The phlogopite-olivine lamproites contain olivine, talc, phlogopite, serpentine, chlorite, olivine, garnet, chromite, orthopyroxene, clinopyroxene as well as Sr-F-apatite, monazite, zircon, armolcolite, priderite, potassium Mg-arfvedsonite, Mn-ilmenite, Nb-rutile and diamond. The only ultramafic lamprophyre dyke is composed mainly of serpentinized olivine and phlogopite in the talc-carbonate groundmass and is similar to Ingashi lamproites accessory assemblage with the same major element compositions. Trace element and Sr-Nd isotopic relationships of the Ingashi lamproites are similar to classic lamproites. Different dating methods have provided the ages of lamproites: 1481 Ma (Ar-Ar phlogopite), 1268 Ma (Rb-Sr whole rock) and 300 Ma (U-Pb zircon). Ingashi lamproite ages are controversial and require additional study. The calculated pressure of 3.5 GPamax for clinopyroxenes indicates that lamproite magma originated deeper than 100 km. A Cr-in-garnet barometer shows a 3.7-4.3 GPamin and derivation of Ingashi lamproites deeper than 120 km in depth. Based on the range of typical cratonic geotherms and the presence of diamonds, the Ingashi lamproite magma originated at a depth greater than 155 km.
DS202202-0215
2021
Shatsky, V.S., Ragozin, A.L., Sitnikova, E.S.The nature of heterogeneity of high-chromium garnets in xenolite of deformed lherzolite from Udachnaya kimberlite pipe ( Yakutia).Doklady Earth Sciences, Vol. 501, pp. 1029-1037.Russia, Yakutiadeposit - Udachnaya

Abstract: Significant variations in the composition of garnets, both within individual grains and in the rock, are found in the xenolith of deformed garnet lherzolite from the Udachnaya kimberlite pipe. The central parts of the grains, corresponding in composition to the garnets of the lherzolite paragenesis, demonstrate a sinusoidal distribution of rare earth elements (REEs). At the same time, the edge portions have a distribution characteristic of garnet mega-crystals from kimberlites. Despite being depleted in Y and HREE, the cores are enriched in light rare earth elements, Nb, Ta, Th, and U relative to garnet from primitive garnet peridotite. In terms of the REE distribution, the model melts, which are in equilibrium with the edge parts of garnet, are close to kimberlite but are significantly enriched in comparison with kimberlite in Nb, Ta, and Hf and depleted in Sr. Melts in equilibrium with the central parts of garnet are characterized by a steeper negative slope in the region of heavy and medium REEs and approach kimberlite in the region of light REEs. Based on the data obtained, several stages in the evolution of deformed garnet lherzolite are distinguished. The first stage involves the interaction of depleted peridotite with a melt similar in composition to carbonatite melts. This stage is associated with the formation of garnet with a sinusoidal REE distribution. At the next stage, which was preceded by the dissolution of garnet grains, garnet rims with increased Ti, Zr, and Y contents were formed and clinopyroxene appeared. At the final stage, garnet melted, caused by the inflow of a water-carbon dioxide fluid with a high potassium content, leading to polymineral inclusions and kelyphite rims.
DS202202-0225
2022
Yakovlev, D.A., Kostrovistsky, S.I., Fosu, B.R., Ashchepkov, I.V.Diamondiferous kimberlites from recently explored Upper Muna field ( Siberian craton): petrology, mineralogy and geochemistry insights,Geological Society of London Special Publication 513, pp. 71-102.Russia, Siberiadeposit - Muna

Abstract: Petrographic, geochemical and mineralogical characteristics of diamond deposits from the Upper Muna field have been investigated. Geochemically, diamondiferous kimberlites from Upper Muna belong to the most widespread Fe-Mg-rich rocks in the Yakutian kimberlite province (average FeOtotal = 8.4 wt%, MgO = 32.36 wt%, TiO2 = 1.6 wt%). Striking mineralogical features of Upper Muna kimberlites are: (1) abundance of monticellite and perovskite in the groundmass; (2) rare occurrence of Mg-ilmenite; (3) abundance of phlogopite megacrysts (up to 8 cm across); and (4) coexistence of low-Cr (0.1-4 wt% Cr2O3, with 0.8-1.2 wt% TiO2) and high-Cr (3-8 wt% Cr2O3, with 0.1-0.6 wt% TiO2) garnet megacrysts with contrasting rare earth element patterns. The compositional features of groundmass minerals, the relatively low CaO and CO2 contents in kimberlites and few deuteric alteration in Upper Muna kimberlites suggest high-temperature melt crystallization during pipe emplacement. Based on the compositional data of garnet and Cr-diopside from megacrysts and peridotites, we suggest a poor Cr dunite-harzburgitic and lherzolitic mantle source beneath the Upper Muna field where Cr-diopside crystallized within a wide pressure and temperature range (40-65 kbar and 900-1350°?). The mineral geochemistry, trace element distribution and Sr-Nd isotope variations of Upper Muna kimberlites are typical for group I kimberlites and reflect a deep-seated asthenospheric (convective mantle) source for the kimberlites.
DS202203-0342
2022
Dergachev, A.L.The mineral resource sectors of BRICS countries: mutual supples and regulation of the global market of mineral raw materials. *** not specific to diamondsMoscow University Bulletin, Vol. 76, 5, pp. 471-481.South America, Brazil, Russia, India, Chinalegal

Abstract: The mineral resource sectors of BRICS countries complement each other perfectly; one of the possible areas for their cooperation in this field is the expansion of mutual trade in mineral commodities and metals in order to provide continuous supplies and price stability. In 2006-2018, the principal beneficiaries of such cooperation were Republic of South Africa and Brazil, which managed to sharply increase their exports of mineral commodities. At the same time, close cooperation with these countries allowed China to become the largest purchaser of mineral commodities and metals in the global market, to ensure continuous supplies and price stability, and to obtain access to mineral resources of the other countries from the organization. However, the expectations of future cooperation among BRICS countries relating to regulation of the global market of mineral resources were to be too high for a number of reasons.
DS202203-0355
2022
Loginova, A.M., Serebryannikov, A.O., Sobolev, N.V.Compositional variations and rare paregeneses of multiple magnesiochromite inclusions in Yakutian diamonds.Doklady Earth Sciences, Vol. 501, pt. 1, pp. 919-924. pdfRussia, Yakutiacathodluminescence

Abstract: The zoning of diamonds was studied using cathodoluminescence (CL) and the chemical composition of mineral inclusions in six typical diamonds from kimberlites of Yakutia. The diamonds were ground on special equipment until inclusions with dimensions of 10-200 ?m were brought to the surface. The inclusions are characterized by a morphology reflecting the influence of the host diamonds. Multiple inclusions and intergrowths of magnesiochromite, olivine, pyrope, and phlogopite are located in both the central and peripheral zones of diamonds. In three diamonds, significant differences in the composition of magnesiochromites in different growth zones were observed, while in the other three such differences were not found. The overwhelming majority (five out of the six diamonds studied), according to the compositional features of magnesiochromite, olivine, and phlogopite, belong to the dunite-harzburgite paragenesis prevailing in diamonds from various diamond-bearing provinces of the Earth. In one of the diamonds, a lherzolite paragenesis, identified by the composition of the pyrope inclusion in magnesiochromite, was observed for the first time. The complex history of diamond growth and the variations in the chemical composition of the included minerals indicate the possibility of coexistence of syngenetic and protogenetic inclusions in the same diamond crystal.
DS202203-0356
2022
Manuilova, E.A.The relationships of the dislocations of the basement and sedimentary cover with the newest structural plan of the west Siberian plate.Moscow University Bulletin, Vol. 76, 5, pp. 425-500.Russiacraton

Abstract: Comparison of the newest structural plan of the West Siberian Plate with the dislocations of the basement and sedimentary cover allowed us to rank the latest plicative and disjunctive structures by the degree of inheritance. As a result, the inherited, reversed, and newly formed plicative structural forms were distinguished. It is shown that the orientation of ancient structures differs from the modern ones and the inheritance occurs only fragmentarily. The inherited and newly formed faults were distinguished by comparison of the newest faults with the ancient ones. The discovered inherited newest structures may be considered as promising areas for prospecting for hydrocarbon deposits.
DS202203-0365
2022
Shiryaev, A., Pavlushin, A., Pakhnevich, A.V., Kovalenko, E.S., Averin, A., Ivanova, A.G.Vol. Structural pecularities, mineral inclusions, and point defects in yakutites - a variety of impact-related diamond.Meteoritics & Planetary Science, 15p. PdfRussiadeposit - Popogai

Abstract: An unusual variety of impact-related diamond from the Popigai impact structure - yakutites - is characterized by complementary methods including optical microscopy, X-ray diffraction, radiography and tomography, infra-red, Raman and luminescence spectroscopy providing structural information at widely different scales. It is shown that relatively large graphite aggregates may be transformed to diamond with preservation of many morphological features. Spectroscopic and X-ray diffraction data indicate that the yakutite matrix represents bulk nanocrystalline diamond. For the first time, features of two-phonon infra-red absorption spectra of bulk nanocrystalline diamond are interpreted in the framework of phonon dispersion curves. Luminescence spectra of yakutite are dominated by dislocation-related defects. Optical microscopy supported by X-ray diffraction reveals the presence of single crystal diamonds with sizes of up to several tens of microns embedded into nanodiamond matrix. The presence of single crystal grains in impact diamond may be explained by CVD-like growth in a transient cavity and/or a seconds-long compression stage of the impact process due to slow pressure release in a volatile-rich target. For the first time, protogenetic mineral inclusions in yakutites represented by mixed monoclinic and tetragonal ZrO2 are observed. This implies the presence of baddeleyite in target rocks responsible for yakutite formation.
DS202203-0373
2022
Yakovlev, D.A., Kostrovistsky, S.I., Fosu, B.R., Ashchepkov, I.V.Diamondiferous kimberlites from recently explored Upper Muna field ( Siberian craton): petrology, mineralogy and geochemistry insights,Geological Society of London Special Publication 513, pp. 71-102.Russia, Siberiadeposit - Muna

Abstract: Petrographic, geochemical and mineralogical characteristics of diamond deposits from the Upper Muna field have been investigated. Geochemically, diamondiferous kimberlites from Upper Muna belong to the most widespread Fe-Mg-rich rocks in the Yakutian kimberlite province (average FeOtotal = 8.4 wt%, MgO = 32.36 wt%, TiO2 = 1.6 wt%). Striking mineralogical features of Upper Muna kimberlites are: (1) abundance of monticellite and perovskite in the groundmass; (2) rare occurrence of Mg-ilmenite; (3) abundance of phlogopite megacrysts (up to 8 cm across); and (4) coexistence of low-Cr (0.1-4 wt% Cr2O3, with 0.8-1.2 wt% TiO2) and high-Cr (3-8 wt% Cr2O3, with 0.1-0.6 wt% TiO2) garnet megacrysts with contrasting rare earth element patterns. The compositional features of groundmass minerals, the relatively low CaO and CO2 contents in kimberlites and few deuteric alteration in Upper Muna kimberlites suggest high-temperature melt crystallization during pipe emplacement. Based on the compositional data of garnet and Cr-diopside from megacrysts and peridotites, we suggest a poor Cr dunite-harzburgitic and lherzolitic mantle source beneath the Upper Muna field where Cr-diopside crystallized within a wide pressure and temperature range (40-65 kbar and 900-1350°?). The mineral geochemistry, trace element distribution and Sr-Nd isotope variations of Upper Muna kimberlites are typical for group I kimberlites and reflect a deep-seated asthenospheric (convective mantle) source for the kimberlites.
DS202204-0524
2022
Kedrova, T.V., Bogush, I.N., Zinchuk, N.N., Bardukhinov, L.D., Lipashova, A.N., Saltykova, V.P.Diamond placers of the Nakyn kimberlite field.Russian Geology and Geophysics, Vol. 63, 3, pp. 245-254.Russiadeposit - Nakyn

Abstract: The paper presents the results of studies of diamonds from Early Jurassic sediments making up the Nyurbinskoe buried placer of the Nakyn kimberlite field, unique in diamond reserves. The main task is to identify diamond distribution patterns in the deposits of the Dyakhtar Stratum (lower deposit) and the Ukugut Suite (upper deposit) within the placer. A comparative analysis of the typomorphic features of diamonds from the upper and lower deposits of the placer was carried out. Variations in the contents of crystals with certain properties that form the image of a diamond-bearing geologic object have been revealed. The zonal distribution of diamonds by characteristics in sedimentary deposits, regardless of their age, has been established. The properties of diamonds and their associations change within the placer, which is due to their redeposition during the Early Jurassic sedimentation.
DS202204-0525
2022
Klepikov, I., Vasilev, E.Regeneration growth as one of the principal stages of diamond crystalogenesis.MDPI, doi: 10.3390/min12030327Russiadiamond morphology

Abstract: Revealing the internal structure of diamonds is key to understanding the general regularities of crystal growth and dissolution. This paper presents and summarizes data on the internal structure of diamonds of different morphological types, colors and defect-impurity composition. In order to provide a comprehensive explanation of the stages of diamond growth, crystals and plates were observed, and panchromatic cathodoluminescence and photoluminescence techniques were applied. This article considers the mechanism of tangential growth from existing surfaces (regeneration growth) as an intermediate stage between normal and tangential crystal growth. The regeneration growth is very fast due to the absence of the limiting stage-nucleation of a new atomic layer. Cuboid diamonds were refaceted to stepped octahedrons by the regeneration growth mechanism. A schematic model of crystal habit transformation due to regeneration growth explains the internal structure of crystals in connection with their morphology and thermal history. The main variants of regeneration stage and its morphological manifestations were demonstrated. Most diamonds pass through the regeneration stage, and in many cases, it was a stage of growth termination.
DS202204-0526
2022
Kvasnytsya, V.Morphology of diamond crystals and mechanism of their growth ( natural and synthetic).Journal of Superhard Materials, Vol. 43, 2, pp. 75-84.Russiadiamond morphology

Abstract: Using the morphology of natural and synthetic diamond crystals as an example, the mechanisms of their growth of dislocation (spiral), non-dislocation (two-dimensional nucleation), normal (fibrous), and block (adhesive) character have been demonstrated. These mechanisms can be clearly seen in the morphological and microtopographic features of diamond polyhedra and xenocrystals. Growth occurs by the dislocation and normal mechanisms for most natural diamond crystals and the dislocation and two-dimensional nucleation mechanisms for synthetic diamond crystals.
DS202204-0531
2022
Novikov, D.A., Ilin, A.V., Kashnirtsev, V.A., Chernykh, A.V., Pyryaev, A.N.Geochemistry of brines and oil occurrences in the Udachnaya kimberlite pipe ( Siberian platform).Russian Geology and Geophysics, Vol. 63, pp. 166-183.Russia, Siberiadeposit - Udachnaya

Abstract: Results of a geochemical study of brines and oil occurrences in the Udachnaya kimberlite pipe are presented. Like other intrusions in the Daldyn-Alakit diamondiferous region, this diamond deposit is a unique cryohydrogeologic microstructure differing from the host sedimentary rocks and other diamond pipes of the Yakutian diamond-bearing province. Two waterlogged zones distinguished in the section of orebodies at the explored depths of the deposit correspond to the upper and middle Cambrian aquifers. Predominantly acidic (average pH = 5.5) Cl-Ca and Cl-Ca-Na brines with TDS from 94.3 to 391.3 g/dm3 are widespread within the orebodies and host rocks. The brine mineralization and contents of major salt-forming components increase with depth, to the horizon at the -365 m elevation, where TDS reaches 391 g/dm3, while below, at the -650 m level with noted hydrogeochemical-field inversion, TDS is 253 g/dm3. The mineralization of Cl-Ca, Cl-Ca-Na, Cl-Ca-Mg, and Cl-Ca-Mg-Na brines in the upper Cambrian rocks varies from 102.9 to 192.9 g/dm3, and the pH values, from 4.9 to 6.2, averaging 5.6. Among the microcomponents, the highest average concentrations (mg/dm3) are found for Br1292.8 > S875.7 > Sr453.7 > Fe79.7 > Li53.4 > B32.7 > I13.3 > Si10.8 > Mn6.4 > Se3.6 > Rb2.3. The values of genetic coefficients vary widely: The rNa/rCl coefficient ranges from 0.18 to 0.31; rCa/rMg, from 1.03 to 3.60; Ca/Cl, from 0.2 to 0.3; and the integrated metamorphism index S (according to S.L. Shvartsev) varies from 193 to 277. The middle Cambrian rock complex, containing more saline brines, has been examined in much more detail. It hosts Cl-Ca, Cl-Ca-Na, Cl-Ca-Mg, and Cl-Na-Mg brines with TDS from 94.3 to 391.3 g/dm3 and high average concentrations (mg/dm3) of microcomponents: Br2224.9 > Sr1024.9 >S500.1 > B202.9 > Li147.1 > Fe97.0 > I33.2 > Rb11.4 > Si9.6 > Se9.5 > Mn3.6 > Ni1.7. As compared with brines in the overlying rocks, the middle Cambrian brines show a wider variation in element ratios: rNa/rCl from 0.14 to 0.34, rCa/rMg from 0.66 to 9.71, and Ca/Cl from 0.03 to 0.45. These brines are also characterized by a significantly higher metamorphism grade, which is indicated not only by the rNa/rCl and rCa/rMg ratios but also by the S index varying from 278 to 316. The composition of stable isotopes ?D and ?18O) and dissolved inorganic carbon ?13C) of the brines was investigated. The studied waters are assumed to be of sedimentary-metamorphic origin. Their isotopic composition reflects the climatic conditions existing at the time of their burial, which were probably aggravated by the contribution of the oxygen isotope exchange with water-bearing rocks. The ?13C values of carbon dioxide dissolved in water allow an inference about its biogenic origin. The biogenic carbon isotope exchange is governed by the relationship between methanogenic and SMT processes. Analysis of the 87Rb/86Sr and 87Sr/86Sr isotope ratios of the studied brines has revealed affinity between the isotopic compositions of waters in the Cambrian deposits and in ancient seawaters. The mass chromatograms of saturated-hydrocarbon (HC) fractions show at least two individual types of oils and malthas (naphthides). The third variety resulted from their mixing at different stages of migration. The fourth is from the contact zone; it changed during the explosion of kimberlites. The first, most common, type of naphthides (“postexplosive”) is similar in all geochemical parameters to oils from the Nepa-Botuobiya anteclise, in particular, to those from the Mirnyi arch. Oils of the second (pre-explosive) type are found only in the Udachnaya Formation, within the depth range 1130-1430 m.
DS202204-0534
2022
Rezvukhin, D.I., Nikolenko, E.I., Sharygin, I.S., Rezvukhina, O.V., Chervyaovskaya, M.V., Korsakov, A.V.Cr-pyrope xenocrysts with oxide mineral inclusions from the Chompolo lamprophyres ( Aldan shield): insights into mantle processes beneath the southeastern Siberian craton.Mineralogical Magazine, Vol. 86, pp. 60-77.Russia, Siberialamproite

Abstract: Pyrope xenocrysts (N = 52) with associated inclusions of Ti- and/or Cr-rich oxide minerals from the Aldanskaya dyke and Ogonek diatreme (Chompolo field, southeastern Siberian craton) have been investigated. The majority of xenocrysts are of lherzolitic paragenesis and have concave-upwards (normal) rare earth element (REEN) patterns that increase in concentration from light REE to medium-heavy REE (Group 1). Four Ca-rich (5.7-7.4 wt.% CaO) pyropes are extremely low in Ti, Na and Y and have sinusoidal REEN spectra, thus exhibiting distinct geochemical signatures (Group 2). A peculiar xenocryst, s165, is the only sample to show harzburgitic derivation, whilst demonstrating a normal-to-weakly sinusoidal REEN pattern and the highest Zr (93 ppm) and Sc (471 ppm). Chromite-magnesiochromite, rutile, Mg-ilmenite and crichtonite-group minerals comprise a suite of oxide mineral inclusions in the pyrope xenocrysts. These minerals are characteristically enriched in Cr with 0.6-7.2 wt.% Cr2O3 in rutile, 0.7-3.6 wt.% in Mg-ilmenite and 7.1-18.0 wt.% in the crichtonite-group minerals. Complex titanates of the crichtonite group enriched in large ion lithophile elements (LILE) are high in Al2O3 (0.9-2.2 wt.%), ZrO2 (1.5-5.4 wt.%) and display a trend of compositions from the Ca-Sr-specific varieties to the Ba-dominant species (e.g. lindsleyite). In the pyrope xenocrysts the oxides coexist with silicates (clino- and orthopyroxene and olivine), hydrous silicates (talc, phlogopite and amphibole), carbonate (magnesite), sulfides (pentlandite, chalcopyrite, breakdown products of monosulfide and bornite solid solutions), apatite and graphite. P-T estimates imply the inclusion-bearing pyrope xenocrysts have been derived from low-temperature peridotite assemblages that resided at temperatures of ~600-800°C and a pressure range of ~25-35 kbar in the graphite stability field. Pyrope genesis is linked to the metasomatic enrichment of peridotite protoliths by Ca-Zr-LILE-bearing percolating fluid-melt phases containing significant volatile components. These metasomatic agents are probably volatile-rich melts or supercritical C-O-H-S fluids that were released from a Palaeo-subduction slab.
DS202204-0541
2022
Vasilev, E.A., Kriulina, G.Yu., Garanin, V.K.Spectroscopy of diamond from the M.V. Lomonosov deposit.Geology of Ore Deposits, Vol. 63, 7, pp. 668-674.Russia, Kola Peninsuladeposit - Lomonosov

Abstract: Diamond crystals from the M.V. Lomonosov deposit (Archangelsk oblast, Russia) were studied by luminescence and infrared spectroscopy. Three groups of crystals were distinguished according to their morphology, thermal history, and photoluminescence. The structural diversity of yellow cuboids typical for the deposit is demonstrated. New photoluminescence systems among the low-temperature cuboid crystals are observed.
DS202204-0542
2022
Vladykin, N.V., Ashchepkov, I.V., Sotnikova, I.A., Medvedev, N.S.Lamproites of Kayla pipe and their mantle xenocrysts, SE Aldan shield, Russia: geochemistry and petrology.Jounral of Earth System Science, Vol. 131 81 doi.org/10/1007/s12040-022-01814-3 19p. PdfRussiadeposit - Kayla

Abstract: Origin of abundant alkaline and related lamproite massifs and dykes in Aldan shield have no explanation and the geochemistry of rocks and their xenocrysts is used for the explanation. Bulk-rock geochemistry, mineral chemistry data of the Kayla lamproites of Russia and mineral chemical data (trace and rare elements) of the mantle xenocrysts found in these lamproites was studied using ICP MS and electron microprobe analyses (EPMA). The trace element spectrum of Kayla tuffs and breccias show the similarity with the olivine lamproites and belong to the orogenic type according to Th-U-Nb systematics. Primitive mantle normalized trace element (TRE) spider diagrams show right-leaning patterns with the peaks in large ion lithophile elements Sr, Pb, U, and troughs in Ta, Nb suggesting melting of original peridotites mixed with the ancient EMI (according to Nd, Sr isotopes) source probably belonging to eclogites or lower crust. The age of the emplacement is 132-134 Ma, similar to the Chompolo lamprophyres and many other alkaline Aldan complexes. Thermo-barometric estimation from Cr-diopsides and chromites xenocrysts suggest the origin from the spinel-garnet transition in the lithospheric mantle region. The P-T estimates derived from low-Cr-clinopyroxene xenocrysts, and related to lamproites show a high heat flow of 90 mW/m2 due to interaction with the plume-related magma. The Cr-diopsides and chromites give 45 mW/m2 geotherm similar to regional heat flow. The chondrite normalized rare earth element (REE) pattern for chrome-diopsides is steeper, compared to the low-chrome varieties. Primitive mantle normalized spidergram of Cr-diopsides displays peaks for Sr, U, and Th, and deep troughs of Nd, Nb, Ta. REE. The trace element spider diagrams of both types of xenocrysts show that they were equilibrated with the lamproitic melts and reconstructed parental melts of low-Cr-clinopyroxene coincides with the lamproite spectrums.
DS202205-0707
2022
Mikhailenko, D., Aulbach, S., Korsakov, A.V., Xu, Y-g., Kaminsky, F.V.Titanite in coesite-kyanite-bearing eclogite from kimberlite pipe Udachnaya.Doklady Earth Science, Vol. 503, pp. 206-212.Russiadeposit - Udachnaya

Abstract: The mineralogical and geochemical features of titanite and associated minerals in a rare sample of kyanite-coesite-rutile-bearing eclogite from the Udachnaya-East (Vostochnaya) kimberlite pipe have been studied in detail. Subidiomorphic titanite grains (100-300 ?m) were identified in the intergranular space. The composition of individual grains of titanite is characterized by a constant presence of Al2O3, F, P2O5, Zr, and Sr impurities but varies within the xenolith. Based on the absence of titanite inclusions in the rock-forming minerals and their presence in the intergranular space, titanite was formed in the studied sample at a late stage of its formation, most likely in the process of metasomatic action of the fluid/melt. Crystallization of rock-forming minerals (garnet + omphacite + kyanite) and accessory rutile occurred jointly at 3.5 ± 0.32 GPa and 920 ± 65°?. The value of Eu/Eu* = 1.06 in the reconstructed bulk composition of the rock, the high modal content of kyanite (~17 vol %), and the value of Ca# = Ca/(Ca + Mg + Fe + Mn) > 0.5 in garnet indicate a subduction nature of the studied eclogite. Most likely, the formation of titanite in the studied sample occurred as a result of the metasomatic action of a fluid/melt enriched in calcium, strontium, large lithophilic elements, and lead, by a mechanism similar to the formation of eclogites in the units of the Western Tien Shan.
DS202205-0713
2022
Rakhmanova, M.I., Komarovskikh, A.Y., Ragozin, A.L., Yuryeva, O.P., Nadolinny, V.A.Sprectroscopic features of electron-irradiated diamond crystals from the Mir kimberlite pipe, Yakutia.Diamond and Related Materials, Vol. 126, 109057Russiadeposit - Mir

Abstract: The behavior of characteristic centers in diamond crystals from the Mir pipe (Yakutia) was investigated upon electron irradiation. A series of diamond crystals of different types was chosen for experiments based on the nitrogen content and aggregation parameters. In electron-irradiated diamonds of the IaAB type, a new characteristic photoluminescence system was found with a zero-phonon line (ZPL) at 615 nm together with phonon replicas of 41 and 90 meV. The phonons' energies pointed to multiphonon interactions with a quasilocal vibration of a vacancy. According to our data, the nitrogen-related defect responsible for this phenomenon contains a vacancy and may be accompanied by some other impurity. Conversely, in an almost nitrogen-free crystal, a specific system with the ZPL at 558 nm was noted. The center in question is known to be vacancy-related and was formed in type IIa crystals from the Mir pipe not only by electron irradiation but also by high-pressure high-temperature annealing when vacancies were released as a result of motion or annihilation of dislocations. Regardless of the nitrogen impurity, specific systems with the ZPL at 454, 491, and 492 nm were registered in the irradiated diamond crystals from the Mir pipe. To examine the generated defects, the irradiated diamond crystals were subjected to low-temperature annealing at ?600 °C. Although the 454 and 491 nm systems persisted, the annealing of the 492 nm system along with well-known 523.6, 489.0, and 503.4 nm (3H) centers indicated the interstitial-vacancy nature of the defect.
DS202205-0718
2022
Skuzovatov, S.Y., Shatsky, V.S., Wang, Q., Ragozin, A.L.,Kostrovitsky, S.T.Multiple tectonomagmatic reactivation of the unexposed basement in the northern Siberian craton: from Paleoproterozoic orogeny to Phanerozoic kimberlite magmatism.International Geology Review, Vol. 64, 8, pp. 1119-1138.Russia, Siberiakimberlite magmatism

Abstract: Zircon xenocrysts from two diamond-barren kimberlite pipes (Leningrad and Ruslovaya) in the West Ukukit kimberlite field opened a ‘window’ to the buried crustal basement in the northern Siberian craton. Zircon U-Pb ages reveal a close affinity of the basement of the Khapchan belt to the Archaean Anabar province and a significant tectonomagmatic reworking in the Paleoproterozoic (~2.1-1.8 Ga) due to collision between the Anabar province and the Olenek province. The West Ukukit kimberlite field experienced multiple tectonomagmatic reactivation from ~670 to 144 Ma, which can be attributed to interaction of the deep crust with mantle-derived melts. Hf isotope composition of zircon xenocrysts reveals significant addition of juvenile material into the crust during the Paleoproterozoic orogeny in diamond-barren kimberlite fields, which is different from the reworking crust in the southern Yakutia diamondiferous kimberlite fields. Eruption of the Leningrad and Ruslovaya pipes were constrained as the Late Jurassic, much later than the well-known Late Silurian-Earth Devonian kimberlites in the West Ukukit kimberlite field. A NE-trending, >2000 km long kimberlite corridor is proposed to account for a prolonged lithospheric channel for episodic eruption of kimberlites in the Siberian craton. The diamond storage in the lithosphere beneath the West Ukukit kimberlite field may have been largely reduced by the Paleoproterozoic orogeny and Phanerozoic reworking.
DS202205-0725
2021
Vasilev, E., Kriulina, G.Y., Garanin, V.K.Spectroscopy of diamonds from the M.V. Lomonosov deposit.Geology of Ore deposits, Vol. 63, pp. 668-684. pdfRussiadeposit - Lomonosov

Abstract: Diamond crystals from the M.V. Lomonosov deposit (Archangelsk oblast, Russia) were studied by luminescence and infrared spectroscopy. Three groups of crystals were distinguished according to their morphology, thermal history, and photoluminescence. The structural diversity of yellow cuboids typical for the deposit is demonstrated. New photoluminescence systems among the low-temperature cuboid crystals are observed.
 
 

You can return to the Top of this page


Copyright © 2024 Kaiser Research Online, All Rights Reserved